Level set of $f: \mathbb{R}^{d} \supset D \rightarrow \mathbb{R}$

Level set of $f: \mathbb{R}^{d} \supset D \rightarrow \mathbb{R}$
Nonlinear optimisation
Example
Linear regression

Nonlinear optimisation
Theorem
Strictly convex problems are uniquely
solvable

Theorem

Second order necessary condition

Theorem

Theorem

For convex problems, local minima are global

Theorem

Variational inequality for the directional
derivative Nonlinear optimisation

Theorem

Sufficient second order condition Nonlinear optimisation

Quadratic growth condition

Tangents of convex functions

Let $f: \mathbb{R}^{n} \supset D \rightarrow \mathbb{R}$ by a continuous function and Ω closed. If there exists a $\omega \in \Omega$, such that $\mathcal{N}(\boldsymbol{f}, \boldsymbol{f}(\boldsymbol{\omega}))$ is compact there exists a global minimum of f on Ω.

Let $a:=\inf _{x \in \Omega} f(x) \leqslant f(\omega)$. As Ω is closed, $N:=\Omega \cap$ $\mathcal{N}(f, f(\omega))$ is compact and we have $a=\inf _{x \in N} f(x)$. By the theorem of Weierstrass there exists a $\hat{x} \in \Omega$ with $\inf _{x \in N} f(x)=f(\hat{x})$.

Let f be convex, $D \neq \varnothing$ open and $\Omega \subset D$ convex. Any local minimum of f is global. The set of solutions is convex.
Let $x \in \Omega$ be a local minima. Then $\exists r>0$ with $f(x) \leqslant f(y)$ for all $y \in \Omega \cap B(x, r)$. Let $y \in \Omega$ and $t>0$ so small, that $x_{t}:=x+t(y-x) \in B(x, r)$. Since Ω is convex, $x_{t} \in \Omega$ for all $t \in[0,1]$. Since f is convex, $f(x) \leqslant f\left(x_{t}\right)=f((1-t) x+t y) \leqslant$ $(1-t) f(x)+t f(y)$, which yields $f(x) \leqslant f(y)$.
If $x, y \in \Omega$ are solutions, for all $z \in \Omega f((1-t) x+t y) \leqslant$ $(1-t) f(x)+t f(y) \leqslant(1-t) f(z)+t f(z)=f(z)$, so $(1-t) x+t y$ is a minimum, too.

If $x \in D$ is a local minimum f and f is directionally differentiable in $x, f^{\prime}(x ; h) \geqslant 0$ for all $h \in \mathbb{R}^{n}$.
As D is open, $\exists r>0$ with $f(y) \geqslant f(x)$ for all $y \in B(x, r)$. For $h \in \mathbb{R}^{n}$ and small t we have $x+t h \in B(x, r)$ and thus $f(x+t h)-f(x) \geqslant 0$, i.e. $\frac{f(x+t h)-f(x)}{t} \geqslant 0$.
We have $f^{\prime}(x ; h):=\lim _{t \backslash 0} \frac{f(x+t h)-f(x)}{t}$.
The absolute has a minimum in 0 , but is not differentiable there, but we have $|\cdot|^{\prime}(x ; h)=|h| \geqslant 0$ for all h.
If $f \in C^{1}$ and x is a local min, $f^{\prime}(x ; h)=\nabla f(x)^{\mathrm{T}} h \geqslant 0 \forall h \in \mathbb{R}^{n}$ (var. ineq.). Taking $h=-\nabla f(x)^{\top} h$, we get $\nabla f(x)=0$.

Let f be \mathcal{C}^{2} in a neighbourhood of $x \in D, \nabla f(x)=0$ and $f^{\prime \prime}(z)$ be positive semidefinite for all $z \in B(x, \delta)$ with some $\delta>0$. Then x is a local minimum of f.
For $y \in B(x, \delta)$ and $\theta \in[0,1]$
$f(y)-f(x)=\underbrace{f^{\prime}(x)}_{=0}(y-x)+\frac{1}{2} \underbrace{y-x)^{\top}}_{h} f^{\prime \prime}(\underbrace{x+\theta(y-x)}_{=z \in B_{\delta}(x)})(y-x) \geqslant 0$

by TAylor's theorem.

$x=0$ is a local minimum of $f(x):=x^{2 p}$, where $p \in \mathbb{N}_{\geqslant 2}$. We have $f^{\prime}(0)=f^{\prime \prime}(0)=0$, which is not positive definite.

Let f be differentiable on D. Then f is (strictly) convex on Ω iff $f(y) \stackrel{(>)}{\geqslant} f(x)+\nabla f(x)^{\top}(y-x)$ for all $x, y \in \Omega$.

Let f be \mathcal{C}^{2} in a neighbourhood of $x \in D$ and x a local minimum of f. Then we have $\nabla f(x)=0$ and that $f^{\prime \prime}(x)$ is positive semidefinite.
For $h \in \mathbb{R}^{n}$ let $g(t):=f(x+t h)$. Then $g \in \mathcal{C}^{2}$ has a local minimum in $t=0$. By Taylor $\exists \theta \in[0,1]$ with $g(t)=g(0)+$ $g^{\prime}(0) t+\frac{t^{2}}{2} g^{\prime \prime}(\theta t)$. As x is a local minimum of $g, 0 \leqslant \frac{g(t)-g(0)}{t^{2}}=$ $\frac{1}{2} g^{\prime \prime}(\theta t)$. The continuity of $g^{\prime \prime}$ yields $g^{\prime \prime}(0)=h^{\top} f^{\prime \prime}(x) h \geqslant 0$ for $t \searrow 0$ 。
$f(x)=x^{4}$ has a global minimum in $\tilde{x}=0$, but $f^{\prime \prime}(\tilde{x})=0$.

Let f be \mathcal{C}^{2} in a neighbourhood of $x \in D, \nabla f(x)=0$ and $f^{\prime \prime}(x)$ positive definite. Then $\exists r, a>0$ such that $f(y) \geqslant$ $f(x)+a\|y-x\|^{2}$ for all $x \in B(x, r)$, so x is a strict minimum. TAYLOR: $f(y)=f(x)+\frac{1}{2}(y-x) f^{\prime \prime}(x+\theta(y-x))(y-x)$ and

$$
(y-x) f^{\prime \prime}(x+\theta(y-x))(y-x)
$$

$=\underbrace{(y-x) f^{\prime \prime}(x)(y-x)}_{\geqslant a\|y-x\|^{2}}+\underbrace{(y-x)\left[f^{\prime \prime}(x+\theta(y-x))-f^{\prime \prime}(x)\right](y-x)}_{|\cdot| \leqslant \frac{a}{2}\|y-x\|^{2} \text { for small }\|y-x\|^{2} \text {, as } f \in \mathcal{C}^{2}}$
$\geqslant \frac{a}{2}\|y-x\|^{2}$.

