Homeomorphism

Topology

Definition

Continuity via neighbourhoods

TOPOLOGY

Definition \& Proposition

Open, Closed sets and their properties

Definition, Example
Theorem w/ Proof

Limit point
A set is closed if and only if it contains all its limit points.

Definition

A topological space is a set X equipped with a nonempty collection \mathcal{N}_{x} of subsets - a topology - of X (called neighbourhoods) for each $x \in X$ such that

1. $x \in N$ for all $N \in \mathcal{N}_{x}$,
2. $N \cap N^{\prime} \in \mathcal{N}_{x}$ for all $N, N^{\prime} \in \mathcal{N}_{x}$,
3. for all $N \in \mathcal{N}_{x}$ and all $U \subset X, N \subset U$ implies $U \in \mathcal{N}_{x}$ ("neighbourhoods are large enough"),
4. for all $N \in \mathcal{N}_{x}$, their interior $\stackrel{N}{N}:=N^{\circ}:=\left\{z \in N: N \in \mathcal{N}_{z}\right\}$ is in \mathcal{N}_{x}.

Let X be a topological space and $Y \subset X$ a subset.
Via neighbourhoods: For $y \in Y$ and $N \in \mathcal{N}_{y} \subset X$ we declare $N \cap Y$ to be a neighbourhood of y with respect to Y.
Via open sets: The open sets of Y with respect to the subspace topology on X are precisely the sets $O \cap Y$, where O is open in X.
This is the subspace topology induced by Y on X.
It is the initial topology with respect to the inclusion $Y \rightarrow X$.

Let T be a family of subsets of a set X. We call the elements of T open and we require that unions, finite intersections and \varnothing, X are open. A set $N \subset X$ is a neighbourhood of $x \in X$ if there exists an open set $O \in T$ such that $x \in O \subset N$. Then the collection of neighbourhoods T is a topology on X.
A subset $A \subset X$ is closed if $X \backslash A$ is open.
Finite unions and arbitrary intersections of closed sets are closed.
$" \Longrightarrow ":$ Let A be closed. Then $X \backslash A$ is open, so $X \backslash A \in \mathcal{N}_{x}$ for all $x \in X \backslash A$. Hence no point in $X \backslash A$ can be a limit point, so A contains all its limit points.
$" \Longleftarrow ":$ Suppose A contains all its limit points. Let $x \in X \backslash A$. Then x is not a limit point. Then there exists a neighbourhood $N \in \mathcal{N}_{x}$ such that $A \cap N=\varnothing$, so $N \subset X \backslash A$. Hence $X \backslash A$ is a neighbourhood of each of its point, so it is open, hence A is closed.

Let $A \subset X$.
Then A is dense if $A=X$.
The interior of A, \AA, is the union of all open sets contained in A.
The frontier of A is $\bar{A} \cap \overline{X \backslash A}$.

A function $f: X \rightarrow Y$ is a homeomorphism if f is bijective and f as well as f^{-1} are continuous. We then write $X \approx Y$ and say that X and Y are homeomorphic.

A map $f: X \rightarrow Y$ between topological spaces is continuous if for all $x \in X$ and for all neighbourhoods $N \in \mathcal{N}_{f(x)}, f^{-1}(N) \in$ \mathcal{N}_{x}.

A subset $O \subset X$ is open if for all $x \in O, O \in \mathcal{N}_{x}$, that is, O is a neighbourhood of x.
Let I be an index set such that $O_{i} \subset X$ is open for all $i \in I$. Then $\bigcup_{i \in I} O_{i}$ is open, if I finite, then $\bigcap_{i \in I} O_{i}$ is open, the sets \varnothing and X are open.

Let $A \subset X$ be a subset. A point $x \in X$ is a limit point (or accumulation point) of A if $(A \backslash\{x\}) \cap N \neq \varnothing$ for all neighbourhoods $N \in \mathcal{N}_{x}$ of x.
Every $x \in \mathbb{E}^{n}$ is a limit point of \mathbb{Q}^{n}. No $x \in \mathbb{E}^{n}$ is a limit point of \mathbb{Z}^{n}.

The closure of $A \subset X, \bar{A}$, is the union of A with all of its limit points.
The set \bar{A} is the smallest closed set containing A.
Corollary: A set $A \subset X$ is closed if and only if $A=\bar{A}$.

Basis and subbasis

Topology

Definition

Coarser / finer topology

Definition, 3 Lemmas w/o proof

Disk

Theorems, Lemma w/o proofs

Compactness

Topology

Definition
TOPOLOGY

Continuity (in terms of open sets)

Definition, Lemma

Hausdorff space

Definition

Compact

Theorem w/o Proof

Lebesgue lemma

Topology

A function $f: X \rightarrow Y$ is continuous (a map) if and only if for all open sets $O \subset Y$, the full preimage $f^{-1}(O) \subset X$ is open.
Composition of maps is a map. Restriction of a map is a map. Identity and inclusion map are maps.
$f: X \rightarrow Y$ is map $\Longleftrightarrow f(\bar{A}) \subset \overline{f(A)}$ for all $A \subset X . \Longleftrightarrow$ $\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$ for all $B \subset Y . \Longleftrightarrow f$ cts on basis \Longleftrightarrow $f^{-1}(B)$ is closed for all closed sets $B \subset Y$.

A topological space X is Hausdorff if for any two distinct points $x, y \in X$ there exists disjoint open neighbourhoods of x and y, respectively.
A space X is Hausdorff if and only if $\{x\}=\bigcap\left\{\bar{U}: U \in \mathcal{N}_{x}\right\}$ holds for all $x \in X$.

Let β be a collection of open subsets of X. If each open set is the union of sets in β, then β is a basis of the topology on X.

A function/space is continuous/compact iff it is continuous/compact on the basis.

A subbasis \mathcal{F} of a topology on X (in terms of open sets) induced by any family of subsets containing \varnothing and X, is the topology with the basis consisting of all finite intersections of sets in \mathcal{F}.

Let X be a set and $T_{1}, T_{2} \subset 2^{X}$ be topologies on X. If $T_{1} \subset T_{2}$, then T_{1} is coarser than T_{2} and T_{2} is finer than T_{1}.
The coarsest topology on any set is $\{\varnothing, X\}$ (called trivial topology) and the finest is 2^{X} (the discrete topology).

Coarsest $=$ smallest number of open sets Finest $=$ largest number of open sets

A disk is a topological space homeomorphic to \mathbb{B}^{2}.
If A is a disk and $h: A \rightarrow \mathbb{B}^{2}$ is a homeomorphism, then $h^{-1}\left(\mathbb{S}^{1}\right)=\partial A$. In particular $h^{-1}\left(\mathbb{S}^{1}\right)$ does not depend on h.

Any homeomorphism from the frontier of a disk to itself can be extended to a homeomorphism of the entire disk.

Let $A, B \subset X$ with $A, B \approx \mathbb{B}^{d}$ and intersect only along their frontiers $\left(\approx \mathbb{S}^{d-1}\right)$ in a homeomorphic copy of \mathbb{B}^{d-1}. Then $A \cup B \approx \mathbb{B}^{d}$.

The continuous image of a compact space is compact.
A closed subset of a compact space is compact.
Let X be Hausdorff space and $A \subset X$ be a compact subset. Then for each point $x \in X \backslash A$, there exist disjoint neighbourhoods of x and A. In particular A is closed.

