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Let f: R® > D — R by a continuous function and Q closed.
If there exists a w € €, such that N (f, f(w)) is compact
there exists a global minimum of f on .

As Q is closed, N = Q n
By
the theorem of WEIERSTRASS there exists a £ € 0 with

inf,en f(z) = f(2).

Let a = infeeq f(z) < f(w).
N(f, f(w)) is compact and we have a = inf.ey f().

For a € R, N(f,a) ==

with respect to a.

{x e D: f(x) < a} is the level set of f

v

Let f be convex, D # ¢ open and 2 ¢ D convex. Any local
minimum of f is global. The set of solutions is convex.

Then 3r > 0 with f(x) < f(y)
Let y € Q and ¢t > 0 so small, that

Let z € Q) be a local minima.
for all y € Q n B(z,7r).
x¢ = + t(y — x) € B(x,r). Since Q is convex, z; €  for all

€ [0,1]. Since f is convex, f(z) < f(x:) = f((1—t)z +1ty) <

(z
(I —=1t)f(z) +tf(y), which yields f(z) < f(y).
If x,y € Q are solutions, for all z € Q f((1 — t)x + ty) <
(I=t)f(x)+tf(y) < (A=t)f(2) +1f(z) = f(z),s0 (1—t)z+ty

is a minimum, too.

fla,b) :==>0"  (yx — axp — b)* = 32" Hz + b"z + ¢ with
H =2 <Zk 1 xk}

ZZL:1 TrYk
Zk 1 xk 22’;1 Yk

c =Y, yi If two x, are different, H is positive definite,
as all principal minors are positive (CS). Thus F is strictly

convex and has a unique minimum.

If x € D is a local minimum f and f is directionally differen-
tiable in x, f'(x;h) = 0 for all h e R"™.

As D is open, Ir > 0 with f(y) = f(z) for all y € B(x,r).
For h € R" and small ¢ we have z + th € B(x,r) and thus
f@ +th) — f(z) = 0, i.e. LEHMZI@) 5

We have f'(z;h) == limy o w

The absolute has a minimum in 0, but is not differentiable
there, but we have | - |"(x; k) = |h| = 0 for all h.

If f € C' and z is alocal min, f'(z;h) = Vf(x)"h = 0VYh e R"
(var. ineq.). Taking h = —V f(x)Th, we get Vf(x) =0

Let f by strictly convex. If  is a minimum of f, it is unique
and thus strict.

Let  # y € Q be two (by the previous theorem, global) min-
ima of f and a = mingcq f(x). Then f (r“’) < w =

a, which that only = and y are minima of f.

Examples. The exponential function is strictly convex (AM-
GM), but has no minimum. If H is positive definite, 2" Hx +

bz is strictly convex.

Let f be C? in a neighbourhood of = € D, Vf(x)
f"(2) be positive semidefinite for all z € B(x

= 0 and
,0) with
some § > 0. Then z is a local minimum of f.

For y € B(z,0) and 6 € [0, 1]

fy)—f@) = f'(z) (y—2)+

y—2) (@ +0(y—2)(y—2) >0
~—— ~— —

=0 h =2z€Bs(x)

by TAYLOR’s theorem.
x = 0 is a local minimum of f(z) := 2%, where p € N>,. We
have f/(0) = f”(0) = 0, which is not positive definite.

Let f be C? in a neighbourhood of € D and z a local mini-
mum of f. Then we have V f(z) = 0 and that f”(z) is posi-
tive semidefinite.

For h € R" let g(t) == f(x + th).

minimum in ¢ = 0. By TAYLOR 36 € [0, 1] with g(t) = g(0) +
9()—=g(0) _
fZ

Then g € C? has a local

g (0)t+ %g”(ﬁz‘,). As x is a local minimum of g, 0 <
l(/’(92‘,). The continuity of ¢” yields ¢”(0) = AT f”(z)h = 0 for
£\, 0.

f(x) = 2* has a global minimum in # = 0, but f”(%) = 0.

Let f be differentiable on D. Then f is (strictly) convex on
>)
Qiff fly) = f(z)+ Vf(z) (y— ) for all z,y € Q.

