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A topological space is a set X equipped with a nonempty collec-

tion N x of subsets - a topology - of X (called neighbourhoods)

for each x P X such that

1. x P N for all N P N x,

2. N X N 1
P N x for all N,N 1

P N x,

3. for all N P N x and all U Ă X, N Ă U implies U P N x

(”neighbourhoods are large enough”),

4. for all N P N x, their interior N̊ :“ N˝ :“ tz P N : N P N zu

is in N x.

A function f : X Ñ Y is a homeomorphism if f is bijective

and f as well as f´1 are continuous. We then write X « Y

and say that X and Y are homeomorphic.

Let X be a topological space and Y Ă X a subset.

Via neighbourhoods: For y P Y and N P N y Ă X we declare

N X Y to be a neighbourhood of y with respect to Y .

Via open sets: The open sets of Y with respect to the subspace

topology on X are precisely the sets O X Y , where O is open

in X.

This is the subspace topology induced by Y on X.

It is the initial topology with respect to the inclusion Y Ñ X.

A map f : X Ñ Y between topological spaces is continuous if

for all x P X and for all neighbourhoods N P N fpxq, f
´1pNq P

N x.

Let T be a family of subsets of a set X. We call the elements

of T open and we require that unions, finite intersections and

H, X are open. A set N Ă X is a neighbourhood of x P X if

there exists an open set O P T such that x P O Ă N . Then

the collection of neighbourhoods T is a topology on X.

A subset A Ă X is closed if XzA is open.

Finite unions and arbitrary intersections of closed sets are

closed.

A subset O Ă X is open if for all x P O, O P N x, that is, O

is a neighbourhood of x.

Let I be an index set such that Oi Ă X is open for all i P I.

Then
Ť

iPI Oi is open, if I finite, then
Ş

iPI Oi is open, the sets

H and X are open.

” ùñ ”: Let A be closed. Then XzA is open, so XzA P N x

for all x P XzA. Hence no point in XzA can be a limit point,

so A contains all its limit points.

” ðù ”: Suppose A contains all its limit points. Let x P XzA.

Then x is not a limit point. Then there exists a neighbourhood

N P N x such that A X N “ H, so N Ă XzA. Hence XzA is

a neighbourhood of each of its point, so it is open, hence A is

closed.

Let A Ă X be a subset. A point x P X is a limit point

(or accumulation point) of A if pAztxuq X N ‰ H for all

neighbourhoods N P N x of x.

Every x P En is a limit point of Qn. No x P En is a limit point

of Zn.

Let A Ă X.

Then A is dense if A “ X.

The interior of A, Å, is the union of all open sets contained

in A.

The frontier of A is A X XzA.

The closure of A Ă X, A, is the union of A with all of its limit

points.

The set A is the smallest closed set containing A.

Corollary: A set A Ă X is closed if and only if A “ A.
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A function f : X Ñ Y is continuous (a map) if and only if

for all open sets O Ă Y , the full preimage f´1pOq Ă X is

open.

Composition of maps is a map. Restriction of a map is a map.

Identity and inclusion map are maps.

f : X Ñ Y is map ðñ fpAq Ă fpAq for all A Ă X. ðñ

f´1pBq Ă f´1pBq for all B Ă Y . ðñ f cts on basis ðñ

f´1pBq is closed for all closed sets B Ă Y .

Let β be a collection of open subsets of X. If each open set is

the union of sets in β, then β is a basis of the topology on

X.

A function/space is continuous/compact iff it is continu-

ous/compact on the basis.

A subbasis F of a topology on X (in terms of open sets)

induced by any family of subsets containing H and X, is the

topology with the basis consisting of all finite intersections of

sets in F .

A topological space X is Hausdorff if for any two distinct

points x, y P X there exists disjoint open neighbourhoods of

x and y, respectively.

A space X is Hausdorff if and only if txu “
Ş

tU : U P N xu

holds for all x P X.

LetX be a set and T1, T2 Ă 2X be topologies onX. If T1 Ă T2,

then T1 is coarser than T2 and T2 is finer than T1.

The coarsest topology on any set is tH, Xu (called trivial

topology) and the finest is 2X (the discrete topology).

Coarsest “ smallest number of open sets

Finest “ largest number of open sets

A family F of open subsets of X is an open cover of X if
Ť

FPF F “ X. A family F 1 is a subcover of F if F 1 is a open

cover and F 1
Ă F .

The space X is compact if every open cover of X has a finite

subcover.

A disk is a topological space homeomorphic to B2.

If A is a disk and h : A Ñ B2 is a homeomorphism, then

h´1pS1q “ BA. In particular h´1pS1q does not depend on h.

Any homeomorphism from the frontier of a disk to itself can

be extended to a homeomorphism of the entire disk.

Let A,B Ă X with A,B « Bd and intersect only along their

frontiers (« Sd´1) in a homeomorphic copy of Bd´1. Then

A Y B « Bd.

Let pX, dq be a compact metric space and F be an open cover

of X. Then there exists a δ ą 0 (the Lebesgue number of

F) such that any subset of diameter less than δ is contained

in some F P F .