Let X be compact and Y a Hausdorff space. If $f: X \rightarrow Y$ is a bijective map, then f is a homeomorphism.
(Bolzano-Weierstrass) An infinite subset of a compact space has a limit point.

Let $\left(X, \tau_{X}\right)$ be a non-compact topological space. The onepoint compactification of X the set $X^{+}:=X \cup\{\infty\}$ with the topology

$$
\tau^{+}:=\tau_{X} \cup\{(X \backslash C) \cup\{\infty\}: C \subset X \text { closed and compact }\}
$$

The one-point compactification $\left(X^{+}, \tau^{+}\right)$is compact and $X \subset$ X^{+}is dense.
The one-point compactification X^{+}is Hausdorff if and only if X is a locally compact Hausdorff space.

Product of HAUSDORFF/compact spaces

Definition, 2 Theorems w/o proofs

Path-connected

Definition, Lemma w/ proof

Loop

Definition, Theorem w/o proof

Fundamental group
Topology

Definition

Real projective space

Homotopy (relative to a set) space

A space X is connected if for all nonempty subsets $A, B \subsetneq X$ with $X=A \cup B$ we have $\bar{A} \cap B \neq \varnothing$ or $A \cap \bar{B} \neq \varnothing$ or: if it is not the union of two nonempty disjoint proper open subsets.
The connected components of a topological space X are its maximally connected subsets.
Connected components are closed.

$$
\mathbb{R} \mathrm{P}^{n} \approx\left(\mathbb{E}^{n+1} \backslash\{0\}\right) / x \sim \lambda x \approx \mathbb{S}^{n} / p \sim-p \approx \mathbb{B}^{n} / x \sim-x \in \mathbb{S}^{n-1}
$$

We have $\mathbb{R} \mathrm{P}^{1} \approx \mathbb{S}^{1}$. As the quotient map is open, $\mathbb{R} \mathrm{P}^{n}$ is Hausdorff, compact and path-connected.

Let $f, g: X \rightarrow Y$ be maps. Then f is homotopic to g if there exists a map $F: X \times I \rightarrow Y$ such that $F(\cdot, 0)=f$ and $F(\cdot, 1)=g$. Then F is a homotopy and we write $f \simeq_{F} g$. If additionally $A \subset X$ and $F(a, t)=f(a)$ for all $a \in A$ and $t \in I$, then F is a homotopy relative to A and we write $f \simeq_{F} g$ rel A (then $\left.\left.f\right|_{A} \equiv g\right|_{A}$).
The relation $\simeq \operatorname{rel} A$ is an equivalence relation.
If $f, g: X \rightarrow Y$ are homotopic maps and $u: Y \rightarrow Z$ is a map, then $u \circ f \simeq u \circ g$. If $v: Y \rightarrow Z$ is homotopic to u, then $u \circ f \simeq v \circ g$. This also holds for relative homotopy.

If X is path-connected and $p, q \in X$, then $\pi_{1}(X, p) \cong \pi_{1}(X, q)$. Let γ be a path from p and q. Then γ^{-1} is a path from q to p. For any loop $\alpha: I \rightarrow X$ based at p, the path $\gamma_{*}(\alpha):=\gamma^{-1} \bullet \alpha \bullet \gamma$ is a loop based at q.
If $\alpha \simeq_{F} \alpha^{\prime}$, then $\tilde{\gamma}_{*}(\alpha) \simeq_{G} \tilde{\gamma}_{*}\left(\alpha^{\prime}\right)$ via $G(\cdot, t):=\gamma \bullet F(\cdot, t) \bullet \gamma^{-1}$ Hence γ_{*} is constant on equivalence classes $\langle\alpha\rangle$. We can hence view γ_{*} as

$$
\gamma_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(X, q), \quad\langle\alpha\rangle \mapsto\left\langle\gamma_{*}(\alpha)\right\rangle,
$$

which is a well-defined group homomorphism. It is bijective with inverse $\left(\gamma_{*}\right)^{-1}=\left(\gamma^{-1}\right)_{*}$.

Let $\pi(t):=e^{2 \pi i t}, \gamma_{n}:[0,1] \rightarrow[0, n], t \mapsto n t$ and $\pi_{n}:=\pi \circ \gamma_{n}$. Thm. $\Phi:(\mathbb{Z},+) \rightarrow\left(\pi_{1}\left(\mathbb{S}^{1}, 1\right), \cdot\right), n \mapsto\left\langle\pi_{n}\right\rangle$ is isomorphism. Φ is homomorphism: $\sigma:=\gamma_{n}+m$. Then $\pi \circ \sigma=\pi \circ \gamma_{n}$, so $\gamma_{m} \cdot \sigma \simeq \gamma_{m+n} \operatorname{rel}\{0,1\}$ and so $\Phi(m+n)=\Phi(m) \cdot \Phi(n)$.
Φ is onto: α loop in \mathbb{S}^{1} at 1 . Then \exists lift $\tilde{\alpha}, \Phi(\tilde{\alpha}(1))=\langle\alpha\rangle$. Φ is injective: $\exists n \in \mathbb{Z}$ s.t. $\Phi(n)=\langle e\rangle$. Let γ path in \mathbb{R} from 0 to n s.t. $\pi \circ \gamma \simeq_{F} e$ rel $\{0,1\}$. Lift F to homotopy $\tilde{F}: I^{2} \rightarrow \mathbb{R}, \pi \circ \tilde{F}=F, \tilde{F}(0, \cdot)=0$. We have $\tilde{F}(1,1)=0$. Then $\tilde{F}(\cdot, 1)$ is path in \mathbb{R}, lift of $\pi \circ \gamma$. Uniqueness of lifts: $\tilde{F}(\cdot, 1)=\gamma$ So $n=\gamma(1)=0$.

The product of two Hausdorff/compact spaces is HausDORFF/compact.

A space X is path-connected if any two points $x, y \in X$ can be connected by a path, that is, there exists a map $\gamma:[0,1] \rightarrow$ X with $\gamma(0)=x$ and $\gamma(1)=y$.

Path-connected spaces are connected.

Let $X \subset \mathbb{E}^{n}$ be open and connected. Then X is path-connected.

Let $\alpha: I \rightarrow X$ be a path in X. Then α is a loop based at $p \in X$ if $\alpha(0)=p=\alpha(1)$.

A loop in X is the same as a map $\mathbb{S}^{1} \rightarrow X$.
We have quotient $\operatorname{map} q:[0,1] \rightarrow[0,1] /\{0,1\} \approx \mathbb{S}^{1}$ and a path $\alpha:[0,1] \rightarrow X$. Now α respects the equivalence relation $0 \sim 1$ as $\alpha(0)=\alpha(1)$. By the mapping property of the final topology, there must exist a map $\tilde{\alpha}: \mathbb{S}^{1} \rightarrow X$ such that the diagram commutes. Given a map $f: \mathbb{S}^{1} \rightarrow X$, let $\alpha:=f \circ q$.