'&(x\ + vg'(sd (y-x)

i 4
y

Let f be C? in a neighbourhood of z € D, Vf(z) = 0 and
f"(x) positive definite. Then Ir,a > 0 such that f(y) >
f(x) +aly — z|? for all x € B(x,r), so x is a strict minimum.
TAYLOR: f(y) = f(z) + %(t/ —xz)f"(x+ 0(y — x))(y — z) and

(y—a)f"(z+0(y—x))(y —z)
= (y—a)f"(@)(y —2)+(y —2) [f"(x+ 0y — =) - ["(2)] (y — )

zaly—z|? |-|[<%|y—=|? for small |y—=z|?, as feC?

> 2y — o
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d e R" with Vf(z)'d < 0 is a descent direction of f in z.

A

If # is a local minimum, we have V f(#)"(x — %) > 0, so a nec-

essary condition is that there exists no descent direction.

Let f be differentiable in D and convex in 2 < D. Then z € Q
is a minimiser of f if and only if Vf(z)"(y —z) = 0 Vy € Q.

" = 7: If x be a local solution, then x + t(y — x) =
(I1—t)x+tye Qforalltel0,1], y e Q. Forsmall t > 0
%M > 0. Take t \, 0. (convexity of f not needed)
7 «=": Asis f convex and all tangents lie below the graph,
we have f(y) — f(x) = Vf(x)"(y — z) = 0 and by a previous
theorem x is a global minimum.

For z € int(Q2), we have V f(z)"d > 0 for all directions d € R"
and thus V f(z) = 0.

(1) Choose 2° € R" and set k := 0.
(2) If Vf(«*) = 0 holds, stop.

@ Compute a descent direction d* and a step size o}, such
that f(z* + 0.d*) < f(z*). Define 2%+ = 2F + oy d*.

(4) Set k — k + 1 and return to step (2).

Step (2) is only of academic nature, e.g. use |Vf(z)| < e
instead.

For a descent direction d 3¢ > 0 with f(z + ad) < f(x) for all
a € (0,c]: We have Vf(x)Td = lim, o flatad)=f(@) () and

a
z+ad)—f(x)
a

thus there exists a ¢ > 0 such that £¢ < 0 for all

a€ (0,c|.

The reverse direction of this lemma doesn’t hold, take x —
—22, 5 =0,d:= 1.

The antigradient / steepest descent d = —V f(z) # 0 and
— A~V f(x) for positive definite A are descent directions.

Assume (ALG). A step size with

ONFONS
f@“”+wdw)<f@®h_c(VﬂiW%> o

with a constant ¢ > 0 independent of k, is called efficient.

(ALC): for £(© e R? the level set N'(f, f(z(®)) is compact.
(AFD): We have f € C' on an open, convex set Dy >

N(f, f(z)).

In descent methods, f(z**') < f(z®) and thus z*® €
N (f, f(z®)). If (ALC) holds, (z®))en and (f(z*®)))yen are
bounded.

(AGL): Vf is LIPSCHITZ continuous.

(AHP): (uniformly positive definite) for f € C* and a > 0
there holds that hT f”(z)h > alh|? for all h € R™ and for all
xz € D c R" (which is an open set).

The function x +— e* is not uniformly positive definite for
D =R.

Let 2 € NV (f, f(z(¥)). Then d € R" is (strictly) gradient-
related if there exists a ¢z > 0 such that

—Vi@)'d > |V ()|ld
holds (and there exists a ¢4 > 0 independent of x and d such

that cs|Vf(z)| = |d| = i|Vf(x)|)

The antigradient (and assuming (AHP), the NEWTON descent
direction) is strictly gradient related (c3 = ¢4 = 1).

Let f: R™ 5 D — R be a C? function and D be an open con-
vex subset containing N (f, f(z(?))) and (AHP) be fulfilled.
If d*) is gradient related in z*) and (o} )gen are efficient,
then z(*) — #, which is the unique minimiser of f. There
exists a ¢ € (0, 1) such that

F@®) = £@) < " (1) - f(2))

and

2
2 = 2 < 2¢ (1) - £(@)) -

Let f: R®™ > D — R be a C? function and D be an open
convex subset containing N (f, f(z(?))) and (AHP) be ful-
filled.

