
Technische Universität Berlin

Lecture Notes

Machine Learning II
Grégoire Montavon, summer semester 2020

ContentsContents

List of Figures Page i

1 Low dimensional embedding Page 1

1.1 Recap of PCA . 1

1.2 LLE . 2

1.3 Multidimensional Scaling (MDS) and IsoMap . 9

1.4 Stochastic neighbouring embedding . 10

1.5 Analysing non-euclidean pairwise data . 13

2 Component Analysis Page 17

2.1 Canonical Correlation Analysis (CCA) . 17

2.2 Independent Component Analysis (ICA) . 25

3 Kernel Machines Page 33

3.1 Structured Kernels / Inputs. .33

3.2 Structured Prediction / Outputs . 41

3.3 Kernel for anomaly detection . 48

4 Deep Learning Page 54

4.1 Neural Networks for Structured Data . 54

4.2 Structured Prediction .63

4.3 Explainable Models . 68

2

5 Federated Learning Page 69

Index Page 72

Lecture notes by Viktor Stein.

These lecture notes are not endorsed by the lecturer or the university and make no claim to
accuracy or correctness.

If you find errors please contact v.glombik@gmail.com.

Last edited: April 12, 2022.

3

List of Figures

List of Figures
1 Three-dimensional data lies of a two-dimensional manifold,

a so called Swiss roll. [RS00] 1

2 EMG signal is a collection of highly correlated data; only
very few dimensions are needed to explain almost all of
the data. 1

3 High dimensional word representation with 1-sparse vectors. . 1

4 Embedded word data representation (in reality, there
rather 128 than 3 parameters). 1

5 Data lying close to a two dimensional subspace (plane) is
projected onto a plane, where the different classes (encoded
by color) are separated well [Sch06]. 2

6 S shaped data is not well reduced by PCA. [PCA] 2

7 LLE projection of the data from above. 2

8 The LLE method [RS00]. 3

9 The top image is the PCA projection, which does not
show any structure of the data. The lower image is the
LLE projection (with four neighbours), where images with
the face at the margin are on the boundary of the two-
dimensional manifold and images with the picture in the
center are in the center. [RS00] 7

10 LLE can also be applied to text. [RS00] 7

11 A uniform sampling of a swiss role. 8

12 For ten neighbours, the embedding is good. If the noise
is too high, even with the "right" number of neighbours
or way more, the embedding fails. (The quality of the
embedding increases for a higher number of samples.) 8

13 The original data set contains three mutually perpendicular
circles in six dimensional space, meeting at one points.
The PCA projection (left) does not preserve the structure
of the data, the circles are not visible. The Sammon
mapping preserves the topological structure: while the
circles become distorted, there are still three closed loops
meeting at a single point. 9

14 If we measure distances along the manifold, dp1, 6q ą dp1, 4q. 9

i

List of Figures

15 A neighbourhood graph. 10

16 Linear methods cannot interpolate properly between the
leftmost and rightmost images in each row, because the
middle images are not averages of the outer ones. 10

17 What does this picture mean? 10

18 In contrast to the Gaussian distribution, the student t
distribution doesn’t decay as fast, it is heavy-tailed. 12

19 [MH08, p. 2587] . 13

20 PCA does not work well on MNIST. 13

21 [MH08, p. 2590 - 2591] . 13

22 Pairwise data can be represented as undirected graphs, as
tables ("matrices") or a checkerboard patterns. 14

23 For conflicting comparisons, one can create separate charts. . 15

24 Projection onto the positive and projection onto the neg-
ative eigenspaces yield results different in nature. In the
upper left corner, the eigenvalue spectrum are plotted. 15

25 [VdMH12] . 16

26 Some variables are highly correlated, but it is impractical
to have to look at all 20 correlation plots to learn something
about the data. 17

27 todo . 18

28 todo . 18

29 Bag-of-words feature representation 19

30 TODO! . 22

31 First two canonical components of the bag of words kernels
for the English (constitution) articles, as obtained by doing
CCA with the other languages. Articles from different
chapters are represented by a different symbol. 22

32 From left to right: neurophysical signal (?), spectogram of
neural activity (frequency dependent HRF (hemodynamic
response function, roughly measure blood oxygenation)
(?), ?, ?. 22

33 Canonical trend model: We have data X, which is the
web source features (bag of words of different web sources,
e.g. newspapers, news sites or twitter accounts) and we
have geographic features (retweet frequencies at different
locations). We want to know the trend, which is a hidden
variable, which affects both the content and the retweet
frequency. We want to find a mapping from X to Z and
from Y to Z. 23

34 TODO??? . 23

35 Performance of Canonical Trends compared to Mean and PCA.24

ii

List of Figures

36 Performance of Canonical Trends compared to Mean and PCA.24

37 The blind source separation problem. [Source?] 25

38 TODO???? . 25

39 TODO . 26

40 PCA vs ICA. 26

41 BSS of nonlinearly distorted mixtures with kernel based
learning methods [HZKM02]. 26

42 The RMSE vs. the uncertainty estimate for the two used
algorithms. For small values (U ď 0.1) the uncertainty
allows to predict the RMSE. [MZKM02] 27

43 [MZKM02] . 27

44 TODO [MZKM02] . 27

45 [MZKM02] show that JADE separates cardiac signals of
mother and fetus in an recording of a pregnant woman:
the separability matrix has a block structure, which is
of physiological relevance: it indicates independent multi-
dimensional subspaces. 27

46 When the feature map is higher dimensional, the expressive
power of the model is increased. 33

47 The preprocessing step for the "Bag-of-Words" kernel. 37

48 Biosynthesis. 37

49 The different rows indicate if there are shared n-grams
("#n-mers") between the two sequences x and x1. 37

50 Illustration of just looking for maximum blocks of common
subsequences. 37

51 Tree representation of sentences derived from a grammar:
Parse tree for "mary at lamb". 38

52 The subtrees of different sizes of the tree considered above. . 38

53 An efficient implementation using dynamic programming
visualised. 39

54 In the generator matrix, green is zero, yellow is one and
red is a negative number. 40

55 The results show that the higher β, the higher the similarity
between points of the same cluster 41

56 Standard machine learning vs structured outputs. 42

57 Geometrical interpretation of the large-margin model. 43

iii

List of Figures

58 Think of this diagram as a Markov chain. Each circle
is a state and a column of circles is the set of possible
states. Different columns represent the state at different
time steps. The path shown with lines depicts a possible
sequence of states. Our goal is to find the best possible
sequence of states and the variable a represents the cost
or reward of transitioning between the different states. 44

59 Geometric interpretation of margin rescaling. 47

60 Geometric interpretation of slack rescaling. 47

61 The lower diagram shows the transition policy between
the different states, which our structured outputs model
will learn to implement. 47

63 TODO: Warum ist das nicht ein binary system? . . . 49

64 One could treat this as a two class problem (with large
margin) and find a decision boundary between known
anomalies and normal data. This approach might be in-
sufficient, since new anomalies must not obey this decision
boundary. We thus must find a way to effectively enclosed
the normal data, but it is not clear how to do that. 49

65 Left: Geometric interpretation of reconstruction based
methods. Right: The surface separating the inliers and
outliers is adjusted into the direction opposite of the outliers. 49

66 TODO . 49

67 Consider PCA in R2 with one principal component, PCA1.
For an outlier the norm of the residual is the length of the
projection onto PCA1. 50

68 For a “ 1 (one component is reserved for the PCA model
and one for the residual) we get ... for different types
of kernels. For the linear model we see that the outlier
function increases along the residual components, placing
most of the data in the white area. But there are data
points, for which the model does not work well. Further-
more there are white regions, which do not contain any
inliers. The Gaussian kernel works well locally but not
globally, which is clear as e´x xÑ˘8

ÝÝÝÝÑ 0 50

69 TODO . 50

70 TODO . 52

71 TODO . 52

72 The explanation highlights which pixels are responsible
for the anomaly detection. 53

73 The lines represent kind of level lines, to illustrated the
outlier function. 53

iv

List of Figures

74 To build a assistance to drive on likes to detect the lanes
and the other vehicles. Based on those features, the clas-
sifier might take a decision such as turning left or right.
(The vector should rather look like . . . , x3, x4, . . . , x7, x8, x9,)54

75 A simple three-layer network 54

76 Constructive "proof" of universality of neural networks. . . . 56

77 Progressive exclusive-or composition. [dai] 56

78 Schematic diagram illustrating the interconnections be-
tween layers in the neocognitron. [Fuk80] 57

79 Architecture of a CNN. [NL] 58

80 The convolution layer. 58

81 A convolution operation with zero padding so as to retain
in-plane dimensions. [YNDT18] 58

82 TODO . 60

83 Based on their similarity, the historical tables can be
mapped into an embedded space using e.g. t-SNE. Points
that are mapped to the same location, can indeed be
verified to have a similar numerical content, they would
often correspond to the same table taken from different books.60

84 A vector embedding on a sentence. 61

85 The "merge" and the "readout" neural network in a parsing tree.61

86 Applying the readout function on each node allows to
visualise how the sentiment builds up in the recursive
neural network. [SPW`13] . 61

87 The input not layer zero, it is the graph, which is a initial
state. At each layer, the GNN preforms at diffusion step
in the graph until one achieves a prediction. Thus the
input graph is at every layer of the GNN. [SEL`20] 62

88 A Message Passing Neural Network predicts quantum
properties of an organic molecule by modelling a compu-
tationally expensive DFT calculation. [GSR`17] 62

89 Source? . 62

90 [KW16] . 62

91 TODO . 63

92 todo: citation . 63

93 Taking the mean of multiple outputs may result in a bad
prediction: the mean point is at a point where there are
no data points.todo: citation 63

94 todo: citation . 63

v

List of Figures

95 The output of the network are the parameters z “ pai, µi, σiq.
If we have a mixture of three components, we have three
values of a, three vectors µ and three positve scalars σ.
TODO citation 2 from slides 64

96 [BPT`20] . 64

97 One can think of the Boltzmann machine as implement-
ing (linear) decision boundaries in the input space and
attributing high probability to points that are on one side
and low probability for points on the other side. 64

98 [JyHL`14] . 65

99 A model measures the compatibility between observed
variables X and variables to be predicted Y using an
energy function EpY,Xq. For example, X could be the
pixels of an image, and Y a discrete label describing the
object in the image. Given X, the model produces the
answer Y that minimises the energy E. [LCH`06] 66

100 Several applications of energy-based learning: (a) face
recognition: Y is a high-cardinality discrete variable: an
input image is detected to be Einstein or not Einstein;
(b) face detection and pose estimation: Y is compromised
of bounding boxes: a collection of vectors with location and
pose of each possible face; (c) image segmentation: Y is
an image in which each pixel is a discrete label (belonging
to the nuclei or not); (d-e) handwriting recognition and
sequence labelling: Y is a sequence of symbols from a highly
structured but potentially infinite set (the set of English
sentences). The situation is similar for many applications
in natural language processing and computational biology;
(f) image restoration: Y is a high-dimensional continuous
variable (an image). [LCH`06] 66

101 For the correct answer Y i, one wants the energy to be
low and for the wrong one (so any other answer that
is incorrect) to be high. We receive pairs of outputs, a
correct and a incorrect one and one adapts the model W
to increase/decrease the energy function accordingly. [LCH`06]66

102 Examples of loss functions. Margin is an important com-
ponent to ensure that the learned model generalises well
to test data. 67

vi

1 Low dimensional embedding
21.04.2020In applications, one often has reason to believe that high-dimensional data

lies close to a lower dimensional subspace, so there are fewer parameters
needed to account for the data properties. This is due to hidden causes
or latent variables.

Fig. 1: Three-dimensional data lies of a two-
dimensional manifold, a so called Swiss roll.
[RS00]

Fig. 2: EMG signal is a collection of highly
correlated data; only very few dimensions
are needed to explain almost all of the data.
Here, LLE is used as a preprocessing step.

Examples for such data are high resolution images, costumer data, neural
data or news data.

Example 1.0.1 (Word2Vec embedding)
Word2Vec tries to find a low dimensional embedding of words which
is semantically meaningful, so one can detect relations and similarities
between words. In the embedding space, the directions from "man" to
"woman" and "king" to "queen" coincide. Initially, one represents words
as a very high dimensional data, where every dimension is an indicator
for a specific word in the alphabet, and each word corresponds to a vector
with a one in that position and zero else. One then embeds this data

Fig. 3: High dimensional word representa-
tion with 1-sparse vectors.

into a continuous space which is more meaningful. ˛

Fig. 4: Embedded word data representa-
tion (in reality, there rather 128 than 3
parameters).

The upsides of dimensionality reduction are

• Visualisation: one gains insights into high dimensional structures
in the data.

• Better generalisation: chance of overfitting is reduced and we
gain enhanced representations of the data.

• Speed most algorithms scale badly with increasing data dimension
(e.g. inverting matrices (Opn3q), computing covariance matrices (in
OpNn2q for X P RNˆn because of the eigendecomposition)).

• Compression Lower dimensional data needs less storage, which is
especially relevant of IoT (Internet of Things) devices.

1.1 Recap of PCA

For data X :“ rx1, . . . , xN s P RDˆN , PCA find a direction w P RD

such that the variance of the projected data wTX is maximal. We have
(TODO: WHAT IS x?? is Epxq “ 1

N

řN
n“1 xn??)

VarpwTXq “
1

N

N
ÿ

n“1

`

wTxn ´ EpwTxq
˘2

“
1

N

N
ÿ

n“1

`

wT pxn ´ Epxqq
˘2

“
1

N

N
ÿ

n“1

wT pxn ´ Epxqq pxn ´ Epxqq
T
w

“ wT

˜

1

N

N
ÿ

n“1

pxn ´ Epxqq pxn ´ Epxqq
T

¸

w “: wTSw,

by linearity of E, where S is the covariance matrix.

