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LLMs, GPTs, etc

• GPT = generative pretrained transformer, a type
of LLM = large language model.

• ChatGPT receives “question” (text input se-
quence) and generates “answer” (text output se-
quence) left-to-right.

• Before transformers: sequence-to-sequence
(Seq2Seq) models use two particular RNNs
(called Long-Short-Term-Memory, LSTM) in
an encoder-decoder architecture. CNNs alike
struggle to capture long-range dependencies.

• text is not only sequential (order matters), but
also structured: there is context!

Fig. 1: ChatGPT5’ UI.
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Tokenization

The preprocessing step of tokenization uses a vocabulary, an embedding and positional
encoding.

Fig. 2: Text is encoded into a point cloud. © G. Peyré Peyré 2024

The points xi are called (context) tokens.
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Transformer architecture

The transformer architecture consists of stacked decoder-like sublayers,

made up of
(masked multi-head) self-attention + (token-wise) feed-forward neural networks aka MLP
with residual aka skip connections + layer normalization

Fig. 3: Autoregressive decoder-only transformer architecture (GPT). Figure modified from Peyré 2024.

(Variant of encoder-decoder transformer “T5” [Vaswani et al. 2017])

Training via backpropagation: loss = predict next token given the previous ones
Generation: predict next token, add to rest ("context"), repeat ("autoregression")
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The single-head attention block [Vaswani et al. 2017; Bahdanau, Cho, and Bengio 2015]

k-th layer with step size τ > 0:

x
(k+1)
i = xki + τ

n∑
j=1

exp
(
⟨Qx

(k)
i ,Kx

(k)
j ⟩
)

∑n
ℓ=1 exp

(
⟨Qx

(k)
i ,Kx

(k)
ℓ ⟩
)V x

(k)
j , k ∈ {1, . . . , L}, i ∈ {1, . . . , n}.

query, key, value matrices Q,K, V learned during training

⟨Qx,Ky⟩ is (non-symmetric!) alignment score between x and y. If alignment is high,
then x is relevant for y. Other alignment: vT tanh(Wx+ Uy).

Compactly: Attention(Q,K, V ) := softmax
(
QKT

)
V , where the “soft argmax” is

softmax: Rd → int(∆d−1), x 7→

(
exp(xj)∑d
ℓ=1 exp(xℓ)

)
.
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The attention ODE [Lu et al. 2019; Vuckovic, Baratin, and Combes 2020]

From now on: ignore normalization & MLP.

Each transformer sublayer = one discrete time step.

Letting the step size ∆→ 0 (like in
neural ODEs) we obtain (unmasked single-head) self-attention

ẋi(t) =
n∑

j=1

exp (⟨Qxi(t),Kxj(t)⟩)∑n
ℓ=1 exp (⟨Qxi(t),Kxℓ(t)⟩)︸ ︷︷ ︸

=:Pi,j(t)

V xj(t), i ∈ [n], t > 0. (1)

xi(t) - tokens or representations at time t, Pi,j is called the (stochastic) attention matrix

(1) is a simplified version of forward pass through the infinitely deep

trained transformer with the same Q,K, V in all layers (“weight sharing”).
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Mean field limit - the transformer PDE [Burger et al. 2025]

Mean field limit of infinitely many tokens:

{xi}ni=1 ←→
1

n

n∑
i=1

δxi

n→∞−−−→ µ ∈ P(Rd)

On probability measures P(Rd), the transformer ODE becomes the transformer PDE

µ̇t = −∇ ·
(
µtΓ(µt)

)
, t > 0, [Γ(µ)](x) :=

∫
Rd

V y
exp (⟨Qx,Ky⟩)∫

Rd exp (⟨Qx,Kz⟩) dµ(z)
dµ(y)

Γ is called softmax attention mapping.

Other forms of attention: Sinkhorn, L2, linaer, unnormalized, masked)
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Asymptotic low-rankness of attention matrix

Theorem (Geshkovski et al. 2023, Thm. 2.1)

Let d = 1, V > 0, QK > 0.

For any sequence of pairwise distinct initial tokens
(xi(0))

n
i=1 ∈ Rd×n, there exists a permutation matrix Π ∈ Rn×n such that

lim
t→∞

P (t) =



1 0 . . . . . . 0
...

... . . . . . .
...

1 0 . . . . . . 0

a1 a2 . . . . . . ad

0 . . . . . . 0 1
... . . . . . .

...
...

0 . . . . . . 0 1


Π ∈ Rn×n, ai ≥ 0,

n∑
i=1

ai = 1.

For almost all initial tokens (ai)
n
i=1 ∈ {e1, en}. Conjecture: this also holds for d ≥ 2.
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Fig. 4: d = 1 and Q = K = V = 1. Top: n = 40, bottom n = 100. The attention matrix
converges to a rank two matrix at a doubly exponential rate.
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Preprocessing step: spatial rescaling

Motivation. Degenerate case: QTK = 0.

