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A topological space is a set X equipped with a nonempty collec-
tion N, of subsets - a topology - of X (called neighbourhoods)
for each = € X such that

1. x € N for all N e N,

2. Nn N €N, forall NN € N,

3. forall N e Ny, and all U ¢ X, N < U implies U € N,
("neighbourhoods are large enough”),

4. for all N € N, their interior N := N°:={ze N : N ¢ N}
is in NV ,.

Let X be a topological space and Y < X a subset.

Via neighbourhoods: For y € Y and N € Ny € X we declare
N Nn'Y to be a neighbourhood of y with respect to Y.

Via open sets: The open sets of Y with respect to the subspace
topology on X are precisely the sets O n'Y, where O is open
in X.

This is the subspace topology induced by Y on X.

It is the initial topology with respect to the inclusion ¥ — X.

Let T be a family of subsets of a set X. We call the elements
of T open and we require that unions, finite intersections and
&5, X are open. A set N c X is a neighbourhood of x € X if
there exists an open set O € T such that z € O < N. Then
the collection of neighbourhoods T is a topology on X.

A subset A ¢ X is closed if X\A is open.

Finite unions and arbitrary intersections of closed sets are

closed.

7 = ”: Let A be closed. Then X\A is open, so X\A € N,
for all € X\ A. Hence no point in X\ A can be a limit point,
so A contains all its limit points.

7 «="7: Suppose A contains all its limit points. Let z € X\ A.
Then z is not a limit point. Then there exists a neighbourhood
N e N, such that An N = &, so N © X\A. Hence X\A is
a neighbourhood of each of its point, so it is open, hence A is

closed.

Let Ac X.

Then A is dense if A = X.

The interior of A, /01, is the union of all open sets contained
in A.

The frontier of A is A N X\A.

A function f: X — Y is a homeomorphism if f is bijective
and f as well as f~! are continuous. We then write X ~ Y

and say that X and Y are homeomorphic.

A map f: X — Y between topological spaces is continuous if
for all € X and for all neighbourhoods N € N ¢(,), fYUN)e
Ny

A subset O ¢ X is open if for all z € O, O € N, that is, O
is a neighbourhood of z.

Let I be an index set such that O; < X is open for all ¢ € I.
Then | J,.; O; is open, if I finite, then [
& and X are open.

el ,e; Oi is open, the sets

Let A € X be a subset. A point z € X is a limit point
(or accumulation point) of A if (A\{z}) " N # & for all
neighbourhoods N € NV, of .

Every x € E" is a limit point of Q™. No z € E" is a limit point
of Z".

The closure of A < X, A, is the union of A with all of its limit
points.

The set A is the smallest closed set containing A.

Corollary: A set A c X is closed if and only if A = A.
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A function f: X — Y is continuous (a map) if and only if
for all open sets O < Y, the full preimage f~1(0) < X is
open.

Composition of maps is a map. Restriction of a map is a map.
Identity and inclusion map are maps.

f: X >Yismap <= f(A)c f(A)forall Ac X. <
fU(B)c f~Y(B) forall BC Y. <= f ctson basis <
f~Y(B) is closed for all closed sets B < Y.

A topological space X is Hausdorff if for any two distinct
points z,y € X there exists disjoint open neighbourhoods of
z and y, respectively.

A space X is HAUSDORFF if and only if {z} = ({U : U € N}
holds for all z € X.

A family F of open subsets of X is an open cover of X if
Uper F = X. A family F' is a subcover of F if F' is a open
cover and F' c F.

The space X is compact if every open cover of X has a finite

subcover.

Let (X,d) be a compact metric space and F be an open cover
of X. Then there exists a ¢ > 0 (the LEBESGUE number of
F) such that any subset of diameter less than ¢ is contained

in some F' e F.

Application: Suppose U u V is a open cover of [0,1]. Then
there exists a subdivision 0 = tg < t; < ... < t,,, = 1 such
that [tg,tg+1] < U or V for all k€ {0,...,m — 1}.

For nonempty topological spaces X and YV, B = {U x V :
U c X,V cY open} is a basis for the product topology on
X xY. The space X xY equipped with the product topology
is a product space.

With respect to the product topology on X and Y, the pro-
jections px: X xY — X (x,y) — x and py (defined analo-
gously) are continuous and open (they map open sets to open
sets). The product topology is the coarsest topology on X xY
for which px and py are maps (so product topology = initial
topology with respect to the projections).

Let B be a collection of open subsets of X. If each open set is
the union of sets in 3, then § is a basis of the topology on
X.

A function/space is continuous/compact iff it is continu-

ous/compact on the basis.