For a loop $\alpha: I \rightarrow X$ based at p, the homotopy class of α, $\langle\alpha\rangle:=\left\{\alpha^{\prime}: \alpha^{\prime}\right.$ is a loop based at p with $\alpha \simeq \alpha^{\prime}$ rel $\left.\{0,1\}\right\}$,
is the equivalence class of α with respect to the equivalence relation $\simeq \operatorname{rel}\{0,1\}$. For $p \in X$ the set

$$
\pi_{1}(X, p):=\{\langle\alpha\rangle: \alpha \text { is a loop in } X \text { based at } p\}
$$

equipped with the above multiplication $\langle\alpha\rangle \cdot\langle\beta\rangle:=\langle\alpha \bullet \beta\rangle$, where • denotes concatenation, is a group, the fundamental group of X with base point p.

Let $f: X \rightarrow Y$ be a map. For any $\alpha \in\langle\alpha\rangle \in \pi_{1}(X, p)$ we have $f \circ \alpha \in \pi_{1}(Y, f(p))$. For $\alpha^{\prime} \in\langle\alpha\rangle$ we have $f \circ \alpha^{\prime} \in\langle f \circ$ $\alpha\rangle$. Hence we obtain a function $f_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(Y, f(p))$, $\langle\alpha\rangle \mapsto\langle f \circ \alpha\rangle$. Then $f \circ(\alpha \bullet \beta)=(f \circ \alpha) \bullet(f \circ \beta)$, so f_{*} is a group homomorphism. Further, $(g \circ f)_{*}=g_{*} \circ f_{*}: \pi_{1}(X, p) \rightarrow$ $\pi_{1}(Z, g(f(p)))$.
So π_{1} can be applied to commutative diagrams.
If h is a homeomorphism, then h_{*} and h_{*}^{-1} are group isomorphisms.
Hence π_{1} is a topological invariant.

$$
\pi_{1}\left(\mathbb{S}^{n}\right), n \geqslant 2
$$

Fundamental group of a product

Definition, Example

Deformation retract(ion)

Theorem w/ Proof

Let X and Y be path connected. $X \simeq Y$

$$
\Longrightarrow \pi_{1}(X) \cong \pi_{1}(Y)
$$

Definitions, Thm w/ proof
(Universal) covering map

Let X and Y be topological spaces, $p \in X$ and $q \in Y$. Then $\pi_{1}(X \times Y,(p, q)) \cong \pi_{1}(X, p) \times \pi_{1}(Y, q)$.

Projection maps induce homomorphisms $\left(p_{1}\right)_{*},\left(p_{2}\right)_{*}$. Then $\left(p_{1}\right)_{*} \times\left(p_{2}\right)_{*}$ is isomorphism.

A homotopy $G: X \times I \rightarrow X$ relative to $A \subset X$ is a deformation retraction if $G(a, \cdot)=a \forall a \in A, G(\cdot, 0)=\operatorname{id}_{X}$ and $G(\cdot, 1) \subset A$.
For $f: A \hookrightarrow X, a \mapsto a$ and $g: X \rightarrow A, x \mapsto G(x, 1)$ (the retract) we have $f \circ g \simeq \operatorname{id}_{X}$ and $g \circ f=\operatorname{id}_{A}$. Hence $X \simeq A$, so A is a deformation retract of X and we say that X retracts to A. Hence in order to compute the fundamental group of X it suffices to find the fundamental group of any deformation retract of X.
$\mathbb{S}^{1} \times I$ retracts to the circle $\mathbb{S}^{1}, \mathbb{E}^{n} \backslash\{0\}$ retracts to \mathbb{S}^{n-1}.
π_{1} even is a functor on the category of top. spaces modulo homotopy equivalence.
Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps with $\operatorname{id}_{X} \simeq_{F} g \circ f$ and $\operatorname{id}_{Y} \simeq_{G} f \circ g$. Let $q Y$ and $p:=g(q)$ be base points. Define $\gamma: I \rightarrow X, s \mapsto F(p, s)$. Then $\gamma(0)=F(p, 0)=\operatorname{id}_{X}(p)=p$ and $\gamma(1)=F(p, 1)=g(f(p))$, so γ is a path in X joining p with $g(f(p))$. By functorial properties of $\pi_{1},(g \circ f)_{*}=$ $\left(g_{*} \circ f_{*}\right)=\gamma_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(X, g(f(p)))$ is an isomorphism. Hence f_{*} is injective (its left inverse up to conjugation is g_{*}). A similar argument using G instead of F shows that f_{*} is surjective, so f_{*} is bijective.

Let X and Y be topological spaces. A map $p: Y \rightarrow X$ is a covering map or cover (of X) if every point $x \in X$ has an open neighbourhood V for which $p^{-1}(V)$ decomposes into a disjoint union of open sets $U_{i} \subset Y$ such that $\left.p\right|_{U_{i}}: U_{i} \rightarrow V$ is a homeomorphism.
The morphisms are the homeomorphisms $f: Y \rightarrow Z$, where $p_{1}: Y \rightarrow X$ and $p_{2}: Z \rightarrow X$ are covers of X, with $p_{2} \circ f=p_{1}$. In particular, a covering map is always surjective.
A cover $p: \tilde{X} \rightarrow X$ is universal if \tilde{X} is simply connected, e.g. $\mathbb{R} \rightarrow \mathbb{S}^{1}, t \mapsto e^{2 \pi i t}$.
We have $\operatorname{Deck}(\tilde{X} \rightarrow X):=\{f: \tilde{X} \rightarrow \tilde{X}: f$ homeo, $p \circ f=$ $p\} \cong \pi_{1}(X)$
Let $J \subset \mathbb{E}^{2}$ be a Jordan curve, that is $J \approx \mathbb{S}^{1}$. Then $\mathbb{E}^{2} \backslash J$ has exactly two (path)components.

Let $A \subset \mathbb{E}^{2}$ be a curve which doesn't closed up ("arc"), that is, $A \approx[0,1]$. Then $\mathbb{E}^{2} \backslash A$ is path-connected.

Let $q \in \mathbb{S}^{n} \backslash\{p\}$. As $\mathbb{S}^{n} \backslash\{p\} \approx \mathbb{E}^{n}, \mathbb{S}^{n} \backslash\{p\}$ is simply connected. We can decompose \mathbb{S}^{n} as a union of open simply connected subsets:

$$
\mathbb{S}^{n}=\left(\mathbb{S}^{n} \backslash\{p\}\right) \cup\left(\mathbb{S}^{n} \backslash\{q\}\right)
$$

As $n \geqslant 2$, their intersection

$$
\left(\mathbb{S}^{n} \backslash\{p\}\right) \cap\left(\mathbb{S}^{n} \backslash\{q\}\right)=\mathbb{S}^{n} \backslash\{p, q\}
$$

is path-connected. By van-Kampen, $\pi_{1}\left(\mathbb{S}^{n}, p\right)$ is trivial.
X and Y are homotopy equivalent $(X \simeq Y)$ if \exists maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ s.t. $g \circ f \simeq \operatorname{id}_{X}, f \circ g \simeq \operatorname{id}_{Y}$. Homeomorphic spaces are homotopy equivalent.
Homotopy equivalence is an equivalence relation.
Convex subset of \mathbb{E}^{n} are homotopy equivalent to $\{\bullet\}$. $\mathbb{E}^{n} \backslash\{0\} \simeq \mathbb{S}^{n-1}$.