For Sw “ λw, the maximal variance in direction w is given by

argmax
w

d

dw
wTSw “ argmax

w

wTSw

wTw
“
wTλw

wTw
“ λ,

1

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#Matrix_algebra
https://cstheory.stackexchange.com/a/40157
https://cstheory.stackexchange.com/a/40157

1.2 LLE

i.e. the variance of the projected data in an eigendirection w is given by
the corresponding eigenvalue.

The direction of maximal variance in the data is equal to the eigenvector
having the largest eigenvalue. Preforming the eigendecomposition

Fig. 5: Data lying close to a two dimen-
sional subspace (plane) is projected onto a
plane, where the different classes (encoded
by color) are separated well [Sch06].

eigendecompositionX “ WΛWT yields W :“ rw1, . . . , wks P RDˆk. The projection of a data
point x is given by WTx.

But there are lower dimensional non-linear manifolds for which PCA (a
global linear method) fails by not being able to capture the structure of
the data, (cf. Fig. 6). Many nonlinear dimension reduction methods

Fig. 6: S shaped data is not well reduced
by PCA. [PCA]

exist, such as Kernel PCA, ISOMAP, LLE, Hessian eigenmaps, Diffusion maps,

Maximum variance unfolding and many more. To make PCA better adapt to
non-linear structures, we implicitly map the data to a higher dimensional
(in the case of a Gaussian kernel even infinitedimensional) space and
preform standard PCA there ("Kernel trick").

Solving PCA via XTX instead of XXT (note that if X is centered,
řN

n“1 xn “ 0 and thus S “ 1
NXX

T) is called linear kernel PCA linear kernel PCA. The
eigendecomposition only depends on the inner products pXXTqi,k “

xxi, xk y. The matrix XXT can be replaced with a kernel matrix Ki,j :“

xΦpxiq,Φpxjq y, where Φ: RD
Ñ RK with K " D and thus K P RKˆK .

In this higher dimensional space, data can often be linearly separated.

Several nonlinear dimensionality reduction methods can be viewed as (a
variant of) kernel PCA with kernels learned form the data [HLMS04],
(cf. remark 1.2.7).

1.2 LLE
The idea of LLE is to find a lower dimensional representation of the
data that preserves neighbourhood relations. LLE illustrates a general

Fig. 7: LLE projection of the data from
above.

principle of manifold learning, elucidated by Tenenbaum et al., that
overlapping local neighbourhoods - collectively analysed - can provide
information about global geometry. As more dimensions are added to
the embedding space, the existing ones do not change (???) . A virtue
of LLE is that it avoids the need to solve large dynamic programming
problems.

For each data point Xi select some neighbour points. The number of
neighbours (here: eight) used is a meta-parameter of the algorithm. LLE
now tries to reconstruct Xi as a linear combination of its neighbours, i.e.
it learns weights Wi,k,Wi,j , . . . such that Xi « Wi,kXk ` Wi,jXj `
Given these weights, LLE tries to find a lower dimensional embedding
Yi which can be reconstructed by its neighbours Yk, Yj , . . ., i.e. Yi «

Wi,kYk `Wi,jYj `

In summary, LLE extracts a local feature (fit) and then makes sure that
it is preserved in the lower dimensional projection. This is a common
technique for dimensionality reduction.

2

1.2 LLE

Fig. 8: The LLE method [RS00].

We can write the LLE algorithm in three steps.

1 For of each data point xi, i P t1, . . . , nu, compute its neighbours
pxjqjPNi .

2 Compute the weights wij that be reconstruct xi from its neighbours,
minimising the squared loss

R pW :“ rpw1jqjPN1
. . . pwnjqjPNn

sq :“
n
ÿ

i“1

›

›

›

›

›

xi ´
ÿ

jPNi

wijxj

›

›

›

›

›

2

(1)

subject to
ÿ

jPNi

wij “ 1 @i P t1, . . . , nu. (2)

by constraint linear fits.

3 Compute the (embedded) vectors yi, i P t1, . . . , nu best recon-
structed by the weights wij , minimising the quadratic form

ΦpY :“ ry1, . . . , ynsq :“
n
ÿ

i“1

›

›

›

›

›

yi ´
ÿ

jPNi

wijyj

›

›

›

›

›

2

Remark 1.2.1 (Symmetries in the LLE objective function)
For any data point, the minima of RpW q are invariant to rotations,
rescalings and translations of the data point and its neighbours. The
reconstruction weights thus characterise intrinsic geometric properties of
each neighbourhood independent of the frame of reference. ♢

3

1.2 LLE

Proof. (HA 1-1(a)) 1 Replacing all xi by axi for a ą 0, we have

n
ÿ

i“1

›

›

›

›

αxi ´
ÿ

jPNi

wijαxj

›

›

›

›

2

“ α2
n
ÿ

i“1

›

›

›

›

xi ´
ÿ

jPNi

wijxj

›

›

›

›

2

.

Thus RpW q and its transformed version only differ by a constant.
Hence their minimisers coincide.

2 Replacing all xi by xi ` v for v P Rn, we have
›

›

›

›

xi ` v ´
ÿ

jPNi

wijpxj ` vq

›

›

›

›

2

“

›

›

›

›

xi ` v ´
ÿ

jPNi

wijxj ´ v
ÿ

j

wij

loomoon

“1 @i

›

›

›

›

2

“

›

›

›

›

xi ´
ÿ

jPNi

wijxj

›

›

›

›

2

,

highlighting the importance of (2).

3 As the euclidean norm is invariant under orthogonal transforma-
tions, replacing all xi by Uxi, where U P Rnˆn is an orthogonal
matrix, yields

n
ÿ

i“1

›

›

›

›

Uxi ´
ÿ

jPNi

wijUxj

›

›

›

›

2

“

n
ÿ

i“1

›

›

›

›

U

ˆ

xi ´
ÿ

jPNi

wijxj

˙
›

›

›

›

2

“

n
ÿ

i“1

›

›

›

›

xi ´
ÿ

jPNi

wijxj

›

›

›

›

2

. l

Remark 1.2.2 (Step 2 is local, step 3 is global)
The reconstruction weights wij for each data point xi are computed from
its local neighbourhood and are thus independent of the weights for other
data points. However, the embedding coordinates yi are computed by an
n ˆ n eigensolver, coupling all data points. This is how the algorithm
leverages overlapping local information to discover global structure. ♢

Step 2 of LLE

We can find the minima of Rpwq by using Lagrange multipliers. As
the summands are independent of each other (cf. the remark above), the
objective function can be decomposed as a sum of as many subobjectives
as there are data points: we can rewrite (1) as

RpW q “

n
ÿ

i“1

Ripxi, wiq,

i.e. Ripxi, wiq :“
›

›

›
xi ´

ř

jPNi
wijxj

›

›

›

2

, where wi :“ pwjqjPNi
.

(HA 1-1 (b)) As we only need to look at one summand, we can, for
convinience of notation assume that x :“ xi has K neighbours:

Ripxi, wiq :“ Rpwq :“

›

›

›

›

›

x´

K
ÿ

j“1

wjηj

›

›

›

›

›

2

,

where η :“ pη1, . . . , ηKqT P RKˆn contains the K nearest neighbours of x
and w :“ pwjqKj“1 :“ pwi,jqjPNi

is subject to wT 1 “ 1.

4

1.2 LLE

We then have
›

›

›

›

›

x´

K
ÿ

j“1

wjηj

›

›

›

›

›

2

“
›

›x1T w ´ ηTw
›

›

2
“
›

›px1T ´ηTqw
›

›

2

“ wTp1xT ´ ηqpx1T ´ηTqw “ wTCw

for C :“
`

1xT ´ η
˘T `

1xT ´ η
˘

. To find an analytic form of the minimum
w we define the Lagrangian

Lpw, λq :“ wTCw ´ λpwT 1´1q,

whose partial derivatives are (as C is symmetric)

BLpw, λq

Bw
“ 2Cw ´ λ1 and

BLpw, λq

Bλ
“ 1 ´ wT 1 . (3)

Setting the first equation to zero leads to 2wC “ λ1 and thus w “

1
2λC

´1 1. Hence we have

1
!

“ wT 1 “
λ

2
pC´1 1qT 1 “

λ

2
1T C´t 1 “

λ

2
1T C´1 1,

which yields

λ “
2

1T C´1 1
,

implying

w “
λ

2
C´1 1 “

C´1 1

1T C´1 1
.

As C is positive definite and the linear constraints are convex, this is
indeed a minimiser.

Remark 1.2.3 If the covariance matrix C is (nearly) singular, one can
instead consider C ` ∆

K IK , where we choose 0 ă ∆ ! TrpCq. ♢

Remark 1.2.4 (HA 1-1(c)) The optimal w can also be found by solv-
ing Cw “ 1 and then rescaling w such that wT1 “ 1, which can be compu-
tationally faster: If w “ C´1 1, then 1 “ wT 1 “ pC´1 1qT 1 “ 1TC´T 1

and thus w “ C´1w
1TC´T 1

. ♢

Step 3 of LLE

We want to find the matrix Y :“ ry1, . . . , ynsT P Rnˆp which minimises
ΦpY q. Let wi :“ pwijqnj“1

T, where wij “ 0 if j R Ni, as we adapt to
global optimisation here, cf. the remark 1.2.2. We can then write

ΦpY q “

n
ÿ

i“1

›

›yi ´ Y Twi

›

›

2
“

n
ÿ

i“1

`

yTi yi ´ wT
i Y yi ´ yTi Y

T ` wT
i Y Y

Twi

˘

.

Each summand is a quadratic form
řn

i“1 a
T
iMbi. Recall that for A “

ra1, . . . , ansT and B similarly we have
řn

i“1 a
T
iMbi “ TrrAMBTs.

Letting W :“ rw1, . . . , wnsT this implies

ΦpY q “ Tr
`

Y Y T ´WY Y T ´ Y Y TWT `WY Y TWT
˘

“ Tr
`

pY ´WY qpY T ´ Y TWTq
˘

“ Tr
`

pIn ´W qY Y TpIn ´W qT
˘

,

5

1.2 LLE

as the trace is invariant under cyclic permutations. We conclude

ΦpY q “ Tr
`

Y TpIn ´W qTpIn ´W qY
˘

“: Tr
`

Y TMY
˘

“

p
ÿ

k“1

Y T
k MYk,

where M :“ pIn ´W qTpIn ´W q Yk is the k-th column of Y .

We can assume that Yk form an orthonormal basis, i.e Y T
i Yj “ δij .

WHYYYY?

We have 1Tn Yj “ 0: as wT 1 “ 1 we have pIn ´ W q1 “ 1´1 “ 0.
Therefore we can subtract any number from the vector Yj . If we choose
this number a to be the mean of Yj , we obtain

pIn ´W qpYj ´ a1q “ pIn ´W qYj ´ 0.

Thus the solution consists of the p eigenvectors om M orthogonal to 1
corresponding to the smallest eigenvalues. WHYYYY? The columns of
Y are these eigenvectors and the new locations (in p dimensions) are the
corresponding rows yT1 , . . . , yTn of Y .

Remark 1.2.5 (Complexity of LLE)
The complexity of step 1 is Opdn2q (but can be reduced to Opn logpnqq

with kd-trees), the complexity of step 2 is Opdnk3q and of step 3 is
Opdn2q (but methods from sparse eigenproblems can reduce it further).♢

Remark 1.2.6 (LLE from pairwise distances)
LLE can be applied to user input in the form of pairwise distances. In this
case, nearest neighbours are identified by the smallest nonzero elements
of each row of the distance matrix.

To derive the reconstruction weights for each data point, we need to
compute the local covariance matrix C between its nearest neighbours
given by

cjk “
Dj `Dk ´Djk ´D0

2
,

where Djk denotes the squared distance between the j-th and k-th
neighbours Dj :“

ř

zDjz and D0 :“
ř

jkDjk. (SO cjk ď 0???) ♢

Remark 1.2.7 (Kernel view of LLE) Coordinates of the eigenvec-
tors 2, . . . , p` 1 provide the LLE embedding [HLMS04].

LLE can be viewed as a certain instance of kernel PCA, with a kernel
K :“ λmaxI ´M , where M :“ pI ´W qpI ´W qT is learned from the data:
the i-th row of W contains the linear coefficients that sum to unity and
optimally reconstruct xi from its p nearest neighbours. ♢

Remark 1.2.8 (Limitations of LLE)
LLE

• is sensitive to noise

• is sensitive to non-uniform sampling of the manifold (common
limitation).

• does not provide an explicit mapping, though one can be learned
in a supervised fashion from the pairs pxi, yiq.

• has quadratic complexity on the training size (cf. remark 1.2.5).

6

1.2 LLE

• isn’t a robust method to compute the intrinsic dimensionality
(unlike ISOMAP).

• doesn’t have robust method to define the neighbourhood size K
(meta parameter). If K is chosen badly, the embedding suffers. ♢

Example 1.2.9 (Applications of LLE)
The 961 images all consists of a picture of face, which is translated over
a noisy background. Such images lie on an intrinsically two dimensional
manifold but have an extrinsic dimensionality equal to the number of
pixels in each image (3009). Here different lip expressions are embed-

Fig. 9: The top image is the PCA projec-
tion, which does not show any structure
of the data. The lower image is the LLE
projection (with four neighbours), where
images with the face at the margin are on
the boundary of the two-dimensional man-
ifold and images with the picture in the
center are in the center. [RS00]

ded into a two dimensional manifold with LLE (24 neighbours). It is
meaningful, as one can clearly see a path of changing expressions.