A subbasis F of a topology on X (in terms of open sets)
induced by any family of subsets containing ¢J and X, is the
topology with the basis consisting of all finite intersections of

sets in F.

Let X be aset and 17, T, < 2% be topologies on X. If Ty < Ty,
then T} is coarser than Ty and T5 is finer than T7.

The coarsest topology on any set is {5, X} (called trivial
topology) and the finest is 2% (the discrete topology).

Coarsest = smallest number of open sets

Finest = largest number of open sets

A disk is a topological space homeomorphic to B2.

If Ais a disk and h: A — B? is a homeomorphism, then
h=1(S') = 0A. In particular h=1(S') does not depend on h.

Any homeomorphism from the frontier of a disk to itself can
be extended to a homeomorphism of the entire disk.

Let A, B « X with A, B ~ B? and intersect only along their
frontiers (~ S?7!) in a homeomorphic copy of B?!. Then
AuB~B.

The continuous image of a compact space is compact.
A closed subset of a compact space is compact.

Let X be HAUSDORFF space and A < X be a compact sub-
set. Then for each point x € X\ A4, there exist disjoint neigh-
bourhoods of x and A. In particular A is closed.

Let X be compact and Y a Hausdorff space. If f: X - Y
is a bijective map, then f is a homeomorphism.

(BOLZANO-WEIERSTRASS) An infinite subset of a compact
space has a limit point.

Let (X,7x) be a non-compact topological space. The one-
point compactification of X the set X := X U {00} with
the topology

7= 7x U{(X\C) u {0} : C = X closed and compact}.

The one-point compactification (X, 7%) is compact and X <
X is dense.

The one-point compactification X+ is HAUSDORFF if and only
if X is a locally compact HAUSDORFF space.
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A space X is connected if for all nonempty subsets A, B C X
with X = AuBwehave AnB # & or AnB # (& or: if it is
not the union of two nonempty disjoint proper open subsets.
The connected components of a topological space X are
its maximally connected subsets.

Connected components are closed.

RP" ~ (E"\{0})/a~re ~ 8" /pnp ~ B" /on—gesn

We have RP! ~ S'. As the quotient map is open, RP" is
HAUSDORFF, compact and path-connected.

Let f,g: X — Y be maps. Then [ is homotopic to g if
there exists a map F: X x I — Y such that F(-,0) = f and
F(-,1) = g. Then F is a homotopy and we write f ~p g. If
additionally A ¢ X and F(a,t) = f(a) forallae Aand t € I,
then F' is a homotopy relative to A and we write f ~p g rel
A (then f[a = g[a).

The relation ~ rel A is an equivalence relation.

If f,g: X — Y are homotopic maps and u: Y — Z is a map,
then uo f ~ uog. If v:Y — Z is homotopic to u, then

uo f ~wvog. This also holds for relative homotopy.

If X is path-connected and p,q € X, then 71 (X, p) = m1 (X, q).

~!is a path from ¢ to p. For

—1

Let v be a path from p and ¢. Then ~

any loop a: I — X based at p, the path v4(a) :=7 " e eyis a

)
loop based at q.

If @ ~p o, then 74 () ~g F«(a’) via G(,t) = vy e F(-,t) ey}
Hence 7y is constant on equivalence classes (). We can hence

view vy as

/

v m(X,p) > m(Xog), (@) (),

which is a well-defined group homomorphism. It is bijective with

inverse (v«) ' = (v Hx.

Let w(t) :== e*™ ~,,: [0,1] — [0,n], t — nt and 7, == 7 0 Y,,.
Thm. ®: (Z,+) — (m1(S4, 1), ), n = {m, ) is isomorphism.
® is homomorphism: o :=~, + m. Then roo = 7 o~,, so
Ym * O >~ Ymin rel {0,1} and so ®(m + n) = ®(m) - &(n).

® is onto: « loop in St at 1. Then 3 lift &, ®(a(1)) = (a).
® is injective: In € Z s.t. ®(n) = (e). Let v path in R
from 0 to n s.t. mo~y ~p e rel {0,1}. Lift F to homotopy
F: 1> R, moF = F, F(0,-) = 0. We have F(1,1) = 0.
Then F(-,1) is path in R, lift of 7 o 5. Uniqueness of lifts:
F(-,1) =~ Son=n~(1)=0.

The product of two HAUSDORFF/compact spaces is HAUS-
DORFF /compact.

A space X is path-connected if any two points xz,y € X can
be connected by a path, that is, there exists a map ~: [0,1] —
X with v(0) = x and v(1) = y.

Path-connected spaces are connected.

Let X < E” be open and connected. Then X is path-connected.