@O N (f, f(z)) is convex and compact,

@ F has a unique minimiser Z, which is the only stationary

point of f,

B) 4o —i* < f(z) - F(3) < £|Vf(@)]? Vo e N(f, f(&®)).
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@ Choose the flattening parameter § € (0,1), efficiency pa-
rameter v > 0 and 0 < 81 < By < 1.

.
(2) Initial step size. Take og = —y v’lc((;‘? d

3) If f(z + 0;d) < f(z) + 00,V f(2)Td, then 54 = ;.

@ Else: reduce o; such that ¢; € [f10;,520;] and iterate
j — j + 1 and return to step @

Assuming (ALC), one can show that after finitely many steps,
(R1) and (R2) are satisfied, so o4 is efficient

We consider ¢(0) := f(z + od). The exact step size og > 0 is
such that ¢'(og) = 0 and ¢'(s) < 0 for s € [0,0g). The exact
step size is the "first” local minimum of ¢.

If Vf is L-cts (AGL), we have op > —vzl(;);d and f(z +

2
opd) < f(z) — 37 (vfl(;‘fd) , 0 o is efficient. If f(x) =

Vf(z)'d
T T d'Hd

%xTHx + b2 with positive definite H, o =

(R1): There exists a constant ¢; > 0 independent of k, such
that f(z®) + 0pd®) — f(2®) < 10,V f(2FNTd®) < 0.

The sequence (f(x®)))ey is bounded by (ALC) and mono-
tone (by design of descent algorithm) and thus convergent.

Then o4,V f(z*))d®) — 0.

(R2): There exists a constant co > 0 independent of & such
that 0. > —c M
k = 2 [d®) |2

If (R1) and (R2) hold, then oy satisfies the sufficient de-

op should fulfil (R1) and Vf(z + od)"d > BV f(z)'d with
0 < § < 8 < 1. The intersections s; and sq divide [0, c0) into
three intervals I := [0, s1), Is == [s1, $2] and I3 = (s2,00).

fatod)—f@) oo

Gi(o) = oVi(@)td (cts.), Ga(o) =
1, =0,
%@‘;ﬁljd. From (R1) we get G1(0) = § and from the sec-

ond condition we get G2(0) < 8. Moreover, G1(0) = ¢ and
G2(o) > B holds only in I; and Gi(o) = ¢ and Ga(o) < 8

e k k By (Vf(a*)Td*)? hold v in I d G 5 and G < ly in I.
crease condition: f(z" + 04d") < f(a") — c1c2 CIEm olds only in Iy and G1(0) < ¢ and Ga(o) < S only in I3.
(ALC), (AGL) imply that op is an efficient step size.
arg mindER"Jd\:l Vf(.’L‘)Td —— |§;é§g‘ . @ Initialisation. Choose o9 > 0 and set j := 0.
(a) If Gi(o) = 6 and G2(o) < B, stop and let op = og.
(b) If o¢p € Iy, define ap = oo and by = 2la'9, where £ is chosen
cs minimally, such that G1(bg) < §. Go to step @
N ™ 3 - -~ have (AT o _
For d € R" with |d| = ’1.. we have Vf(z)'d = —|Vf(x)||d] = () If oo € Is, define by = 0o and ap — 2~ o, where £ is chosen
—|Vf(z)]. For d = — ;jgjz‘ we get Vf(z)'d = —|Vf()]. minimally, such that G2 (ao) > 8.

@ Compute o; = 3 (a; + bj;).
(a) If o € I, stop and set op = 0j.
(b) If o5 € I, set aj41 := 0, and bjiq = bj.
(c) If o € I3, set aj41 = a; and bjy1 = 0j.

@ Setj—»j+1andgotostep@.

Like gradient method but instead d* = —f”(2*)~1V f(z*).

Let A := f”(x) be SPD and (z,y), = 2" Ay. We have d =
Sy e )
*% = argming , 4 Vf(z)'d.

For d € R" with |d|4 = 1 we have

CS

Vi()'d=(A'Vf(x),d), = —|A'Vf(2)]ald|a
= —|AT'Vf(z)|a.
We have T,/‘(.l,‘)T(i =—|A lv./l<51‘)‘.4~

@ Initialise. Choose 2° € R”, € > 0 and set k := 0.
() 1f [V f(z*)| < ¢, then stop.