Fig. 10: LLE can also be applied to text. [RS00]

1 import numpy as np
2 from matplotlib import pyplot as plt
3 import sklearn ,sklearn.datasets
4

5 import numpy.linalg
6

7 def LLE(X,k):
8 N = len(X)
9 W = np.zeros([N,N])

10

11 for i in range(N):
12 x = X[i] #

extract current data point
13

14 # step 1
15 dist = ((x - X)**2).sum(axis = 1)**.5 #

euclidean distance , dist.shape = (1000 ,)
16 dist[i] = float(’inf’) # a

point is not its own neighbour

7

1.2 LLE

17 ind = dist < sorted(dist)[k] #
boolean array

18

19 # step 2
20 diff = x - X[ind]
21 C = np.dot(diff , diff.T) #

local covariance matrix
22

23 # step 3 (see HA 1-2 (c))
24 C_stable = C + 0.05* np.identity(k) # to

guarantee that C is invertible
25 w = np.linalg.solve(C_stable , np.ones(k))
26 w = w / w.sum() #

rescale w such that w.sum() = 1
27 W[i,ind] = w #

fill weight matrix W
28

29 M = np.identity(N) - W - W.T + np.dot(W.T,W) # M =
(I_N - W)’ (I_n - W)

30 E = np.linalg.svd(M)[0][: ,-3:-1]
31

32 return E
33

34 X,T = sklearn.datasets.make_swiss_roll(n_samples =1000 , noise
=0.25) # X.shape = (1000 , 3), T.shape = (1000,).

35 plt.figure(figsize =(10 ,10))
36 ax = plt.gca(projection=’3d’)
37 ax.view_init(elev =10., azim =105)
38 ax.scatter(X[:,0],X[:,1],X[:,2],c=T)
39 plt.show()
40

41 f = plt.figure(figsize =(12 ,3))
42 for t,(k,noise) in enumerate ([(2 ,0.1) ,(10 ,0.1) ,(25 ,0.1)

,(10,1)]):
43 X,T = sklearn.datasets.make_swiss_roll(n_samples =1000 ,

noise=noise)
44 embedding = LLE(X,k=k)
45 ax = f.add_subplot (1,4,t+1)
46 ax.set_title(’k=%d, noise =%.1f’%(k,noise))
47 ax.set_xticks ([])
48 ax.set_yticks ([])
49 ax.scatter(embedding [:,0], embedding [:,1],c=T)

Fig. 11: A uniform sampling of a swiss role.

Fig. 12: For ten neighbours, the embedding is good. If the noise is
too high, even with the "right" number of neighbours or way more, the
embedding fails. (The quality of the embedding increases for a higher
number of samples.)

8

1.3 Multidimensional Scaling (MDS) and IsoMap

1.3 Multidimensional Scaling (MDS) and
IsoMap

We have seen that PCA is a popular (global linear) method of dimension-
ality reduction, which finds the directions that have the most variance
in the data set by representing where each data point is located along
theses axes, in order to minimise the reconstruction error.

A similar, related concept is MDS, which arranges the low-dimensional
data points so as to minimise the discrepancy between the pairwise
distance in the original space and the pairwise distances in the lower
dimensional space (i.e. preserving distances in the lower dimensional
space).

A variant of MDS is Metric MDS Metric MDS(MMDS), which minimises
ÿ

iăj

p}xi ´ xj}22 ´ }yi ´ yj}22q2, (4)

where xi and xj are data points in the original space and yi and yj the
embedded points, by gradient descent.

This looks similar to PCA, where the projections minimise the squared
error. Furthermore, one can show that the "subspace reconstruction
error" (ODER SO) is minimised. If the data points lie on a hyperplane,
their pairwise distances are perfectly preserved by projecting the high-
dimensional coordinates onto the hyperplane. In this particular case,
PCA is the correct solution. If we double-center the data (row and
column means are zero) MMDS is equivalent to PCA (WHYYY?), so
we don’t have to rely on iterative gradient descent but can explicitly find
the solution.

The following non-linear extension of the simple cost function (4), which
puts more importance on the small distances, is used in a MDS method
called Sammon mapping Sammon mapping:

Fig. 13: The original data set contains three
mutually perpendicular circles in six dimen-
sional space, meeting at one points. The
PCA projection (left) does not preserve the
structure of the data, the circles are not vis-
ible. The Sammon mapping preserves the
topological structure: while the circles be-
come distorted, there are still three closed
loops meeting at a single point.

ÿ

ij

ˆ

}xi ´ xj} ´ }yi ´ yj}

}xi ´ xj}

˙2

.

It puts too much emphasis on getting very small distances exactly right
and thus produces embeddings that are circular with roughly uniform
density of the map points.

IsoMap IsoMapis a popular technique which, instead of modelling local distances,
measures the distances across the manifold and then models these intrinsic
distances. The main problem is to find a robust way of measuring

Fig. 14: If we measure distances along the
manifold, dp1, 6q ą dp1, 4q.

distances along the manifold. If we have all true distances, then we can
apply global MDS (i.e PCA) and we are done. IsoMap provides us with
a tool to construct these distances. In contrast, LLE only considers local
neighbourhoods, which is not appropriate for the data set in Fig. 14.

IsoMap’s method is similar; it connects each data point to its K near-
est neighbours in the original space. Assuming the manifold is locally
euclidean, it puts the true euclidean distance on each of these links. It

9

1.4 Stochastic neighbouring embedding

then approximates the manifold distance between any pair of points as
the shortest path in this "neighbourhood graph".

Fig. 15: A neighbourhood graph.

The IsoMap approach allows to interpolate between the left- and rightmost
images in each row. If one would only take euclidean distance (such as
between 1 and 6 in the above figure) this would not work, because this
corresponds to averaging the left and rightmost picture, not taking into
account the manifold structure.

Fig. 16: Linear methods cannot interpolate properly between the leftmost
and rightmost images in each row, because the middle images are not
averages of the outer ones.

IsoMap does not interpolate properly either because it can only use
examples from the training set. It cannot create new images, but it is
better than linear methods: when the training set is dense enough, the
interpolations look good.

1.4 Stochastic neighbouring embedding
This is a stochastic method, which represents the similarities between
neighbours as a (e.g. Gaussian) distribution:

Fig. 17: What does this picture mean?

pij :“
exp

´

´
}xi´xj}

2

2σ2

¯

ř

k‰ℓ exp
´

´
}xk´xℓ}2

2σ2

¯ .

The density will be larger when the points are closer than when they are
far away. The idea is that one selects neighbours stochastically; starting
from an xi one selects a neighbours xj by using the density. This is called
stochastic neighbour selection stochastic neighbour selection.

10

1.4 Stochastic neighbouring embedding

We can do the same in the embedded space:

qij :“
exp

`

´}yi ´ yj}2
˘

ř

k‰ℓ exp p´}yk ´ yℓ}2q
.

Here we can intrinsically select the variance in the embedded space,
whereas we can impose it in the original space. The objective to minimise
is the KL divergence:

C :“ KLpP }Qq “
ÿ

ij

pij log

ˆ

pij
qij

˙

,

which is a measure of matching between two distributions, subject to

N
ÿ

i,j“1

pij “

N
ÿ

i,j“1

qij “ 1.

We want to match the distribution in the original space and the one
created in the mapped space.

Specifically, the algorithm minimises q, which itself is a function of the
coordinates in the embedded space, by gradient descent. We have

BC

Bqij
“

B

Bqij

N
ÿ

i,j“1

ppij log ppijq ´ pij logpqijqq “
B

Bqij
´pij logpqijq “ ´

pij
qij
.

When the probability matrix q is reparametrised with the softargmax
function, i.e.

qij “
ezij

řN
k,ℓ“1 e

zkℓ

,

the variables zij can be interpreted as unnormalised log-probabilities. We
have

BC

Bzij
“

B

Bzij

N
ÿ

i,j“1

˜

pij log ppijq ´ pij

˜

zij ´ log

˜

N
ÿ

k,ℓ“1

ezkℓ

¸¸¸

“
B

Bzij

N
ÿ

i,j“1

´pijzij ´

˜

N
ÿ

i,j“1

pij

¸

looooomooooon

“1

log

˜

N
ÿ

k,ℓ“1

ezkℓ

¸

“ ´pij `
B

Bzij
log

˜

N
ÿ

k,ℓ“1

ezkℓ

¸

“
ezij

řN
k,ℓ“1 e

zkℓ

´ pij “ qij ´ pij .

In gradient descent, the update will be

qij Ð qij ´γ
BC

Bqij
“ qij `γ

pij
qij

or zij Ð zij ´γ
BC

Bzij
“ zij ´γpqij ´pijq

for some meta parameter γ. For the first variant we notice that if qij Ñ 0,
the gradient is unbounded and unstable, whereas the second choice is
bounded and stable.

In order for to maintain a valid probability distribution, we require qij ě 0

and
řN

i,j“1 qij “ 1. These properties might not be satisfied after some
updates, whereas the zij can be any real numbers, so no constraints can
be violated.

11

1.4 Stochastic neighbouring embedding

If the scores zij are reparametrised as zij :“ ´}yi ´ yj}2, where the
coordinates yi, yj P Rh of the embedded data points appear explicitly, we
have (as zij “ zji) by the chain rule

BC

Byi
“

N
ÿ

j“1

BC

zij

Bzij
Byi

`
BC

zji

Bzji
Byi

“ 2
N
ÿ

j“1

BC

zij

Bzi,j
Byi

“ 2
ÿ

j“1

p´pij ` qijqp´2qpyi ´ yjq “ 4
N
ÿ

j“1

ppij ´ qijqpyi ´ yjq.

In the paper they instead define

pj|i :“

exp

ˆ

´
}xi´xj}2

2σ2

˙

ř

k‰i exp
´

´
}xk´xi}2

2σ2

¯
,

qj|i similarly and thus work with

C “
ÿ

i

KLpPi}Qiq “
ÿ

ij

pj|i log

˜

pj|i

qj|i

¸

, (5)

BC

Byi

“ 2
ÿ

j

ppj|i ´ qj|i ` pi|j ´ qi|jqpyi ´ yjq.

Y
ptq

“ Y
pt´1q

` η
BC

BY
` αptq

´

Y
pt´1q

´ Y
pt´2q

¯

,

where η is the learning rate and α the momentum (??) at iteration t. Physically, the

gradient may be interpreted as the resultant force created by a set of springs between the

map point yi and all other map points yj . All springs exert a force along the direction

yi ´ yj . The spring between yi and yj repels or attracts the map points depending on

whether the distance between the two in the map is too small or too large to represent the

similarities between the two high-dimensional data points. The force exerted by the spring

between yi and yj is proportional to its length and also proportional to its stiffness, which

is the mismatch pj|i ´ qj|i ` pi|j ´ qi|j between the pairwise similarities of the data points

and the map points [MH08].

Remark 1.4.1 (Crowding problem) This approach has a fundamen-
tal problem, which stems from the fact that we map points from a higher
dimensional space to a lower dimensional space. Suppose we want to map
our data from a ten dimensional space to a two dimensional space. By
preserving this local structure, the dissimilar points, which are not close
but not far away, have to be modelled as too far away apart in the map.
This is because the Gaussian distribution decays very quickly. Using

Fig. 18: In contrast to the Gaussian distri-
bution, the student t distribution doesn’t
decay as fast, it is heavy-tailed. Thus

instead using qij :“
p1`}yi´yj}2q´1

ř

k‰ℓp1`}yk´yℓ}2q´1

eliminates the crowding problem, as dissim-
ilar objected are allowed to be modelled
too far apart.

SNE with the student’s t-distribution is called t-SNE t-SNE.

In a ten dimensional space, one can fit eleven points equidistantly, which
is not possible in a two dimensional space. In the words of van der Maaten: the
area of the two dimensional map that is available to accommodate moderately distant data
points will not be nearly large enough compared with the area available to accommodate
nearby data points. Hence, if we want to model the small distances accurately in the map,
most of the points that are at a moderate distance from data point i will have to be placed
much too far away in the two-dimensional map. [MH08, sec 3.2, p. 2854-2855] ♢

12

1.5 Analysing non-euclidean pairwise data

Fig. 19: [MH08, p. 2587]

Example 1.4.2 (t-SNE on MNIST)
The MNIST data set consists of 70000 images of handwritten digits (ergo
ten classes). LLE also does not preform well, whilst t-SNE works well.

Fig. 20: PCA does not work well on
MNIST.

Fig. 21: [MH08, p. 2590 - 2591]

1.5 Analysing non-euclidean pairwise data
Often, the euclidean approach taken in the previous subsection is not
possible. In many areas, pairwise data occur and one can compute
(dis)similarities but the setting might be non-euclidean or even non-
metric. Examples are genomics, text mining, cognitive psychology, social
sciences and many more. When you ask people to rate similarity, these

13

1.5 Analysing non-euclidean pairwise data

ratings might not be transitive: If x is more similar to y and y is more
similar to z, not necessarily, x is similar to z.

Fig. 22: Pairwise data can be represented
as undirected graphs, as tables ("matrices")
or a checkerboard patterns.

In some cases, we have a metric on the dissimilarity matrix D. If it is
euclidean, we are lucky. If not, we can still apply MDS, but sometimes
the data is even non-metric. It then cannot be represented isometrically
as vectors, even in high dimensions.

Definition 1.5.1 (Dissimilarity matrix)
A dissimilarity matrix D “ pdi,jq is metric if dij ě 0 and dij “ dji hold
for all i, j, dii “ 0 holds for all i and dij ď dik ` djk holds for all i, j, k.