Let a: I — X be a path in X. Then « is a loop based at
pe X if a(0) =p = a(l).

A loop in X is the same as a map S' — X

We have quotient map ¢: [0,1] — [0,1]/{0,1} ~ S' and a path
a: [0,1] - X. Now « respects the equivalence relation 0 ~ 1 as
a(0) = a(1). By the mapping property of the final topology, there
must exist a map &: S' — X such that the diagram commutes.

Given amap f: S' - X, let a:= foq.

For a loop a: I — X based at p, the homotopy class of «,
(ay:={d:d is aloop based at p with o ~ o’ rel {0,1}},

is the equivalence class of o with respect to the equivalence
relation ~ rel {0,1}. For p € X the set

m1(X,p) == {(a):ais aloop in X based at p}

equipped with the above multiplication (a)-(f) = ae ),
where e denotes concatenation, is a group, the fundamental

group of X with base point p.

Let f: X — Y be a map. For any a € (a) € m1(X,p) we
have foa € m (Y, f(p)). For o € {a) we have foa' € {fo
a ). Hence we obtain a function fy: m(X,p) —» m (Y, f(p)),
(@) (foay. Then fo(aef) = (foa)e(fof), 5o fuisa
group homomorphism. Further, (go )y = gy o fu: m (X, p) —
m1(Z,9(f(p)))-

So 7 can be applied to commutative diagrams.

If h is a homeomorphism, then hy and hy! are group isomor-
phisms.

Hence 7 is a topological invariant.
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Let X and Y be topological spaces, p € X and ¢ € Y. Then
(X x Y, (p,q)) = m(X,p) x m (Y, q).

Projection maps induce homomorphisms (p1)s«, (p2)s. Then

(p1)% % (p2)x is isomorphism.

A homotopy G: X x I — X relative to A ¢ X is a defor-
mation retraction if G(a,-) = a YVa € A, G(-,0) = idx and
G(-,1) c A.

For f: A — X aw— aand g: X > A,  — G(z,1) (the
retract) we have fog ~idy and go f =id4. Hence X ~ A,
so A is a deformation retract of X and we say that X retracts
to A. Hence in order to compute the fundamental group of X
it suffices to find the fundamental group of any deformation
retract of X.

S x I retracts to the circle St, E™\{0} retracts to S*~*.

m1 even is a functor on the category of top. spaces modulo
homotopy equivalence.

Let f: X > Y and g: Y — X be maps with idx ~p go f and
idy ~g fog. Let qY and p := g(q) be base points. Define
v: I — X, s— F(p,s). Then v(0) = F(p,0) = idx(p) =p
and y(1) = F(p,1) = g(f(p)), so 7 is a path in X joining
p with g(f(p)). By functorial properties of w1, (g o f)s =
(g% © fx) = 75 m(X,p) = m1 (X, g(f(p))) is an isomorphism.
Hence f is injective (its left inverse up to conjugation is gy ).
A similar argument using G instead of F' shows that f, is

surjective, so fy is bijective.

Let X and Y be topological spaces. A map p: Y — X is a
covering map or cover (of X) if every point z € X has an
open neighbourhood V' for which p~!(V) decomposes into a
disjoint union of open sets U; < Y such that p|y,: U; — V is
a homeomorphism.

The morphisms are the homeomorphisms f: Y — Z, where
p1:Y — X and py: Z — X are covers of X, with pso f = p;.
In particular, a covering map is always surjective.

A cover p: X — X is universal if X is simply connected, e.g.
R — S!, t — 2™,

We have Deck(X — X) := {f: X — X : f homeo, po f =
pt=m(X g
Let J < E? be a JORDAN curve, that is J ~ S'. Then E*\.J

has ezactly two (path)components.

Let A c E? be a curve which doesn’t closed up (?arc”), that
is, A~ [0,1]. Then E?\A is path-connected.

Let ¢ € S"\{p}. As S"\{p} ~ E", S"\{p} is simply connected.
We can decompose S™ as a union of open simply connected
subsets:

S" = (8"\{p}) v (8"\{g}).

As n > 2, their intersection

(S"\{p}) N (S™\{q}) = S"\{p, ¢}

is path-connected. By VAN-KAMPEN, 71 (S™, p) is trivial.

X and Y are homotopy equivalent (X =~ Y) if 3 maps
fiX—>Yandg:Y - X st gof~idx, fog ~idy.
Homeomorphic spaces are homotopy equivalent.

Homotopy equivalence is an equivalence relation.

Convex subset of E" are homotopy equivalent to {e}.
E"\{0} ~ S"~L.