Let $f, g: X \rightarrow Y$ be maps with $f \simeq_{F} g$ and $p \in X$. Then $g_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(Y, g(p))$ equals the composition $\gamma_{*} \circ f_{*}$, where $f_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(Y, f(p))$ and the path joining $f(p)$ and $g(p)$,

$$
\gamma: I \rightarrow Y, \quad s \mapsto F(p, s),
$$

induces a map

$$
\gamma_{*}: \pi_{1}(Y, f(p)) \rightarrow \pi_{1}(Y, g(p)), \quad\langle\alpha\rangle \mapsto\left\langle\gamma^{-1} \bullet \alpha \bullet \gamma\right\rangle .
$$

A space X is contractible if $\operatorname{id}_{X} \simeq e_{p}$ for some $p \in X$, where $e_{p}: X \rightarrow X, x \mapsto p$ denotes the constant map at $p \in X$ on X. Let X be contractible. Then X is simply connected and id_{X} is homotopic to e_{x} for all $x \in X$.
Let Y be a space with maps $f, g: Y \rightarrow X$. Then $f \simeq g$.

Every map $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ has a fixed point for $n \geqslant 1$.
$n=2$: Suppose $f(x) \neq x$ for all $x \in \mathbb{B}^{2}$. For $x \in \mathbb{B}^{2}$ let $g(x)$ be the unique point of intersection of \mathbb{S}^{1} and the ray from $f(x)$ to x in the direction of x. Then $g: \mathbb{B}^{2} \rightarrow \mathbb{S}^{1}$ is a map as a composition of maps. For $x \in \mathbb{S}^{1}$ we have $g(x) \in \mathbb{S}^{1}$. Hence g is a retraction from \mathbb{B}^{2} to \mathbb{S}^{1}. Then $\mathbb{B}^{2} \simeq g\left(\mathbb{B}^{2}\right)=\mathbb{S}^{1}$, which is a contradiction as $\pi_{1}\left(\mathbb{B}^{2}\right) \neq \pi_{1}\left(\mathbb{S}^{1}\right)$.
For $n=1$ replace π_{1} by π_{0} in the above proof, where π_{0} is the set of path-connected components (which is not a group).
For $n>2$ replace π_{1} by H_{n-1}.

Surface, topological k-manifold

Affine hull, general position

Definition, Lemma w/o proof

Realisation of a geometric simplicial complex

Cone of a simplicial complex

Interior, boundary, closed

Definitions

Simplex, (proper) face, geometric simplicial complex + dim

Definitions, Theorem w/o proof

Triangulation / triangulable space

Definition

Simplicial map, simplicial isomorphism

Definitions

Barycentric coordinates, barycentre, first barycentric subdivision

Let S be a surface. The interior of S is the set of all $x \in \mathbb{S}$ such that there exists a neighbourhood $N \in \mathcal{N}$ with $N_{x} \approx \mathbb{E}^{2}$. The boundary of S is the set of all $x \in \mathbb{S}$ such that there exists a homeomorphism $f: \mathbb{E}_{+}^{2} \rightarrow N$, where $N \in \mathcal{N}_{x}$ and $f(0)=x$.
Thm. The interior and boundary of a surface are disjoint.
Thm. Let S_{1} and S_{2} be surfaces which are homeomorphic via h. Then h maps the interior of S_{1} homeomorphically onto the interior of S_{2} (and likewise for the boundaries).
A surface is closed if it is compact and has empty boundary.

The convex hull $\operatorname{conv}\left(\left\{v_{0}, \ldots, v_{k}\right\}\right)$ is a k-simplex if $\left\{v_{0}, \ldots, v_{k}\right\}$ is in general position.
Let $\sigma=\operatorname{conv}(V)$ be a k-simplex. If $W \subset V$, then $\tau:=$ $\operatorname{conv}(W)$ is a simplex, too, called a face of σ. We write $\tau \leqslant \sigma$. Further, τ proper face of σ if $W \notin\{\varnothing, V\}$.
A finite collection of simplices in \mathbb{E}^{n} is a geometric simplicial complex if any two simplices from the collection meet in a common face (which may be empty). Its dimension is the maximal dimension of a simplex.

A space is triangulable if it is homeomorphic to the realisation of a geometric simplicial complex.
Let X be a topological space. A pair (K, X) is a triangulation of X if K is a simplicial complex and $h:|K| \rightarrow X$ is a homeomorphism.
The space X is triangulable if it has a triangulation.

Every closed surface is triangulable.

Let K and L be geometric simplicial complexes. A function $\varphi: \operatorname{Vert}(K) \rightarrow \operatorname{Vert}(L)$ is a simplicial map if for all $\sigma \in K$ we have $\varphi(\sigma) \in L$ (extend φ via barycentric coordinates). A bijective simplicial map whose inverse is a simplicial map is a simplicial isomorphism.

Let $\tau:=\operatorname{conv}\left(v_{0}, \ldots, v_{k}\right) \subset \mathbb{R}^{n}$ be a k-simplex. Then each point $x \in \tau$ can be uniquely written as $x=\sum_{j=0}^{k} \lambda_{j} v_{j}$, where $\lambda_{j} \geqslant 0$ for all $j \in\{0, \ldots, k\}$ and $\sum_{j=0}^{k} \lambda_{j}=1$. The coefficients $\left(\lambda_{j}\right)_{j=0}^{k}$ are the barycentric coordinates of x. The barycentre of τ is the point $\beta_{\tau}:=\frac{1}{k+1} \sum_{j=0}^{k} v_{j} \in \tau$.
Let K be a GSC. The barycentric subdivision K^{1} of K is the GSC with $\operatorname{Vert}\left(K^{1}\right)=\left\{\beta_{\sigma}: \sigma \in K \backslash\{\varnothing\}\right\}$ such that $\operatorname{conv}\left(\beta_{\sigma_{0}}, \ldots, \beta_{\sigma_{k}}\right)$ is a face if and only if there exists a $\varphi \in$ $\operatorname{Sym}(\{0,1, \ldots, k\})$ such that $\sigma_{\varphi(0)}<\sigma_{\varphi(1)}<\ldots<\sigma_{\varphi(k)}$.
The m-th barycentric subdivision is $K^{m}:=\left(K^{m-1}\right)^{1}$.
We have $\operatorname{Vert}(K) \subset \operatorname{Vert}\left(K^{1}\right) . k$ faces gets divided in $(k+1)!k$ faces.

A (topological) k-manifold is a HAUSDORFF space such that each point has a neighbourhood either homeomorphic to \mathbb{E}^{k} or $\mathbb{E}_{+}^{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{E}^{k}: x_{k} \geqslant 0\right\}$.
A surface is a 2-manifold.

The affine hull of $V:=\left\{v_{0}, \ldots, v_{k}\right\} \subset \mathbb{E}^{n}$ is $\operatorname{aff}(V):=$ $\left\{\sum_{j=0}^{k} \lambda_{j} v_{j}: \sum_{j=0}^{k} \lambda_{j}=1\right\}$.
The set V is in general position if $\operatorname{dim}(V)=k$, that is, $\left(v_{j}-\right.$ $\left.v_{0}\right)_{j=1}^{k}$ are linearly independent. We say that the point in V are affinely independent.
The set $\left\{x_{0}, \ldots, x_{m}\right\} \subset \mathbb{R}^{n}$ is affinely dependent if and only if the set $\left\{\left(1, x_{0}\right), \ldots,\left(1, x_{m}\right)\right\} \subset \mathbb{R}^{n+1}$ is linearly dependent.

