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Let f : Rn Ą D Ñ R by a continuous function and Ω closed.

If there exists a ω P Ω, such that N pf, fpppωqqqqqq is compact

there exists a global minimum of f on Ω.

Let a :“ infxPΩ fpxq ď fpωq. As Ω is closed, N :“ Ω X

N pf, fpωqq is compact and we have a “ infxPN fpxq. By

the theorem of Weierstraß there exists a x̂ P Ω with

infxPN fpxq “ fpx̂q.

For a P R, N pf, aq :“ tx P D : fpxq ď au is the level set of f

with respect to a.

Let f be convex, D ‰ H open and Ω Ă D convex. Any local

minimum of f is global. The set of solutions is convex.

Let x P Ω be a local minima. Then Dr ą 0 with fpxq ď fpyq

for all y P Ω X Bpx, rq. Let y P Ω and t ą 0 so small, that

xt :“ x` tpy ´ xq P Bpx, rq. Since Ω is convex, xt P Ω for all

t P r0, 1s. Since f is convex, fpxq ď fpxtq “ fpp1´ tqx` tyq ď

p1´ tqfpxq ` tfpyq, which yields fpxq ď fpyq.

If x, y P Ω are solutions, for all z P Ω fpp1 ´ tqx ` tyq ď

p1´tqfpxq`tfpyq ď p1´tqfpzq`tfpzq “ fpzq, so p1´tqx`ty

is a minimum, too.

fpa, bq :“
řm
k“1pyk ´ axk ´ bq

2 “ 1
2z

THz ` bTz ` c with

H :“ 2

˜

řm
k“1 x

2
k

řm
k“1 xk

řm
k“1 x

2
k m

¸

, b :“ ´2

˜

řm
k“1 xkyk
řm
k“1 yk

¸

c :“
řm
k“1 y

2
k. If two xk are different, H is positive definite,

as all principal minors are positive (CS). Thus F is strictly

convex and has a unique minimum.

If x P D is a local minimum f and f is directionally differen-

tiable in x, f 1px;hq ě 0 for all h P Rn.

As D is open, Dr ą 0 with fpyq ě fpxq for all y P Bpx, rq.

For h P Rn and small t we have x ` th P Bpx, rq and thus

fpx` thq ´ fpxq ě 0, i.e. fpx`thq´fpxq
t ě 0.

We have f 1px;hq :“ limtŒ0
fpx`thq´fpxq

t .

The absolute has a minimum in 0, but is not differentiable

there, but we have | ¨ |1px;hq “ |h| ě 0 for all h.

If f P C1 and x is a local min, f 1px;hq “ ∇fpxqTh ě 0 @h P Rn

(var. ineq.). Taking h “ ´∇fpxqTh, we get ∇fpxq “ 0.

Let f by strictly convex. If x is a minimum of f , it is unique

and thus strict.

Let x ‰ y P Ω be two (by the previous theorem, global) min-

ima of f and a :“ minxPΩ fpxq. Then f
`

x`y
2

˘

ă
fpxq`fpyq

2 “

a, which that only x and y are minima of f .

Examples. The exponential function is strictly convex (AM-

GM), but has no minimum. If H is positive definite, 1
2x

THx`

bTx is strictly convex.

Let f be C2 in a neighbourhood of x P D, ∇fpxq “ 0 and

f2pzq be positive semidefinite for all z P Bpx, δq with

some δ ą 0. Then x is a local minimum of f .

For y P Bpx, δq and θ P r0, 1s

fpyq´fpxq “ f 1pxq
loomoon

“0

py´xq` 1
2 py ´ xqloomoon

h

T
f2px` θpy ´ xq

loooooomoooooon

“zPBδpxq

qpy´xq ě 0

by Taylor’s theorem.

x “ 0 is a local minimum of fpxq :“ x2p, where p P Ně2. We

have f 1p0q “ f2p0q “ 0, which is not positive definite.

Let f be C2 in a neighbourhood of x P D and x a local mini-

mum of f . Then we have ∇fpxq “ 0 and that f2pxq is posi-

tive semidefinite.

For h P Rn let gptq :“ fpx ` thq. Then g P C2 has a local

minimum in t “ 0. By Taylor Dθ P r0, 1s with gptq “ gp0q `

g1p0qt` t2

2 g
2pθtq. As x is a local minimum of g, 0 ď gptq´gp0q

t2 “

1
2g
2pθtq. The continuity of g2 yields g2p0q “ hTf2pxqh ě 0 for

tŒ 0.

fpxq “ x4 has a global minimum in x̃ “ 0, but f2px̃q “ 0.