Convex variational inequality

Nonlinear optimisation		Nonlinear optimisation
Examples + Lemma	Algorithm	
Descent direction	General descent algorithm	
Nonlinear optimisation		Nonlinear optimisation
ASSUMPtions	Definition	

Descent direction nonlinear optimisation	General descent algorithm NONLINEAR OPTIMISATION
Assumptions	Definition
ALC and AFD	Efficient step size
Nonlinear optimisation	Nonlinear optimisation
Definition	Assumptions
(strictly) Gradient-related descent direction	(ALG) and (AHP)
Nonlinear optimisation	Nonlinear optimisation
Lemma	Theorem
Convergence results for general descent methods	Convergence of descent algorithms
Nonlinear optimisation	Nonlinear optimisation

$d \in \mathbb{R}^{n}$ with $\nabla f(x)^{\top} d<0$ is a descent direction of f in x.

If \tilde{x} is a local minimum, we have $\nabla f(\tilde{x})^{\top}(x-\tilde{x}) \geqslant 0$, so a necessary condition is that there exists no descent direction.
(1) Choose $x^{0} \in \mathbb{R}^{n}$ and set $k:=0$.
(2) If $\nabla f\left(x^{k}\right)=0$ holds, stop.
(3) Compute a descent direction d^{k} and a step size σ_{k} such that $f\left(x^{k}+\sigma_{k} d^{k}\right)<f\left(x^{k}\right)$. Define $x^{k+1}=x^{k}+\sigma_{k} d^{k}$.
(4) Set $k \rightarrow k+1$ and return to step (2).

Step (2) is only of academic nature, e.g. use $|\nabla f(x)|<\varepsilon$ instead.

Let f be differentiable in D and convex in $\Omega \subset D$. Then $x \in \Omega$ is a minimiser of f if and only if $\nabla f(x)^{\top}(y-x) \geqslant 0 \forall y \in \Omega$. $" \Longrightarrow$ ": If x be a local solution, then $x+t(y-x)=$ $(1-t) x+t y \in \Omega$ for all $t \in[0,1], y \in \Omega$. For small $t>0$ $\frac{f(x+t(y-x))-f(x)}{t} \geqslant 0$. Take $t \searrow 0$. (convexity of f not needed) $" \Longleftarrow "$: As is f convex and all tangents lie below the graph, we have $f(y)-f(x) \geqslant \nabla f(x)^{\top}(y-x) \geqslant 0$ and by a previous theorem x is a global minimum.
For $x \in \operatorname{int}(\Omega)$, we have $\nabla f(x)^{\top} d \geqslant 0$ for all directions $d \in \mathbb{R}^{n}$ and thus $\nabla f(x)=0$.

For a descent direction $d \exists c>0$ with $f(x+a d)<f(x)$ for all $a \in(0, c]$: We have $\nabla f(x)^{\top} d=\lim _{a \searrow 0} \frac{f(x+a d)-f(x)}{a}<0$ and thus there exists a $c>0$ such that $\frac{f(x+a d)-f(x)}{a}<0$ for all $a \in(0, c]$.

The reverse direction of this lemma doesn't hold, take $x \mapsto$ $-x^{2}, \tilde{x}=0, d:=1$.

The antigradient / steepest descent $d=-\nabla f(x) \neq 0$ and $-A^{-1} \nabla f(x)$ for positive definite A are descent directions.

Assume (ALG). A step size with

$$
\begin{equation*}
f\left(x^{(k)}+\sigma_{k} d^{(k)}\right) \leqslant f\left(x^{(k)}\right)-c\left(\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|}\right)^{2} \tag{ES}
\end{equation*}
$$

with a constant $c>0$ independent of k, is called efficient.
(AGL): ∇f is LIPSCHITZ continuous.
(AHP): (uniformly positive definite) for $f \in \mathcal{C}^{2}$ and $a>0$ there holds that $h^{\top} f^{\prime \prime}(x) h \geqslant a|h|^{2}$ for all $h \in \mathbb{R}^{n}$ and for all $x \in D \subset \mathbb{R}^{n}$ (which is an open set).

The function $x \mapsto e^{x}$ is not uniformly positive definite for $D=\mathbb{R}$.

Let $f: \mathbb{R}^{n} \supset D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2} function and D be an open convex subset containing $N\left(f, f\left(x^{(0)}\right)\right)$ and (AHP) be fulfilled. If $d^{(k)}$ is gradient related in $x^{(k)}$ and $\left(\sigma_{k}\right)_{k \in \mathbb{N}}$ are efficient, then $x^{(k)} \rightarrow \tilde{x}$, which is the unique minimiser of f. There exists a $q \in(0,1)$ such that

$$
f\left(x^{(k)}\right)-f(\tilde{x}) \leqslant q^{k}\left(f\left(x^{(0)}\right)-f(\tilde{x})\right)
$$

and

$$
\left|x^{(k)}-\tilde{x}\right|^{2} \leqslant \frac{2}{a} q^{k}\left(f\left(x^{(0)}\right)-f(\tilde{x})\right)
$$

Let $x \in \mathcal{N}\left(f, f\left(x^{(0)}\right)\right)$. Then $d \in \mathbb{R}^{n}$ is (strictly) gradientrelated if there exists a $c_{3}>0$ such that

$$
-\nabla f(x)^{\top} d \geqslant c_{3}|\nabla f(x)||d|
$$

holds (and there exists a $c_{4}>0$ independent of x and d such that $\left.c_{4}|\nabla f(x)| \geqslant|d| \geqslant \frac{1}{c_{4}}|\nabla f(x)|\right)$.

The antigradient (and assuming (AHP), the Newton descent direction) is strictly gradient related $\left(c_{3}=c_{4}=1\right)$.

Let $f: \mathbb{R}^{n} \supset D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2} function and D be an open convex subset containing $N\left(f, f\left(x^{(0)}\right)\right)$ and (AHP) be fulfilled.
(1) $\mathcal{N}\left(f, f\left(x^{(0)}\right)\right)$ is convex and compact,
(2) F has a unique minimiser \tilde{x}, which is the only stationary point of f,
(3) $\frac{a}{2}|x-\tilde{x}|^{2} \leqslant f(x)-f(\tilde{x}) \leqslant \frac{1}{2 a}|\nabla f(x)|^{2} \forall x \in \mathcal{N}\left(f, f\left(x^{(0)}\right)\right)$.