Let f,g: X — Y be maps with f ~p g and p € X. Then
g« m(X,p) — m(Y,g9(p)) equals the composition 7y, o f,
where fi: m(X,p) — m (Y, f(p)) and the path joining f(p)
and g(p),

Vi I=Y, s F(p,s),

induces a map

Yo (Y, f(p)) > m(Y,9(p), (a)—{(y 'eaey).

A space X is contractible if idx =~ ¢, for some p € X, where
ep: X — X, x — p denotes the constant map at pe X on X.
Let X be contractible. Then X is simply connected and idx
is homotopic to e, for all x € X.

Let Y be a space with maps f,g: Y — X. Then f ~ g.

Every map f: B" — B" has a fixed point for n > 1.

n = 2: Suppose f(x) # x for all z € B®. For x € B? let g(z) be
the unique point of intersection of S' and the ray from f(x)
to z in the direction of z. Then g: B? — S! is a map as a
composition of maps. For x € S! we have g(x) € S'. Hence g
is a retraction from B to S'. Then B® ~ g(B?) = S!, which
is a contradiction as m (B?) # w1 (S1).

For n = 1 replace 7, by mg in the above proof, where 7 is the
set of path-connected components (which is not a group).

For n > 2 replace w1 by H,,_1.
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Let S be a surface. The interior of S is the set of all x € S
such that there exists a neighbourhood N € N with N, ~ E2.
The boundary of S is the set of all x € S such that there
exists a homeomorphism f: EX — N, where N € N, and
f(0) = z.

Thm. The interior and boundary of a surface are disjoint.
Thm. Let S; and Ss be surfaces which are homeomorphic
via h. Then h maps the interior of S; homeomorphically onto
the interior of Sy (and likewise for the boundaries).

A surface is closed if it is compact and has empty boundary.

The convex hull conv({vg,...,v;}) is a k-simplex if
{vo,...,vx} is in general position.

Let 0 = conv(V) be a k-simplex. If W < V, then 7 =
conv(WW) is a simplex, too, called a face of o. We write
7 < 0. Further, 7 proper face of o it W ¢ {5, V}.

A finite collection of simplices in E" is a geometric simplicial
complex if any two simplices from the collection meet in a
common face (which may be empty). Its dimension is the

maximal dimension of a simplex.

A space is triangulable if it is homeomorphic to the realisation
of a geometric simplicial complex.

Let X be a topological space. A pair (K, X) is a triangula-
tion of X if K is a simplicial complex and h: |[K| > X is a
homeomorphism.

The space X is triangulable if it has a triangulation.

Every closed surface is triangulable.

Let K and L be geometric simplicial complexes. A function
: Vert(K) — Vert(L) is a simplicial map if for all 0 € K
we have p(0) € L (extend ¢ via barycentric coordinates).

A bijective simplicial map whose inverse is a simplicial map is

a simplicial isomorphism.

Let 7 := conv(vo,...,vx) < R™ be a k-simplex. Then each point
x € 7 can be uniquely written as © = 25:0 Ajvj, where A; = 0 for
all j€{0,...,k} and Z?:o Aj = 1. The coefficients (\;)}_ are the
barycentric coordinates of . The barycentre of 7 is the point
Br = %4-1 Z?:o vj € T.

Let K be a GSC. The barycentric subdivision K! of K
is the GSC with Vert(K') = {8, : ¢ € K\{J}} such that
conv(Bog, ..., P0,) is a face if and only if there exists a ¢ €
Sym({0,1,...,k}) such that g,0) < Op1) < ... < Tyk)-

The m-th barycentric subdivision is K™ = (K™ 1)!.

We have Vert(K) c Vert(K*'). k faces gets divided in (k + 1)! k-
faces.

A (topological) k-manifold is a HAUSDORFF space such
that each point has a neighbourhood either homeomorphic to
E* or E’j_ ={(z1,...,2) € E* : 2p > 0}.

A surface is a 2-manifold.

The affine hull of V' = {vg,...,v} < E" is aff(V) :=
{Z?:o NUEDWIPYE 1}~

The set V' is in general position if dim(V') = k, that is, (v; —
vo);?:l are linearly independent. We say that the point in V
are affinely independent.

The set {xq,...,2mn} < R" is affinely dependent if and only if
the set {(1,z0),..., (1, 2m)} € R™! is linearly dependent.

The realisation of a simplicial complex K := (aj);?:l in E" is
k
|K| == UO’jCEn.
j=1
|K| < E" is compact.
x € | K| is contained in the relative interior of a unique simplex,
called the carrier of z.
K is connected <= K is path-connected «<— K<!is a
connected graph.