The matrixD is squared Euclidean if there exists vectors x1, . . . , xn P Rp

such that dij “ }xi ´ xj}22.

Metric violations translate into indefinite pseudo-covariance matrices.
We get problems with applying our standard algorithms here. From D

compute C :“ ´ 1
2QDQ, which has p positive and q negative eigenvalues.

We kind of double the dimensionality and have a positive and negative
part and thus extend the space. In the one part, the vector products
are positive and in the other they are negative (can be thought of like
extending real numbers by imaginary numbers: for a P R, a2 ě 0, which
is not the case for a P C zR).

If the metric properties are not fulfilled, one can incorporate the data
into this constructed pseudo-metric space.

14

1.5 Analysing non-euclidean pairwise data

Fig. 23: The data consists of apples with different color and size. Assume
we have some pairwise comparisons (e.g. ratings or similarities). If
those similarities are conflicting (there is not just one trend; e.g. people
generally prefer large over small apples, but for red apples, it is different),
so one cannot map into one metric space. To achieve an embedding on
this data, one can create two separate spaces, where in one we have the
positive parts / eigenvalues, i.e. the scalar product is positive (see graph
in the center left). In the first space, the size is the clear component,
whereas in the second one, it is color. [LM04]

Example 1.5.2 (Handwritten digits)
The data consists of handwritten digits zero and seven, which either have
a bold or a thin stroke. The similarity matrix is obtained from binary
image matching (srs “ a

minpa`b,a`cq
) on the digits zero and seven.

Fig. 24: Projection onto the positive and projection onto the negative
eigenspaces yield results different in nature. In the upper left corner, the
eigenvalue spectrum are plotted. [LM04]

15

1.5 Analysing non-euclidean pairwise data

We are also interested in using this technique for text, where one can
construct similarity measures, where metric violations occur also. By
extending these spaces to pseudo-euclidean spaces, one can deal with
conflicting non-metric similarity ratings.

Remark 1.5.3 (The current paradigm is incomplete [LM04])
Metric violations can carry relevant information but a complete data
exploratory research must specifically study this information. ♢

Remark 1.5.4 (Limitations of metric spaces)
Metric spaces cannot model intransitive similarities nor objects with high
centrality nor asymmetric similarities. Lead Tversky (among others) thus
rejected MDS as a model for semantic representation. ♢

Fig. 25: [VdMH12]

Example 1.5.5 (NIPS authors)
When modelling NIPS (a journal) authors (removing co-authors and
authors with only one paper), pj|i is the probability that j is the author
of a paper of which i is an author. These similarities are likely to be
intransitive and asymmetric. ˛

Example 1.5.6 (Multiple Maps t-SNE)
Multiple Maps t-SNE Multiple Maps t-SNEcircumvents these limitations by construction
multiple maps instead of a single one, where each object has a point and
a weight in all maps such that the weights across all maps sum up to one
for each object.

As input, it takes the ppj|iqi,j and the similarity between i and j under the model is
given by

qj|i “

ř

m π
pmq

i π
pmq

j

´

1 ` }y
pmq

i ´ π
pmq

j }2
¯´1

ř

m1

ř

i‰k π
pm1q

i π
pm1q

j

´

1 ` }y
pm1q

i ´ π
pm1q

j }2
¯´1

and we minimise the same objective function as in (5). [VdMH12] ˛

[Missing: Application of t-SNE in our Research, slides 54-62]

16

2 Component Analysis

2.1 Canonical Correlation Analysis (CCA)
04.05.2020In contrast to the previous methods, CCA extracts interesting components

from the data, which is different from dimensionality reduction.

Setup. Assume that the measurements are linear superpositions of
underlying factors (e.g. sources in EEG / MEG context):

xptq “ Asptq ` ε,

where neither A nor the source s are known and ε is noise.

If we put some assumptions on A or s, we are able to factorise and invert
the measured signal back to the source s, i.e. sptq “ A´1pxptq´εq. There
is a huge variety of methods employing different assumptions: PCA,
CCA, ICA, JADE, TDSEP, SOBI, NGCA, CSP, SPOC, SSA, SCSA,
MVARICA, CICAAR and more.

In CCA we assume there is a latent variable Z, which is hidden, and
has an impact on variables X P RM and Y P RN , which we can measure.
How can we determine Z from X and Y , i.e. which representation of X
and Y best represents Z? In CCA one aims to find the representation
that maximises the correlation between X and Y .

Concretely, CCA finds projections wx P RM and wy P RN such that
which solve [HOT36]

argmax
wx,wy

wT
xXY

Twy such that wT
xXX

Twx “ wT
yY Y

Twy “ 1

Example 2.1.1 (CCA with cars)
Suppose the latent variable Z represents car types and the measurements
X are displacement, horsepower and weights, whereas Y is acceleration
and miles / gallon.

To analyse the data, we can look at the individual correlations between
the variables (figure on the right). ˛

Fig. 26: Some variables are highly corre-
lated, but it is impractical to have to look at
all 20 correlation plots to learn something
about the data.

Assuming centered data, i.e.
ř

i xi “
ř

i yi “ 0, we can compute the
empirical cross-covariance matrices empirical cross-covariance matricesCxy “ 1

NXY
T and auto-covariance

matrices Cxx :“ 1
NXX

T.

The Lagrangian is

Lpwx, wy, a, bq :“ wT
xCxywy ´

1

2
apwT

xCxxwx ´ 1q ´
1

2
bpwT

yCyywy ´ 1q,

whose partial derivatives are

BL

BwT
x

“ Cxywy ´aCxxwx,
BL

BwT
y

“ CT
xywx ´bCyywy “ Cyxwx ´bCyywy.

Setting the partial derivative and multiplying with wT
x and wT

y , respec-
tively, yields

wT
xCxywy “ awT

xCxxwx and wT
yCyxwx “ bwT

yCyywy

17

2.1 Canonical Correlation Analysis (CCA)

From the auto-covariance constraints 1 “ wT
xCxxwx “ wT

yCyywy we
obtain a “ b, as wT

yCyxwx “ wT
xCxywy by transposition.

Thus the Lagrangian becomes

Lpwx, wy, aq :“ wT
xCxywy ´

a

2

`

wT
xCxxwx ´ wT

yCyywy

˘

,

and setting its partial derivatives to zero yields Cyxwx “ aCyywy and
Cxywy “ aCxxwx, which we can write as

«

0 Cxy

Cyx 0

ff«

wx

wy

ff

“ a

«

Cxx 0

0 Cyy

ff«

wx

wy

ff

, (6)

which is a generalised eigenvalue equation.

Among all eigenvectors pwx, wyq, the solution of this problem is the
one associated with the largest eigenvalue, which can be seen as follows
(HA2-1a): Let pw

piq
x , w

piq
y q by the eigenvectors and λpiq the corresponding

eigenvalues. Multiplying the equation
«

0 Cxy

Cyx 0

ff«

w
piq
x

w
piq
y

ff

“ λpiq

«

Cxx 0

0 Cyy

ff«

w
piq
x

w
piq
y

ff

by rw
piq
x , w

piq
y sT on both sides yields

wpiq
x

T
Cxyw

piq
y ` wT

yCyxw
piq
x “ λpwpiq

x

T
Cxxwxpiq ` wpiq

y

T
Cyyw

piq
y q

The LHS is equal to 2w
piq
x

TCxyw
piq
y by transposition and the RHS is equal

to 2λpiq due to the auto-covariance constraints, so the previous formula
reads

wpiq
x

T
Cxyw

piq
y “ λ,

whose LHS is the quantity which CCA maximises. Thus

max
w

piq
x ,w

piq
y

wpiq
x

T
Cxyw

piq
y “ max

i
λpiq.

But λî, where î is the minimiser of the above problem, is the largest
eigenvalue.

Furthermore (HA2-1b), pwx, wyq is a solution of CCA if and only if
p´wx,´wyq is a solution: p´wxqTCxyp´wyq “ wT

xCxywy and similarly
for the auto-covariance constraints.

Example 2.1.2 (Cars - continued)
In the above example, we find wx “ r0.0025, 0.0202,´0.000025sT and
wy “ r´0.17,´0.092sT, yielding the projection on the right. After CCA,

Fig. 27: todo

we have the components and can also look at other components, e.g.
take the second component of each filter and project it to the second
component (cf. figure on the right). ˛

Fig. 28: todo

Remark 2.1.3 (History)
CCA is a fairly old basic well-known method, but there are several
extensions to it. One old extension is CCA with more than two variables
[Kettenring, 1971]. A more recent idea is kernel CCA (kCCA) [Akaho
2001], which also finds non-linear decencies and its applicable to high-
dimensional data.

Recently, CCA become popular in machine learning as an objective
function for kernel ICA [Bach 2002] and in Neuroscience. ♢

18

2.1 Canonical Correlation Analysis (CCA)

Example 2.1.4 (Improvement of standard CCA: kCCA) In cer-
tain scenarios, covariance matrices are too large to compute (e.g. bag-
of-words feature space, which is potentially infinite dimensional). Also,
CCA cannot capture non-linear dependencies. Kernel CCA operates on
kernel of the data and not on covariance matrices and is thus faster and
can also capture non-linear dependencies. ˛

Example 2.1.5 (Bag-of-words feature representation)
A popular representation in text processing is Bag-of-words feature
representation, where a word from a certain document is represented by
counting the number of occurrences of the word. ˛

Fig. 29: Bag-of-words feature representa-
tion

If one uses kCCA, the kernel matrices, whose dimension is N ˆN , where
N is the number of data points. In standard CCA, the covariance matrices
have dimension dˆ d, where d is the dimension of the space.

For kCCA one can use the same intuition as for kPCA: any solution
found by CCA has to lie in the subspace spanned by the data points.

Concretely, we show that there exists coefficient vectors ax, aY P RN

such that wx “ Xax and wy “ Y ay (HA 2-2).

Proof. Towards contradiction, assume that wx “ sx ` nx, where sx “

Xax and nx is noise term orthogonal to the data X and similarly for wy.
The CCA objective function then becomes

psx ` nxqTCxypsy ` nyq “ sTxCxysy ` sTxCxyny ` nTxCxysy ` nTxCxyny.

As nx K X, we have nxCxy “ 1
N nxXY

T “ 0 and, similarly, Cxyny “

XY Tny “ 0, so the above term reduces to sxCxysy.

One similarly handles the auto-covariance constraints. l

This leads to the dual form of CCA: By using the dual variables ax, ay
in (6), we obtain

«

0 Cxy

Cyx 0

ff«

Xax

Y ay

ff

“ a

«

Cxx 0

0 Cyy

ff«

Xax

Y ay

ff

,

which is equivalent to
«

0 XY TY

Y XTX 0

ff«

ax

ay

ff

“ a

«

XXTX 0

0 Y Y TY

ff«

ax

ay

ff

.

Multiplying both sides by diagpXT, Y Tq yields
«

0 XTXY TY

Y TY XTX 0

ff«

ax

ay

ff

“ a

«

XTXXTX 0

0 Y TY Y TY

ff«

ax

ay

ff

,

which can be more compactly written as
«

0 AB

BA 0

ff«

ax

ay

ff

“ a

«

A2 0

0 B2

ff«

ax

ay

ff

,

with A :“ XTX and B :“ Y TY .

19

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model

2.1 Canonical Correlation Analysis (CCA)

As above, one can show that the solution of the dual objective is given
by the eigenvector associated with the largest eigenvalue: multiplying
both sides with rax, aysT yields

”

aTx aTy

ı

«

0 AB

BA 0

ff«

ax

ay

ff

“ a
”

aTx aTy

ı

«

A2 0

0 B2

ff«

ax

ay

ff

,

which is equivalent to

”

wT
x wT

y

ı

«

0 XY T

Y XT 0

ff«

wx

wy

ff

“ a
”

wT
x wT

y

ı

«

XXT 0

0 Y Y T

ff«

wx

wy

ff

.

The solution of the primal problem can be recovered via rwx, wysT “

rXax, Y aysT.

A sufficient representation of this subspace can be obtained by the inner
products of all data points (linear kernels): Kx :“ XTX, Ky :“ Y TY .
The solution of CCA in the kernel space is obtained by solving the
generalised eigenvalue problem

«

0 KxKy

KyKx 0

ff«

ax

ay

ff

“ ρ

«

K2
x 0

0 K2
y

ff«

ax

ay

ff

.

The solutions in the input space can be recovered by wx “ Xax and
wy “ Y ay.

The following code implements primal and dual CCA for low and high
dimensional data, respectively.