Exact step size

DEFINITION

Armijo step size and algorithm

Powell step size

Powell Algorithm

R1 and R2: Sufficiently fast decay

Origin of the term steepest descent

Damped Newton method
(1) Choose the flattening parameter $\delta \in(0,1)$, efficiency parameter $\gamma>0$ and $0<\beta_{1} \leqslant \beta_{2}<1$.
(2) Initial step size. Take $\sigma_{0} \geqslant-\gamma \frac{\nabla f(x)^{\top} d}{|d|^{2}}$.
(3) If $f\left(x+\sigma_{j} d\right) \leqslant f(x)+\delta \sigma_{j} \nabla f(x)^{\top} d$, then $\sigma_{A}=\sigma_{j}$.
(4) Else: reduce σ_{j} such that $\tilde{\sigma}_{j} \in\left[\beta_{1} \sigma_{j}, \beta_{2} \sigma_{j}\right]$ and iterate $j \rightarrow j+1$ and return to step (3).

Assuming (ALC), one can show that after finitely many steps, (R1) and (R2) are satisfied, so σ_{A} is efficient
(R1): There exists a constant $c_{1}>0$ independent of k, such that $f\left(x^{(k)}+\sigma_{k} d^{(k)}\right)-f\left(x^{(k)}\right) \leqslant c_{1} \sigma_{k} \nabla f\left(x^{(k)}\right)^{\top} d^{(k)}<0$.
The sequence $\left(f\left(x^{(k)}\right)\right)_{k \in \mathbb{N}}$ is bounded by (ALC) and monotone (by design of descent algorithm) and thus convergent. Then $\sigma_{k} \nabla f\left(x^{(k)}\right) d^{(k)} \rightarrow 0$.
(R2): There exists a constant $c_{2}>0$ independent of k such that $\sigma_{k} \geqslant-c_{2} \frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|^{2}}$.
If (R1) and (R2) hold, then σ_{k} satisfies the sufficient decrease condition: $f\left(x^{k}+\sigma_{k} d^{k}\right) \leqslant f\left(x^{k}\right)-c_{1} c_{2} \frac{\left(\nabla f\left(x^{k}\right)^{\top} d^{k}\right)^{2}}{\left|d^{k}\right|^{2}}$.
$\arg \min _{d \in \mathbb{R}^{n},|d|=1} \nabla f(x)^{\top} d=-\frac{\nabla f(x)}{|\nabla f(x)|}$.

For $d \in \mathbb{R}^{n}$ with $|d|=1$, we have $\nabla f(x)^{\top} d \stackrel{\text { CS }}{\geqslant}-|\nabla f(x)||d|=$ $-|\nabla f(x)|$. For $d=-\frac{\nabla f(x)}{|\nabla f(x)|}$ we get $\nabla f(x)^{\top} d=-|\nabla f(x)|^{2}$.

We consider $\varphi(\sigma):=f(x+\sigma d)$. The exact step size $\sigma_{E}>0$ is such that $\varphi^{\prime}\left(\sigma_{E}\right)=0$ and $\varphi^{\prime}(s)<0$ for $s \in\left[0, \sigma_{E}\right)$. The exact step size is the "first" local minimum of φ.
If ∇f is L-cts (AGL), we have $\sigma_{E} \geqslant-\frac{\nabla f(x)^{\top} d}{L|d|^{2}}$ and $f(x+$ $\left.\sigma_{E} d\right) \leqslant f(x)-\frac{1}{2 L}\left(\frac{\nabla f(x)^{\top} d}{|d|}\right)^{2}$, so σ_{E} is efficient. If $f(x)=$ $\frac{1}{2} x^{\boldsymbol{\top}} H x+b^{\boldsymbol{\top}} x$ with positive definite $H, \sigma_{E}=-\frac{\nabla f(x)^{\top} d}{d^{\top} H d}$
σ_{P} should fulfil (R1) and $\nabla f(x+\sigma d)^{\boldsymbol{\top}} d \geqslant \beta \nabla f(x)^{\boldsymbol{\top}} d$ with $0<\delta<\beta<1$. The intersections s_{1} and s_{2} divide $[0, \infty)$ into three intervals $I_{1}:=\left[0, s_{1}\right), I_{2}:=\left[s_{1}, s_{2}\right]$ and $I_{3}:=\left(s_{2}, \infty\right)$.
$G_{1}(\sigma):=\left\{\begin{array}{ll}\frac{f(x+\sigma d)-f(x)}{\sigma \nabla f(x)^{\top} d}, & \sigma>0, \\ 1, & \sigma=0,\end{array} \quad(\right.$ cts. $), \quad G_{2}(\sigma) \quad:=$ $\frac{\nabla f(x+\sigma d)^{\top} d}{\nabla f(x)^{\top} d}$. From (R1) we get $G_{1}(\sigma) \geqslant \delta$ and from the second condition we get $G_{2}(\sigma) \leqslant \beta$. Moreover, $G_{1}(\sigma) \geqslant \delta$ and $G_{2}(\sigma)>\beta$ holds only in I_{1} and $G_{1}(\sigma) \geqslant \delta$ and $G_{2}(\sigma) \leqslant \beta$ holds only in I_{2} and $G_{1}(\sigma)<\delta$ and $G_{2}(\sigma) \leqslant \beta$ only in I_{3}. (ALC), (AGL) imply that σ_{P} is an efficient step size.
(1) Initialisation. Choose $\sigma_{0}>0$ and set $j:=0$.
(a) If $G_{1}(\sigma) \geqslant \delta$ and $G_{2}(\sigma) \leqslant \beta$, stop and let $\sigma_{P}:=\sigma_{0}$.
(b) If $\sigma_{0} \in I_{1}$, define $a_{0}:=\sigma_{0}$ and $b_{0}:=2^{\ell} \sigma_{9}$, where ℓ is chosen minimally, such that $G_{1}\left(b_{0}\right)<\delta$. Go to step (2).
(c) If $\sigma_{0} \in I_{3}$, define $b_{0}:=\sigma_{0}$ and $a_{0}=2^{-\ell} \sigma_{0}$, where ℓ is chosen minimally, such that $G_{2}\left(a_{0}\right)>\beta$.
(2) Compute $\sigma_{j}:=\frac{1}{2}\left(a_{j}+b_{j}\right)$.
(a) If $\sigma_{j} \in I_{2}$, stop and set $\sigma_{P}:=\sigma_{j}$.
(b) If $\sigma_{j} \in I_{1}$, set $a_{j+1}:=\sigma_{j}$ and $b_{j+1}:=b_{j}$.
(c) If $\sigma_{j} \in I_{3}$, set $a_{j+1}:=a_{j}$ and $b_{j+1}:=\sigma_{j}$
(3) Set $j \rightarrow j+1$ and go to step (2).