Let f be differentiable on D. Then f is (strictly) convex on

Ω iff fpyq
pąq

ě fpxq `∇fpxqTpy ´ xq for all x, y P Ω.

Let f be C2 in a neighbourhood of x P D, ∇fpxq “ 0 and

f2pxq positive definite. Then Dr, a ą 0 such that fpyq ě

fpxq ` a}y ´ x}2 for all x P Bpx, rq, so x is a strict minimum.

Taylor: fpyq “ fpxq ` 1
2 py ´ xqf

2px` θpy ´ xqqpy ´ xq and

py ´ xqf2px` θpy ´ xqqpy ´ xq

“ py ´ xqf2pxqpy ´ xq
looooooooooomooooooooooon

ěa}y´x}2

`py ´ xq
“

f2px` θpy ´ xqq ´ f2pxq
‰

py ´ xq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

|¨|ď a2 }y´x}
2 for small }y´x}2, as fPC2

ě
a

2
}y ´ x}2.



Theorem

Convex variational inequality

Nonlinear optimisation

Definition

Descent direction

Nonlinear optimisation

Examples + Lemma

Descent direction

Nonlinear optimisation

Algorithm

General descent algorithm

Nonlinear optimisation

Assumptions

ALC and AFD

Nonlinear optimisation

Definition

Efficient step size

Nonlinear optimisation

Definition

(strictly) Gradient-related descent

direction

Nonlinear optimisation

Assumptions

(ALG) and (AHP)

Nonlinear optimisation

Lemma

Convergence results for general descent

methods

Nonlinear optimisation

Theorem

Convergence of descent algorithms

Nonlinear optimisation



d P Rn with ∇fpxqTd ă 0 is a descent direction of f in x.

If x̃ is a local minimum, we have ∇fpx̃qTpx´ x̃q ě 0, so a nec-

essary condition is that there exists no descent direction.

Let f be differentiable in D and convex in Ω Ă D. Then x P Ω

is a minimiser of f if and only if ∇fpxqTpy ´ xq ě 0 @y P Ω.

” ùñ ”: If x be a local solution, then x ` tpy ´ xq “

p1 ´ tqx ` ty P Ω for all t P r0, 1s, y P Ω. For small t ą 0
fpx`tpy´xqq´fpxq

t ě 0. Take tŒ 0. (convexity of f not needed)

” ðù ”: As is f convex and all tangents lie below the graph,

we have fpyq ´ fpxq ě ∇fpxqTpy ´ xq ě 0 and by a previous

theorem x is a global minimum.

For x P intpΩq, we have ∇fpxqTd ě 0 for all directions d P Rn

and thus ∇fpxq “ 0.

1 Choose x0 P Rn and set k :“ 0.

2 If ∇fpxkq “ 0 holds, stop.

3 Compute a descent direction dk and a step size σk such

that fpxk ` σkd
kq ă fpxkq. Define xk`1 “ xk ` σkd

k.

4 Set k Ñ k ` 1 and return to step 2 .

Step 2 is only of academic nature, e.g. use |∇fpxq| ă ε

instead.

For a descent direction d Dc ą 0 with fpx` adq ă fpxq for all

a P p0, cs: We have ∇fpxqTd “ limaŒ0
fpx`adq´fpxq

a ă 0 and

thus there exists a c ą 0 such that fpx`adq´fpxq
a ă 0 for all

a P p0, cs.

The reverse direction of this lemma doesn’t hold, take x ÞÑ

´x2, x̃ “ 0, d :“ 1.

The antigradient / steepest descent d “ ´∇fpxq ‰ 0 and

´A´1∇fpxq for positive definite A are descent directions.

Assume (ALG). A step size with

fpxpkq ` σkd
pkqq ď fpxpkqq ´ c

ˆ

∇fpxpkqqTdpkq

|dpkq|

˙2

(ES)

with a constant c ą 0 independent of k, is called efficient.

(ALC): for xp0q P Rd the level set N pf, fpxp0qqq is compact.

(AFD): We have f P C1 on an open, convex set D0 Ą

N pf, fpxp0qqq.

In descent methods, fpxk`1q ă fpxpkqq and thus xpkq P

N
`

f, fpxp0qq
˘

. If (ALC) holds, pxpkqqkPN and pfpxpkqqqkPN are

bounded.