1 import numpy as np
2 import matplotlib
3 from matplotlib import pyplot as plt
4 import utils
5 from scipy.linalg import eigh
6

7

8

9 def CCAprimal(X,Y):
10 N = len(X) # len(X) = X.shape [0]
11

12 Xc = X - X.mean(axis = 0) # center data
13 Yc = Y - Y.mean(axis = 0)
14

15 Cxx = np.dot(Xc.T, Xc) / N
16 Cyy = np.dot(Yc.T, Yc) / N
17 Cxy = np.dot(Xc.T, Yc) / N
18 Cyx = Cxy.T
19

20 S = np.block ([[Cxx*0, Cxy], [Cyx , Cyy *0]])
21

22 D = np.block([[Cxx , Cxy*0], [Cyx*0, Cyy]])
23

24 vals , vecs = eigh(S, D) # generalised
eigendecomposition

25

26 vec = vecs[:,np.argmax(vals)] #sort by eigenvalues
27

28 wx = vec[:X.shape [1]]
29 wy = vec[X.shape [1]:]
30

20

2.1 Canonical Correlation Analysis (CCA)

31 return wx, wy
32

33 X, Y = utils.getdata ()
34 p1, p2 = utils.plotdata(X,Y)
35

36 wx, wy = CCAprimal(X,Y)
37

38 p1,p2 = utils.plotdata(X,Y)
39 p1.arrow(0, 0, 1 * wx[0], 1 * wx[1], color = ’r’, width =

0.1)
40 p2.arrow(0, 0, 1 * wy[0], 1 * wy[1], color = ’r’, width =

0.1)
41 plt.show()
42

43 plt.figure(figsize =(6,2))
44 plt.plot(np.dot(X,wx))
45 plt.plot(np.dot(Y,wy))
46 plt.show()
47

48 ### Dual formulation for higher dimensional data
49

50 def CCAdual(X,Y):
51 N = len(X)
52

53 X -= X.mean(axis = 0)
54 Y -= Y.mean(axis = 0)
55

56 Kx = np.dot(X, X.T)
57 Ky = np.dot(Y, Y.T)
58

59 Z = np.zeros((N, N))
60 S = np.block([
61 [Z, Kx.dot(Ky)],
62 [Ky.dot(Kx), Z],
63])
64 D = np.block([
65 [Kx.dot(Kx), Z],
66 [Z, Ky.dot(Ky)],
67])
68 D = D + 0.001*D.std()*np.eye(len(D)) # to guarantee

invertibility
69

70 vals , vecs = eigh(S, D)
71

72 vec = vecs[:,np.argmax(vals)]
73

74 ax = vec[:N]
75 ay = vec[N:]
76

77 wx = X.T.dot(ax)
78 wy = Y.T.dot(ay)
79

80 return wx, wy
81

82 X,Y = utils.getHDdata ()
83 wx,wy = CCAdual(X[:100] ,Y[:100])
84

85 utils.plotHDdata(wx,wy)
86 plt.show()
87

88 plt.figure(figsize =(6,2))

21

2.1 Canonical Correlation Analysis (CCA)

89 plt.plot(np.dot(X[100:] ,wx))
90 plt.plot(np.dot(Y[100:] ,wy))
91 plt.show()

Fig. 30: TODO!

Example 2.1.6 (Common semantic content extraction) One can
image Z as being a document which is translated into many languages
A, B and C. We aim to recover Z from A,B,C.

Visualising the principal directions, we can separate different categories.
˛

Fig. 31: First two canonical components
of the bag of words kernels for the English
(constitution) articles, as obtained by doing
CCA with the other languages. Articles
from different chapters are represented by
a different symbol. [BC04]

Remark 2.1.7 (CCA and least squares regression (HA 2-3))
Consider a supervised data set with centered inputs X P RDˆN and
centered targets y P RN . The least squares regression problem is

max
vPRd

}XTv ´ y}2.

If we now adopt a CCA viewpoint and view X and y P R1ˆN as the
two modalities of CCA, the first part of the solution wx, will be a
solution of least squares regression up to a scaling factor: the solution
of least squares regression is v “ pXXTq´1Xy, while the first line of
the CCA generalised eigenvalue equation can be written as Xywy “

λXXTwx, which is equivalent to wx “ pXXTq´1Xy
`wy

λ

˘

and wy

λ is a
scalar multiple. ♢

Example 2.1.8 (Temporal kernel CCA (tkCCA))
If variables are coupled with delay (e.g. time series are correlated, but
not simultaneously). To solve this, tkCCA shifts one variable relative to
the other and then maximises correlation for (a sum over) all relative
time lags. While (k)CCA finds canonical variates and correlation, tkCCA
finds canonical convolution and correlogram (a visual way to show serial
correlation in data that changes over time):

argmax
wxpτq,wy

Corr

˜

ÿ

τ

wxpτqTxpt´ τq, wT
yyptq

¸

.

With X̃ :“ rXτk sTk“1

T and w̃x :“ rwxpτkqsTk“1

T (and wy, Y similarly ??)
we can rewrite the previous equation as

argmax
wx̃,wy

Corr
´

wT
x̃X̃, w

T
yY

¯

. ˛

Example 2.1.9 (Applying tkCCA to Neurovascular coupling)
There are two different modes to measure activity of neurons, one is
EEG, which is a direct measurement of the electric activity and this
usually has a very high temporal resolution, i.e. one can immediately
measure the effects. In contrast, fMRI, which relies on the BOLD (blood
oxygenation level dependent) signal, measure the relative change in blood
oxygenation, i.e. the changes in metabolism in the brain (if cells are
more active, they need more oxygen). fMRI has a high spatial but a low
temporal resolution.

Fig. 32: From left to right: neurophysical
signal (?), spectogram of neural activity
(frequency dependent HRF (hemodynamic
response function, roughly measure blood
oxygenation) (?), ?, ?.If one wants to combine EEG and fMRI in order to correlate results

one can use tkCCA, as it allows to correlate data with delays. This

22

2.1 Canonical Correlation Analysis (CCA)

yields to high-dimensional data X and Y with different dimensions and
non-instantaneous couplings.

... some stuff (slides 25-29) ˛

Example 2.1.10 (Spatiotemporal dynamics of twitter replies)
[BPH`12] Web content is often copied, repeated or rephrased ("trends").
This temporal structure contains important information. Canonical trend
analysis exploits temporal structure to find trends and find web sources
that precede / follow trends.

Can we, from the content of a web source, predict its spatiotemporal
impact (how it will be retweeted, rephrased or copied and at what location)
on a social network? Not only the time dimension (publishing time of
a source) but also the location (where published and where retweeted)
is important. For each news site f P t1, . . . , F u we extract bag-of-words
features (for each news site, we have a BOW representation of the site at
the time point t0, xf pt “ t0q) Xf “ rxf pt “ 1q, . . . xf pt “ T qs P RWˆT

and the retweet locations Yf :“ ryf pt “ 1q, . . . , yf pt “ T qs P RLˆT , whose
values tell use e.g. how often a certain article has been retweeted.

[skipped slide 36, slide 37 not important] One downsamples geographic
information, which works better in practice. [slide 38 not important]

Fig. 33: Canonical trend model: We have
data X, which is the web source features
(bag of words of different web sources, e.g.
newspapers, news sites or twitter accounts)
and we have geographic features (retweet
frequencies at different locations). We want
to know the trend, which is a hidden vari-
able, which affects both the content and
the retweet frequency. We want to find a
mapping from X to Z and from Y to Z.

For text data (X), Z can be interpreted as a topic. If we combine different
words or dimensions in our BOW representation, this can be interpreted
as a topic. E.g. if the mapping vector wx combines the words "health
care" and "Covid19", we know what the document / tweet is about: the
Corona virus pandemic.

[Skipped slide 40 - 42]

We can now use a temporal embedding Ỹf :“ rpyf,τ“kqNk“1sT, where we
put all the temporal data into one vector (???), and apply standard CCA.
But this will not be very effective because of the high dimensionality of
Ỹf .

Applying a linear kernel trick we get wypτq “ Yf,τα, wx “ Xfβ, which
is very efficient for high-dimensional feature spaces. We maximise the
objective function in its dual form

Fig. 34: TODO???

Corrpx̃ptq, ỹptqq “

ř

τ pwypτqTYτ qTXwx
a

ř

τ pwypτqTYτY T
τ wypτqqwT

xXX
Twx

“
αTKỸKXβ

b

αTK2
Ỹ
αβTK2

Xβ
,

where KỸ :“ Ỹ TỸ and KX :“ XTX are linear kernels.

The dual coefficients are solution to generalised eigenvalue equation
«

0 KỸKx

KxKỸ 0

ff«

α

β

ff

“

«

KỸ ` Iκy 0

0 K2
X ` Iκx

ff«

α

β

ff

Missing: Slide 45 TODO

We have mean word counts and want to know if they predict mean tweet
frequency or the word count variance predicts the tweet variance.

23

2.1 Canonical Correlation Analysis (CCA)

Hypothesis Objective??
Canonical trends News content helps predict

retweet frequency
argmax
wypτq,wx

Corrpx̂f ptq, ŷf ptqq

Mean Mean word count predicts mean
tweet frequency best

wT
x “ 1

N 1x, wT
y “ 1

N 1y

PCA Word count variance predicts
tweet variance

argmax
wypτq

wypτqTỸf Ỹfwypτq, argmax
wx

wT
xXX

Twx

s.t. wypτqTwypτq “ wT
xwx “ 1.

Table 1: Todo!

Fig. 35: Canonical trends are better fit for
observations. [BPH`12]

Fig. 36: TODO First: . Second: Correlation in absolute numbers (??)
is much higher when applying CCA than when using PCA or the mean
solution. Third: Excerpts from LA Times spatiotemporal response. The
blue line of top is from California, which makes sense since this is an LA
newspaper, while the green is New York and red is Ontario. The y-axis
label should be wypτq. [BPH`12]

If we have a good model of the noise, we can further improve things.

[basically Skipped slide 51] ˛

Summary

24

2.2 Independent Component Analysis (ICA)

• CCA finds projections for two data sets that maximise their corre-
lation.

• kCCA extends CCA to potentially non-linear dependencies and
makes CCA applicable to high dimensional data.

• tkCCA extends kCCA to data with non-instantaneous correlations
and computes multivariate convolution from one modality to an-
other.

2.2 Independent Component Analysis (ICA)
11.05.2020Motivation: Blind source separation (BSS)

The problem ICA aims to solve can be modelled as a cocktail party prob-
lem: Assume you have multiple microphones (ears) and multiple speakers
such that some microphones will record a superposition of some sound
sources. One now wants to decompose / demix the superposed signal

Fig. 37: The blind source separation prob-
lem. [Source?]

to e.g single out one speaker with many people talking simultaneously.
This problem also appears in EEG and MEG and similar contexts.

To fix ideas, consider microphones xptq, which measures and unknown
mixture of unknown sources, i.e. xptq “ Asptq, where x and s have the
same dimension. Now assume statistical independence of the source
signals (thus the name of ICA), which is a valid assumption if e.g. the
sound sources differ (street noise, speech and music).

Our ansatz is to invert the mixing process A by learning W , given by
uptq “ Wxptq, and enforce the statistical independence of the unmixed
signals uptq.

Fig. 38: TODO????

The statistical independence of source translates to factorisation of the
joint density: ppuq “

śn
i“1 pipuiq. Thus (due to independence) higher

cross-moments vanish (??).

We want to minimise the distance between distributions (which ones?)

DpW q :“

ż

ppuq log

ˆ

ppuq
śn

k“1 pipuiq

˙

du

By Gram Chalier or Edgeworth expansion, one can expand pipuiq
and plug them into the above formula. After tedious but straight forward
calculation, we can find an explicit formula for DpW q.

TDSEP: BSS with temporal information

Another approach developed at TU Berlin assumes the same model xptq “

Asptq and uptq “ Wxptq but also that s has significant autocorrelation
(signal is correlated with signal at a previous point in time). In medical
contexts, this is a valid assumption, as one e.g. expects high temporal
correlation in EEG data.

Define the covariance matrices V :“ xxtx
T
t y and Vτ :“ xxtx

T
t´τ y over

time (@i ‰ jq??) and minimise

LpW q :“
ÿ

i‰j

xuiptqujptq y
2

`
ÿ

tτu

xuiptqujpt´ τq y
2
,

25

2.2 Independent Component Analysis (ICA)

(WHAT IS x ¨ y???)where the first term measures the covariance be-
tween the estimated sources i and j. To enforce independence (stronger
assumption that uncorrelatedness), the second term measures the co-
variance between time shifted sources. We can preform a simultaneous
diagonalisation of tV, Vτ , . . .u and thus not have to rely on gradient
descent.

Fig. 39: TODO

We need to whiten the data, which is a common feature of component
analysis algorithms such as CCA, CSP, ICM, and brings the observed
data into an uncorrelated form and projects in onto the unit ball. Here,
the whitening transformation whitening transformationK is determined as the inverse square root
of the covariance matrix:

K :“ xxxT y
´ 1

2 “ pvΛvTq´ 1
2

??
“ vΛ´ 1

2 vT,

where xxT “ vΛvT is the eigendecomposition of the covariance matrix.
IN TDSEP, one simultaneously approximates the time-delayed covari-
ance matrices, so one tries to find a matrix of eigenvectors Q, which
simultaneously diagonalise the covariance matrices:

Vτpzq “ x ztz
T
t´τ y “ QTVτpsqQ “ QTΛτQ.

We can then determine the mixing matrix as A “ K´1Q. (WHYYY?)

Fig. 40: PCA vs ICA.

In summary, we have seen that both methods enforce statistical indepen-
dence, where the first approach uses high order statistics (expansions)
and the second one second order statistics and temporal information.

Fig. 41: BSS of nonlinearly distorted mix-
tures with kernel based learning methods
[HZKM02].

Remark 2.2.1 (Nonlinear source separation)
ICA can be extended to a nonlinear scenario, where one assumes there
exists a (nonlinear) function f such that xptq “ fpApsptqq. ♢

Remark 2.2.2 (Reliability assessment)
Unsupervised learning techniques like ICA always return an answer/es-
timate found within their model class. One has to determine if the
used model is appropriate and if/how one can assess the quality of the
separation or specify error bars (???) to the estimates.

One way to asses reliability is to check reproducibility of the results.
One can produce surrogate data sets which can be written as mixtures
of independent source with the same mixing matrix A (???): If the
observed data txp1q, . . . xpT qu yields the mixing matrix Â, the produced
data tx˚ip1q, . . . x˚ipT qu for i P t1, . . . , ku, is explained by the matrices
Â˚i.

1 Preform BSS with some ICA algorithm to obtain Y “ Â´1X.

2 From Y , produce surrogate data and then whiten theses data sets.

3 For each surrogate data set, preform BSS, yielding a set of k
rotation matrices (as the data is already whitend (Why does this
follow???)).