Transformer ODE becomes ẋi(t) = V xi(t) ; no
interaction, closed form xi(t) = etV xi(0) ; divergence: ∥xi(t)∥ ∈ O(et) for t→∞.

Solution: spatial rescaling: zi(t) := e−tV xi(t) ; controls ∥zi(t)∥ for t→∞.
Transformer ODE becomes

żi(t) =
n∑

j=1

(
exp

(
⟨QetV zi(t)KetV zj(t)⟩

)∑n
ℓ=1 exp (⟨QetV zi(t)KetV zℓ(t)⟩)

)
V (zj(t)− zi(t)) .

Looks like Krause model for flocking phenomena / opinion dynamics:
ẋi(t) =

∑n
i=1 Pi,j (xj(t)− xi(t)) (note that Pi,j not time-dependent).

Spatial rescaling is a mathematical surrogate for normalization
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ẋi(t) =

∑n
i=1 Pi,j (xj(t)− xi(t)) (note that Pi,j not time-dependent).

Spatial rescaling is a mathematical surrogate for normalization

Viktor Stein Mode collapse and metastability in Transformers 15.09.2025 14 / 25



Preprocessing step: spatial rescaling

Motivation. Degenerate case: QTK = 0. Transformer ODE becomes ẋi(t) = V xi(t) ; no
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Key results from [Geshkovski et al. 2023]

Value Key and query Limit geometry
V = Id QTK ≻ 0 vertices of convex polytope

λmax(V ) > 0 simple ⟨Qφ1,Kφ1⟩ > 0 union of 3 parallel hyperplanes
V paranormal QTK ≻ 0 polytope × subspaces

V = − Id QTK = I single cluster at origin

Table 1: Clustering taxonomy for rescaled dynamics (except last row).

Interesting: last row ↔ heat equation, for Sinkhorn attention [Agarwal et al. 2024].

V paranormal ⇐⇒ ∃F,G ⊂ Rd with F ⊕G = Rd, V F = F , V G = G, V |F = λ I,
ρ(V |G) < λ (ρ = spectral radius). Also, φ1 ∈ ker(V − λmax(V ) I).
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Fig. 5: Clustering means that leaders (=“leading” tokens) emerge, that capture attention of all
tokens (except one) & carry the largest amount of information (“context awareness”).
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Empirical results beyond the stated assumptions

• empirically also for non-PSD QTK, clustering occurs as outlined above (depending
on structure of V ).

• empirically, adding a 2-layer MLP (σ ∈ {tanh,ReLU}, W ∈ Rd×d) ; same clustering

żi(t) = Wσ

( n∑
j=1

(
exp

(
⟨QetV zi(t)KetV zj(t)⟩

)∑n
ℓ=1 exp (⟨QetV zi(t)KetV zℓ(t)⟩)

)
V (zj(t)− zi(t))

)
.

• Conjecture: convergence to one of three parallel subspaces of Rd of codimension k,
where k is the number of eigenvalues with positive real part.
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żi(t) = Wσ

( n∑
j=1

(
exp

(
⟨QetV zi(t)KetV zj(t)⟩

)∑n
ℓ=1 exp (⟨QetV zi(t)KetV zℓ(t)⟩)

)
V (zj(t)− zi(t))

)
.

• Conjecture: convergence to one of three parallel subspaces of Rd of codimension k,
where k is the number of eigenvalues with positive real part.

Viktor Stein Mode collapse and metastability in Transformers 15.09.2025 17 / 25



Empirical results beyond the stated assumptions

• empirically also for non-PSD QTK, clustering occurs as outlined above (depending
on structure of V ).

• empirically, adding a 2-layer MLP (σ ∈ {tanh,ReLU}, W ∈ Rd×d) ; same clustering
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Plots: reincorporating the MLP

Fig. 6: Top: σ = ReLU, W = I, middle: σ = tanh, W = I, bottom: σ = ReLU, W random.
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Clustering for Gaussian initial data [Castin et al. 2025]

Let A := KTQ.

For µ0 ∼ N (α0,Σ0) we have µt ∼ N (αt,Σt) with

Σ̇t = 2Sym(V ΣAΣ), α̇ = V (I+ΣA)αt

For Q,K, V constant in time, the covariance equation has the following properties:

• Limiting points have low rank (under commutativity assumptions)

• Rank 1 is preserved

• Stationary points have rank 1 if V = I and A = AT.
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Clustering for Gaussian initial data in 2D [Castin et al. 2025]

Fig. 7: (a) V random, A+AT ≺ 0, (b) V = I, A+AT ≺ 0 of rank 1, (c) multi-head, V = I2,
A+AT ⪯ 0 of rank 1 (d) A, V chosen specifically to obtain this pattern.
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Why do these results look so different?

But papers consider infinitely deep transformers and study limt→∞ xi(t).

• No spatial rescaling in [Castin et al. 2025], but also treats transformers without weight
sharing.

• does finite particle clustering “survive” in the mean field limit?
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Thank you for your attention!
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