(AGL): ∇f is Lipschitz continuous.

(AHP): (uniformly positive definite) for f P C2 and a ą 0

there holds that hTf2pxqh ě a|h|2 for all h P Rn and for all

x P D Ă Rn (which is an open set).

The function x ÞÑ ex is not uniformly positive definite for

D “ R.

Let x P N
`

f, fpxp0qq
˘

. Then d P Rn is (strictly) gradient-

related if there exists a c3 ą 0 such that

´∇fpxqTd ě c3|∇fpxq||d|

holds (and there exists a c4 ą 0 independent of x and d such

that c4|∇fpxq| ě |d| ě 1
c4
|∇fpxq|).

The antigradient (and assuming (AHP), the Newton descent

direction) is strictly gradient related (c3 “ c4 “ 1).

Let f : Rn Ą D Ñ R be a C2 function and D be an open con-

vex subset containing N
`

f, fpxp0qq
˘

and (AHP) be fulfilled.

If dpkq is gradient related in xpkq and pσkqkPN are efficient,

then xpkq Ñ x̃, which is the unique minimiser of f . There

exists a q P p0, 1q such that

fpxpkqq ´ fpx̃q ď qk
´

fpxp0qq ´ fpx̃q
¯

and

|xpkq ´ x̃|2 ď
2

a
qk

´

fpxp0qq ´ fpx̃q
¯

.

Let f : Rn Ą D Ñ R be a C2 function and D be an open

convex subset containing N
`

f, fpxp0qq
˘

and (AHP) be ful-

filled.

1 N
`

f, fpxp0qq
˘

is convex and compact,

2 F has a unique minimiser x̃, which is the only stationary

point of f ,

3 a
2 |x´ x̃|

2 ď fpxq´ fpx̃q ď 1
2a |∇fpxq|

2 @x P N pf, fpxp0qqq.
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1 Choose the flattening parameter δ P p0, 1q, efficiency pa-

rameter γ ą 0 and 0 ă β1 ď β2 ă 1.

2 Initial step size. Take σ0 ě ´γ
∇fpxqTd
|d|2 .

3 If fpx` σjdq ď fpxq ` δσj∇fpxqTd, then σA “ σj .

4 Else: reduce σj such that σ̃j P rβ1σj , β2σjs and iterate

j Ñ j ` 1 and return to step 3 .

Assuming (ALC), one can show that after finitely many steps,

(R1) and (R2) are satisfied, so σA is efficient

We consider ϕpσq :“ fpx` σdq. The exact step size σE ą 0 is

such that ϕ1pσEq “ 0 and ϕ1psq ă 0 for s P r0, σEq. The exact

step size is the ”first” local minimum of ϕ.

If ∇f is L-cts (AGL), we have σE ě ´
∇fpxqTd
L|d|2 and fpx `

σEdq ď fpxq ´ 1
2L

´

∇fpxqTd
|d|

¯2

, so σE is efficient. If fpxq “

1
2x

THx` bTx with positive definite H, σE “ ´
∇fpxqTd
dTHd

(R1): There exists a constant c1 ą 0 independent of k, such

that fpxpkq ` σkd
pkqq ´ fpxpkqq ď c1σk∇fpxpkqqTdpkq ă 0.

The sequence pfpxpkqqqkPN is bounded by (ALC) and mono-

tone (by design of descent algorithm) and thus convergent.

Then σk∇fpxpkqqdpkq Ñ 0.

(R2): There exists a constant c2 ą 0 independent of k such

that σk ě ´c2
∇fpxpkqqTdpkq

|dpkq|2
.

If (R1) and (R2) hold, then σk satisfies the sufficient de-

crease condition: fpxk ` σkd
kq ď fpxkq ´ c1c2

p∇fpxkqTdkq2
|dk|2

.

σP should fulfil (R1) and ∇fpx ` σdqTd ě β∇fpxqTd with

0 ă δ ă β ă 1. The intersections s1 and s2 divide r0,8q into

three intervals I1 :“ r0, s1q, I2 :“ rs1, s2s and I3 :“ ps2,8q.