(3) Compute d* := —V f(z*) and choose an efficient step size
o). Define 2#*+! = 2% + gp.d*, k — k + 1, return to (2).

After initially fast decrease, one observes slow convergence
especially for functions with e.g. ellipse-shaped isolines. We
e.g. have 0 = ¢'(op) = Vf(a* +opd®)Td* = d*+1d*, ie.
—_—
R

dF*t1 1 d*, which leads to the slow convergence detailed above.

We want to account for curvature information (f”) with-

out having to compute the second derivative.

(1) Choose (® € R", ¢ > 0 and set k := 0.

() If [V f(z)| <&, stop.

@ Compute the positive definite matrix A%®) and the
search direction d*) = —(AM)=IVf(z®*) and an effi-
cient step size oj,. Set ¥t = z) L 5 d®) k= k41
and go to step (2).

- "'

4 VS.

fx)=1 1
X i
/ dN {Iq
| _ > 2
]

The grey anti-gradient direction d; = —V f(z) , (orthogonal
to isolines of f), is not optimal. The NEwWTON direction is
better: dy = —f"(x)"'Vf(x) = —H 'Hx = —x.
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Let H € R™"™ be a symmetric positive definite matrix.
Then directions d(®,...,d*) for k¥ < n are conjugate or
H-orthogonal if d*) # 0 and (d?)THdY) = 0 for all
0<i<j<k

(1) Choose z® e R", A© ¢ R™ " positive definite, £ > 0
and set k = 0.

() If |V f(z)| <&, stop.

(3) Compute d¥) = —(AF)=1Vf(z*)), an exact step size
or and set 2D = z(B) 4 5 dk (k) = g(k+1) _ (k) and
yF+D) = V(e*+) — f(2®) and preform the rank-2-

(k) () (4 (K) g(R)yT (k) (4 (YT
update AG+D = A(k) _ A (S(M)T(ﬁ(ms(k)) L ?y(k%lTs(rz> - Set

k—>k+1andg0tostep@.

As long as Vf(z*=1) # 0, we have
@ d®#=1 20 and d9,...,d* are H-orthogonal,

Vi = span(Vf(z9), HV f(z),..., H* 1V (=)
= span(Vf(z®),..., Vf(z*D))
= span(d(0 Yo 7d(kfl))

=

3

@ f(x(k)) = min,ey, f(w(o) + 2).

Let H € R™*" be a symmetric positive definite matrix. Then,
the BFGS-method generated H-orthogonal search directions
d® . The minimum is found in m < n steps. If m = n, then
AW = H.

Given: 0 <81 <83 <1, 01 €(0,1), 02 > 1, 50 >0, z(® e R".
@ d®) = solution of mingj<p, fr(d). If F(@®) = £,(d®)), then stop.
2(F)y_ f(2(F) 4 q(k)
@ re = _ff(;(k)))_;:(m(k‘)t-d(k)))’ If 7, = &1 (successful step), set x
z®*) + d*®) | compute Vf(z(k+1)), f”(x(kJrl)) and update pg:

(k+1) _

L [01,62), choose pxi1 € [81pk, pr],
k
= 02, choose pr41 € [pr, d2pk],

setk—>k+1andgoto@.

@ If rp, < 61 (unsuccessful), choose pri1 € (0,81pk), z*+D = (k)
VHE®TD) = ViE@®), f@*D) = f(@®). k= k+1, go to (2).

(D) choose z(® € R™ ¢ > 0 and set k := 0 and d® =
—H(z© +b).
Q) 1f |Vf(z®)| < ¢, stop.
(3) Compute g, = % and set z(Ft1) = (k) 4 5, q(F)
H
We have Vf(z#+1)) = Hz®E+D 4 p = Vfi®) +

s+ 2
orHd*. Compute B := % and set dF+1) —

—Vf(® D) 4 8,d®). Set k — k + 1 and return to (2).

ci(r) =0, ieE,
ci(x) =0, iel
where I, F < N are disjoint index sets. The constraints

We consider mingeg- f(x) subject to

ci(x) ) 0 are called (in)equality constraints. The admiss-
able setis Q ={zx eR" : ¢;(z) =0,i€ E,¢;(x) = 0,i € I},

Let « € Q, then ¢;(x), i € I is called active if ¢;(z) = 0 and
inactive if ¢;(z) > 0. The active set is A(z) =F u{iel:
¢i(z) = 0}.