Let K be a geometric simplicial complex in E" ~ E" x{0} c
E"™!. The cone of K with apex ve E™ T\ (E™ x{0}) is

CK={oxv:ce Ku{J}} UK,

where

o xv = conv(c U {v})

is a (n + 1)-simplex if ¢ < E" is a n-simplex.
We have |CK| ~ C|K].
Let V be a finite set. A subset K — 2V is an abstract

simplicial complex with vertex set V if for all ¢ € K and all

7 C o we have 7 € K.
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The mesh (size) of a complex K is u(K) := max({diam(o) :
o € K}), where diam(o) := max({||z — y| : z,y € o}).

Each simplex of K! is contained in a simplex of K.

We have |K!| = |K]|.

If dim(K) = n, then p(K') < - pu(K).

n+1

The following theorem states that we can replace continuous

maps between realisations of GSCs by simplicial maps.

Let f: |K| — |L| be a map. Then there exists a m € N such
that there exists a simplicial approximation s: K™ — L to f.

The edge group E(K,v) of K based at v € V consists of
equivalence classes of edge loops at v with respect to the mul-

tiplication
[Voy -« s Uk ] [Vks Vkt1s - - -y U] = [V0, -+, Um],

where vg = v, = v,, = v.

Thm. E(K,v) = m(|K|,v) = G(K, L), where L is a simply

connected subcomplex of K, e.g. a spanning tree of K<!.

RADO (1923): Every closed surface is triangulable: S ~ |K].
dim(K) = 2.

K is pure, that is, each facet (maximal face with respect to
inclusion) is 2-dimensional.

Each edge of K is contained in exactly two triangles.

Any two vertices of K can be joined by an edge-path.

Each vertex v is contained in at least three triangles, which

together form a cone with apex v.

Let S :=|K]|. If S is orientable, then K is orientable.

Assume S is orientable. Pick any triangle and orient it. In dual graph,
take a spanning tree rooted at the triangle chosen, along which we can
uniquely spread the orientation. The only thing that can go wrong is that
two nodes in this tree have incompatible orientations. If this were the
case, then there is a sequence of triangles o1, ..., o) which are adjacent
such that o; and 0,41 are adjacent and have compatible orientations for
1e{l,..., k — 1}, but o1 and oy are adjacent but have no compatible
orientations. We join the barycentres 35, to the barycentres of the edges
B

in the polyhedron \A’" |. ”Thickening” that path yields a MOBIUS strip,

0iNT(i41) mod k and 5, _, no,, obtaining a simple closed polygonal path

contradicting that S is orientable.

The (first) barycentric subdivision of an abstract simplicial
complex K has as vertices the faces of K, that is, K\{},
and as faces the flags of K.

A simplicial map s: K — L is a simplicial approximation
of the continuous function f if s(z) lies in the carrier of f(x)
for each z € |K|.

If s is a simplicial approximation of f, then |s| ~ f.

Let L ¢ E™. Define F': |K| x I — E", (z,t) — (1 —t)|s(x)| + tf(x). For
z € | K|, there exists a face o € L such that |s|(z), f(x) € 0. Since o is
convex, the straight line homotopy F' stays inside . Hence the image of

the F' is contained in |L| and |s| ~p f.

An edge path in a GSC K is a sequence (vg,...,v) in V
such that the edge (or point: we allow v;—1 = v;) v;_1v; =
conv({v;_1,v;}) lies in K for all i € [k].

If vy = vg, then this sequence is an edge loop based at vg.
Two edge paths are equivalent if they can be transformed

into another by finitely many operations of the following kind:
o (u,v,w) < (u,w) if conv(u,v,w) € K ("shortcut”).

o (u,u) « u.

Modifying the sphere S? by adding m handles and n > 0
disjoint cross-caps is homeomorphic to S? with 2m +n disjoint

Cross-caps.

Every simply connected, closed 3-manifold is homeomorphic
to S3.

An orientation of a simplex is an ordering of its vertices up
to an even permutation.
The orientation of a conv(vg,...,vi—1,Vit1,...,vx) induced
by an orientation vy, ..., v is (— denotes to opposite orienta-
tion)

Vo---UVi—1Ui41 .- Vk, if 4 is eveln,

—Vg .. -Vi—1Vi41 ...V, if 4 is odd..
A triangulation K is orientable if there exists orientations of

all triangles such that each edge receives opposite orientations

from its two triangles.
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Let L be a d-dimensional simplicial complex. Then f;(L) is
the number of k-dimensional simplices of L, (f;)9_ is the f-
vector (or face vector) of L and the EULER characteristic of
Liis X(L) = Eoo(=D)* fi(L).