G1pσq :“

$

&

%

fpx`σdq´fpxq
σ∇fpxqTd , σ ą 0,

1, σ “ 0,
(cts.), G2pσq :“

∇fpx`σdqTd
∇fpxqTd . From (R1) we get G1pσq ě δ and from the sec-

ond condition we get G2pσq ď β. Moreover, G1pσq ě δ and

G2pσq ą β holds only in I1 and G1pσq ě δ and G2pσq ď β

holds only in I2 and G1pσq ă δ and G2pσq ď β only in I3.

(ALC), (AGL) imply that σP is an efficient step size.

arg mindPRn,|d|“1∇fpxqTd “ ´
∇fpxq
|∇fpxq| .

For d P Rn with |d| “ 1, we have ∇fpxqTd
CS
ě ´|∇fpxq||d| “

´|∇fpxq|. For d “ ´ ∇fpxq
|∇fpxq| we get ∇fpxqTd “ ´|∇fpxq|2.

1 Initialisation. Choose σ0 ą 0 and set j :“ 0.

(a) If G1pσq ě δ and G2pσq ď β, stop and let σP :“ σ0.

(b) If σ0 P I1, define a0 :“ σ0 and b0 :“ 2`σ9, where ` is chosen

minimally, such that G1pb0q ă δ. Go to step 2 .

(c) If σ0 P I3, define b0 :“ σ0 and a0 “ 2´`σ0, where ` is chosen

minimally, such that G2pa0q ą β.

2 Compute σj :“ 1
2 paj ` bjq.

(a) If σj P I2, stop and set σP :“ σj .

(b) If σj P I1, set aj`1 :“ σj and bj`1 :“ bj .

(c) If σj P I3, set aj`1 :“ aj and bj`1 :“ σj .

3 Set j Ñ j ` 1 and go to step 2 .

Like gradient method but instead dk “ ´f2pxkq´1∇fpxkq.

Let A :“ f2pxq be SPD and xx, y yA :“ xTAy. We have d̃ :“

´
A´1∇fpxq
|A´1∇fpxq|A “ arg min|d|A“1∇fpxqTd.

For d P Rn with |d|A “ 1 we have

∇fpxqTd “ xA´1∇fpxq, d yA
CS
ě ´|A´1∇fpxq|A|d|A

“ ´|A´1∇fpxq|A.

We have ∇fpxqTd̃ “ ´|A´1∇fpxq|A.

1 Initialise. Choose x0 P Rn, ε ą 0 and set k :“ 0.

2 If |∇fpxkq| ă ε, then stop.

3 Compute dk :“ ´∇fpxkq and choose an efficient step size

σk. Define xk`1 “ xk ` σkd
k, k Ñ k ` 1, return to 2 .

After initially fast decrease, one observes slow convergence

especially for functions with e.g. ellipse-shaped isolines. We

e.g. have 0 “ ϕ1pσEq “ ∇fpxk ` σEdk
looooomooooon

“xk`1

qTdk “ dk`1dk, i.e.

dk`1 K dk, which leads to the slow convergence detailed above.

We want to account for curvature information (f2) with-

out having to compute the second derivative.

1 Choose xp0q P Rn, ε ą 0 and set k :“ 0.

2 If |∇fpxq| ă ε, stop.

3 Compute the positive definite matrix Apkq and the

search direction dpkq :“ ´pApkqq´1∇fpxpkqq and an effi-

cient step size σk. Set xpk`1q “ xpkq ` σkd
pkq, k “ k ` 1

and go to step 2 .

fpxq “ 1
x

dg
dN

vs.

The grey anti-gradient direction dg “ ´∇fpxq , (orthogonal

to isolines of f), is not optimal. The Newton direction is

better: dN “ ´f
2pxq´1∇fpxq “ ´H´1Hx “ ´x.
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Let H P Rnˆn be a symmetric positive definite matrix.

Then directions dp0q, . . . , dpkq for k ă n are conjugate or

H-orthogonal if dpiq ‰ 0 and pdpiqqTHdpjq “ 0 for all

0 ď i ă j ď k.

1 Choose xp0q P Rn, Ap0q P Rnˆn positive definite, ε ą 0

and set k :“ 0.

2 If |∇fpxq| ă ε, stop.

3 Compute dpkq “ ´pApkqq´1∇fpxpkqq, an exact step size

σk and set xpk`1q “ xpkq ` σkd
k, spkq “ xpk`1q ´ xpkq and

ypk`1q “ ∇fpxpk`1q ´ fpxpkqq and preform the rank-2-

update Apk`1q “ Apkq´ ApkqspkqpApkqspkqqTq
pspkqqTApkqspkq

´
ypkqpypkqqT

pypkqqTspkq
. Set

k Ñ k ` 1 and go to step 2 .