The realisation of a simplicial complex $K:=\left(\sigma_{j}\right)_{j=1}^{k}$ in \mathbb{E}^{n} is

$$
|K|:=\bigcup_{j=1}^{k} \sigma_{j} \subset \mathbb{E}^{n}
$$

$|K| \subset \mathbb{E}^{n}$ is compact.
$x \in|K|$ is contained in the relative interior of a unique simplex, called the carrier of x.
K is connected $\Longleftrightarrow K$ is path-connected $\Longleftrightarrow K^{\leqslant 1}$ is a connected graph.

Let K be a geometric simplicial complex in $\mathbb{E}^{n} \cong \mathbb{E}^{n} \times\{0\} \subset$ \mathbb{E}^{n+1}. The cone of K with apex $v \in \mathbb{E}^{n+1} \backslash\left(\mathbb{E}^{n} \times\{0\}\right)$ is

$$
C K:=\{\sigma * v: \sigma \in K \cup\{\varnothing\}\} \cup K
$$

where

$$
\sigma * v:=\operatorname{conv}(\sigma \cup\{v\})
$$

is a $(n+1)$-simplex if $\sigma \subset \mathbb{E}^{n}$ is a n-simplex.

We have $|C K| \approx C|K|$.

Let V be a finite set. A subset $K \subset 2^{V}$ is an abstract simplicial complex with vertex set V if for all $\sigma \in K$ and all $\tau \subset \sigma$ we have $\tau \in K$.

Barycentric subdivision of abstract SC

Topology

Definition, Lemma w/ proof

Simplicial approximation

Definition
Topology

Equivalent Edge paths / loops

Topology

Theorems w/o proofs

Mixing cross-caps and handles, Poincaré conjecture

Orientation of a simplex, induced orientation, orientable triangulation

Mesh

Theorem w/o proof, Remark

Simplicial approximation

Definition, Theorem w/o proof

Edge group

Theorem w/o proof, Lemma

Properties of triangulations of closed surfaces

Orientation of a triangulation and the corresponding surface

The mesh (size) of a complex K is $\mu(K):=\max (\{\operatorname{diam}(\sigma):$ $\sigma \in K\}$), where $\operatorname{diam}(\sigma):=\max (\{\|x-y\|: x, y \in \sigma\})$.
Each simplex of K^{1} is contained in a simplex of K.
We have $\left|K^{1}\right|=|K|$.
If $\operatorname{dim}(K)=n$, then $\mu\left(K^{1}\right) \leqslant \frac{n}{n+1} \mu(K)$.

The following theorem states that we can replace continuous maps between realisations of GSCs by simplicial maps.

Let $f:|K| \rightarrow|L|$ be a map. Then there exists a $m \in \mathbb{N}$ such that there exists a simplicial approximation $s: K^{m} \rightarrow L$ to f.

The edge group $E(K, v)$ of K based at $v \in V$ consists of equivalence classes of edge loops at v with respect to the multiplication

$$
\left[v_{0}, \ldots, v_{k}\right]\left[v_{k}, v_{k+1}, \ldots, v_{m}\right]:=\left[v_{0}, \ldots, v_{m}\right]
$$

where $v_{0}=v_{k}=v_{m}=v$.

Thm. $E(K, v) \cong \pi_{1}(|K|, v) \cong G(K, L)$, where L is a simply connected subcomplex of K, e.g. a spanning tree of $K^{\leqslant 1}$.

RADO (1923): Every closed surface is triangulable: $S \approx|K|$. $\operatorname{dim}(K)=2$.
K is pure, that is, each facet (maximal face with respect to inclusion) is 2 -dimensional.
Each edge of K is contained in exactly two triangles.
Any two vertices of K can be joined by an edge-path.
Each vertex v is contained in at least three triangles, which together form a cone with apex v.

The (first) barycentric subdivision of an abstract simplicial complex K has as vertices the faces of K, that is, $K \backslash\{\varnothing\}$, and as faces the flags of K.

A simplicial map $s: K \rightarrow L$ is a simplicial approximation of the continuous function f if $s(x)$ lies in the carrier of $f(x)$ for each $x \in|K|$.

If s is a simplicial approximation of f, then $|s| \simeq f$.

Let $L \subset \mathbb{E}^{n}$. Define $F:|K| \times I \rightarrow \mathbb{E}^{n},(x, t) \mapsto(1-t)|s(x)|+t f(x)$. For $x \in|K|$, there exists a face $\sigma \in L$ such that $|s|(x), f(x) \in \sigma$. Since σ is convex, the straight line homotopy F stays inside σ. Hence the image of the F is contained in $|L|$ and $|s| \simeq_{F} f$.

An edge path in a GSC K is a sequence $\left(v_{0}, \ldots, v_{k}\right)$ in V such that the edge (or point: we allow $\left.v_{i-1}=v_{i}\right) v_{i-1} v_{i}:=$ $\operatorname{conv}\left(\left\{v_{i-1}, v_{i}\right\}\right)$ lies in K for all $i \in[k]$. If $v_{0}=v_{k}$, then this sequence is an edge loop based at v_{0}. Two edge paths are equivalent if they can be transformed into another by finitely many operations of the following kind:

$$
\begin{aligned}
& \text { - }(u, v, w) \leftrightarrow(u, w) \text { if } \operatorname{conv}(u, v, w) \in K \text { ("shortcut"). } \\
& \text { - }(u, u) \leftrightarrow u \text {. }
\end{aligned}
$$

Modifying the sphere \mathbb{S}^{2} by adding m handles and $n>0$ disjoint cross-caps is homeomorphic to \mathbb{S}^{2} with $2 m+n$ disjoint cross-caps.

Every simply connected, closed 3-manifold is homeomorphic to \mathbb{S}^{3}.

An orientation of a simplex is an ordering of its vertices up to an even permutation.
The orientation of a $\operatorname{conv}\left(v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right)$ induced by an orientation v_{0}, \ldots, v_{k} is (- denotes to opposite orientation)

$$
\begin{cases}v_{0} \ldots v_{i-1} v_{i+1} \ldots v_{k}, & \text { if } i \text { is even } \\ -v_{0} \ldots v_{i-1} v_{i+1} \ldots v_{k}, & \text { if } i \text { is odd.. }\end{cases}
$$

A triangulation K is orientable if there exists orientations of all triangles such that each edge receives opposite orientations from its two triangles.

Thickening

Let L be a d-dimensional simplicial complex. Then $f_{k}(L)$ is the number of k-dimensional simplices of $L,\left(f_{j}\right)_{j=0}^{d}$ is the f vector (or face vector) of L and the Euler characteristic of L is $\chi(L):=\sum_{k=0}^{d}(-1)^{k} f_{k}(L)$.

Let L and M be cell complexes which intersect in a common subcomplex $L \cap M$. Then $\chi(L \cup M)=\chi(L)+\chi(M)-\chi(L \cap M)$ by the inclusion-exclusion principle.
$\chi\left(L^{1}\right)=\chi(L)$.