Let L and M be cell complexes which intersect in a common
subcomplex Lo M. Then x(LuM) = x(L)+x(M)—x(LnM)

by the inclusion-exclusion principle.

X(LY) = x(L).

Every polygonal curve in | K | made up of edges in K! separates
K| = x(K)=2 < |K|~S%

”@ = @"’. As in the proof of EULER’s theorem, it follows that I is
a tree. Hence x(K) = x(T)+ x(I') =1+1=2.

@ == @ If x(T) = 2, then x(I') = 1 by the above formula and
hence I' is a tree. Thus |K| = |N(T)
glued at their boundaries, so |K| ~ S2.

@ = @ This comes from the proof of the JORDAN theorem.

u |[N()| is a union of two disks

We have x(Ky) > x(K).
Case 1: |N| is a cylinder. Then, as L; and Ly are disjoint,

X(Kx) = x(M) + x(CL1) + x(CL2) — x(L1) — x(L2)

= x(M)+1+1-0-0=x(M)+2.
Case 2: |N| is a Mdobius strip. Then
X(Kx) = x(M) +x(CL) = x(L) = x(M) + 1.

Lastly, in both cases we have
Y(K) = x(K?) = x(M) + x(N) = x(M A N) = x(M) + 0 — 0 = x(M),

as M n N is a circle.

The abelisation of G is G*P := G/G’, the largest ABELIAN factor
of G, where G’ := {{[a,b] : a,b € G} ), where [a,b] := aba™*b".
An R-module is an ABELIAN group (G, %) together with a ring
R and a ring homomorphism ¢: R — End(G), which is the (not
unique) R-module structure on G.

Let X be a set. Then the free R—module with basis X is

n
C—DR:= ZTiIiITiER,JJieX,TLEN )
zeX i=1

where Y | riwi+ 5, Si%i = >, (5 + Si)Zs, is the set of unique

formal linear combinations.

The g-faces form (by construction) an R-basis of Cyq(K; R).
Hence

q
Oq (wows ... wq) = Z(—l)J Wow1 ... Wj ... wq € Cq—1(K; R)
— . —_—
j=0

oriented g-face oriented (g—1)-face

defines an R-linear map by extension.

For ¢ > 1, 04: Cy(K; R) — Cyq—1(K; R) is the ¢-th simplicial
boundary operator of K.

Let 0p := 0 (the boundary of a point is zero) or define C_1(K; R) = R-J
(all R-multiples of the empty set) and dp(v) = & for v € V (latter one

= reduced).

Let L be a one-dimensional subcomplex in K*. The thick-
ening of L is the subcomplex of K2 of the triangles (and their

faces) which meet L.

The thickening of L is a closed neighbourhood of |L| in |K]|

whose polyhedron is homotopy equivalent to |L]|.

The thickening of a tree is homeomorphic to a disk. The thick-
ening of a simple closed polygonal curve is either a cylinder
or a MOBIUS strip.

We have x(K) < 2 for a simplicial complex K.

Choose a spanning tree 7" in K and construct the complementary graph
I, whose vertices are the (barycentres of) triangles and whose edges
correspond to edges in K which are not edges in 7. Referring to the
barycentres means that we can realise this a geometric simplicial com-

plex I'" < K. Then x(K) = x(T) + x(I'), because each face of the

to I' (if it is a triangle or if it bijectively corresponds an edge which is
not in 7) in such a way that the signs match. As T is a tree, x(7T) = 1

and as I' is a connected simple graph, x(I') < 1 by CoMa.

K combinatorial surface. Assume that L is a simple closed
polygonal curve which does not separate |K|. Then |K| % S%.
Let N be the thickening of L in K2, which is either a cylinder
or a MOBIUS strip. Let M be the subcomplex complementary
to N in K2 (cf. thickening of dual graph T').

If [N| = S* x I, then J|N| = d|M| ~ S' uS*. Let Ly, Ly < K?
support those circles. Let K, = M u CLy u CLs.

If |[N| ~ Mdbius, then 0| N| = d|M| ~ S'. Let L < K? be that
circle. Let K, := M u CL.

Then K, is obtained from K by doing surgery along
L resp. L1 U Ls.

For p = 0 we have

P
m(H(p)) = ( a1,b1,...,ap,b, H arbray 'b; "
k=1
and for g > 1
P
7r1(1\4((])) = ai, y Qg HCL%
k=1

as well as x(H(p)) =2 —2p and x(M(q)) =2 —q.

Let K be a simplicial complex, whose vertices V = Vert(K) =
{v1,...,v,} are totally ordered. Fix a commutative ring R
with multiplicative unit 1.