As long as ∇fpxpk´1qq ‰ 0, we have

1 dpk´1q ‰ 0 and dp0q, . . . , dpkq are H-orthogonal,

2

Vk “ spanp∇fpxp0qq, H∇fpxp0qq, . . . ,Hk´1∇fpxp0qq

“ spanp∇fpxp0qq, . . . ,∇fpxpk´1qqq

“ spanpdp0q, . . . , dpk´1qq,

3 fpxpkqq “ minzPVk fpx
p0q ` zq.

Let H P Rnˆn be a symmetric positive definite matrix. Then,

the BFGS-method generated H-orthogonal search directions

dpkq. The minimum is found in m ď n steps. If m “ n, then

Apnq “ H.

Given: 0 ă δ1 ă δ2 ă 1, σ1 P p0, 1q, σ2 ą 1, σ0 ą 0, xp0q P Rn.

1 dpkq “ solution of min|d|ďρk fkpdq. If fpxpkqq “ fkpd
pkq
q, then stop.

2 rk :“
fpxpkqq´fpxpkq`dpkqq

fpxpkqq´fkpx
pkq`dpkqq

, If rk ě δ1 (successful step), set xpk`1q
“

xpkq ` dpkq, compute ∇fpxpk`1q
q, f2pxpk`1q

q and update ρk:

if rk

#

P rδ1, δ2q, choose ρk`1 P rδ1ρk, ρks,

ě δ2, choose ρk`1 P rρk, δ2ρks,

set k Ñ k ` 1 and go to 2 .

3 If rk ă δ1 (unsuccessful), choose ρk`1 P p0, δ1ρkq, x
pk`1q

“ xpkq,

∇fpxpk`1q
q “ ∇fpxpkqq, f2pxpk`1q

q “ f2pxpkqq. k “ k ` 1, go to 2 .

1 choose xp0q P Rn, ε ą 0 and set k :“ 0 and dp0q “

´Hpxp0q ` bq.

2 If |∇fpxpkqq| ď ε, stop.

3 Compute σk “
|∇fpxpkq|2
|dpkq|2H

and set xpk`1q “ xpkq ` σkd
pkq.

We have ∇fpxpk`1qq “ Hxpk`1q ` b “ ∇fpxpkqq `
σkHd

k. Compute βk :“ |∇fpxpk`1q
q|

2

|∇fpxpkqq|2 and set dpk`1q “

´∇fpxpk`1q ` βkd
pkq. Set k Ñ k ` 1 and return to 2 .

We consider minxPRn fpxq subject to

$

&

%

cipxq “ 0, i P E,

cipxq ě 0, i P I

where I, E Ă N are disjoint index sets. The constraints

cipxq
pěq
“ 0 are called (in)equality constraints. The admiss-

able set is Ω “ tx P Rn : cipxq “ 0, i P E, cipxq ě 0, i P Iu,

Let x P Ω, then cipxq, i P I is called active if cipxq “ 0 and

inactive if cipxq ą 0. The active set is Apxq :“ E Y ti P I :

cipxq “ 0u.

Up to now, we have computed a search direction dk and a

step size σk (line search) and we used the update xpk`1q “

xpkq ` σkd
pkq. The new idea is now to

• use a local model fk of f , e.g. fk “ fpxpkqq `∇fpxpkqqTd
or fk “ fpxpkqq `∇fpxpkqqTd` 1

2d
Tf2pxpkqqd,

• take radius ρk ą 0 and consider the trust region Bρkpx
pkqq,

• compute dpkq as a global solution to min|d|ďρk fkpdq,

• update xpk`1q “ xpkq ` dpkq.

Let x P Ω. Then the sequence pxpnqqnPN is called admissable

approximation of x if xpnq Ñ x and xpnq P Ω for almost all

n P N.

A direction d P Rn is a tangent to Ω in x P Ω if there

exists an admissable approximation pxpkqqkPN of x and

a sequence ptkqkPN Ă R` converging to zero such that

limkÑ8
xpkq´x
tk

“ d. The tangent cone of Ω in x is TΩpxq :“

td P Rn : d is tangent to Ω in xu.

The tangent cone is a cone (t̃k :“ 1
a tk).