Application: Suppose U Y V is a open cover of r0, 1s. Then

there exists a subdivision 0 “ t0 ă t1 ă . . . ă tm “ 1 such

that rtk, tk`1s Ă U or V for all k P t0, . . . ,m ´ 1u.

The continuous image of a compact space is compact.

A closed subset of a compact space is compact.

Let X be Hausdorff space and A Ă X be a compact sub-

set. Then for each point x P XzA, there exist disjoint neigh-

bourhoods of x and A. In particular A is closed.

Let X be compact and Y a Hausdorff space. If f : X Ñ Y

is a bijective map, then f is a homeomorphism.

(Bolzano-Weierstraß) An infinite subset of a compact

space has a limit point.

For nonempty topological spaces X and Y , B :“ tU ˆ V :

U Ă X,V Ă Y openu is a basis for the product topology on

X ˆY . The space X ˆY equipped with the product topology

is a product space.

With respect to the product topology on X and Y , the pro-

jections pX : X ˆ Y Ñ X, px, yq ÞÑ x and pY (defined analo-

gously) are continuous and open (they map open sets to open

sets). The product topology is the coarsest topology on XˆY

for which pX and pY are maps (so product topology “ initial

topology with respect to the projections).

Let pX, τXq be a non-compact topological space. The one-

point compactification of X the set X` :“ X Y t8u with

the topology

τ` :“ τX Y tpXzCq Y t8u : C Ă X closed and compactu.

The one-point compactification pX`, τ`q is compact and X Ă

X` is dense.

The one-point compactification X` is Hausdorff if and only

if X is a locally compact Hausdorff space.
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A space X is connected if for all nonempty subsets A,B ⊊ X

with X “ AYB we have AXB ‰ H or AXB ‰ H or: if it is

not the union of two nonempty disjoint proper open subsets.

The connected components of a topological space X are

its maximally connected subsets.

Connected components are closed.

The product of two Hausdorff/compact spaces is Haus-

dorff/compact.

RPn
« pEn`1

zt0uq{x„λx « Sn{p„´p « Bn
{x„´xPSn´1

We have RP1
« S1. As the quotient map is open, RPn is

Hausdorff, compact and path-connected.

A space X is path-connected if any two points x, y P X can

be connected by a path, that is, there exists a map γ : r0, 1s Ñ

X with γp0q “ x and γp1q “ y.

Path-connected spaces are connected.

LetX Ă En be open and connected. ThenX is path-connected.

Let f, g : X Ñ Y be maps. Then f is homotopic to g if

there exists a map F : X ˆ I Ñ Y such that F p¨, 0q “ f and

F p¨, 1q “ g. Then F is a homotopy and we write f »F g. If

additionally A Ă X and F pa, tq “ fpaq for all a P A and t P I,

then F is a homotopy relative to A and we write f »F g rel

A (then f |A ” g|A).

The relation » rel A is an equivalence relation.

If f, g : X Ñ Y are homotopic maps and u : Y Ñ Z is a map,

then u ˝ f » u ˝ g. If v : Y Ñ Z is homotopic to u, then

u ˝ f » v ˝ g. This also holds for relative homotopy.

Let α : I Ñ X be a path in X. Then α is a loop based at

p P X if αp0q “ p “ αp1q.

A loop in X is the same as a map S1 Ñ X.

We have quotient map q : r0, 1s Ñ r0, 1s{t0, 1u « S1 and a path

α : r0, 1s Ñ X. Now α respects the equivalence relation 0 „ 1 as

αp0q “ αp1q. By the mapping property of the final topology, there

must exist a map α̃ : S1
Ñ X such that the diagram commutes.

Given a map f : S1
Ñ X, let α :“ f ˝ q.

If X is path-connected and p, q P X, then π1pX, pq – π1pX, qq.

Let γ be a path from p and q. Then γ´1 is a path from q to p. For

any loop α : I Ñ X based at p, the path γ˚pαq :“ γ´1
‚ α ‚ γ is a

loop based at q.

If α »F α1, then γ̃˚pαq »G γ̃˚pα1
q via Gp¨, tq :“ γ ‚ F p¨, tq ‚ γ´1

Hence γ˚ is constant on equivalence classes xα y. We can hence

view γ˚ as

γ˚ : π1pX, pq Ñ π1pX, qq, xα y ÞÑ x γ˚pαq y,

which is a well-defined group homomorphism. It is bijective with

inverse pγ˚q
´1

“ pγ´1
q˚.

For a loop α : I Ñ X based at p, the homotopy class of α,

xα y :“
␣

α1 : α1 is a loop based at p with α » α1 rel t0, 1u
(

,

is the equivalence class of α with respect to the equivalence

relation » rel t0, 1u. For p P X the set

π1pX, pq :“ txα y : α is a loop in X based at pu

equipped with the above multiplication xα y ¨ xβ y :“ xα ‚ β y,

where ‚ denotes concatenation, is a group, the fundamental

group of X with base point p.

Let πptq :“ e2πit, γn : r0, 1s Ñ r0, ns, t ÞÑ nt and πn :“ π ˝ γn.

Thm. Φ: pZ,`q Ñ pπ1pS1, 1q, ¨q, n ÞÑ xπn y is isomorphism.

Φ is homomorphism: σ :“ γn ` m. Then π ˝ σ “ π ˝ γn, so

γm ¨ σ » γm`n rel t0, 1u and so Φpm ` nq “ Φpmq ¨ Φpnq.