4 These matrices R can be decomposed into rotation angles via the
matrix logarithm a “ lnpRq. (log(R) is a matrix...)

5 The standard deviations of the rotation angles define a separability

26

2.2 Independent Component Analysis (ICA)

matrix S “

´b

x a2ij y

¯

ij
, which measures how unstable the esti-

mated mixing matrix is with respect to a rotation in the plane
spanned by the estimated components i and j.

6 The quantity Ui :“ maxj Sij is the uncertainty of the estimated
projection direction i, which approximates the RMSE (root-mean-
square error).

Fig. 42: The RMSE vs. the uncertainty
estimate for the two used algorithms. For
small values (U ď 0.1) the uncertainty al-
lows to predict the RMSE. [MZKM02]

Experimental results show that the (real) RMSE is nicely correlated to
the (estimated) uncertainty. ♢

Example 2.2.3 (Toy example: TDSEP vs JADE)
Consider a seven channel of two harmonic oscillations (like sin or cos), two
speech signals, two white Gaussian noise processes and one uniformly
distributed white noise. We investigate the source separation based on
temporal decorrelation (TDSEP) and higher order statistics (JADE).
The separability matrix for TDSEP indicates stable subspaces for (one-
dimensional) speech signals and (two-dimensional) sinusodial signals,
whereas for JADE also (one-dimensional) uniform white noise is stable.

Fig. 43: [MZKM02]

Thus, TDSEP yields reliable estimates for audio sources (1, 2), while
JADE yields reliable estimates of audio sources (4, 7) and the non-
Gaussian random source (3). ˛

Fig. 44: TODO [MZKM02]
Thus to improve the separation performance one can

• Use different models on different sources, i.e. TDSEP on audio
(maybe sin/cos) sources and JADE on non-Gaussian random source.

• use only "good" parts of a time series (???) [basically skipped]

Fig. 45: [MZKM02] show that JADE sep-
arates cardiac signals of mother and fetus
in an recording of a pregnant woman: the
separability matrix has a block structure,
which is of physiological relevance: it indi-
cates independent multi-dimensional sub-
spaces.

Example 2.2.4 (ICA of Non-invasively recorded DC-fields)
In [WZM`00] the goal is to discriminate "speakers in the brain" (analog

27

2.2 Independent Component Analysis (ICA)

to cocktail party problem); identifying and extracting small brain signals
despite the presence of noise. Relevant signals are often extremely weak
compared to the noise (e.g. by a factor of 10000).

Applying ICA yields independent source and one hops that they are
physiologically meaningful and one can not only extract the time series
u, but also visualise the demixing matrix W or A.

Missing: slide 35, which is not important

Missing: images that are slides 36-41.

The image on slide 37 shows patients heads from above. Colour indicates,
where important activity takes place.

Slide 38: analysing a single component.

Slide 39-40: TDSEP outperforms other methods. ˛

In summary,

• ICA demixes the data into "minimally statistically dependent"
sources.

• Different measures of statistical dependence exists, yielding different
algorithms such as JADE and TDSEP.

• Resampling method can be used to assess the quality of ICA pro-
jections.

• Application of ICA can reveal physiologically plausible stable sub-
spaces.

Remark 2.2.5 (Invariances of ICA)
• Scaling. [Skipped:] Any scalar factor can be exchanged between

each field pattern ai and its source signal si without changing the
resulting voltage of the electrodes:

xiptq “ aisiptq “ pλaiq

ˆ

1

λ
siptq

˙

“ ãis̃iptq.

Thus one is free to choose the sign and power of each signal

• Permutation. The numbering of the independent components is
arbitrary (e.g. neural source in the brain do not have a canonical
enumeration). ♢

Consequences of functional independence are statistical independence and
uncorrelatedness even for time shifted signals (???) (siptq is uncorrelated
with sjpt´ τq for all τ).

Let x, y be independent random variables. Then

Ergpxqhpyqs “ ErgpxqsErhpyqs

holds for all absolutely integrable functions g and h. If x and y are only
uncorrelated, we have the above relation only for g “ h “ id.

Definition 2.2.6 (Shannon / Differential entropy)
The Shannon-Entropy Shannon-Entropyof a discrete random variable X is

HpXq :“ ´
ÿ

i

xi logpxiq,

28

2.2 Independent Component Analysis (ICA)

where ai denotes the values of X and xi :“ P pX “ aiq.

The differential entropy differential entropyof a continuous random variable x with density
p is

Hpxq :“ ´

ż

ppξq logpppξqq dξ.

An ICA-algorithm seeks a linear invertible transformation (B such
that ??) yptq “ Bxptq that minimises the mutual dependence between
the components yi. A suitable measure of dependence is the mutual
information mutual information

Ipy1, . . . , yN q :“
N
ÿ

i“1

Hpyiq ´Hpyq,

which is minimal (zero) if and only if the variables are statistically
independent and be seen as an analog to DpW q from above. From
y “ Bx we have Hpyq “ Hpxq ` logp|detpBq|q, so

Ipy1, . . . , yN q “

N
ÿ

i“1

Hpyiq ´Hpxq ´ logp|detpBq|q,

Only allowing transformations B yielding uncorrelated signals of variance,
we obtain that detpBq does not depend on B but only on x, so

Ipy1, . . . , yN q “

N
ÿ

i“1

Hpyiq ` const.,

so we have to minimise the entropy in each channel to minimise the mutual
information. For a fixed mean and variance, the Gaussian distribution
has the highest entropy, so ICA aims to find non-Gaussian projections.

Proof. (HA 3-1) We show that the random variable X with probability
density function p solving

max
X

HpXq subject to
ż

R
ppxqdx “ 1, ErXs “ 0, VarrXs “ σ2

fulfills X „ N p0, σ2q. In the following, we approximate the integrals
by a Riemann sum of a regular partition G of R. Each element of
G is an interval of length δ represented by its center point x. This
approximation lets us view the probability density function p as a col-
lection of |G| variables pppxqqxPG and the objective can be rewritten as
HpXq “ ´

ř

xPG ppxq logpppxqqδ. Similarly, the equality constraints can
be written as sums:
ÿ

xPG

exppspxqqδ “ 1,
ÿ

xPG

exppspxqqxδ “ 0,
ÿ

xPG

exppspxqqx2δ “ σ2.

To handle the inequality constraint, we can apply the reparametrisation
ppxq “ espxq (The entropy is continuous with p optimising over the
reduced class of functions, so we can ignore that espxq ą 0 and not
ě 0.) To handle the equality constraints, we will use the Lagrangian

29

2.2 Independent Component Analysis (ICA)

Lps, λq :“ LppspxqqxPG, λ1, λ2, λ3q, which is

´
ÿ

xPG

exppspxqqspxqδ ` λ1

˜

ÿ

xPG

exppspxqqδ ´ 1

¸

` λ2

˜

ÿ

xPG

exppspxqqxδ

¸

` λ3

˜

ÿ

xPG

exppspxqqx2δ ´ σ2

¸

,

whose partial derivative is

B

Bspxq
Lps, λq “ ´δespxqpspxq ` 1q ` λ1δe

spxq ` λ2δe
spxqx` λ3δe

spxqx2.

Setting this term to zero yields

´1 ` λ1 ` λ2x` λ3x
2 “ spxq,

implying
ppxq “ exp

`

´1 ` λ1 ` λ2x` λ3x
2
˘

.

This form holds for any discretisation step, including those that converge
to zero.

We want to show that λ3 “ ´ 1
2σ2 , λ2 “ 0 and λ1 “ 1 ` log

´

1?
2πσ2

¯

.

For λ3 ă 0 we have
ż

R
ppxqdx “ eλ1´1

ż

R
eλ2`λ3x

2

dx “ eλ1´1

c

π

´λ3
exp

ˆ

´
λ22
4λ3

˙

!
“ 1,

which is equivalent to

exp

ˆ

´
λ22
4λ3

˙

“ e1´λ1

c

´λ3
π

. (7)

and
ż

R
x ¨ ppxqdx “ eλ1´1

?
π

2

λ2
p´λ3q´3{2

exp

ˆ

´
λ22
4λ3

˙

!
“ 0. (8)

Plugging (7) into (8) yields

0 “ eλ1´1

?
π

2

λ2
p´λ3q´3{2

e1´λ1

c

´λ3
π

“
λ2

´2λ3
,

implying λ2 “ 0, which plugged into (7) yields

eλ1´1 “

c

´λ3
π

. (9)

Furthermore,
ż

R
x2 ¨ ppxqdx “ eλ1´1

?
π

4p´λ3q5{2
pλ22 ´ 2λ3q exp

ˆ

´
λ22
4λ3

˙

“ eλ1´1

?
π

2p´λ3q3{2
“

c

´λ3
π

?
π

2p´λ3q3{2
“ ´

1

2λ3

!
“ σ2,

yielding λ3 “ ´ 1
2σ2 . Lastly, plugging this into (9) yields

λ1 “ 1 ` log

˜

c

´λ3
π

¸

“ 1 ` log

ˆ

1
?
2πσ2

˙

.

(More derivations can be found here.) l

30

https://sgfin.github.io/2017/03/16/Deriving-probability-distributions-using-the-Principle-of-Maximum-Entropy/#2-derivation-of-maximum-entropy-probability-distribution-for-given-fixed-mean-mu-and-variance-sigma2-gaussian-distribution

2.2 Independent Component Analysis (ICA)

TODO: InfoMax and fastICA basically skipped.

Consider a joint probability distribution ppx, yq :“ ppxqppy|xq, where

ppxq „ N p0, 1q and ppy|xq :“
δpy ´ xq ` δpx` yq

2
.

A useful property of linear component analysis for two-dimensional prob-
ability distributions is that the set of all possible directions to look for in
R2 is tpcospθq, sinpθqqT : θ P r0, 2πqu.

The projection of the random vector px, yq on a particular component
can therefore be expressed as a function of θ: zpθq :“ x cospθq ` y sinpθq.
As a result, ICA in two dimensions is reduced to finding the values of
the parameter θ P r0, 2πq maximising an objective Jpzpθqq.

The principal components of ppx, yq are the values of θ which maximise
the variance of the projected data zpθq. We have

Ex,yrzpθqpx, yqs “ Ex,yrxs ¨ cospθq ` Ex,yrys ¨ sinpθq

“ Exrxs ¨ cospθq ` Ex

“

Ey|xrys
‰

¨ sinpθq “ 0,

where Exrxs “ 0 as ppxq „ N p0, 1q and Ey|xrys “ 0 as

EY |xrys “

ż

y ¨ ppY “ y|xqdy

“

ż

y ¨

”1

2
δpy ´ xq `

1

2
δpy ` xq

ı

dy “
1

2
x`

1

2
p´xq “ 0,

Thus

Varrzpθqs “ Ex,yrzpθq2s

“ cos2pθqEx,yrx2s ` 2 cospθq sinpθqEx,yrxys ` sin2pθqEx,yry2s

“ cos2pθq ` 2 cospθq sinpθqEx

“

xEy|xrys
‰

` sin2pθqExrx2s

“ cos2pθq ` sin2pθq “ 1,

as x „ ppxq has variance 1 and

EY |xry2s “

ż

y2 ¨ ppY “ y|xqdy

“

ż

y2 ¨

”1

2
δpy ´ xq `

1

2
δpy ` xq

ı

dy “
1

2
x2 `

1

2
p´xq2 “ x2.

Thus the variance of all projections is equal and there are no principal
components.

The independent components of ppx, yq are the values of parameter θ that
maximise the non-Gaussianity of zpθq. As a measure of non-Gaussianity
we use excess kurtosis

kurtrzpθqs :“
Erpzpθq ´ Erzpθqsq4

Varrzpθqs2
´ 3 “ Erzpθq4s ´ 3

“ cospθq4 Ex,yrx4s ` 4 cos3pθq sinpθqEx,yrx3ys

` 6 cos2pθq sin2pθqEx,yrx2y2s

` 4 cospθq sin3pθqEx,yrxy3s ` sinpθq4 Ex,yry4s ´ 3

“ 3 cos4pθq ` 18 cos2pθq sin2pθq ` 3 sin4pθq ´ 3

“ 3 sin2p2θq.

31

2.2 Independent Component Analysis (ICA)

as Exrx4s “ 3 and, similarly to the above, Ey|xry3s “ 0 and Ey|xry4s “ x4.
The function attains its maximum, 1, for θ P

␣

π
4 ,

3π
4 ,

5π
4 ,

7π
4

(

.

Example 2.2.7 (Deriving a special case of FastICA (HW 3-3))
FastICA is a method for ICA that scales well in practice. Consider x P Rd

from some distribution p. We assume the data is centered and whitened:
Erxs “ 0 and ErxxTs “ I. To extract and independent component, we
would like to find a unit vector w such that the excess kurtosis of the
projected data wTx is maximised.

If w is a unit vector, the projection wTx has zero mean and unit variance:

ErwTxs “ wT Erxs “ wT0 “ 0

and
VarrwTxs “ Erz2s “ ErwTxxTws “ wTIw “ 1.

Thus

kurtrzpθqs “
ErpwTx´ ErwTxsq4

VarrwTxs2
´ 3 “ ErpwTxq4s ´ 3

The Lagrangian thus is

Lpw, λq :“ ErpwTxq4s ´ 2λp1 ´ }w}2q “ 4ErxpwTxq3s ´ 4λ

as expectation and differentiation can be exchanged. Setting this to zero
yields

λw “ ErxpwTxq3s.