If x P intpΩq, then TΩpxq “ Rn.
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For x P Ω, the linearised cone of Ω in x P Ω is

LΩpxq :“

#

d P Rn :
dT∇cipxq “ 0 @i P E,

dT∇cipxq ě 0 @i P I XApxq

+

.

Thus LΩpxq for Ω :“ tx P Rn : hpxq “ 0, gpxq ď 0u depends

on g and h, whereas NΩpxq and TΩpxq don’t.

Let x̂ P Ω be a solution of the constrained problem and f P C1.

Then ∇fpx̂qTd ě 0 holds for all d P TΩpx̂q.

For d P TΩpx̂q we have by Taylors theorem,

0 ď
fpxpkqq ´ fpx̂q

tk
“

1

tk

´

fpx̂` pxpkq ´ x̂qq ´ fpx̂q
¯

“
1

tk

´

���fpx̂q `∇fpx̂` ξpxpkq ´ x̂qqTpxpkq ´ x̂q���´fpx̂q
¯

“ ∇fpx̂` ξpxpkq ´ x̂qq
loooooooooooomoooooooooooon

Ñ∇fpx̂q

T xpkq ´ x̂

tk
looomooon

Ñd

Ñ ∇fpx̂qTd.

Let x̂ be solution to the constrained problem, f and pciqiPIYE

be C1 functions such that (ACQ) is satisfied. Then there exists

a vector pλ̃iqiPIYE of Lagrange multipliers such that

1 ∇xLpx̃, λ̃q “ 0,

2 cipx̃q “ 0 for all i P E,

3 cipx̃q ě 0 for all i P I,

4 λ̃i ě 0 for all i P I,

5 λ̃icipx̂q “ 0 for all i P E Y I (complementarity).

Let x P Ω.

Abadie constraint qualification (ACQ): TΩpxq “ LΩpxq.

Linear independence constraint qualification (LICQ):

t∇cipxq : i P Apxqu is linearly independent.

LICQ ùñ ACQ.

Let N :“
!

ř

iPApx̃q λi∇ci : λ ě 0
)

and g :“ ∇fpx̃q. By

Farkas lemma either ∇fpx̃q “
ř

iPApx̃q λiA
Tpx̃qλ̃ with λ̃i ě 0

for i P Apx̃qXI or there exists a d P Rn such that∇fpx̃qTd ă 0,

∇cTi d “ 0 for i P E and ∇cTi d ě 0 for i P Apx̃q X I.

We can rewrite those three conditions as ∇fpx̃qTd ă 0 and

d P LΩpx̃q. By assumption x̃ P Ω and (ACQ) hold. Thus we

have ∇fpx̃qTd ă 0 for a d P TΩpx̃q, which is a contradiction to

the variational inequality, so the first option has to hold.

Define λ̃i “ 0 for i R Apx̃q, so the last condition (complemen-

tarity condition) holds.

W.l.o.g. assume cipxq, i P t1, . . . ,mu be the active constraints

in x̃. Let d P TΩpx̃q. For k sufficiently large and ci is an

equality constraint, by Taylor expansion, Dα P r0, 1s

0 “
1

tk
cipx

pkqq “
1

tk
cipx̃` px

pkq ´ x̃qq

“

„

cipx̃q
loomoon

“0

`∇cipx̃` αpxpkq ´ x̃qqT
looooooooooooomooooooooooooon

Ñ∇cipx̃



xpkq ´ x̃

tk
looomooon

Ñd

kÑ8
ÝÝÝÑ ∇cipx̃qTd.

Similarly we can show that ∇cipx̃qTd ě 0 for i P I X Apx̃q.
Thus d P LΩpx̃q.

If px̃, λ̃q satisfy the KKT conditions, the critical cone is

Cpx̃, λ̃q “ tw P LΩpx̃q : ∇cipx̃qTw “ 0 @i P Apx̃qXI s.th. λ̃i ą 0u.

We have w P Cpx̃, λ̃q if and only if ∇cipx̃qTw “ 0 @i P E,

@i P Apx̃q X I s.th. λ̃i ą 0 and ∇cipx̃qTw “ 0 @i P Apx̃q X
I s.th. λ̃i “ 0.

For d P Cpx̃, λ̃q we have ∇fpx̃qTd “
ř

iPApx̃q λ̃i∇cipx̃qTd “ 0.

Thus Cpx̃, λ̃q contains all directions where, based on

first order information, we cannot decide if f decreases

or increases.