Φ is onto: α loop in S1 at 1. Then D lift α̃, Φpα̃p1qq “ xα y.

Φ is injective: Dn P Z s.t. Φpnq “ x e y. Let γ path in R
from 0 to n s.t. π ˝ γ »F e rel t0, 1u. Lift F to homotopy

F̃ : I2 Ñ R, π ˝ F̃ “ F , F̃ p0, ¨q “ 0. We have F̃ p1, 1q “ 0.

Then F̃ p¨, 1q is path in R, lift of π ˝ γ. Uniqueness of lifts:

F̃ p¨, 1q “ γ So n “ γp1q “ 0.

Let f : X Ñ Y be a map. For any α P xα y P π1pX, pq we

have f ˝ α P π1pY, fppqq. For α1 P xα y we have f ˝ α1 P x f ˝

α y. Hence we obtain a function f˚ : π1pX, pq Ñ π1pY, fppqq,

xα y ÞÑ x f ˝α y. Then f ˝ pα ‚ βq “ pf ˝αq ‚ pf ˝ βq, so f˚ is a

group homomorphism. Further, pg˝fq˚ “ g˚ ˝f˚ : π1pX, pq Ñ

π1pZ, gpfppqqq.

So π1 can be applied to commutative diagrams.

If h is a homeomorphism, then h˚ and h´1
˚ are group isomor-

phisms.

Hence π1 is a topological invariant.
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Let X and Y be topological spaces, p P X and q P Y . Then

π1pX ˆ Y, pp, qqq – π1pX, pq ˆ π1pY, qq.

Projection maps induce homomorphisms pp1q˚, pp2q˚. Then

pp1q˚ ˆ pp2q˚ is isomorphism.

Let q P Snztpu. As Snztpu « En, Snztpu is simply connected.

We can decompose Sn as a union of open simply connected

subsets:

Sn “ pSnztpuq Y pSnztquq.

As n ě 2, their intersection

pSnztpuq X pSnztquq “ Snztp, qu

is path-connected. By van-Kampen, π1pSn, pq is trivial.

A homotopy G : X ˆ I Ñ X relative to A Ă X is a defor-

mation retraction if Gpa, ¨q “ a @a P A, Gp¨, 0q “ idX and

Gp¨, 1q Ă A.

For f : A ãÑ X, a ÞÑ a and g : X Ñ A, x ÞÑ Gpx, 1q (the

retract) we have f ˝ g » idX and g ˝ f “ idA. Hence X » A,

so A is a deformation retract of X and we say that X retracts

to A. Hence in order to compute the fundamental group of X

it suffices to find the fundamental group of any deformation

retract of X.

S1 ˆ I retracts to the circle S1, En
zt0u retracts to Sn´1.

X and Y are homotopy equivalent (X » Y ) if D maps

f : X Ñ Y and g : Y Ñ X s.t. g ˝ f » idX , f ˝ g » idY .

Homeomorphic spaces are homotopy equivalent.

Homotopy equivalence is an equivalence relation.

Convex subset of En are homotopy equivalent to t‚u.

En
zt0u » Sn´1.

π1 even is a functor on the category of top. spaces modulo

homotopy equivalence.

Let f : X Ñ Y and g : Y Ñ X be maps with idX »F g ˝f and

idY »G f ˝ g. Let qY and p :“ gpqq be base points. Define

γ : I Ñ X, s ÞÑ F pp, sq. Then γp0q “ F pp, 0q “ idXppq “ p

and γp1q “ F pp, 1q “ gpfppqq, so γ is a path in X joining

p with gpfppqq. By functorial properties of π1, pg ˝ fq˚ “

pg˚ ˝ f˚q “ γ˚ : π1pX, pq Ñ π1pX, gpfppqqq is an isomorphism.

Hence f˚ is injective (its left inverse up to conjugation is g˚).

A similar argument using G instead of F shows that f˚ is

surjective, so f˚ is bijective.

Let f, g : X Ñ Y be maps with f »F g and p P X. Then

g˚ : π1pX, pq Ñ π1pY, gppqq equals the composition γ˚ ˝ f˚,

where f˚ : π1pX, pq Ñ π1pY, fppqq and the path joining fppq

and gppq,

γ : I Ñ Y, s ÞÑ F pp, sq,

induces a map

γ˚ : π1pY, fppqq Ñ π1pY, gppqq, xα y ÞÑ x γ´1 ‚ α ‚ γ y .

Let X and Y be topological spaces. A map p : Y Ñ X is a

covering map or cover (of X) if every point x P X has an

open neighbourhood V for which p´1pV q decomposes into a

disjoint union of open sets Ui Ă Y such that p|Ui
: Ui Ñ V is

a homeomorphism.

The morphisms are the homeomorphisms f : Y Ñ Z, where

p1 : Y Ñ X and p2 : Z Ñ X are covers of X, with p2 ˝ f “ p1.

In particular, a covering map is always surjective.

A cover p : X̃ Ñ X is universal if X̃ is simply connected, e.g.

R Ñ S1, t ÞÑ e2πit.