Every polygonal curve in $|K|$ made up of edges in K^{1} separates $|K| \Longleftrightarrow \chi(K)=2 \Longleftrightarrow|K| \approx \mathbb{S}^{2}$.
"(1) \Longrightarrow (2)". As in the proof of Euler's theorem, it follows that Γ is a tree. Hence $\chi(K)=\chi(T)+\chi(\Gamma)=1+1=2$.
$"(2) \Longrightarrow$ (3). If $\chi(T)=2$, then $\chi(\Gamma)=1$ by the above formula and hence Γ is a tree. Thus $|K|=|N(T)| \cup|N(\Gamma)|$ is a union of two disks glued at their boundaries, so $|K| \approx \mathbb{S}^{2}$.
"(3) \Longrightarrow (1)". This comes from the proof of the Jordan theorem.

We have $\chi\left(K_{*}\right)>\chi(K)$.
Case 1: $|N|$ is a cylinder. Then, as L_{1} and L_{2} are disjoint,

$$
\begin{aligned}
\chi\left(K_{*}\right) & =\chi(M)+\chi\left(C L_{1}\right)+\chi\left(C L_{2}\right)-\chi\left(L_{1}\right)-\chi\left(L_{2}\right) \\
& =\chi(M)+1+1-0-0=\chi(M)+2
\end{aligned}
$$

Case 2: $|N|$ is a Möbius strip. Then

$$
\chi\left(K_{*}\right)=\chi(M)+\chi(C L)-\chi(L)=\chi(M)+1
$$

Lastly, in both cases we have
$\chi(K)=\chi\left(K^{2}\right)=\chi(M)+\chi(N)-\chi(M \cap N)=\chi(M)+0-0=\chi(M)$, as $M \cap N$ is a circle.

The abelisation of G is $G^{\mathrm{Ab}}:=G / G^{\prime}$, the largest Abelian factor of G, where $G^{\prime}:=\langle\{[a, b]: a, b \in G\}\rangle$, where $[a, b]:=a b a^{-1} b^{-1}$.
An R-module is an Abelian group $(G, *)$ together with a ring R and a ring homomorphism $\varphi: R \rightarrow \operatorname{End}(G)$, which is the (not unique) R-module structure on G.
Let X be a set. Then the free R-module with basis X is

$$
\bigoplus_{x \in X} R:=\left\{\sum_{i=1}^{n} r_{i} x_{i}: r_{i} \in R, x_{i} \in X, n \in \mathbb{N}\right\},
$$

where $\sum_{i=1}^{n} r_{i} x_{i}+\sum_{i=1}^{n} s_{i} x_{i}:=\sum_{i=1}^{n}\left(r_{i}+s_{i}\right) x_{i}$, is the set of unique formal linear combinations.

The q-faces form (by construction) an R-basis of $C_{q}(K ; R)$. Hence

$$
\partial_{q} \underbrace{\left(w_{0} w_{1} \ldots w_{q}\right)}_{\text {oriented } q \text {-face }}:=\sum_{j=0}^{q}(-1)^{j} \underbrace{w_{0} w_{1} \ldots \widehat{w_{j}} \ldots w_{q}}_{\text {oriented }(q-1) \text {-face }} \in C_{q-1}(K ; R)
$$

defines an R-linear map by extension.
For $q \geqslant 1, \partial_{q}: C_{q}(K ; R) \rightarrow C_{q-1}(K ; R)$ is the q-th simplicial boundary operator of K.
Let $\partial_{0}:=0$ (the boundary of a point is zero) or define $C_{-1}(K ; R)=R \cdot \varnothing$ (all R-multiples of the empty set) and $\partial_{0}(v)=\varnothing$ for $v \in V$ (latter one $=$ reduced).

Let L be a one-dimensional subcomplex in K^{1}. The thickening of L is the subcomplex of K^{2} of the triangles (and their faces) which meet L.

The thickening of L is a closed neighbourhood of $|L|$ in $|K|$ whose polyhedron is homotopy equivalent to $|L|$.

The thickening of a tree is homeomorphic to a disk. The thickening of a simple closed polygonal curve is either a cylinder or a MÖBIUS strip.

We have $\chi(K) \leqslant 2$ for a simplicial complex K.

Abstract

Choose a spanning tree T in K and construct the complementary graph Γ, whose vertices are the (barycentres of) triangles and whose edges correspond to edges in K which are not edges in T. Referring to the barycentres means that we can realise this a geometric simplicial complex $\Gamma^{1} \leqslant K^{1}$. Then $\chi(K)=\chi(T)+\chi(\Gamma)$, because each face of the triangulation either contributes to T (if it is a vertex or an edge of T) or to Γ (if it is a triangle or if it bijectively corresponds an edge which is not in T) in such a way that the signs match. As T is a tree, $\chi(T)=1$ and as Γ is a connected simple graph, $\chi(\Gamma) \leqslant 1$ by CoMa.

K combinatorial surface. Assume that L is a simple closed polygonal curve which does not separate $|K|$. Then $|K| \not \approx \mathbb{S}^{2}$. Let N be the thickening of L in K^{2}, which is either a cylinder or a Möbius strip. Let M be the subcomplex complementary to N in K^{2} (cf. thickening of dual graph Γ).
If $|N| \approx \mathbb{S}^{1} \times I$, then $\partial|N|=\partial|M| \approx \mathbb{S}^{1} \sqcup \mathbb{S}^{1}$. Let $L_{1}, L_{2} \leqslant K^{2}$ support those circles. Let $K_{*}:=M \cup C L_{1} \cup C L_{2}$.
If $|N| \approx$ Möbius, then $\partial|N|=\partial|M| \approx \mathbb{S}^{1}$. Let $L \leqslant K^{2}$ be that circle. Let $K_{*}:=M \cup C L$.
Then K_{*} is obtained from K by doing surgery along L resp. $L_{1} \cup L_{2}$.

For $p \geqslant 0$ we have

$$
\pi_{1}(H(p)) \cong\left\langle a_{1}, b_{1}, \ldots, a_{p}, b_{p} \mid \prod_{k=1}^{p} a_{k} b_{k} a_{k}^{-1} b_{k}^{-1}\right\rangle
$$

and for $q \geqslant 1$

$$
\pi_{1}(M(q)) \cong\left\langle a_{1}, \ldots, a_{q} \mid \prod_{k=1}^{p} a_{k}^{2}\right\rangle
$$

as well as $\chi(H(p))=2-2 p$ and $\chi(M(q))=2-q$.

Let K be a simplicial complex, whose vertices $V=\operatorname{Vert}(K)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ are totally ordered. Fix a commutative ring R with multiplicative unit 1.
The q-th simplicial chain module of K with coefficients in R is $C_{q}(K ; R)$, the set of all formal linear combinations of q-dimensional faces of K with coefficients in R.

The chain module of K is a free R-module, where the addition and multiplication are inherited coefficient-wise from the addition and multiplication in R, respectively.

$$
\partial^{2}=0
$$

Euler characteristic and Betty NUMBERS

Homology module, class, Betty number

Since ∂_{q+1} and ∂_{q} are R-linear, $B_{q}(K ; R)$ and $Z_{q}(K ; R)$ are free R-submodules of the R-module $C_{q}(K ; R)$. As $\partial^{2}=0$, $B_{q}(K ; R) \leqslant Z_{q}(K ; R)$, so we can take the quotient.
The q-th simplicial homology module is

$$
H_{q}(K ; R):=Z_{q}(K ; R) / B_{q}(K ; R)
$$

The q-th Betty number β_{q} of K is the free rank of $H_{q}(K ; \mathbb{Z})$. For $c \in Z_{q}(K ; R)$ the homology class of c is

$$
[c]:=c+B_{q}(K ; R) .
$$

We have $H_{0}(K ; R) \cong R^{C}$, where C is the number of connected components of K.