Up to now, we have computed a search direction d* and a
step size o, (line search) and we used the update z(*+1) =

z®) 4+ 5,.d*) . The new idea is now to

e use a local model f, of f, e.g. fr = f(z®)) + Vf(z*)Tq
or fi, = f(z®) + Vf(@®)Td + 1d" f"(z®)d,

take radius py > 0 and consider the trust region B, (z(¥),

compute d*) as a global solution to ming <, fr(d),

update zF+1) = g(F) 4 q(k),

Let z € Q. Then the sequence (:E(”))neN is called admissable
approzimation of z if (" — x and (™ e Q for almost all
n e N.

A direction d € R" is a tangent to Q in z € Q if there
exists an admissable approximation (z*)).cy of z and
a sequence (tx)ren < R, converging to zero such that

= d. The tangent cone of 2 in z is To(x) :=
{d e R"™ : d is tangent to Q in x}.

The tangent cone is a cone (£, := 1t;).

T a

If 2 € int(Q), then To(x) = R".
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For z € 2, the linearised cone of () in z € Q is

Let & € Q be a solution of the constrained problem and f € C?.
Then Vf(#)Td = 0 holds for all d € T ().

d"Vei(z) =0 Vie E,
Lo(z) = {deR": - () Z © . For d € To (%) we have by TAYLORs theorem,
d'Vei(z) 20Viel n Alx)
A ()Y — f(2 1 /.. . . e
Thus Lg(z) for Q == {z € R" : h(z) = 0,g(x) < 0} depends 0< w -4 (f(;r + (™ — ) — f(»l‘,))
on g and h, whereas Ng(z) and TQ(x) don’t. ' ‘
= = (BT + V(@ + @ — )T (@) - 3)=p)
(k) _ A
= V(i + &P - 1))T ! ; S Vf(@)d
}‘,
—V f(2) e
Let & be solution to the constrained problem, f and (¢;)ieroE Let 2 € Q.
be C' functions such that (ACQ) is satisfied. Then there exists ABADIE constraint qualification (ACQ): To(x) = La(x).
a vector (5\1)15 10 of LAGRANGE multipliers such that Linear independence constraint qualification (LICQ):
- Vei(x) : i€ A(x)} is linearly independent.
@ VoL@ A =0, {Vei(x) ()}
LICQ = ACQ.

(2 ci(i)=0forallicE,

B) ¢i(F)=0foralliel,

@ Xi=0forallicel,

(5) Aici(2) = 0 for all i € E U I (complementarity).

W.lo.g. assume ¢;(x), i € {1,...,m} be the active constraints

Let N = {ZieA@) AiVe t A = 0} and g = Vf(z). By
FARKAS lemma either V (&) = Y 4(z) MA' (£)A with X; > 0
for i € A(Z)n I or there exists a d € R” such that Vf(2)Td < 0,
Veld=0forie E and Veld = 0 for i € A(Z) n 1.

We can rewrite those three conditions as Vf(%)"d < 0 and
d € Lo(Z). By assumption € Q and (ACQ) hold. Thus we
have V£(Z)Td < 0 for a d € To (&), which is a contradiction to
the variational inequality, so the first option has to hold.
Define A; = 0 for i ¢ A(&), so the last condition (complemen-
tarity condition) holds.

in . Let d € Tq(Z). For k sufficiently large and ¢; is an
equality constraint, by TAYLOR expansion, Ja € [0, 1]

1
0= —c;(z®) = —ci(& + (™ — 7))
tr tr
*) _ 7
a g T k%, Vei(3)Td.
*
—d

= | i(2) +Vei (@ + a(@® —2)"
\ J/ .

=0 —Ve; (i

Similarly we can show that Ve;(#)'d > 0 for i € I n A(%).
Thus d € Lo ().

If (&, \) satisfy the KKT conditions, the critical cone is

C(&,N) = {w e Lo(F) : Vei(@) w = 0V¥i € A(Z)nI s.th. A\; > 0}.