We have DeckpX̃ Ñ Xq :“ tf : X̃ Ñ X̃ : f homeo, p ˝ f “

pu – π1pXq

A space X is contractible if idX » ep for some p P X, where

ep : X Ñ X, x ÞÑ p denotes the constant map at p P X on X.

Let X be contractible. Then X is simply connected and idX

is homotopic to ex for all x P X.

Let Y be a space with maps f, g : Y Ñ X. Then f » g.

Let J Ă E2 be a Jordan curve, that is J « S1. Then E2
zJ

has exactly two (path)components.

Let A Ă E2 be a curve which doesn’t closed up (”arc”), that

is, A « r0, 1s. Then E2
zA is path-connected.

Every map f : Bn
Ñ Bn has a fixed point for n ě 1.

n “ 2: Suppose fpxq ‰ x for all x P B2. For x P B2 let gpxq be

the unique point of intersection of S1 and the ray from fpxq

to x in the direction of x. Then g : B2
Ñ S1 is a map as a

composition of maps. For x P S1 we have gpxq P S1. Hence g

is a retraction from B2 to S1. Then B2
» gpB2

q “ S1, which
is a contradiction as π1pB2

q ‰ π1pS1q.

For n “ 1 replace π1 by π0 in the above proof, where π0 is the

set of path-connected components (which is not a group).

For n ą 2 replace π1 by Hn´1.
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Let S be a surface. The interior of S is the set of all x P S
such that there exists a neighbourhood N P N with Nx « E2.

The boundary of S is the set of all x P S such that there

exists a homeomorphism f : E2
` Ñ N , where N P N x and

fp0q “ x.

Thm. The interior and boundary of a surface are disjoint.

Thm. Let S1 and S2 be surfaces which are homeomorphic

via h. Then h maps the interior of S1 homeomorphically onto

the interior of S2 (and likewise for the boundaries).

A surface is closed if it is compact and has empty boundary.

A (topological) k-manifold is a Hausdorff space such

that each point has a neighbourhood either homeomorphic to

Ek or Ek
` :“ tpx1, . . . , xkq P Ek : xk ě 0u.

A surface is a 2-manifold.

The convex hull convptv0, . . . , vkuq is a k-simplex if

tv0, . . . , vku is in general position.

Let σ “ convpV q be a k-simplex. If W Ă V , then τ :“

convpW q is a simplex, too, called a face of σ. We write

τ ď σ. Further, τ proper face of σ if W R tH, V u.

A finite collection of simplices in En is a geometric simplicial

complex if any two simplices from the collection meet in a

common face (which may be empty). Its dimension is the

maximal dimension of a simplex.

The affine hull of V :“ tv0, . . . , vku Ă En is affpV q :“
!

řk
j“0 λjvj :

řk
j“0 λj “ 1

)

.

The set V is in general position if dimpV q “ k, that is, pvj ´

v0qkj“1 are linearly independent. We say that the point in V

are affinely independent.

The set tx0, . . . , xmu Ă Rn is affinely dependent if and only if

the set tp1, x0q, . . . , p1, xmqu Ă Rn`1 is linearly dependent.

A space is triangulable if it is homeomorphic to the realisation

of a geometric simplicial complex.

Let X be a topological space. A pair pK,Xq is a triangula-

tion of X if K is a simplicial complex and h : |K| Ñ X is a

homeomorphism.

The space X is triangulable if it has a triangulation.

Every closed surface is triangulable.

The realisation of a simplicial complex K :“ pσjqkj“1 in En is

|K| :“
k
ď

j“1

σj Ă En .

|K| Ă En is compact.

x P |K| is contained in the relative interior of a unique simplex,

called the carrier of x.

K is connected ðñ K is path-connected ðñ Kď1 is a

connected graph.

Let K and L be geometric simplicial complexes. A function

φ : VertpKq Ñ VertpLq is a simplicial map if for all σ P K

we have φpσq P L (extend φ via barycentric coordinates).

A bijective simplicial map whose inverse is a simplicial map is

a simplicial isomorphism.

Let K be a geometric simplicial complex in En
– En

ˆt0u Ă

En`1. The cone of K with apex v P En`1
zpEn

ˆt0uq is

CK :“
␣

σ ˚ v : σ P K Y tHu
(

Y K,

where

σ ˚ v :“ convpσ Y tvuq

is a pn ` 1q-simplex if σ Ă En is a n-simplex.

We have |CK| « C|K|.

Let τ :“ convpv0, . . . , vkq Ă Rn be a k-simplex. Then each point

x P τ can be uniquely written as x “
řk

j“0 λjvj , where λj ě 0 for

all j P t0, . . . , ku and
řk

j“0 λj “ 1. The coefficients pλjq
k
j“0 are the

barycentric coordinates of x. The barycentre of τ is the point

βτ :“ 1
k`1

řk
j“0 vj P τ .

Let K be a GSC. The barycentric subdivision K1 of K

is the GSC with VertpK1
q “ tβσ : σ P KztHuu such that

convpβσ0 , . . . , βσk q is a face if and only if there exists a φ P

Sympt0, 1, . . . , kuq such that σφp0q ă σφp1q ă . . . ă σφpkq.

The m-th barycentric subdivision is Km :“ pKm´1
q
1.