Let K :“ tBy ` Cw : y P Rm, y ě 0, w P Rpu with B P Rnˆm

and C P Rnˆp. For each g P Rn either g P K or there exists

d P Rn such that gTd ă 0, BTd ě 0 and CTd “ 0.

Let x̃ P Ω and λ̃ such that px̃, λ̃q satisfies the KKT conditions.

If there exists a σ ą 0 such that

wT∇2
xxLpx̃, λ̃qw ě σ|w|2

holds for all w P Cpx̃, λ̃q, then x̃ is a strict local solution to

the constrained problem.

Let x̃ be a local solution to the constrained problem, assume

that (LICQ) holds and let λ̃ be such that the KKT conditions

are satisfied. Then

wT∇2
xxLpx̃, λ̃qw ě 0

holds for all w P Cpx̃, λ̃q.
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(MFCQ) holds if there exists a w P Rn such that

∇cipx̃qTw

$

&

%

ą 0, @i P Apx̃q X I

“ 0, @i P E.

and t∇ciuiPE is linearly independent.

We show LΩpx̃q Ă TΩpx̃q. Let w P LΩpx̃q. Then aTiw “ 0 for

i P E and aTiw ě 0 for i P Apx̃qXI, as ∇ci “ ai. If i P IzApx̃q,
then cipx̃q ą 0. Then Dt0 ą 0 such that cipx̃ ` twq ą 0

@t P r0, t0s, so ci ”stays” inactive. Let pxpkq :“ x̃ ` t0
k wqkPN.

For i P Apx̃q X I we have cipx
pkqq “ cipx

pkqq ´ cipx̃q “

aTi px
pkq ´ x̃q “ t0

k a
T
iw ě 0 since cipx̃q “ 0 and w P LΩpx̃q,

so pxpkqqkPN is an admissable approximation. For i P E we

have cipx
pkqq “ cipx

pkqq´cipx̃q “
t0
k a

T
iw ě 0, by the same rea-

soning as above, so pxpkqqkPN is an admissable approximation.

Moreover, limkÑ8
xpkq´x̃
t0
k

“ limkÑ8

t0
k w
t0
k

“ w, so w P TΩpx̃q.

(LICQ) ùñ (MFCQ) ùñ (ACQ).

If (SQC) holds in x̃ P Ω, then (MFCQ) holds.

Let Gpx̃q :“ p∇cipx̃qTqiPApx̃q. By (LICQ) it has maximal

rank. Then there exists a w P Rn such that ∇cipx̃qTw “
$

&

%

1, @i P Apx̃q X I,

0, @i P E.
This is because as Gpx̃q has maximal

rank, adding an additional column doesn’t change the rank.

A linear system Ax “ b is solvable if the rank of A is equal to

the rank of the extended matrix A|b. The system is solvable as

A as maximal rank and thus we can append any b, in particu-

lar one with ones in first components for the active inequality

constraints and zeros for all the equality constraints.

Let f2 be Lipschitz continuous in a neighbourhood of a

local minimum x̂ of f and let f2px̂q be positive definite.

Then the Newton method

xpk`1q “ xpkq ´ f2pxpkqq´1∇fpxpkqq

converges locally quadratically to x̂.

dpkq :“ f2pxpkqq´1 ¨ p´∇fpxpkqqq is the Newton direction.

The damped Newton method is xpk`1q “ xpkq ´

σkf
2pxpkqq´1∇fpxpkqq with σk ă 1.

For x P Ω, NΩpxq :“ tv P Rn : vTw ď 0 @w P TΩpxqu is the

normal cone to TΩpxq. The elements of NΩpxq are normal

vectors.

Let x̃ be a local solution to the constraint problem. Then

´∇fpx̃q P NΩpx̃q.

By the variational inequality ∇fpx̃qd ě 0, i.e. ´∇fpx̃qd ď 0

holds for all d P TΩpx̃q.

Let I Ă R be an interval and f : I Ñ R in Cn`1
pIq. Then

there exits a θ P r0, 1s such that

fpxq “
n
ÿ

k“0

f pkqpaq

k!
px´ aqk `

f pn`1qpa` θpx´ aqq

pn` 1q!
px´ aqn`1.

Consider fpxq :“ x2, dpkq :“ ´1 and σk :“ 2´k´2 for all k ě 0.