We have w € C(z,)) if and only if Ve¢;(2)Tw = 0 Vi € E,
Vi e A(Z) n Isth. \; > 0 and Ve (2)Tw = 0 Vi € A(Z) N
I sth. )\ =0.

For d € C(#,A) we have Vf(£)Td = 3, 4z MiVei(#)Td = 0.
Thus C(Z,\) contains all directions where, based on
first order information, we cannot decide if f decreases

or increases.

Let K := {By+ Cw:yeR™ y > 0,we RP} with Be R"™™
and C € R"*P. For each g € R" either g € K or there exists
d e R" such that ¢g"d < 0, B'"d > 0 and C"d = 0.

Let € Q and X such that (, \) satisfies the KKT conditions.
If there exists a o > 0 such that

w' V2 L(Z, Nw = o|w|?

holds for all w € C(Z,\), then Z is a strict local solution to

the constrained problem.

Let & be a local solution to the constrained problem, assume
that (LICQ) holds and let A be such that the KKT conditions
are satisfied. Then

w' V2, L(Z,\N)w =0

A\

holds for all w e C(, \).




LEMMA

(ACQ) holds for affine linear constraints

ci(x) = a]x + b; for a; € R” and b; € R.

NONLINEAR OPTIMISATION

ASSUMPTION

MANGASARIAN-FROMOVITZ

NONLINEAR OPTIMISATION

LEMMA WITHOUT PROOF
o Implications between constraint
LICQ implies MFCQ . .
qualifications

NONLINEAR OPTIMISATION NONLINEAR OPTIMISATION

DEFINITION THEOREM
Normal cone Convergence of the NEWTON method

NONLINEAR OPTIMISATION NONLINEAR OPTIMISATION

EXAMPLE THEOREM
Step size decreases to fast TAYLOR in R with remainder

NONLINEAR OPTIMISATION NONLINEAR OPTIMISATION

DEFINITION

Stationary points

NONLINEAR OPTIMISATION

Convergence analyisis steps for descent
methods

NONLINEAR OPTIMISATION




(MFCQ) holds if there exists a w € R" such that

>0, VieA@)nI
=0, Viek.

Vei(2) w

and {V¢;}iep is linearly independent.

We show Lq(%)  To(%). Let w e Lo(%). Then alw = 0 for
i€ Eandalw > 0forie A(Z)nI,as Ve; = a;. If i € 1\ A(%),
then ¢;(#) > 0. Then Ity > 0 such that ¢ (% + tw) > 0
Vt € [0,10], so ¢; "stays” inactive. Let (z(*) = Z + %w)keN.
For i € A(Z) n I we have ¢;(z®) = ¢;(z®) — ¢;(z) =
al (z®) — &) = qlw > 0 since ¢;(Z) = 0 and w € Lqo(&),
so (z"))en is an admissable approzimation. For i € E we
have ¢;(z®)) = ¢; (™)) —¢;(&) = Lalw > 0, by the same rea-
soning as above, so (z (k))keN is an admissable approxzimation.

(k) _ = to 4,

Moreover, limg_, “’T = limg_ ’;0 = w, so w € To(Z).

(LICQ) — (MFCQ) — (ACQ).
If (SQC) holds in & € Q, then (MFCQ) holds.

Let G(&) = (V¢i(2)")iea@m- By (LICQ) it has maximal
rank. Then there exists a w € R" such that Ve;(#)Tw =
1, Vie A@@)nI
0, ViekF.
rank, adding an additional column doesn’t change the rank.

This is because as G(Z) has maximal

A linear system Ax = b is solvable if the rank of A is equal to
the rank of the extended matrix A|b. The system is solvable as
A as maximal rank and thus we can append any b, in particu-
lar one with ones in first components for the active inequality

constraints and zeros for all the equality constraints.

Let f” be Lipschitz continuous in a neighbourhood of a
local minimum Z of f and let f”(&) be positive definite.
Then the NEWTON method

ekt — R _ ()=l £ (5 (R)

converges locally quadratically to Z.
)= f"(2®)~1 . (=Vf(2®)) is the Newton direction.

The damped Newton method is z**1) = gk _—
opf" (0N TIV f () with o, < 1.

For z € Q, Ng(x) == {v e R" : v'w < 0 Yw € To(x)} is the
normal cone to To(x). The elements of Nq(z) are normal
vectors.