We have VertpKq Ă VertpK1
q. k faces gets divided in pk ` 1q! k-

faces.

Let V be a finite set. A subset K Ă 2V is an abstract

simplicial complex with vertex set V if for all σ P K and all

τ Ă σ we have τ P K.
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The mesh (size) of a complex K is µpKq :“ maxptdiampσq :

σ P Kuq, where diampσq :“ maxpt}x ´ y} : x, y P σuq.

Each simplex of K1 is contained in a simplex of K.

We have |K1| “ |K|.

If dimpKq “ n, then µpK1q ď n
n`1µpKq.

The (first) barycentric subdivision of an abstract simplicial

complex K has as vertices the faces of K, that is, KztHu,

and as faces the flags of K.

The following theorem states that we can replace continuous

maps between realisations of GSCs by simplicial maps.

Let f : |K| Ñ |L| be a map. Then there exists a m P N such

that there exists a simplicial approximation s : Km Ñ L to f .

A simplicial map s : K Ñ L is a simplicial approximation

of the continuous function f if spxq lies in the carrier of fpxq

for each x P |K|.

If s is a simplicial approximation of f , then |s| » f .

Let L Ă En. Define F : |K| ˆ I Ñ En, px, tq ÞÑ p1 ´ tq|spxq| ` tfpxq. For

x P |K|, there exists a face σ P L such that |s|pxq, fpxq P σ. Since σ is

convex, the straight line homotopy F stays inside σ. Hence the image of

the F is contained in |L| and |s| »F f .

The edge group EpK, vq of K based at v P V consists of

equivalence classes of edge loops at v with respect to the mul-

tiplication

rv0, . . . , vksrvk, vk`1, . . . , vms :“ rv0, . . . , vms,

where v0 “ vk “ vm “ v.

Thm. EpK, vq – π1p|K|, vq – GpK,Lq, where L is a simply

connected subcomplex of K, e.g. a spanning tree of Kď1.

An edge path in a GSC K is a sequence pv0, . . . , vkq in V

such that the edge (or point: we allow vi´1 “ vi) vi´1vi :“

convptvi´1, viuq lies in K for all i P rks.

If v0 “ vk, then this sequence is an edge loop based at v0.

Two edge paths are equivalent if they can be transformed

into another by finitely many operations of the following kind:

• pu, v, wq Ø pu,wq if convpu, v, wq P K (”shortcut”).

• pu, uq Ø u.

Rado (1923): Every closed surface is triangulable: S « |K|.

dimpKq “ 2.

K is pure, that is, each facet (maximal face with respect to

inclusion) is 2-dimensional.

Each edge of K is contained in exactly two triangles.

Any two vertices of K can be joined by an edge-path.

Each vertex v is contained in at least three triangles, which

together form a cone with apex v.

Modifying the sphere S2 by adding m handles and n ą 0

disjoint cross-caps is homeomorphic to S2 with 2m`n disjoint

cross-caps.

Every simply connected, closed 3 -manifold is homeomorphic

to S3.

Let S :“ |K|. If S is orientable, then K is orientable.

Assume S is orientable. Pick any triangle and orient it. In dual graph,

take a spanning tree rooted at the triangle chosen, along which we can

uniquely spread the orientation. The only thing that can go wrong is that

two nodes in this tree have incompatible orientations. If this were the

case, then there is a sequence of triangles σ1, . . . , σk which are adjacent

such that σi and σi`1 are adjacent and have compatible orientations for

i P t1, . . . , k ´ 1u, but σ1 and σk are adjacent but have no compatible

orientations. We join the barycentres βσi to the barycentres of the edges

βσiXσpi`1q mod k
and βσi´1Xσi , obtaining a simple closed polygonal path

in the polyhedron |K1|. ”Thickening” that path yields a Möbius strip,

contradicting that S is orientable.

An orientation of a simplex is an ordering of its vertices up

to an even permutation.

The orientation of a convpv0, . . . , vi´1, vi`1, . . . , vkq induced

by an orientation v0, . . . , vk is (´ denotes to opposite orienta-

tion)
$

&

%

v0 . . . vi´1vi`1 . . . vk, if i is even,

´v0 . . . vi´1vi`1 . . . vk, if i is odd..

A triangulation K is orientable if there exists orientations of

all triangles such that each edge receives opposite orientations

from its two triangles.
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Let L be a d-dimensional simplicial complex. Then fkpLq is

the number of k-dimensional simplices of L, pfjqdj“0 is the f-

vector (or face vector) of L and the Euler characteristic of

L is χpLq :“
řd

k“0p´1qkfkpLq.

Let L and M be cell complexes which intersect in a common

subcomplex LXM . Then χpLYMq “ χpLq`χpMq´χpLXMq

by the inclusion-exclusion principle.

χpL1q “ χpLq.

Let L be a one-dimensional subcomplex in K1. The thick-

ening of L is the subcomplex of K2 of the triangles (and their

faces) which meet L.

The thickening of L is a closed neighbourhood of |L| in |K|

whose polyhedron is homotopy equivalent to |L|.

The thickening of a tree is homeomorphic to a disk. The thick-

ening of a simple closed polygonal curve is either a cylinder

or a Möbius strip.