The sequence pxpkqqkPN defined by xpk`1q “ xpkq ` σkd
pkq “

xpkq ´ 1
2k`2 and xp0q “ 1 converge to 1

2 :

xpk`1q “ xp0q´
k
ÿ

j“0

1

2k`2
“ 1´

1

4

1´ 1
2k`1

1´ 1
2

“
1

2
`

1

2k`2

kÑ8
ÝÝÝÑ

1

2
.

We want to show ∇fpxpkqq Ñ 0. We first show that
∇fpxpkqqTdpkq

|dpkq|

kÑ8
ÝÝÝÑ 0. If σk is efficient, we have

0
kÑ8
ÐÝÝÝ fpxpk`1q

q ´ fpxpkqq ď ´c

ˆ

∇fpxpkqqTdpkq

|dpkq|

˙2

ă 0.

Then ∇fpxpkqqTdpkq

|dpkq|

kÑ8
ÝÝÝÑ 0, as we wanted. We have

∇fpxpkqqTdpkq

|dpkq|
“ |∇fpxpkqq| cos

´

^p∇fpxpkqq, dpkqq
¯

,

so to ensure that ∇fpxpkqq Ñ 0 we have to avoid ∇fpxpkqq K dpkq

for large k.

If ∇fpxq “ 0 holds, x is a stationary point of f .

Stationary points need not be extrema, consider z.B. fpxq :“

x3 and x “ 0.
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A Lagrange multiplier λ satisfies strict complementarity

if λi ą 0 for all i P I XApx̃q.
Then Cpx̃, λ̃q “ td P Rn : ∇cipx̃qTd “ 0 @i P Apx̃qu “
kerpGpx̃qq for Gpx̃q :“ p∇cipx̃qTqiPApx̃q. Let pskq

`
k“1 be a basis

of kerpGpx̃qq. The second order optimality conditions reduce

to ZT∇2
xxLpx̃, λ̃qZ being positive definite on R`.

Thus to ensure that ∇fpxpkqq Ñ 0 we have to avoid

∇fpxpkqq K dpkq for large k (this is slow convergence). We

have

cosp^p∇fpxpkqq, dpkqqq “ ∇fpxpkqqTdpkq

|dpkq||∇fpxpkqq|
“: βk

Then βk|∇fpxpkqq| “ ∇fpxpkqqTdpkq
|dpkq|

Ñ 0. We can infer from

this that ∇fpxpkqq Ñ 0 if ´βk ě c ą 0 is bounded away from

zero for all k P N.

Let D Ă Rn be an open and convex subset such that ´ci is a

convex C1 function on D for i P I and cipxq :“ aTi x` bi is an

affine linear function for i P E.

Then the global Slater condition holds if the set paiqiPE

is linearly independent and there exists a v P Rn such that

cipvq “ 0 for all i P E and cipvq ě 0 for i P I.

One can show that if (SQC) holds in x̃ P Ω, then (MFCQ)

holds.

Let Ω :“ tx P Rn : vi ď xi ď wi @i P t1, . . . , nuu and for

simplicity assume v ă w componentwise. Then x P Ω can be

rewritten as Gx ě r, where G “ pI,´IqT, r “ pv,´wq.

At most one constraint can be active, so Gpxq :“

p∇cipxqqiPApxq “ diagpp˘1qni“1q and thus t∇ci : i P Apx̃qu
is linearly independent and thus (ACQ) holds.

Lpx, λq “ fpxq ´
řn
j“1 λ

p`q
j pxj ´ vjq ´

řn
j“1 λ

puq
j p´xj ` wjq,

by KKT: λ
p`q
i “

”

Bfpxq
Bxi

ı

`
and λ

puq
i “

”

Bfpxq
Bxi

ı

´
are unique.

Cpx̃, ỹq “
!

d P LΩpx̃q : di “ 0 if Bfpx̃q
Bxi

‰ 0
)

.

Q P Rnˆn sym., PD on kerpAq, A P Rmˆn, rangpAq “ m ď n.

1 Compute the QR-decomposition of AT: compute H P

Rnˆn and R P Rmˆm, such that HAT “ pR0 q. Define

h :“ ´Hq “
`

h1

h2

˘

and B :“ HQHT “:
`

B11 B12

B21 B22

˘

, where

h1 P Rm and B11 P Rmˆm.

2 Solve RTx̃y “ b and B22x̃z “ h2 ´B21x̃y. x̃ :“ HT
´

x̃y
x̃z

¯

.

3 Solve Rλ “ B11x̃y `B12x̃Z ´ h1 for λ via forward substi-

tution.