Let T be a local solution to the constraint problem. Then
—Vf(&) € Nq().

By the variational inequality Vf(Z)d = 0, i.e. =V f(Z)d <0
holds for all d € T (7).

Let I < R be an interval and f: I — R in C"**(I). Then
there exits a 6 € [0, 1] such that

2 R (a (n+1)(q T—a
o) = 3 T L D e

—~

k=0

Consider f(z) =22, d® = —1 and o} :=27%2 forall k > 0.
The sequence (2(F)),cn defined by zF+D = () 4 5,d*F) =

2 — L and 2(® = 1 converge to 1:

Mo 1
%H 411

k—0o0 1

(k+1) _ ..(0)__ + +
=X 2+2k+2 0%

ZL’

M?r

We want to show Vf(z®) — 0. We first show that
ViEFNHTak) ko
4]

R V(20T gk \ 2
0 &2 f@HD) — fa™) < —c (‘f(\d<k))| ) <0

0. If oy is efficient, we have

VN aR) k-
4]

Then 0, as we wanted. We have

Vf(x(k))Td(k)

A = |V£(z®)]| cos (q(Vf(x(k))7d(k))) 7

so to ensure that Vf(z*) — 0 we have to avoid Vf(z®) L a®
for large k.

If Vf(z) = 0 holds, x is a stationary point of f.
Stationary points need not be extrema, consider z.B. f(x) :=

3 and z = 0.




Requirements for the search directions

NONLINEAR OPTIMISATION

DEFINITION

Strict complementarity

NONLINEAR OPTIMISATION

Problems with box constraints

NONLINEAR OPTIMISATION

DEFINITION

Slater constraint qualification

NONLINEAR OPTIMISATION

ALGORITHM

Solve min cpn %xTQx + ¢"z subject to
Ax =10

NONLINEAR OPTIMISATION




A LAGRANGE multiplier A satisfies strict complementarity
if \; >0 forallieln A(Z).

Then C(Z,A) = {d € R" : Ve(2)Td = 0 Vi € A(&)} =
ker(G(z)) for G(&) == (Vei(®) )ieas)- Let (sg)f_, be a basis
of ker(G(z)). The second order optimality conditions reduce
to ZTV2,L(Z, \)Z being positive definite on R’

Thus to ensure that Vf(z®*)) — 0 we have to avoid
Vfx®) L d* for large k (this is slow convergence). We
have

Vf(a:(k))Td(k)

F)y gk)yy = —

Then S|V f(xF)| = W — 0. We can infer from
this that Vf(z®*)) — 0 if =8, > ¢ > 0 is bounded away from
zero for all ke N.

Let D < R™ be an open and convexr subset such that —c¢; is a
convex C* function on D for i € I and ¢;(x) = ajx + b; is an
affine linear function for i € E.

Then the global SLATER condition holds if the set (a;)ier
is linearly independent and there exists a v € R™ such that
ci(v) =0 for all i e E and ¢;(v) =0 forie .

One can show that if (SQC) holds in € Q, then (MFCQ)
holds.

Let Q = {z e R" : v; < x; < w; Vi € {1,...,n}} and for
simplicity assume v < w componentwise. Then z € () can be
rewritten as Gz > r, where G = (I, —I)T, r = (v, —w).

At most one constraint can be active, so G(z) =
(Vei(x))ieaw) = diag((£1)j~;) and thus {Ve; : i € A(Z)}
is linearly independent and thus (ACQ) holds.

L, ) = f@) = S5 N (g — 0g) = S5y A5 (= + wy),
by KKT: )\EZ) = [M]Jr and )\Eu) = [L(I)] are unique.

ox; ox;

C(a,5) = {d e La() : di = 0 if Z2 % 0},

(7"1;7;

Q € R™" sym., PD on ker(A), A e R™*" rang(A) = m < n.

@ Compute the QR-decomposition of AT: compute H €
R™™ and R € R™*™, such that HAT = (£). Define
h:=—Hq = (Z;) and B = HQH" =: (g;i g;z), where
hi € R™ and By; e R™*™,

(2) Solve R"Z, = b and Byy#. = hy — Body. & = HT(;)

@ Solve R\ = B11%y + B12Tz — hy for X via forward substi-
tution.