Every polygonal curve in |K| made up of edges inK1 separates

|K| ðñ χpKq “ 2 ðñ |K| « S2.

” 1 ùñ 2 ”. As in the proof of Euler’s theorem, it follows that Γ is

a tree. Hence χpKq “ χpT q ` χpΓq “ 1 ` 1 “ 2.

” 2 ùñ 3 ”. If χpT q “ 2, then χpΓq “ 1 by the above formula and

hence Γ is a tree. Thus |K| “ |NpT q| Y |NpΓq| is a union of two disks

glued at their boundaries, so |K| « S2.
” 3 ùñ 1 ”. This comes from the proof of the Jordan theorem.

We have χpKq ď 2 for a simplicial complex K.

Choose a spanning tree T in K and construct the complementary graph

Γ, whose vertices are the (barycentres of) triangles and whose edges

correspond to edges in K which are not edges in T . Referring to the

barycentres means that we can realise this a geometric simplicial com-

plex Γ1 ď K1. Then χpKq “ χpT q ` χpΓq, because each face of the

triangulation either contributes to T (if it is a vertex or an edge of T ) or

to Γ (if it is a triangle or if it bijectively corresponds an edge which is

not in T ) in such a way that the signs match. As T is a tree, χpT q “ 1

and as Γ is a connected simple graph, χpΓq ď 1 by CoMa.

We have χpK˚q ą χpKq.
Case 1: |N | is a cylinder. Then, as L1 and L2 are disjoint,

χpK˚q “ χpMq ` χpCL1q ` χpCL2q ´ χpL1q ´ χpL2q

“ χpMq ` 1 ` 1 ´ 0 ´ 0 “ χpMq ` 2.

Case 2: |N | is a Möbius strip. Then

χpK˚q “ χpMq ` χpCLq ´ χpLq “ χpMq ` 1.

Lastly, in both cases we have

χpKq “ χpK2q “ χpMq ` χpNq ´ χpM X Nq “ χpMq ` 0 ´ 0 “ χpMq,

as M X N is a circle.

K combinatorial surface. Assume that L is a simple closed

polygonal curve which does not separate |K|. Then |K| ff S2.
Let N be the thickening of L in K2, which is either a cylinder

or a Möbius strip. Let M be the subcomplex complementary

to N in K2 (cf. thickening of dual graph Γ).

If |N | « S1 ˆI, then B|N | “ B|M | « S1 \S1. Let L1, L2 ď K2

support those circles. Let K˚ :“ M Y CL1 Y CL2.

If |N | « Möbius, then B|N | “ B|M | « S1. Let L ď K2 be that

circle. Let K˚ :“ M Y CL.

Then K˚ is obtained from K by doing surgery along

L resp. L1 Y L2.

The abelisation of G is GAb :“ G{G1, the largest Abelian factor

of G, where G1 :“ xtra, bs : a, b P Gu y, where ra, bs :“ aba´1b´1.

An R-module is an Abelian group pG, ˚q together with a ring

R and a ring homomorphism φ : R Ñ EndpGq, which is the (not

unique) R-module structure on G.

Let X be a set. Then the free R´module with basis X is

à

xPX

R :“

#

n
ÿ

i“1

rixi : ri P R, xi P X,n P N

+

,

where
řn

i“1 rixi `
řn

i“1 sixi :“
řn

i“1pri `siqxi, is the set of unique

formal linear combinations.

For p ě 0 we have

π1pHppqq –

C

a1, b1, . . . , ap, bp

ˇ

ˇ

ˇ

ˇ

p
ź

k“1

akbka
´1
k b´1

k

G

and for q ě 1

π1pMpqqq –

C

a1, . . . , aq

ˇ

ˇ

ˇ

ˇ

p
ź

k“1

a2k

G

.

as well as χpHppqq “ 2 ´ 2p and χpMpqqq “ 2 ´ q.

The q-faces form (by construction) an R-basis of CqpK;Rq.

Hence

Bq pw0w1 . . . wqq
looooooomooooooon

oriented q-face

:“
q
ÿ

j“0

p´1q
j w0w1 . . .xwj . . . wq
loooooooooomoooooooooon

oriented pq´1q-face

P Cq´1pK;Rq

defines an R-linear map by extension.

For q ě 1, Bq : CqpK;Rq Ñ Cq´1pK;Rq is the q-th simplicial

boundary operator of K.
Let B0 :“ 0 (the boundary of a point is zero) or define C´1pK;Rq “ R¨H

(all R-multiples of the empty set) and B0pvq “ H for v P V (latter one

= reduced).

Let K be a simplicial complex, whose vertices V “ VertpKq “

tv1, . . . , vnu are totally ordered. Fix a commutative ring R

with multiplicative unit 1.

The q-th simplicial chain module of K with coefficients in

R is CqpK;Rq, the set of all formal linear combinations of

q-dimensional faces of K with coefficients in R.

The chain module of K is a free R-module, where the addi-

tion and multiplication are inherited coefficient-wise from the

addition and multiplication in R, respectively.