The g-th simplicial chain module of K with coefficients in
R is C4(K; R), the set of all formal linear combinations of

q-dimensional faces of K with coefficients in R.

The chain module of K is a free R-module, where the addi-
tion and multiplication are inherited coefficient-wise from the

addition and multiplication in R, respectively.
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Since dy41 and 0, are R-linear, B,(K;R) and Z,(K;R) are
free R-submodules of the R-module Cy(K;R). As ¢? = 0,
B,(K;R) < Zy(K; R), so we can take the quotient.

The g-th simplicial homology module is
H,(K;R) := Zy(K;R)/By(K; R).

The ¢-th Betty number 3, of K is the free rank of H,(K;Z).
For c € Z,(K; R) the homology class of c is

[c] == ¢+ By(K;R).

We have Hy(K; R) = RY, where C is the number of connected

components of K.

If v and w are vertices of K in the same connected component, then the

equivalence classes in the 0-th homology agree (”they are 0-homologous”:

[v] = [w]. Indeed, we can joint v and w by an edge path vv; ... vw in
which no consecutive vertices are equal. Then 0((vv1) + (viva) + ... +
(vgw)) = w —v. Furthermore, vertices which lie in different components

of |K| are not homologous and R-multiples of a single vertex can never

be a boundary.

Let K be a combinatorial surface of genus g. Then K is con-
nected, so Hyo(K;Z) = Z and we have the following table:

‘ K is orientable ‘ K is non-orientable

Hy(K;Z) Z Z
H,\(K;Z) 7% 7971 X Ly
Hy(K; Z) Z {0}

Table 1: The first three Z-homology groups of surfaces with
genus ¢g. Note that a non-orientable surface of genus 0 does
not exist, so everything is well-defined. (Hy = {0}, k > 2).

If f,g: |K| — |L| are homotopic, then the induced maps fy
and g, in homology are equal. Hence if |K| ~ |L|, then
H,(K;R) =~ H,(L; R) for all ¢ > 0.

If m # n, then S™ % S™.

We have Hy, (S™) = Z # {e} = Hp (S™).

We have E™ ~ E" if and only if m = n.

Let h: E™ — E™ be a homeomorphism preserving the origin. Then

It .
sm—1 ~ E™\{0} ~ En {0} ~ S™! can only be true if n = m.

Let S  R? be a finite set of points and r = 0. Then

CecH(r) ={0c S ﬂ B (r) # &
rET
is the Cech complex of S with respect to the radius . Here,
B (r) is the ball of all points with distance at most r from x.
The CECH complex is an abstract simplicial complex (as the
nerve complex is) on the vertex set S. Then nerve theorem
implies that CECH(r) ~ | J,.q B (7).

We have 0,04+1 = 0 for all ¢ > 0.

Consider g + 2 vertices wog, ..., wy+1 of a (¢ + 1)-dimensional simplex. Then
1 0 7+1 1 I
+1 A | 1
2, U L k w & ko ( \
0% (wg -+ wg ) =0 (=) wq .. W wg g = (=70 (wp ... Wg .. wgi1)
k=0 y k=0 ‘ '
q+1 q+1 ]
= ) (=" ( (=17 g Wy, w5 Wg 41
k=0 \j=k+1
qg+1 , k—1
+ 2 =D Y (=1 wg w5 W, H»//H)
k=0 7=0 /
where we use that ¢ is linear in (L) and the hat indicates that this vertex is
omitted. Each ordered g-simplex occurs twice, but with opposite sign, hence
the term is zero.

X(E) = Y (D)Ff(K) = > (=1)F dim(H,, (K F)),
k=0 k=0

where F is any field of characteristic zero, such as Q, R or C.

Let K be a connected ASC with totally ordered vertex set and with a vertex
v. Each edge loop a = vvjv2...v,v based at v gives rise to a simplicial 1-
chain with integer coefficients z(a) := (vv1) + (viv2) + ...+ (viv) € C1(K; Z)
provided that subsequent vertices are distinct, i.e. wv; # wv;41. The order
matters: (vi,vi+1) = —(vit1v;). We have d(z(a)) = 0 because « is closed
and thus each vertex appears exactly twice in the linear combination. Hence
z(a) € Z1 (K Z).

For another chain S, which is equivalent to « in the edge path group of K,
we get z(B) — z2(«) € B1(K;Z), i.e. z(B) — z(«) is a 1-boundary of K.

This yields a homomorphism of groups

e: m(|K|,v) > Hi(K;Z), [a] = [z(a)],

where [«] is the homotopy class in the edge group and [z(«a)] is the homology
class. The homomorphism is onto and its kernel is the commutator subgroup
of 1 (| K|, v).