If v and w are vertices of K in the same connected component, then the equivalence classes in the 0-th homology agree ("they are 0-homologous": $[v]=[w]$. Indeed, we can joint v and w by an edge path $v v_{1} \ldots v_{k} w$ in which no consecutive vertices are equal. Then $\partial\left(\left(v v_{1}\right)+\left(v_{1} v_{2}\right)+\ldots+\right.$ $\left.\left(v_{k} w\right)\right)=w-v$. Furthermore, vertices which lie in different components of $|K|$ are not homologous and R-multiples of a single vertex can never be a boundary.

Let K be a combinatorial surface of genus g. Then K is connected, so $H_{0}(K ; \mathbb{Z})=\mathbb{Z}$ and we have the following table:

	K is orientable	K is non-orientable
$H_{0}(K ; \mathbb{Z})$	\mathbb{Z}	\mathbb{Z}
$H_{1}(K ; \mathbb{Z})$	$\mathbb{Z}^{2 g}$	$\mathbb{Z}^{g-1} \times \mathbb{Z}_{2}$
$H_{2}(K ; \mathbb{Z})$	\mathbb{Z}	$\{0\}$

Table 1: The first three \mathbb{Z}-homology groups of surfaces with genus g. Note that a non-orientable surface of genus 0 does not exist, so everything is well-defined. $\left(H_{k}=\{0\}, k>2\right)$.

If $f, g:|K| \rightarrow|L|$ are homotopic, then the induced maps f_{*} and g_{*} in homology are equal. Hence if $|K| \simeq|L|$, then $H_{q}(K ; R) \cong H_{q}(L ; R)$ for all $q \geqslant 0$.

If $m \neq n$, then $\mathbb{S}^{m} \not \not \mathbb{S}^{n}$.
We have $H_{m}\left(\mathbb{S}^{m}\right)=\mathbb{Z} \neq\{e\}=H_{m}\left(\mathbb{S}^{n}\right)$.
We have $\mathbb{E}^{m} \approx \mathbb{E}^{n}$ if and only if $m=n$.
Let $h: \mathbb{E}^{m} \rightarrow \mathbb{E}^{n}$ be a homeomorphism preserving the origin. Then $\mathbb{S}^{m-1} \simeq \mathbb{E}^{m} \backslash\{0\} \stackrel{h}{\approx} \mathbb{E}^{n} \backslash\{0\} \simeq \mathbb{S}^{n-1}$ can only be true if $n=m$.

Let $S \subset \mathbb{R}^{d}$ be a finite set of points and $r \geqslant 0$. Then

$$
\overline{\mathrm{C}} \mathrm{ECH}(r):=\left\{\sigma \subset S: \bigcap_{x \in \sigma} B_{x}(r) \neq \varnothing\right\}
$$

is the Čech complex of S with respect to the radius r. Here, $B_{x}(r)$ is the ball of all points with distance at most r from x. The ČECH complex is an abstract simplicial complex (as the nerve complex is) on the vertex set S. Then nerve theorem implies that $\operatorname{ČECH}(r) \simeq \bigcup_{x \in S} B_{x}(r)$.

We have $\partial_{q} \partial_{q+1}=0$ for all $q \geqslant 0$.
Consider $q+2$ vertices w_{0}, \ldots, w_{q+1} of a $(q+1)$-dimensional simplex. Then
$\partial^{2}\left(w_{0} \ldots, w_{q+1}\right)=\partial\left(\sum_{k=0}^{q+1}(-1)^{k} w_{0} \ldots \widehat{w_{k}} \ldots w_{q+1}\right) \stackrel{(\mathrm{L})}{=} \sum_{k=0}^{q+1}(-1)^{k} \partial\left(w_{0} \ldots \widehat{w_{k}} \ldots w_{q+1}\right)$
$=\sum_{k=0}^{q+1}(-1)^{k}\left(\sum_{j=k+1}^{q+1}(-1)^{j-1} w_{0} \ldots \widehat{w_{k}} \ldots \widehat{w_{j}} \ldots \cdots w_{q+1}\right.$

$$
\left.+\sum_{k=0}^{q+1}(-1)^{k} \sum_{j=0}^{k-1}(-1)^{j} w_{0} \ldots \widehat{w_{j}} \ldots \widehat{w_{k}} \ldots \ldots w_{q+1}\right)
$$

where we use that ∂ is linear in (L) and the hat indicates that this vertex is omitted. Each ordered q-simplex occurs twice, but with opposite sign, hence the term is zero.

$$
\chi(K)=\sum_{k=0}^{n}(-1)^{k} f_{i}(K)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim}\left(H_{k}(K ; \mathbb{F})\right),
$$

where \mathbb{F} is any field of characteristic zero, such as \mathbb{Q}, \mathbb{R} or \mathbb{C}.

Let K be a connected ASC with totally ordered vertex set and with a vertex v. Each edge loop $\alpha=v v_{1} v_{2} \ldots v_{k} v$ based at v gives rise to a simplicial 1chain with integer coefficients $z(\alpha):=\left(v v_{1}\right)+\left(v_{1} v_{2}\right)+\ldots+\left(v_{k} v\right) \in C_{1}(K ; \mathbb{Z})$ provided that subsequent vertices are distinct, i.e. $v_{i} \neq v_{i+1}$. The order matters: $\left(v_{i}, v_{i+1}\right)=-\left(v_{i+1} v_{i}\right)$. We have $\partial(z(\alpha))=0$ because α is closed and thus each vertex appears exactly twice in the linear combination. Hence $z(\alpha) \in Z_{1}(K ; \mathbb{Z})$.
For another chain β, which is equivalent to α in the edge path group of K, we get $z(\beta)-z(\alpha) \in B_{1}(K ; \mathbb{Z})$, i.e. $z(\beta)-z(\alpha)$ is a 1-boundary of K.
This yields a homomorphism of groups

$$
\varphi: \pi_{1}(|K|, v) \rightarrow H_{1}(K ; \mathbb{Z}), \quad[\alpha] \mapsto[z(\alpha)]
$$

where $[\alpha]$ is the homotopy class in the edge group and $[z(\alpha)]$ is the homology class. The homomorphism is onto and its kernel is the commutator subgroup of $\pi_{1}(|K|, v)$.

Simplicial maps induce homomorphisms in homology.
Subdivision preserves homology.
Let K and L be SCs. The map $f:|K| \rightarrow|L|$ induces a homomorphism of R-modules $f_{*}: H_{q}(K ; R) \rightarrow H_{q}(L ; R)$ for each $q \in \mathcal{N}_{0}$.
If $f:|K| \rightarrow|K|$ is the identity map, then for all $q \geqslant 0$, $f_{*}: H_{q}(K ; R) \rightarrow H_{q}(K ; R)$ is the identity, too.
If M is another SC and $f:|K| \rightarrow|L|$ and $g:|L| \rightarrow|M|$ are maps, then $(g \circ f)_{*}=g_{*} \circ f_{*}: H_{q}(K ; R) \rightarrow H_{q}(M ; R)$.
Hence $H_{q}(\cdot ; R)$ is a covariant functor.