Lemma w/ proof

B2 “ 0

Topology

Definition

Homology module, class, Betty number

Topology

Theorem

Euler characteristic and Betty

numbers

Topology

Theorem w/ proof

Characterising H0

Topology

Theorem w/o proof, Remark

Hurewicz: H1pK;Zq – π1p|K|, vqAb

Topology

Remark

Integral homology of closed surfaces

Topology

Lemma, Theorems w/ and w/o proofs, Corollary

Topological invariance of homology

Topology

Theorems w/ proof

Homotopy invariance of homology

Topology

Definition, Remark, Theorem w/o proof

Nerve complex

Topology

Definition, Remark
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Since Bq`1 and Bq are R-linear, BqpK;Rq and ZqpK;Rq are

free R-submodules of the R-module CqpK;Rq. As B2 “ 0,

BqpK;Rq ď ZqpK;Rq, so we can take the quotient.

The q-th simplicial homology module is

HqpK;Rq :“ ZqpK;Rq{BqpK;Rq.

The q-th Betty number βq of K is the free rank ofHqpK;Zq.

For c P ZqpK;Rq the homology class of c is

rcs :“ c ` BqpK;Rq.

We have BqBq`1 “ 0 for all q ě 0.

Consider q ` 2 vertices w0, . . . , wq`1 of a pq ` 1q-dimensional simplex. Then

B
2

pw0 . . . , wq`1q “ B

¨

˝

q`1
ÿ

k“0

p´1q
k
w0 . . . ywk . . . wq`1

˛

‚

(L)
“

q`1
ÿ

k“0

p´1q
k

B
´

w0 . . . ywk . . . wq`1

¯

“

q`1
ÿ

k“0

p´1q
k
˜ q`1

ÿ

j“k`1

p´1q
j´1

w0 . . . ywk . . . ywj . . . . . . wq`1

`

q`1
ÿ

k“0

p´1q
k

k´1
ÿ

j“0

p´1q
j
w0 . . . ywj . . . ywk . . . . . . wq`1

¸

where we use that B is linear in (L) and the hat indicates that this vertex is

omitted. Each ordered q-simplex occurs twice, but with opposite sign, hence

the term is zero.

We have H0pK;Rq – RC , where C is the number of connected

components of K.

If v and w are vertices of K in the same connected component, then the

equivalence classes in the 0-th homology agree (”they are 0-homologous”:

rvs “ rws. Indeed, we can joint v and w by an edge path vv1 . . . vkw in

which no consecutive vertices are equal. Then Bppvv1q ` pv1v2q ` . . . `

pvkwqq “ w ´ v. Furthermore, vertices which lie in different components

of |K| are not homologous and R-multiples of a single vertex can never

be a boundary.

χpKq “

n
ÿ

k“0

p´1qkfipKq “

n
ÿ

k“0

p´1qk dimpHkpK;Fqq,

where F is any field of characteristic zero, such as Q, R or C.

Let K be a combinatorial surface of genus g. Then K is con-

nected, so H0pK;Zq “ Z and we have the following table:

K is orientable K is non-orientable

H0pK;Zq Z Z
H1pK;Zq Z2g Zg´1

ˆZ2

H2pK;Zq Z t0u

Table 1: The first three Z-homology groups of surfaces with

genus g. Note that a non-orientable surface of genus 0 does

not exist, so everything is well-defined. (Hk “ t0u, k ą 2).

Let K be a connected ASC with totally ordered vertex set and with a vertex

v. Each edge loop α “ vv1v2 . . . vkv based at v gives rise to a simplicial 1-

chain with integer coefficients zpαq :“ pvv1q ` pv1v2q ` . . .` pvkvq P C1pK;Zq

provided that subsequent vertices are distinct, i.e. vi ‰ vi`1. The order

matters: pvi, vi`1q “ ´pvi`1viq. We have Bpzpαqq “ 0 because α is closed

and thus each vertex appears exactly twice in the linear combination. Hence

zpαq P Z1pK;Zq.

For another chain β, which is equivalent to α in the edge path group of K,

we get zpβq ´ zpαq P B1pK;Zq, i.e. zpβq ´ zpαq is a 1-boundary of K.

This yields a homomorphism of groups

φ : π1p|K|, vq Ñ H1pK;Zq, rαs ÞÑ rzpαqs,

where rαs is the homotopy class in the edge group and rzpαqs is the homology

class. The homomorphism is onto and its kernel is the commutator subgroup

of π1p|K|, vq.

If f, g : |K| Ñ |L| are homotopic, then the induced maps f˚

and g˚ in homology are equal. Hence if |K| » |L|, then

HqpK;Rq – HqpL;Rq for all q ě 0.

If m ‰ n, then Sm fi Sn.

We have HmpSmq “ Z ‰ teu “ HmpSnq.

We have Em
« En if and only if m “ n.

Let h : Em Ñ En be a homeomorphism preserving the origin. Then

Sm´1 » Em zt0u
h
« En zt0u » Sn´1 can only be true if n “ m.

Simplicial maps induce homomorphisms in homology.

Subdivision preserves homology.

Let K and L be SCs. The map f : |K| Ñ |L| induces a homo-

morphism of R-modules f˚ : HqpK;Rq Ñ HqpL;Rq for each

q P N 0.

If f : |K| Ñ |K| is the identity map, then for all q ě 0,

f˚ : HqpK;Rq Ñ HqpK;Rq is the identity, too.