Like gradient method but instead $d^{k}=-f^{\prime \prime}\left(x^{k}\right)^{-1} \nabla f\left(x^{k}\right)$.
Let $A:=f^{\prime \prime}(x)$ be SPD and $\langle x, y\rangle_{A}:=x^{\top} A y$. We have $\tilde{d}:=$ $-\frac{A^{-1} \nabla f(x)}{\left|A^{-1} \nabla f(x)\right|_{A}}=\arg \min _{|d|_{A}=1} \nabla f(x)^{\top} d$.
For $d \in \mathbb{R}^{n}$ with $|d|_{A}=1$ we have

$$
\begin{aligned}
\nabla f(x)^{\top} d & =\left\langle A^{-1} \nabla f(x), d\right\rangle_{A} \stackrel{\mathrm{CS}}{\geqslant}-\left|A^{-1} \nabla f(x)\right|_{A}|d|_{A} \\
& =-\left|A^{-1} \nabla f(x)\right|_{A} .
\end{aligned}
$$

We have $\nabla f(x)^{\boldsymbol{\top}} \tilde{d}=-\left|A^{-1} \nabla f(x)\right|_{A}$.

We want to account for curvature information ($f^{\prime \prime}$) without having to compute the second derivative.
(1) Choose $x^{(0)} \in \mathbb{R}^{n}, \varepsilon>0$ and set $k:=0$.
(2) If $|\nabla f(x)|<\varepsilon$, stop.
(3) Compute the positive definite matrix $A^{(k)}$ and the search direction $d^{(k)}:=-\left(A^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)$ and an efficient step size σ_{k}. Set $x^{(k+1)}=x^{(k)}+\sigma_{k} d^{(k)}, k=k+1$ and go to step (2).
(1) Initialise. Choose $x^{0} \in \mathbb{R}^{n}, \varepsilon>0$ and set $k:=0$.
(2) If $\left|\nabla f\left(x^{k}\right)\right|<\varepsilon$, then stop.
(3) Compute $d^{k}:=-\nabla f\left(x^{k}\right)$ and choose an efficient step size σ_{k}. Define $x^{k+1}=x^{k}+\sigma_{k} d^{k}, k \rightarrow k+1$, return to (2).

After initially fast decrease, one observes slow convergence especially for functions with e.g. ellipse-shaped isolines. We e.g. have $0=\varphi^{\prime}\left(\sigma_{E}\right)=\nabla f(\underbrace{x^{k}+\sigma_{E} d^{k}}_{=x^{k+1}})^{\top} d^{k}=d^{k+1} d^{k}$, i.e. $d^{k+1} \perp d^{k}$, which leads to the slow convergence detailed above.

The grey anti-gradient direction $d_{g}=-\nabla f(x)$, (orthogonal to isolines of f), is not optimal. The Newton direction is better: $d_{N}=-f^{\prime \prime}(x)^{-1} \nabla f(x)=-H^{-1} H x=-x$.

H-Orthogonality

Theorem

Properties of the CG method Nonlinear optimisation

Algorithm

Trust region Newton method Nonlinear optimisation

Definition

Active / inactive inequality constraints and the active set Nonlinear optimisation

Admissible approximation

Let $H \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Then directions $d^{(0)}, \ldots, d^{(k)}$ for $k<n$ are conjugate or H-orthogonal if $d^{(i)} \neq 0$ and $\left(d^{(i)}\right)^{\top} H d^{(j)}=0$ for all $0 \leqslant i<j \leqslant k$.
(1) Choose $x^{(0)} \in \mathbb{R}^{n}, A^{(0)} \in \mathbb{R}^{n \times n}$ positive definite, $\varepsilon>0$ and set $k:=0$.
(2) If $|\nabla f(x)|<\varepsilon$, stop.
(3) Compute $d^{(k)}=-\left(A^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)$, an exact step size σ_{k} and set $x^{(k+1)}=x^{(k)}+\sigma_{k} d^{k}, s^{(k)}=x^{(k+1)}-x^{(k)}$ and $y^{(k+1)}=\nabla f\left(x^{(k+1}\right)-f\left(x^{(k)}\right)$ and preform the rank-2update $A^{(k+1)}=A^{(k)}-\frac{A^{(k)} s^{(k)}\left(A^{(k)} s^{(k)} \top^{\top}\right)}{\left(s^{(k)}\right)^{\top} A^{(k)} s^{(k)}}-\frac{y^{(k)}\left(y^{(k)}\right)^{\top}}{\left(y^{(k)}\right)^{\top} s^{(k)}}$. Set $k \rightarrow k+1$ and go to step (2).

As long as $\nabla f\left(x^{(k-1)}\right) \neq 0$, we have
(1) $d^{(k-1)} \neq 0$ and $d^{(0)}, \ldots, d^{(k)}$ are H-orthogonal,
(2)

$$
\begin{aligned}
V_{k} & =\operatorname{span}\left(\nabla f\left(x^{(0)}\right), H \nabla f\left(x^{(0)}\right), \ldots, H^{k-1} \nabla f\left(x^{(0)}\right)\right. \\
& =\operatorname{span}\left(\nabla f\left(x^{(0)}\right), \ldots, \nabla f\left(x^{(k-1)}\right)\right) \\
& =\operatorname{span}\left(d^{(0)}, \ldots, d^{(k-1)}\right)
\end{aligned}
$$

(3) $f\left(x^{(k)}\right)=\min _{z \in V_{k}} f\left(x^{(0)}+z\right)$.

Given: $0<\delta_{1}<\delta_{2}<1, \sigma_{1} \in(0,1), \sigma_{2}>1, \sigma_{0}>0, x^{(0)} \in \mathbb{R}^{n}$.
(1) $d^{(k)}=$ solution of $\min _{|d| \leqslant \rho_{k}} f_{k}(d)$. If $f\left(x^{(k)}\right)=f_{k}\left(d^{(k)}\right)$, then stop.
(2) $r_{k}:=\frac{f\left(x^{(k)}\right)-f\left(x^{(k)}+d^{(k)}\right)}{f\left(x^{(k)}\right)-f_{k}\left(x^{(k)}+d^{(k)}\right)}$, If $r_{k} \geqslant \delta_{1}$ (successful step), set $x^{(k+1)}=$ $x^{(k)}+d^{(k)}$, compute $\nabla f\left(x^{(k+1)}\right), f^{\prime \prime}\left(x^{(k+1)}\right)$ and update ρ_{k} :

$$
\text { if } r_{k} \begin{cases}\in\left[\delta_{1}, \delta_{2}\right), & \text { choose } \rho_{k+1} \in\left[\delta_{1} \rho_{k}, \rho_{k}\right] \\ \geqslant \delta_{2}, & \text { choose } \rho_{k+1} \in\left[\rho_{k}, \delta_{2} \rho_{k}\right]\end{cases}
$$

set $k \rightarrow k+1$ and go to (2).
(3) If $r_{k}<\delta_{1}$ (unsuccessful), choose $\rho_{k+1} \in\left(0, \delta_{1} \rho_{k}\right), x^{(k+1)}=x^{(k)}$, $\nabla f\left(x^{(k+1)}\right)=\nabla f\left(x^{(k)}\right), f^{\prime \prime}\left(x^{(k+1)}\right)=f^{\prime \prime}\left(x^{(k)}\right) . k=k+1$, go to (2).