Let F be a finite collection of closed convex sets in \mathbb{E}^{d}. Then the nerve complex is an abstract simplicial complex on F as vertex set:

$$
\operatorname{Nrv}(F):=\{X \subset F: \bigcap X \neq \varnothing\} .
$$

If $Y \subset X$ and $\bigcap X \neq \varnothing$, then $\bigcap Y \neq \varnothing$, so the nerve complex is an abstract simplicial complex.
Thm. We have

$$
\operatorname{Nrv}(F) \simeq \bigcup\{x: x \in F\} \subset \mathbb{E}^{d}
$$

Properties of ČECH complexes

TOPOLOGY

Definitions

Homology class is born / dies

TOPOLOGY

Definition

Persistence diagram

Topology

Definition, Theorem w/o proof

Vietoris-Rips complex

TOPOLOGY

Definition, Lemma

Persistent homology module

Definition, Lemma w/o proof

Persistent Betti number, $\mu_{p}^{i, j}$

Definition

Definition
Clique complex

Free face, regular pair

TOPOLOGY

Definition, Examples, Counterexamples

Let $K_{0} \leqslant K_{1} \leqslant \ldots \leqslant K_{n}=K$ be some filtration of a complex K. Then (by definition) for $0 \leqslant i \leqslant j \leqslant n$, we have $K_{i} \leqslant K_{j}$ and the induced homomorphisms $f_{p}^{i, j}: H_{p}\left(K_{i} ; R\right) \rightarrow$ $H_{p}\left(K_{j} ; R\right)$, where R is a commutative ring with 1 . The p-th persistent homology module of the filtration K_{\bullet} with respect to R is $H_{p}^{i, j}:=H_{p}^{i, j}\left(K_{\bullet} ; R\right):=\operatorname{im}\left(f_{p}^{i, j}\right)$.
We have $H_{p}^{i, j}=Z_{p}\left(K_{i}\right) /\left[B_{p}\left(K_{j}\right) \cap Z_{p}\left(K_{i}\right)\right]$ and thus in particular $H_{p}^{i, i}=H_{p}\left(K_{i}\right)$.

Let $\beta_{p}^{i, j}:=\operatorname{dim}_{R}\left(H_{p}^{i, j}\right)$ be the p-th persistent Betti number of $K \bullet$ with respect to R. Further, if $i<j$, let

$$
\mu_{p}^{i, j}:=\left(\beta_{p}^{i, j-1}-\beta_{p}^{i, j}\right)-\left(\beta_{p}^{i-1, j-1}-\beta_{p}^{i-1, j}\right),
$$

which is the number of independent p-dimensional homology classes born in K_{i} which die entering K_{j}. For all $0 \leqslant k \leqslant \ell \leqslant n$ we have

$$
\beta_{p}^{k, \ell}=\sum_{i \leqslant k}\left(\sum_{j=\ell+1}^{n} \mu_{p}^{i, j}+\mu_{p}^{i, \infty}\right),
$$

where $\mu_{p}^{i, \infty}$ is the number of homology classes still alive in $K=K_{n}$.

Let $G=(V, E)$ be a finite simple graph with vertex set V and edge set E. The clique complex is the simplicial complex

$$
C(G):=\{\sigma \subset V: \forall u, v \in \sigma \text { with } u \neq v:\{u, v\} \in E\}
$$

on V.

The clique complex of (V, E) contains both V and E as 0 and 1dimensional faces. Its two-dimensional faces are the triangles as in a triangle each vertex is connected to each other vertex, whereas for a quadrangle this is not the case.

Let K be a finite ASC. A face $\sigma \in K$ is free if there is a unique $\tau \in K$ such that $\sigma \lessdot \tau$, that is σ is a facet of τ, it has exactly one dimension less: $\operatorname{dim}(\sigma)=\operatorname{dim}(\tau)-1$. In that case, (σ, τ) is a regular pair of K.

If (τ, σ) is a regular pair, then $K \backslash\{\tau, \sigma\}$ is again a simplicial complex due to the uniqueness of the larger face τ ("nobody else is missing σ other than $\tau^{\prime \prime}$).

Contractible spaces which have a sequence of regular pairs such that removing them from the space yields a point are collapsible. (Hence collapsible \Longrightarrow contractible.)
The dunce hat is contractible, but not collapsible. The Möbius strip, $\mathbb{S}^{n}, n \geqslant 1$ and $M(p)$ are not contractible and thus not collapsible.
Any tree and any convex set is collapsible.

We have $\check{\operatorname{Cech}}(0)=S$ as a 0-dimensional complex.
ČECH (∞) is a $(|S|-1)$-dimensional simplex on the vertex set S, where ∞ denotes a sufficiently large radius $r>\operatorname{diam}(S)$.
If $r \leqslant r^{\prime}$, then $\check{\mathrm{C}}_{\mathrm{ECH}}(r) \leqslant \check{\mathrm{C}}_{\mathrm{ECH}}\left(r^{\prime}\right)$, where \leqslant denotes "is a subcomplex of".
Hence we get a filtration of the final complex $\operatorname{ČECH}(\infty)$, a sequence of subcomplexes that is contained in each other. In between $r=0$ and " $r=\infty$ " we get some things which depend on the geometry of S, while $\check{\operatorname{Cech}}(0)$ and $\check{\mathrm{C} E C H}(\infty)$ only depend on $|S|$.

A homology class $\gamma \in H_{p}\left(K_{i}\right)$ is born at K_{i} if $\gamma \notin H_{p}^{i-1, i}$. If γ is born at K_{i}, then it dies entering K_{j} if $f_{p}^{i, j-1}(\gamma) \notin$ $H_{p}^{i-1, j-1}$ but $f_{p}^{i, j-1}(\gamma) \in H_{p}^{i-1, j}$.

The p-th persistence diagram of the filtration with respect to R is the point configuration

$$
\left\{(i, j): \mu_{p}^{i, j} \geqslant 1\right\} \in \overline{\mathbb{R}}^{2}:=\mathbb{R} \times(\mathbb{R} \cup\{\infty\})
$$

with multiplicities.

Let $S \subset \mathbb{R}^{d}$ be a finite point set and fix a radius $r \geqslant 0$. Consider the 1-dimensional simplicial complex $G(r):=\check{\mathrm{C} E C H}(r) \leqslant 1$ as a graph.
The Vietoris-Rips complex is $\operatorname{VR}(r):=C(G(r))$
This yields a filtration by choosing radii r.

We have $\check{\mathrm{C}} \mathrm{ECH}(r) \leqslant \operatorname{VR}(r) \leqslant \operatorname{ČCH}(\sqrt{2} r)$.

The complex $K \backslash\{\tau, \sigma\}$ is the complex obtained from K by an elementary collapse.
If (σ, τ) is a regular pair of K, then complex obtained from K by an elementary collapse $K \backslash\{\sigma, \tau\}$ is homotopy equivalent to K.

This combinatorial operation, if it is possible, simplifies the complex because it reduces the number of faces but retains the topological information.