The solution of the above equation cannot be found analytically. We will
solve it via Newton’s method, which assume that the equation is given
as F pwq “ 0 and uses the iteration wk`1 :“ wk ´ Jpwkq´1F pwkq, where
J is the Jacobian of F .

Let F pwq :“ ErxpwTxq3s ´ λw. Then Jpwq “ Er3xxTpwTxq2s ´ λI, so

wk`1 “ wk ´ pEr3xxTpwT
kxq2s ´ λIq´1pErxpwT

kxq3s ´ λwkq.

Under the decorrelation approximation

ErxxTpwTxq2s “ ErxxTs ¨ ErpwTxq2s

the Newton method reduces to

wk`1 “ wk ´
1

3 ´ λ
pErxpwT

kxq3s ´ λwkq,

which reduces to

p3 ´ λqwk`1 “ p3 ´ λqwk ´ ErxpwT
kxq3s ` λwk “ 3wk ´ ErxpwT

kxq3s,

i.e.

wk`1 “
ErxpwT

kxq3s ´ 3wk

λ´ 3

We can set γ :“ 1
λ´3 , which is some unimportant constant factor, as in

every iteration we apply the normalisation wk`1 Ð
wk`1

}wk`1}
. ˛

32

3 Kernel Machines

3.1 Structured Kernels / Inputs
18.05.2020In this subsection we will look at structure kernels, which are an extension

of standard (e.g. linear, polynomial, Gaussian) kernels to non-euclidean
spaces. These kernels can be applied to DNA sequences, text or trees.

First, let us recap linear kernels.

From Linear to Kernel Models

Linear models are very common in machine learning. They can solve many
different supervised tasks, such as (ridge) regression and classification (e.g.
logistic regularisation, SVM) and unsupervised tasks such as component
analysis (e.g. PCA, CCA, ICA). These tasks often come with desiderata
(desirable properties) such as convexity (unique minima) and in come
cases, closed form solutions.

Example 3.1.1 (Linear regression)
For training data X :“ rx1 . . . xN s and targets y “ pykqNk“1 the linear
regression model y “ fpxq “ bTx trained to minimise the least square
error admits the closed form solution b “ pXXTq´1Xy (inverse covariance
matrix ˆ data ˆ targets). ˛

Fig. 46: When the feature map is higher
dimensional, the expressive power of the
model is increased: The two dimensional
data on the right is not linearly separable
(so we can not apply hard-margin SVM,
soft-margin SVM will lead to result close
to random guessing), but the mapped data
is (only the first three components are plot-
ted) as one allows for (nonlinear) multipli-
cation of x1 and x2. (This map does not
induce a polynomial kernel, but its variant
φpxq :“ px2

1,
?
2x1x2, x2

2,
?
2x1,

?
2x2, 1q

does: φpxqTφpyq “ pxx, y y `1q2.)

To make the model nonlinear (and thus be able to solve nonlinear prob-
lems), we pass the data through a nonlinear feature map φ before applying
the linear model: fpxq “ bTφpxq. To achieve this, we express the model
in the span of the data:

b “

N
ÿ

i“1

aiφpxiq.

We can then write the model and the training algorithm in a way that
only involves the feature map through dot products:

fpxq “

N
ÿ

k“1

akφpxkqTφpxq and
BE

Bai
“

N
ÿ

k“1

2pfpxkq ´ ykqφpxiq
Tφpxkq,

where E :“
řN

n“1pfpxnq ´ ynq2.

We can now replace the dot products by a general nonlinear function
k : Rd

Ñ Rd
Ñ R, which represents similarity between the inputs:

kpx, yq :“ φpxqTφpyq.

The model then becomes

fpxq “

N
ÿ

i“1

akkpxi, xq.

In the case of a Gaussian kernel kpx, zq :“ exp
`

´}c}x´ z}2
˘

for c ą 0,
the model is a linear combination of "bumps", so by making c sufficiently
small, any nonlinear function can be reconstructed, as long as the data
points cover the space in a sufficient manner.

33

3.1 Structured Kernels / Inputs

We have seen that any feature map induces a kernel. By replacing the
feature map with the kernel, we loose the view of the nonlinear model as a
linear model in feature space: terms like xw,φpxq y don’t explicitly appear
in the equations. For guaranteeing convergence and other regularisation
properties of the learning algorithm (???), we would like the reverse to
be true.

Theorem 3.1.1: Mercer (1909)

If k : Rd
ˆRd

Ñ R is symmetric and positive semidefinite (PSD),
i.e. for all choices of pxiq

N
i“1 Ă Rd and pciq

N
i“1 Ă R holds

N
ÿ

i,j“1

cicjkpxi, xjq ě 0,

then there exists a (potentially infinite dimensional) feature map
φ such that kpx, yq “ φpxqTφpyq.

Example 3.1.2 (Symmetric PSD kernels)
Kernels satisfying the above conditions include linear (xTy) (which is
equivalent to the linear model in the input space), polynomial (xTy`aqn,
Gaussian (exp

`

´}c}x´ y}2
˘

and the t-Student kernel p}x´ z}2 ` aq´1,
where a P R, c ą 0 and n P N. ˛

In this lecture we will investigate how to build kernel for other types
of data such as text, images, sequences, tree or graphs incorporating
domain-specific knowledge. Text, for example, is translation invariant
(???) and incorporating this information into the kernel can improve the
statistical efficiency (from Wiki: a more efficient estimator or test needs
fewer observations than a less efficient one to achieve a given performance)
of the model, which is useful if we have few data points.

Example 3.1.3 (Convolution kernel)
For signals x “ pxkqkPZ and y “ pykqkPZ their (discrete) convolution is

px ˚ yqt :“
ÿ

τPZ
xpτqypt´ τq.

The convolution kernel convolution kernelis

kpx, yq :“ }x ˚ y}22 “
ÿ

tPZ
ppx ˚ yqtq

2,

which is positive semidefinite: for signals x1, . . . xn and coefficients
c1, . . . , xn P R we have, by the symmetry of convolution,

n
ÿ

i,j“1

cicjkpxi, xjq “

n
ÿ

i,j“1

cicj
ÿ

τ,τ 1PZ
xipτqxjpt´ τqxjpτ 1qxipt´ τ 1q.

By the substitution s :“ t´ τ ´ τ 1 we obtain

n
ÿ

i,j“1

cicj
ÿ

τ,τ 1PZ
xipτqxjps` τ 1qxjpτ 1qxips` τq, (10)

34

3.1 Structured Kernels / Inputs

which is equal to

ÿ

sPZ

˜

n
ÿ

i“1

ÿ

τPZ
cixipτqxips` τq

¸2

ě 0.

From (10) we can infer that

φpxq :“

˜

ÿ

τPZ
xpτqxps` τq

¸

sPZ

?
“ x ˚ x

is a feature map for k. ˛

Representing strings

Definition 3.1.4 (Alphabet, string)
An alphabet A is a finite set of discrete symbols. A string is concatena-
tion of symbols from an alphabet A. By AL we denote all strings of
length L and define A˚ :“

Ť

LPN AL.

Example 3.1.5 (Alphabet)
An alphabet can be a set of states tS1, . . . , Sdu of a machine, a nucleotide
basis tG,A, T,Cu or language text ta, b, c, . . . , A,B,C, . . . , 0, 1, 2, . . .u. ˛

We now show four approaches to designing a string kernel. The example
strings will be x :“ abcceabd and z :“ abacccbe.

1 Counting the number of matching symbols, yields the kernel

k : AL
ˆAL

Ñ R, px, zq ÞÑ

L
ÿ

i“1

1pxi “ ziq.

For the example strings we get kpx, zq “ 4 by the following table.

x a b c c e a b d
y a b a c c c b e

1pxi “ ziq 1 1 0 1 0 0 1 0

This kernel induces the feature map

φpxq :“ p1pxi “ aqq aPA,
iPt1,...Lu

P t0, 1uLˆ| A |.

Indeed, for x, y P AL, we have

xφpxq, φpyq y “ TrpφpxqTφpyqq

“

L
ÿ

ℓ“1

ÿ

aPA
1pxℓ “ aq1pyℓ “ aq “

L
ÿ

ℓ“1

1pxℓ “ yℓq.

2 Counting the number of matching symbols with some shift tolerance,
yields the alignment kernel

kpx, zq :“
L
ÿ

i“1

α1pxi “ zi´1q ` β 1pxi “ ziq ` γ 1pxi “ zi`1q

for α, β, γ P R. For the example strings we get kpx, zq “ 10 for
α, γ “ 1 and β “ 2 by the following table.

35

3.1 Structured Kernels / Inputs

x a b c c e a b d
y a b a c c c b e

1pxi “ yi´1q - 0 0 0 0 0 0 0
1pxi “ yiq 1 1 0 1 0 0 1 0
1pxi “ yi`1q 0 0 1 1 0 0 0 -

This kernel is PSD for α, γ “ 1 and β “ 2 but not for α, β, γ “ 1:
For xp1q, . . . , xpNq P AL and c1, . . . , cN the term

řN
i,j“1 cicjkpxpiq, xpjqq

is equal to
N
ÿ

i,j“1

cicj

˜

L
ÿ

ℓ“1

1px
piq
ℓ “ x

pjq

ℓ´1q ` 2 ¨ 1px
piq
ℓ “ x

pjq

ℓ q ` 1px
piq
ℓ “ x

pjq

ℓ`1q

¸

“

L
ÿ

ℓ“1

ÿ

kPA

N
ÿ

i“1

ci 1px
piq
ℓ “ kq

N
ÿ

j“1

cj

”

1px
pjq

ℓ´1 “ kq ` 2 ¨ 1px
pjq

ℓ “ kq ` 1px
pjq

ℓ`1 “ kq

ı

“ TODO.

3 Counting the number of matching symbols with full shift tolerance,
yields the "Bag-of-Words"-kernel

kpx, zq :“
L
ÿ

i,j“1

1ptxi “ zjuq “
ÿ

wPA
#wpxq ¨ #wpzq, (11)

where #wpxq is the number of times the symbol w appears in
the string x. For the example strings we get kpx, zq “ 15 by the
following table.

x a a b b c c d e
y a a b b c c c e

4 4 6 0 1

Consequently, the feature map for this kernel is

φ : AL
Ñ R| A |, x ÞÑ

˜

L
ÿ

i“1

1pxi “ wq

¸

wPA

,

as

φpxqTφpzq “
ÿ

wPA

˜

L
ÿ

i“1

1pxi “ wq

¸˜

L
ÿ

i“1

1pzi “ wq

¸

“
ÿ

wPA
#wpxq ¨ #wpzq.

4 Counting the number of matching subsequences of symbols of length
n ("n-grams") yields the n-gram kernel

kpx, zq :“
L`1´n
ÿ

i“1

1ptpxi, . . . , xi`n´1q “ pzi ` . . . , zi`n´1quq

For n “ 2 we get kpx, zq “ 1 by the following table.

x a b b c c c c e e a a b b d
y a b b a a c c c c c c b b e

1 0 0 0 0 0 0

36

3.1 Structured Kernels / Inputs

One can also combine those kernels.

The n-gram approach is always applicable and best suitable for analysis
of strings with unknown structure, e.g. DNA sequences, network attacks
or binary data.

The tokenisation approach tokenisation approach, where the string is broken up into tokens, is
suitable for analysis strings with known structure, e.g. natural language
text (tokens are the words), tokenised data, log files.

Remark 3.1.6 (Implementing string kernels efficiently)
Evaluating the "Bag-of-Words" kernel (11) is computationally expensive.

Fig. 47: The preprocessing step for the
"Bag-of-Words" kernel.

This can be reduced by building a preliminary data structure for each
string, i.e. a sorted list where every string and its count is stored. One
then just has to go through both lists and multiply the entries until one
is empty. ♢

Example 3.1.7 (String kernels for genomic data [SSP`07])
In protein biosynthesis, the DNA is reduced to mRNA via extraction of
the introns, from which then the proteins are encoded. To understand

Fig. 48: Biosynthesis. [SWSR08]

what parts of the DNA encoded which proteins, one needs to detect the
splice sites (transitions from exon to intron).

The idea behind Splice Site Prediction is build a kSVM that predicts slice
sites. The kSVM is applied as a sliding window through large nucleotide
sequences. A weighted degree kernel, which is a weighted sum of n-gram
kernels is used to detect if a splice site is currently at the center of the
input window:

k : AL
ˆAL

Ñ R, px, zq ÞÑ

d
ÿ

n“1

bn

L`1´n
ÿ

i“1

1
`

pxkq
i`n´1
k“i “ pzkq

i`n´1
k“i

˘

,

where A :“ tG,A, T,Cu and b1, . . . , bn ě 0.

Fig. 49: The different rows indicate if there are shared n-grams ("#n-
mers") between the two sequences x and x1.

A computational trick to apply the weighted degree kernel is to identify
maximum blocks of common subsequences.

Fig. 50: Illustration of just looking for maximum blocks of common
subsequences.

The kernel is positive semidefinite: for ... and coefficients c1, . . . , cn P R

37

3.1 Structured Kernels / Inputs

we have

n
ÿ

i,j“1

cicjkpxi, xjq “

n
ÿ

i,j“1

cicj

M
ÿ

m“1

bm

L`1´m
ÿ

ℓ“1

1 puℓ,mpxiq “ uℓ,mpxjqqq,

which is equal to

M
ÿ

m“1

bm
ÿ

kPAm

L`1´m
ÿ

ℓ“1

˜

n
ÿ

i“1

1puℓ,mpxiq “ kq

¸2

ě 0.

Thus for M “ 1, the feature map is

φpxq :“
a

b1p1puipxq “ kqqiPt1,...,Lu,kPA P RLˆ4 .