Let $H \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Then, the BFGS-method generated H-orthogonal search directions $d^{(k)}$. The minimum is found in $m \leqslant n$ steps. If $m=n$, then $A^{(n)}=H$.
(1) choose $x^{(0)} \in \mathbb{R}^{n}, \varepsilon>0$ and set $k:=0$ and $d^{(0)}=$ $-H\left(x^{(0)}+b\right)$.
(2) If $\left|\nabla f\left(x^{(k)}\right)\right| \leqslant \varepsilon$, stop.
(3) Compute $\sigma_{k}=\frac{\mid \nabla f\left(\left.x^{(k)}\right|^{2}\right.}{\left|d^{(k)}\right|_{H}^{2}}$ and set $x^{(k+1)}=x^{(k)}+\sigma_{k} d^{(k)}$. We have $\nabla f\left(x^{(k+1)}\right)=H x^{(k+1)}+b=\nabla f\left(x^{(k)}\right)+$ $\sigma_{k} H d^{k}$. Compute $\beta_{k}:=\frac{\left|\nabla f\left(x^{(k+1)}\right)\right|^{2}}{\mid \nabla f\left(\left.x^{(k)}\right|^{2}\right.}$ and set $d^{(k+1)}=$ $-\nabla f\left(x^{(k+1)}+\beta_{k} d^{(k)}\right.$. Set $k \rightarrow k+1$ and return to (2).

We consider $\min _{x \in \mathbb{R}^{n}} f(x)$ subject to $\begin{cases}c_{i}(x)=0, & i \in E, \\ c_{i}(x) \geqslant 0, & i \in I\end{cases}$ where $I, E \subset \mathbb{N}$ are disjoint index sets. The constraints $c_{i}(x) \stackrel{(\geqslant)}{=} 0$ are called (in)equality constraints. The admissable set is $\Omega=\left\{x \in \mathbb{R}^{n}: c_{i}(x)=0, i \in E, c_{i}(x) \geqslant 0, i \in I\right\}$,

Let $x \in \Omega$, then $c_{i}(x), i \in I$ is called active if $c_{i}(x)=0$ and inactive if $c_{i}(x)>0$. The active set is $\mathcal{A}(x):=E \cup\{i \in I$: $\left.c_{i}(x)=0\right\}$.

Let $x \in \Omega$. Then the sequence $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ is called admissable approximation of x if $x^{(n)} \rightarrow x$ and $x^{(n)} \in \Omega$ for almost all $n \in \mathbb{N}$.

Up to now, we have computed a search direction d^{k} and a step size σ_{k} (line search) and we used the update $x^{(k+1)}=$ $x^{(k)}+\sigma_{k} d^{(k)}$. The new idea is now to

- use a local model f_{k} of f, e.g. $f_{k}=f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top} d$ or $f_{k}=f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top} d+\frac{1}{2} d^{\top} f^{\prime \prime}\left(x^{(k)}\right) d$,
- take radius $\rho_{k}>0$ and consider the trust region $B_{\rho_{k}}\left(x^{(k)}\right)$,
- compute $d^{(k)}$ as a global solution to $\min _{|d| \leqslant \rho_{k}} f_{k}(d)$,
- update $x^{(k+1)}=x^{(k)}+d^{(k)}$.

A direction $d \in \mathbb{R}^{n}$ is a tangent to Ω in $x \in \Omega$ if there exists an admissable approximation $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ of x and a sequence $\left(t_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}_{+}$converging to zero such that $\lim _{k \rightarrow \infty} \frac{x^{(k)}-x}{t_{k}}=d$. The tangent cone of Ω in x is $T_{\Omega}(x):=$ $\left\{d \in \mathbb{R}^{n}: d\right.$ is tangent to Ω in $\left.x\right\}$.

The tangent cone is a cone $\left(\tilde{t_{k}}:=\frac{1}{a} t_{k}\right)$.

If $x \in \operatorname{int}(\Omega)$, then $T_{\Omega}(x)=\mathbb{R}^{n}$.

Variational inequality - General case
Linearised cone

Assumptions

Theorem

KKT conditions

of the KKT theorem

FARKAS
NonLINEAR OPTIMISATION

Lemma

$$
T_{\Omega}(\tilde{x}) \subset L_{\Omega}(\tilde{x})
$$

Definition

Critical cone

Nonlinear optimisation

Theorem
Theorem

Second order necessary condition for constraint problems

Second order sufficient optimality condition for constraint problems

For $x \in \Omega$, the linearised cone of Ω in $x \in \Omega$ is

$$
L_{\Omega}(x):=\left\{d \in \mathbb{R}^{n}: \begin{array}{l}
d^{\top} \nabla c_{i}(x)=0 \forall i \in E, \\
d^{\top} \nabla c_{i}(x) \geqslant 0 \forall i \in I \cap \mathcal{A}(x)
\end{array}\right\} .
$$

Thus $L_{\Omega}(x)$ for $\Omega:=\left\{x \in \mathbb{R}^{n}: h(x)=0, g(x) \leqslant 0\right\}$ depends on g and h, whereas $N_{\Omega}(x)$ and $T \Omega(x)$ don't.