If M is another SC and f : |K| Ñ |L| and g : |L| Ñ |M | are

maps, then pg ˝ fq˚ “ g˚ ˝ f˚ : HqpK;Rq Ñ HqpM ;Rq.

Hence Hqp¨;Rq is a covariant functor.

Let S Ă Rd be a finite set of points and r ě 0. Then

Čechprq :“

#

σ Ă S :
č

xPσ

Bxprq ‰ H

+

is the Čech complex of S with respect to the radius r. Here,

Bxprq is the ball of all points with distance at most r from x.

The Čech complex is an abstract simplicial complex (as the

nerve complex is) on the vertex set S. Then nerve theorem

implies that Čechprq »
Ť

xPS Bxprq.

Let F be a finite collection of closed convex sets in Ed. Then

the nerve complex is an abstract simplicial complex on F

as vertex set:

NrvpF q :“
!

X Ă F :
č

X ‰ H

)

.

If Y Ă X and
Ş

X ‰ H, then
Ş

Y ‰ H, so the nerve complex

is an abstract simplicial complex.

Thm. We have

NrvpF q »
ď

tx : x P F u Ă Ed .
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Let K0 ď K1 ď . . . ď Kn “ K be some filtration of a com-

plex K. Then (by definition) for 0 ď i ď j ď n, we have

Ki ď Kj and the induced homomorphisms f i,j
p : HppKi;Rq Ñ

HppKj ;Rq, where R is a commutative ring with 1. The p-th

persistent homology module of the filtration K‚ with re-

spect to R is Hi,j
p :“ Hi,j

p pK‚;Rq :“ impf i,j
p q.

We have Hi,j
p “ ZppKiq{rBppKjq X ZppKiqs and thus in

particularHi,i
p “ HppKiq.

We have Čechp0q “ S as a 0-dimensional complex.

Čechp8q is a p|S| ´ 1q-dimensional simplex on the vertex set

S, where 8 denotes a sufficiently large radius r ą diampSq.

If r ď r1, then Čechprq ď Čechpr1q, where ď denotes ”is a

subcomplex of”.

Hence we get a filtration of the final complex Čechp8q, a se-

quence of subcomplexes that is contained in each other. In

between r “ 0 and ”r “ 8” we get some things which depend

on the geometry of S, while Čechp0q and Čechp8q only de-

pend on |S|.

Let βi,j
p :“ dimRpHi,j

p q be the p-th persistent Betti number of K‚

with respect to R. Further, if i ă j, let

µi,j
p :“

`

βi,j´1
p ´ βi,j

p

˘

´
`

βi´1,j´1
p ´ βi´1,j

p

˘

,

which is the number of independent p-dimensional homology classes

born in Ki which die entering Kj . For all 0 ď k ď ℓ ď n we have

βk,ℓ
p “

ÿ

iďk

˜

n
ÿ

j“ℓ`1

µi,j
p ` µi,8

p

¸

,

where µi,8
p is the number of homology classes still alive in K “ Kn.

A homology class γ P HppKiq is born at Ki if γ R Hi´1,i
p .

If γ is born at Ki, then it dies entering Kj if f i,j´1
p pγq R

Hi´1,j´1
p but f i,j´1

p pγq P Hi´1,j
p .

Let G “ pV,Eq be a finite simple graph with vertex set V and

edge set E. The clique complex is the simplicial complex

CpGq :“
␣

σ Ă V : @u, v P σ with u ‰ v : tu, vu P E
(

on V .

The clique complex of pV,Eq contains both V and E as 0 and 1-

dimensional faces. Its two-dimensional faces are the triangles as in a

triangle each vertex is connected to each other vertex, whereas for a

quadrangle this is not the case.

The p-th persistence diagram of the filtration with respect

to R is the point configuration

tpi, jq : µi,j
p ě 1u P R2

:“ RˆpRYt8uq

with multiplicities.

Let K be a finite ASC. A face σ P K is free if there is a unique

τ P K such that σ⋖ τ , that is σ is a facet of τ , it has exactly

one dimension less: dimpσq “ dimpτq ´ 1. In that case, pσ, τq

is a regular pair of K.

If pτ, σq is a regular pair, then Kztτ, σu is again a simplicial

complex due to the uniqueness of the larger face τ (”nobody

else is missing σ other than τ”).

Let S Ă Rd be a finite point set and fix a radius r ě 0. Con-

sider the 1-dimensional simplicial complexGprq :“ Čechprqď1

as a graph.

The Vietoris-Rips complex is VRprq :“ CpGprqq

This yields a filtration by choosing radii r.

We have Čechprq ď VRprq ď Čechp
?
2rq.

Contractible spaces which have a sequence of regular pairs

such that removing them from the space yields a point are

collapsible. (Hence collapsible ùñ contractible.)

The dunce hat is contractible, but not collapsible. The

Möbius strip, Sn, n ě 1 and Mppq are not contractible and

thus not collapsible.

Any tree and any convex set is collapsible.

The complex Kztτ, σu is the complex obtained from K by

an elementary collapse.

If pσ, τq is a regular pair of K, then complex obtained from K

by an elementary collapse Kztσ, τu is homotopy equivalent to

K.

This combinatorial operation, if it is possible, simplifies the

complex because it reduces the number of faces but retains

the topological information.