Simplicial maps induce homomorphisms in homology.
Subdivision preserves homology.

Let K and L be SCs. The map f: |K| — |L| induces a homo-
morphism of R-modules fy: Hy(K;R) — Hy(L; R) for each
qe Ny.

If f:|K| — |K]| is the identity map, then for all ¢ > 0,
fw: Hy(K; R) — H,(K; R) is the identity, too.

If M is another SC and f: |K| — |L| and g: |L| — |M] are
maps, then (go f)s = g« 0 fu: Hy(K; R) — Hy(M;R).

Hence Hy(-; R) is a covariant functor.

Let F be a finite collection of closed convex sets in E?. Then
the nerve complex is an abstract simplicial complex on F

as vertex set:
Nrv(F) = {XcF: Nx @}.

Y c X and (X # &, then (Y # ¢, so the nerve complex
is an abstract simplicial complex.
Thm. We have

NrV(F):U{x:xeF}CEd.
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Let Ko < K7 < ...
plex K. Then (by definition) for 0 < i < j < n, we have
K; < K; and the induced homomorphisms f;’j: H,(K;; R) —
H,(Kj; R), where R is a commutative ring with 1. The p-th
persistent homology module of the filtration K, with re-
spect to R is H)J == HYI (K, R) == im(f}7).

We have H = Z,(K;)/[By(K;) n Zy(K;)] and thus in
particularH* = Hp(K;).

< K, = K be some filtration of a com-

Let Bé'j = dimR(HZ’;‘j) be the p-th persistent BETTI number of K,
with respect to R. Further, if i < j, let

= (B ) - (5 = ),

which is the number of independent p-dimensional homology classes

born in K; which die entering K;. For all 0 < k </ < n we have

Byt =2 ( DI +u§}’°°> :

i<k \j={+1

where ui;oc is the number of homology classes still alive in K = K.

Let G = (V, E) be a finite simple graph with vertex set V and

edge set E. The clique complex is the simplicial complex
C(G) =={o cV:Vu,veo withu+#v:{u,v}eE}

onV.

The clique complex of (V,E) contains both V and E as 0 and 1-
dimensional faces. Its two-dimensional faces are the triangles as in a
triangle each vertex is connected to each other vertex, whereas for a
quadrangle this is not the case.

Let K be a finite ASC. A face o € K is free if there is a unique
T € K such that o < 7, that is ¢ is a facet of T, it has exactly
one dimension less: dim(o) = dim(7) — 1. In that case, (o, 7)

is a regular pair of K.

If (1,0) is a regular pair, then K\{7, 0} is again a simplicial
complex due to the uniqueness of the larger face 7 ("nobody

else is missing o other than 77).

Contractible spaces which have a sequence of regular pairs
such that removing them from the space yields a point are
collapsible. (Hence collapsible = contractible.)

The dunce hat is contractible, but not collapsible. The
MOBIUS strip, S™, n = 1 and M (p) are not contractible and
thus not collapsible.

Any tree and any convex set is collapsible.

We have CECH(0) = S as a 0-dimensional complex.
CECH(0) is a (|S| — 1)-dimensional simplex on the vertex set
S, where o denotes a sufficiently large radius r > diam(S).
If r < 7/, then CECH(r) < CECH(r'), where < denotes ”is a
subcomplex of”.

Hence we get a filtration of the final complex CECH(0), a se-
quence of subcomplexes that is contained in each other. In
between r = 0 and ”r = 0" we get some things which depend
on the geometry of S, while CECcH(0) and CECH(o0) only de-
pend on |S|.

A homology class v € Hy(K;) is born at K; if v ¢ H =

If v is born at K, then it dies entering K; if f77'(y) ¢
i—1,j—1 i1 i—1,j

Hy=H9=% but fy7= (y) € Hy .

The p-th persistence diagram of the filtration with respect

to R is the point configuration
{(,§) : 157 > 1} € R” == R x (R U{0})

with multiplicities.

Let S « R? be a finite point set and fix a radius 7 > 0. Con-
sider the 1-dimensional simplicial complex G(r) := CrCH(r)<!
as a graph.

The Vietoris-Rips complex is VR(r) := C(G(r))

This yields a filtration by choosing radii 7.

We have CECH(r) < VR(r) < CECH(v/2r).

The complex K\{7, o} is the complex obtained from K by
an elementary collapse.

If (o, 7) is a regular pair of K, then complex obtained from K
by an elementary collapse K\{c, 7} is homotopy equivalent to
K.

This combinatorial operation, if it is possible, simplifies the
complex because it reduces the number of faces but retains

the topological information.