Let $\hat{x} \in \Omega$ be a solution of the constrained problem and $f \in \mathcal{C}^{1}$.
Then $\nabla f(\hat{x})^{\top} d \geqslant 0$ holds for all $d \in T_{\Omega}(\hat{x})$.
For $d \in T_{\Omega}(\hat{x})$ we have by TAYLORs theorem,

$$
\begin{aligned}
0 & \leqslant \frac{f\left(x^{(k)}\right)-f(\hat{x})}{t_{k}}=\frac{1}{t_{k}}\left(f\left(\hat{x}+\left(x^{(k)}-\hat{x}\right)\right)-f(\hat{x})\right) \\
& =\frac{1}{t_{k}}\left(f(\hat{x})+\nabla f\left(\hat{x}+\xi\left(x^{(k)}-\hat{x}\right)\right)^{\top}\left(x^{(k)}-\hat{x}\right)=f(\hat{x})\right) \\
& =\underbrace{\nabla f\left(\hat{x}+\xi\left(x^{(k)}-\hat{x}\right)\right)}_{\rightarrow \nabla f(\hat{x})} \underbrace{\frac{x^{(k)}-\hat{x}}{t_{k}}}_{\rightarrow d} \rightarrow \nabla f(\hat{x})^{\top} d
\end{aligned}
$$

Let $x \in \Omega$.
AbADIE constraint qualification (ACQ): $T_{\Omega}(x)=L_{\Omega}(x)$.
Linear independence constraint qualification (LICQ): $\left\{\nabla c_{i}(x): i \in \mathcal{A}(x)\right\}$ is linearly independent.
$\mathrm{LICQ} \Longrightarrow \mathrm{ACQ}$.
(2) $c_{i}(\tilde{x})=0$ for all $i \in E$,
(3) $c_{i}(\tilde{x}) \geqslant 0$ for all $i \in I$,
(4) $\tilde{\lambda}_{i} \geqslant 0$ for all $i \in I$,
(5) $\tilde{\lambda}_{i} c_{i}(\hat{x})=0$ for all $i \in E \cup I$ (complementarity).

Let $N:=\left\{\sum_{i \in \mathcal{A}(\tilde{x})} \lambda_{i} \nabla c_{i}: \lambda \geqslant 0\right\}$ and $g:=\nabla f(\tilde{x}) . \quad$ By FARkAS lemma either $\nabla f(\tilde{x})=\sum_{i \in \mathcal{A}(\tilde{x})} \lambda_{i} A^{\top}(\tilde{x}) \tilde{\lambda}$ with $\tilde{\lambda}_{i} \geqslant 0$ for $i \in \mathcal{A}(\tilde{x}) \cap I$ or there exists a $d \in \mathbb{R}^{n}$ such that $\nabla f(\tilde{x})^{\top} d<0$, $\nabla c_{i}^{\top} d=0$ for $i \in E$ and $\nabla c_{i}^{\top} d \geqslant 0$ for $i \in \mathcal{A}(\tilde{x}) \cap I$.
We can rewrite those three conditions as $\nabla f(\tilde{x})^{\top} d<0$ and $d \in L_{\Omega}(\tilde{x})$. By assumption $\tilde{x} \in \Omega$ and (ACQ) hold. Thus we have $\nabla f(\tilde{x})^{\top} d<0$ for a $d \in T_{\Omega}(\tilde{x})$, which is a contradiction to the variational inequality, so the first option has to hold.
Define $\tilde{\lambda}_{i}=0$ for $i \notin \mathcal{A}(\tilde{x})$, so the last condition (complementarity condition) holds.

If $(\tilde{x}, \tilde{\lambda})$ satisfy the KKT conditions, the critical cone is
$C(\tilde{x}, \tilde{\lambda})=\left\{w \in L_{\Omega}(\tilde{x}): \nabla c_{i}(\tilde{x})^{\top} w=0 \forall i \in \mathcal{A}(\tilde{x}) \cap I\right.$ s.th. $\left.\tilde{\lambda}_{i}>0\right\}$.
We have $w \in C(\tilde{x}, \tilde{\lambda})$ if and only if $\nabla c_{i}(\tilde{x})^{\top} w=0 \forall i \in E$, $\forall i \in \mathcal{A}(\tilde{x}) \cap I$ s.th. $\tilde{\lambda}_{i}>0$ and $\nabla c_{i}(\tilde{x})^{\top} w=0 \forall i \in \mathcal{A}(\tilde{x}) \cap$ I s.th. $\tilde{\lambda}_{i}=0$.
For $d \in C(\tilde{x}, \tilde{\lambda})$ we have $\nabla f(\tilde{x})^{\top} d=\sum_{i \in \mathcal{A}(\tilde{x})} \tilde{\lambda}_{i} \nabla c_{i}(\tilde{x})^{\top} d=0$. Thus $C(\tilde{x}, \tilde{\lambda})$ contains all directions where, based on first order information, we cannot decide if f decreases or increases.
W.l.o.g. assume $c_{i}(x), i \in\{1, \ldots, m\}$ be the active constraints in \tilde{x}. Let $d \in T_{\Omega}(\tilde{x})$. For k sufficiently large and c_{i} is an equality constraint, by TAYLOR expansion, $\exists \alpha \in[0,1]$

$$
\begin{aligned}
0 & =\frac{1}{t_{k}} c_{i}\left(x^{(k)}\right)=\frac{1}{t_{k}} c_{i}\left(\tilde{x}+\left(x^{(k)}-\tilde{x}\right)\right) \\
& =[\underbrace{c_{i}(\tilde{x})}_{=0}+\underbrace{\nabla c_{i}\left(\tilde{x}+\alpha\left(x^{(k)}-\tilde{x}\right)\right)^{\top}}_{\rightarrow \nabla c_{i}(\tilde{x}}] \underbrace{\frac{x^{(k)}-\tilde{x}}{t_{k}}}_{\rightarrow d} \xrightarrow{k \rightarrow \infty} \nabla c_{i}(\tilde{x})^{\top} d .
\end{aligned}
$$

Similarly we can show that $\nabla c_{i}(\tilde{x})^{\top} d \geqslant 0$ for $i \in I \cap \mathcal{A}(\tilde{x})$. Thus $d \in L_{\Omega}(\tilde{x})$.

Let $\tilde{x} \in \Omega$ and $\tilde{\lambda}$ such that $(\tilde{x}, \tilde{\lambda})$ satisfies the KKT conditions. If there exists a $\sigma>0$ such that

$$
w^{\top} \nabla_{x x}^{2} L(\tilde{x}, \tilde{\lambda}) w \geqslant \sigma|w|^{2}
$$

holds for all $w \in C(\tilde{x}, \tilde{\lambda})$, then \tilde{x} is a strict local solution to the constrained problem.

Let $K:=\left\{B y+C w: y \in \mathbb{R}^{m}, y \geqslant 0, w \in \mathbb{R}^{p}\right\}$ with $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{n \times p}$. For each $g \in \mathbb{R}^{n}$ either $g \in K$ or there exists $d \in \mathbb{R}^{n}$ such that $g^{\top} d<0, B^{\top} d \geqslant 0$ and $C^{\top} d=0$.

Let \tilde{x} be a local solution to the constrained problem, assume that (LICQ) holds and let $\tilde{\lambda}$ be such that the KKT conditions are satisfied. Then

$$
w^{\top} \nabla_{x x}^{2} L(\tilde{x}, \tilde{\lambda}) w \geqslant 0
$$

holds for all $w \in C(\tilde{x}, \tilde{\lambda})$.
(ACQ) holds for affine linear constraints $c_{i}(x)=a_{i}^{\top} x+b_{i}$ for $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$.

Lemma
LICQ implies MFCQ

Mangasarian-Fromovitz

NONLINEAR OPTIMISATION

Without proof

Implications between constraint qualifications

	LICQ implies MI
Defintion	
	Nont

Normal cone

Convergence of the Newton method

Theorem
NONLINEAR OPTIMISATION

NonLINEAR OPTIMISATION

EXAMPLE
Theorem

Step size decreases to fast
TAYLOR in \mathbb{R} with remainder Nonlinear optimisation

Stationary points
Convergence analyisis steps for descent methods
(MFCQ) holds if there exists a $w \in \mathbb{R}^{n}$ such that

$$
\nabla c_{i}(\tilde{x})^{\top} w \begin{cases}>0, & \forall i \in \mathcal{A}(\tilde{x}) \cap I \\ =0, & \forall i \in E\end{cases}
$$

and $\left\{\nabla c_{i}\right\}_{i \in E}$ is linearly independent.
$(\mathrm{LICQ}) \Longrightarrow(\mathrm{MFCQ}) \Longrightarrow(\mathrm{ACQ})$.
If (SQC) holds in $\tilde{x} \in \Omega$, then (MFCQ) holds.

Let $f^{\prime \prime}$ be Lipschitz continuous in a neighbourhood of a local minimum \hat{x} of f and let $f^{\prime \prime}(\hat{x})$ be positive definite. Then the Newton method

$$
x^{(k+1)}=x^{(k)}-f^{\prime \prime}\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)
$$

converges locally quadratically to \hat{x}.
$d^{(k)}:=f^{\prime \prime}\left(x^{(k)}\right)^{-1} \cdot\left(-\nabla f\left(x^{(k)}\right)\right)$ is the Newton direction.
The damped Newton method is $x^{(k+1)}=x^{(k)}-$ $\sigma_{k} f^{\prime \prime}\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)$ with $\sigma_{k}<1$.

We show $L_{\Omega}(\tilde{x}) \subset T_{\Omega}(\tilde{x})$. Let $w \in L_{\Omega}(\tilde{x})$. Then $a_{i}^{\top} w=0$ for $i \in E$ and $a_{i}^{\top} w \geqslant 0$ for $i \in \mathcal{A}(\tilde{x}) \cap I$, as $\nabla c_{i}=a_{i}$. If $i \in I \backslash \mathcal{A}(\tilde{x})$, then $c_{i}(\tilde{x})>0$. Then $\exists t_{0}>0$ such that $c_{i}(\tilde{x}+t w)>0$ $\forall t \in\left[0, t_{0}\right]$, so c_{i} "stays" inactive. Let $\left(x^{(k)}:=\tilde{x}+\frac{t_{0}}{k} w\right)_{k \in \mathbb{N}}$. For $i \in \mathcal{A}(\tilde{x}) \cap I$ we have $c_{i}\left(x^{(k)}\right)=c_{i}\left(x^{(k)}\right)-c_{i}(\tilde{x})=$ $a_{i}^{\top}\left(x^{(k)}-\tilde{x}\right)=\frac{t_{0}}{k} a_{i}^{\top} w \geqslant 0$ since $c_{i}(\tilde{x})=0$ and $w \in L_{\Omega}(\tilde{x})$, so $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ is an admissable approximation. For $i \in E$ we have $c_{i}\left(x^{(k)}\right)=c_{i}\left(x^{(k)}\right)-c_{i}(\tilde{x})=\frac{t_{0}}{k} a_{i}^{\top} w \geqslant 0$, by the same reasoning as above, so $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ is an admissable approximation. Moreover, $\lim _{k \rightarrow \infty} \frac{x^{(k)}-\tilde{x}}{\frac{t_{0}}{k}}=\lim _{k \rightarrow \infty} \frac{\frac{t_{0}}{k} w}{\frac{t_{0}}{k}}=w$, so $w \in T_{\Omega}(\tilde{x})$.

Let $G(\tilde{x}):=\left(\nabla c_{i}(\tilde{x})^{\boldsymbol{\top}}\right)_{i \in \mathcal{A}(\tilde{x})}$. By (LICQ) it has maximal rank. Then there exists a $w \in \mathbb{R}^{n}$ such that $\nabla c_{i}(\tilde{x})^{\top} w=$
$\left\{\begin{array}{ll}1, & \forall i \in \mathcal{A}(\tilde{x}) \cap I, \\ 0, & \forall i \in E .\end{array}\right.$ This is because as $G(\tilde{x})$ has maximal rank, adding an additional column doesn't change the rank. A linear system $A x=b$ is solvable if the rank of A is equal to the rank of the extended matrix $A \mid b$. The system is solvable as A as maximal rank and thus we can append any b, in particular one with ones in first components for the active inequality constraints and zeros for all the equality constraints.

For $x \in \Omega, N_{\Omega}(x):=\left\{v \in \mathbb{R}^{n}: v^{\top} w \leqslant 0 \forall w \in T_{\Omega}(x)\right\}$ is the normal cone to $T_{\Omega}(x)$. The elements of $N_{\Omega}(x)$ are normal vectors.

Let \tilde{x} be a local solution to the constraint problem. Then $-\nabla f(\tilde{x}) \in N_{\Omega}(\tilde{x})$.
By the variational inequality $\nabla f(\tilde{x}) d \geqslant 0$, i.e. $-\nabla f(\tilde{x}) d \leqslant 0$ holds for all $d \in T_{\Omega}(\tilde{x})$.

Let $I \subset \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ in $\mathcal{C}^{n+1}(I)$. Then there exits a $\theta \in[0,1]$ such that
$f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}(x-a)^{n+1}$.

We want to show $\nabla f\left(x^{(k)}\right) \rightarrow 0$. We first show that $\xrightarrow[\left|d^{(k) \mid}\right|]{\nabla f\left(x^{(k)} d^{(k)}\right.} \xrightarrow{k \rightarrow \infty} 0$. If σ_{k} is efficient, we have

$$
0 \stackrel{k \rightarrow \infty}{\longleftrightarrow} f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leqslant-c\left(\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|}\right)^{2}<0 .
$$

Then $\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|} \xrightarrow{k \rightarrow \infty} 0$, as we wanted. We have

$$
\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|}=\left|\nabla f\left(x^{(k)}\right)\right| \cos \left(\varangle\left(\nabla f\left(x^{(k)}\right), d^{(k)}\right)\right),
$$

so to ensure that $\nabla f\left(x^{(k)}\right) \rightarrow 0$ we have to avoid $\nabla f\left(x^{(k)}\right) \perp d^{(k)}$ for large k.

Consider $f(x):=x^{2}, d^{(k)}:=-1$ and $\sigma_{k}:=2^{-k-2}$ for all $k \geqslant 0$. The sequence $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ defined by $x^{(k+1)}=x^{(k)}+\sigma_{k} d^{(k)}=$ $x^{(k)}-\frac{1}{2^{k+2}}$ and $x^{(0)}=1$ converge to $\frac{1}{2}$:
$x^{(k+1)}=x^{(0)}-\sum_{j=0}^{k} \frac{1}{2^{k+2}}=1-\frac{1}{4} \frac{1-\frac{1}{2^{k+1}}}{1-\frac{1}{2}}=\frac{1}{2}+\frac{1}{2^{k+2}} \xrightarrow{k \rightarrow \infty} \frac{1}{2}$.

If $\nabla f(x)=0$ holds, x is a stationary point of f.
Stationary points need not be extrema, consider z.B. $f(x):=$ x^{3} and $x=0$.

Requirements for the search directions

Problems with box constraints
Slater constraint qualification

Definition

Solve $\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} Q x+q^{\top} x$ subject to

$$
A x=b
$$

A Lagrange multiplier λ satisfies strict complementarity if $\lambda_{i}>0$ for all $i \in I \cap \mathcal{A}(\tilde{x})$.
Then $C(\tilde{x}, \tilde{\lambda})=\left\{d \in \mathbb{R}^{n}: \nabla c_{i}(\tilde{x})^{\top} d=0 \forall i \in \mathcal{A}(\tilde{x})\right\}=$ $\operatorname{ker}(G(\tilde{x}))$ for $G(\tilde{x}):=\left(\nabla c_{i}(\tilde{x})^{\boldsymbol{\top}}\right)_{i \in \mathcal{A}(\tilde{x} \tilde{x}}$. Let $\left(s_{k}\right)_{k=1}^{\ell}$ be a basis of $\operatorname{ker}(G(\tilde{x}))$. The second order optimality conditions reduce to $Z^{\top} \nabla_{x x}^{2} L(\tilde{x}, \tilde{\lambda}) Z$ being positive definite on \mathbb{R}^{ℓ}.

Thus to ensure that $\nabla f\left(x^{(k)}\right) \rightarrow 0$ we have to avoid $\nabla f\left(x^{(k)}\right) \perp d^{(k)}$ for large k (this is slow convergence). We have

$$
\cos \left(\varangle\left(\nabla f\left(x^{(k)}\right), d^{(k)}\right)\right)=\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|\left|\nabla f\left(x^{(k)}\right)\right|}=: \beta_{k}
$$

Then $\beta_{k}\left|\nabla f\left(x^{(k)}\right)\right|=\frac{\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}}{\left|d^{(k)}\right|} \rightarrow 0$. We can infer from this that $\nabla f\left(x^{(k)}\right) \rightarrow 0$ if $-\beta_{k} \geqslant c>0$ is bounded away from zero for all $k \in \mathbb{N}$.

Let $D \subset \mathbb{R}^{n}$ be an open and convex subset such that $-c_{i}$ is a convex \mathcal{C}^{1} function on D for $i \in I$ and $c_{i}(x):=a_{i}^{\top} x+b_{i}$ is an affine linear function for $i \in E$.
Then the global Slater condition holds if the set $\left(a_{i}\right)_{i \in E}$ is linearly independent and there exists a $v \in \mathbb{R}^{n}$ such that $c_{i}(v)=0$ for all $i \in E$ and $c_{i}(v) \geqslant 0$ for $i \in I$.
One can show that if (SQC) holds in $\tilde{x} \in \Omega$, then (MFCQ) holds.

Let $\Omega:=\left\{x \in \mathbb{R}^{n}: v_{i} \leqslant x_{i} \leqslant w_{i} \forall i \in\{1, \ldots, n\}\right\}$ and for simplicity assume $v<w$ componentwise. Then $x \in \Omega$ can be rewritten as $G x \geqslant r$, where $G=(I,-I)^{\top}, r=(v,-w)$.
At most one constraint can be active, so $G(x)$:= $\left(\nabla c_{i}(x)\right)_{i \in \mathcal{A}(x)}=\operatorname{diag}\left((\pm 1)_{i=1}^{n}\right)$ and thus $\left\{\nabla c_{i}: i \in \mathcal{A}(\tilde{x})\right\}$ is linearly independent and thus (ACQ) holds.
$L(x, \lambda)=f(x)-\sum_{j=1}^{n} \lambda_{j}^{(\ell)}\left(x_{j}-v_{j}\right)-\sum_{j=1}^{n} \lambda_{j}^{(u)}\left(-x_{j}+w_{j}\right)$, by KKT: $\lambda_{i}^{(\ell)}=\left[\frac{\partial f(x)}{\partial x_{i}}\right]_{+}$and $\lambda_{i}^{(u)}=\left[\frac{\partial f(x)}{\partial x_{i}}\right]_{-}$are unique. $C(\tilde{x}, \tilde{y})=\left\{d \in L_{\Omega}(\tilde{x}): d_{i}=0\right.$ if $\left.\frac{\partial f(\tilde{x})}{\partial x_{i}} \neq 0\right\}$.
$Q \in \mathbb{R}^{n \times n}$ sym., PD on $\operatorname{ker}(A), A \in \mathbb{R}^{m \times n}, \operatorname{rang}(A)=m \leqslant n$.
(1) Compute the $Q R$-decomposition of A^{\top} : compute $H \in$ $\mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{m \times m}$, such that $H A^{\top}=\binom{R}{0}$. Define $h:=-H q=\binom{h_{1}}{h_{2}}$ and $B:=H Q H^{\top}=:\left(\begin{array}{c}B_{11} B_{12} \\ B_{21} \\ B_{22}\end{array}\right)$, where $h_{1} \in \mathbb{R}^{m}$ and $B_{11} \in \mathbb{R}^{m \times m}$.
(2) Solve $R^{\top} \tilde{x}_{y}=b$ and $B_{22} \tilde{x}_{z}=h_{2}-B_{21} \tilde{x}_{y} . \tilde{x}:=H^{\top}\binom{\tilde{x}_{y}}{\tilde{x}_{z}}$.
(3) Solve $R \lambda=B_{11} \tilde{x}_{y}+B_{12} \tilde{x}_{Z}-h_{1}$ for λ via forward substitution.