Similarly, for M “ 2 and b1 “ 0, b2 “ 1 (only examining sequences of
length two) the feature map is

φpxq :“ p1puipxq “ kqqiPt1,...,Lu,kPA2 P RLˆ16 . ˛

Kernels for Trees

Definition 3.1.8 (Parse tree)
A tree x “ pV,E, v˚q is an acyclic graph pV,Eq rooted at v˚ P V .

A parse tree parse treex P T is a tree deriving from a grammar, such that each
node v P V is associated with a production rule ppvq.

Fig. 51: Tree representation of sentences de-
rived from a grammar: Parse tree for "mary
at lamb" with production rules p1 : A Ñ B,
p2 : B Ñ "mary" "ate" C and p3 : C Ñ

"lamb": The tree has three nodes, A, B

and C. A produces the sentence, B pro-
duces the subject, verb and object of the
sentence and C produces the object.

This is a common structure in several application domains, e.g. natural
language processing, compiler design and many more.

The idea is to decompose this parse tree as we would like to build a kernel
that can compare two different parse trees. We characterise the parse
trees in terms of their subtrees.

Fig. 52: The subtrees of different sizes of the tree considered above.

A feature map mapping trees to R|T | is

φ : T Ñ R|T |, x ÞÑ p#tpxqqtPT ,

where #tpxq counts the occurrences of a subtree t in the tree x. This
feature map induce a parse tree kernel

k : T ˆR Ñ R, px, yq ÞÑ xφpxq, φpyq y “
ÿ

tPT

#tpxq ¨ #tpyq,

which can be considered an analogon to the Bag-of-Words kernel (11). To
make computing k less expensive (there are exponentially many subtrees),

38

3.1 Structured Kernels / Inputs

we can, for each pair pv, wq determine shared subtrees at v and w such
that

kpx, yq “
ÿ

vPVx
wPVy

cpv, wq,

where

cpv, wq “

$

’

’

’

’

&

’

’

’

’

%

0, if ppvq ‰ ppwq (different production),

1, if |v| “ |w| “ 0 (leaf node),
|v|
ś

i“1

`

1 ` cpvi, wiq
˘

, otherwise.

where i-th child of a node v P V is vi and |v| denotes the number of
children of v.

Fig. 53: An efficient implementation using
dynamic programming visualised.

An efficient implementation using dynamic programming may look like
this: starting with the smallest subtrees first, one progressively "grows"
them. At some point, one can identify common structure and update
the count to incorporate the count for the number of subtrees common
the two matched trees. Proceeding iteratively, until reaching the full tree
will lead to the final kernel score kpx, yq reached in Op|Vx|, |Vy|q.

Model-induced kernels

Another type of structured kernels are model-induced kernels model-induced kernels, whose
aim it is to not to build a new kernel directly on the input data, but to
extract a kernel from the local response of the existing model fθpxq to
its learning parameter vector θ P R|θ|, e.g. define

ψ : X Ñ R|θ|, x ÞÑ ∇θfθpxq

and construct the kernel as

kpx, yq “ κpψpxq, ψpyqq,

where κ is a standard kernel (e.g. linear, etc.).

The fisher kernel uses a generative model as an existing model.

Example 3.1.9 (Fisher kernel)
The Fisher kernel is a structured kernel induced by a probability model
pθpxq. Let x P X and suppose pθ : X Ñ R is a generative model (e.g.
hidden Markov model) for the data parametrised by θ P Rh. Defining

Gx :“
B

Bθ
logppθpxqq,

the Fisher kernel is

kpx, yq :“ GT
x

`

Ez„pθ
rGzG

T
z s
˘´1

Gy.

While it is mainly used to extract a feature map of fixed dimensions from
structured data on which a structured probability model readily exists
(e.g. a hidden Markov model), the Fisher kernel can in principle also
be derived for simpler distributions such as the multivariate Gaussian
distribution. We here consider the covariance matrix Σ to be fixed such

39

3.1 Structured Kernels / Inputs

that the only effective parameter on which the Fisher kernel is based, is
the mean µ.

We thus have

Gx “
B

Bµ

ˆ

����������

´
1

2
log

`

p2πqd detpΣq
˘

´
1

2

`

px´ µqTΣ´1px´ µq
˘

˙

“ ´
1

2

`

´Σ´1x´ Σ´1x` 2Σ´1µ
˘

“ Σ´1px´ µq.

and thus, with A “ Σ´1

kpx, yq “ px´ µqTA
`

EZ„N pµ,Σq

“

ApZ ´ µqpZ ´ µqTA
‰˘´1

Apy ´ µq

“ px´ µqT
`

EZ„N pµ,Σq

“

pZ ´ µqpZ ´ µqT
‰˘´1

py ´ µq

“ px´ µqT
`

VarZ„N pµ,Σq rZs
˘´1

py ´ µq “ px´ µqTΣ´1py ´ µq.

As Σ´1 is positive definite, there exits a unique square root Σ´ 1
2 . The

feature map for the above kernel thus is φpxq :“ Σ´ 1
2 px´ µq. ˛

Diffusion kernels

A diffusion kernel is not specifically designed to accommodated special
types of inputs like strings or tree, but to introduce prior knowledge
into the kernel, specifically the local geometry of the data given by some
graph.

Diffusion kernels assume that the input domain is discrete and that the
local geometry is given by a graph GpV,Eq, where each node represents
a data point. The diffusion kernel defines the generator matrix H by

Hij “

$

’

’

&

’

’

%

1, if pvi, vjq P E,

´degpviq if vi “ vj ,

0 otherwise,

where degpvq is the number of edges from v, and then diffuses the graph
signal by matrix exponentiation:

kpxi, xjq :“ rebH si,j ,

where b is a kernel hyperparameter, which determines the strength of the
diffusion (larger b = more diffusion).

The diffusion kernel is particularly useful for semi-supervised learning,
where on only has few labelled data and lots of unlabelled data, which
form an underlying graph structure. If the data has a manifold structure,
we can diffuse the label into the manifold using the generator matrix. It
is also useful or for unsupervised analyses such as (spectral) clustering.

Fig. 54: In the generator matrix, green is
zero, yellow is one and red is a negative
number.

Example 3.1.10 (Diffusion kernel on two dimensional data)
Consider the data set with manifold structure and then build a graph
connecting neighbouring data points. One can see that there are spurious
connections between the two separate structures.

40

3.2 Structured Prediction / Outputs

Fig. 55: The results show that the higher β, the higher the similarity
between points of the same cluster and that if β is too high, leaks start
to appear because points on different manifolds become similar, which is
the effect because of the spurious connections.

One can see that the plots are roughly divided into four parts, the two
structures are mostly similar to themselves and data points of different
manifolds are not similar; the matrix is strongly diagonal. When increas-
ing the diffusion parameter β, points that are a bit further apart on the
same manifold start becoming similar. ˛

In summary, structured kernels can be used to predict data, which is
not in Rd, e.g. sequences of symbols or trees and can be designed to
incorporate prior knowledge, e.g. positional invariance or diffusion on a
graph. Once the kernel structure has been defined, most popular learning
algorithms such as least square regression, SVMs, PCA, CCA and any
other linear model, can be used.

3.2 Structured Prediction / Outputs
25.05.2020Standard machine learning models f : X Ñ Y produce simple outputs

such as real numbers / vectors (in (multivariate) regression Y “ Rc). In
this subsection we present a framework where Y can have a complex
structure, e.g. a sequence or tree.

Example 3.2.1 (Handwriting: Sequential)
The unstructured output version is to split an image containing a hand-
written word into pieces containing the individual characters and then
classify them. It has several limitations: one has to exactly know the
segmentation of the word and by interpreting the characters individually,
their concatenation might not yield a meaningful word.

The structured output version addresses these issues by taking as input
not a single character but an image containing the whole sequence of
characters and then outputting a word directly. The advantage of this
approach is that no segmentation is needed and the output can be
constraint to only include meaningful words. ˛

Example 3.2.2 (Context free grammar parsing: Recursive)
One wants to predict the grammar of an input sentence. A grammar
is usually represented as a tree which defines the different parts of the
sentence and how they relate to each other. Trees are not a simple struc-
ture, which can’t be predicted directly with standard machine learning
techniques, thus we need structured output.

One wants to find the best parsing tree of a sentence. The output domain

41

3.2 Structured Prediction / Outputs

contains possible parsing trees for that sentence, good ones and bad ones,
and the learning algorithm / prediction is able to determine which one is
best. ˛

Example 3.2.3 (Bilingual word alignment: Combinatorial)
The input consists of the two sentences in two different languages. The
goal of structured predictions is to find a matching between the two
sentences (typically nonlinear with the flow of the sentence because of the
different grammatical rules in different languages). The set of all bipartite
graphs connecting at least two lists of items is a combinatorial structure,
which can’t be predicted by standard machine learning techniques. ˛

Example 3.2.4 (Label sequence learning)
Given an observation sequence of nucleotides that defines a gene, one
likes to predict the classes (exon and intron) which decide the content of
resulting protein. Instead of predicting single elements, one would like to
predict the whole sequence. This allows us to add as a constraint that
two adjacent elements have a high probability of being of the same class,
avoiding e.g. exons appearing in the middle of introns. ˛

Fig. 56: Standard machine learning vs
structured outputs.

In the last section we have seen that the standard machine learning model
is capable of handling structured inputs, but we cannot do the same for
the outputs. Instead we consider both the input x and the prediction
y to be inputs of a function f : X ˆ Y Ñ R, which outputs a score for
how good the prediction y is for the input x. We can not just evaluate
the function and get the prediction as an output but instead we have to
solve an optimisation problem over all possible outputs y P Y :

y|x :“ argmax
yPY

fpy|xq. (12)

This approach is more flexible as x and y can be structured, but is also
is computationally more expensive.

Kernel-based structured prediction

There are different approaches to structured prediction based on (12),
one of which is energy-based learning, but in this lecture we will look at
kernel-based structured prediction, which defines a kernel function in the
joint input / output domain:

k : pX ˆ Y q ˆ pX ˆ Y q Ñ R .

When the kernel is positive semi-definite, it will induce a feature map
(with typically finite-dimensional codomain)

φ : X ˆ Y Ñ Rh

for h P N, on which we can build the scoring model

fpy | xq :“ wTφpx, yq

for some w P Rh, which we have to learn. (If φ maps into a matrix space,
replace the last term by a scalar product.)

Structured output can be seen as a framework which extends standard
prediction methods but also contains simpler models as special cases.

42

3.2 Structured Prediction / Outputs

Example 3.2.5 (Multiclass classification)
Let X :“ Rd, Y :“ t1, . . . , Cu and k some input kernel on X which
feature map φ : X ˆ Y Ñ Rh. The structured kernel

K : pX ˆ Y q ˆ pX ˆ Y q, px1, y1q, px2, y2q ÞÑ kpx1, x2q ¨ 1pty1 “ y2uq

is positive definite: for all x1, . . . , xn P X, y1, . . . , yn P Y and c1, . . . , cn P

R the term
řn

i,j“1 cicjKpxi, xjq is equal to

C
ÿ

c“1

˜

n
ÿ

i“1

ci 1pyi “ cqφpxiq

¸T˜ n
ÿ

j“1

cj 1pyj “ cqφpxjq

¸

“

C
ÿ

c“1

›

›

›

›

›

n
ÿ

i“1

ci 1pyi “ cqφpxiq

›

›

›

›

›

2

2

ě 0.

Consequently, K induces the feature map

ψpx, yq :“ pφpxq ¨ 1pty “ 1uq, . . . , φpxq ¨ 1pty “ Cuqq
T

P RhˆC

and thus the decision function becomes

y|x “
C

argmax
y“1

wTψpx, yq “ argmax
c

wT
cφpxq,

where wc P RC is a weight vector and c is the index of the class. One
obtains, as an equivalent formulation, a set of weights, one per class,
that one multiplies with the feature representation of the input and then
take the weights corresponding to the class such that the dot product is
maximal. ˛

Learning a large-margin model

How can we train such models? Consider a structured output model

fpy|xq :“ wTφpx, yq,

where the prediction is given by y|x “ argmaxyPY fpy|xq. Let ppxk, ykqqNk“1 Ă

X ˆ Y be the training set.

The learning problem can be formulated as a large margin problem:
We want to find the largest margin pw, ξq by solving (define Ψn,y :“

φpxn, ynq ´ φpxn, yq for convinience)

min
w,ξ

1

2
}w}2 ` C

N
ÿ

n“1

ξn s.t. wTΨn,y ě 1 ´ ξn, ξn ě 0 @N
n“1@y‰yn , (13)

where the ξk are slack terms (SVM) which account for misclassification
or noise in the data and C ą 0 is a regularisation parameter (large C
ùñ hard margin).

Fig. 57: Geometrical interpretation of the
large-margin model. Both x’s should be
replaced by xn’s.

We now look at how costly it is to solve this optimisation problem.
The optimisation problem is too large, as there are exponentially many
constraints. We thus only incorporate the few violated constraints. A
possible procedure is

1 Begin with a small set of wrong labelings.

43

3.2 Structured Prediction / Outputs

2 Solve the thus reduced optimisation problem, ignoring all other
constraints by solving argmaxyPY w

Tφpx, yq.

3 Find the new labelings that violate constraints

4 Add constraints and return to step two.

This will converge (WHYY??) and typically only a subset of the
exponentially many constraints will be included. Especially the very
trivial labelings, which are clearly wrong, will not be added before we
reach convergence, so we never have to express them explicitly in the
optimisation problem.

We will later see that this procedure only works for the primal formulation
and not for the dual.

How can we find violated constraints? We see that if wTφpxn, yq is very
large, it will definitely violate the constraint so we look for

argmax
yPY

wTφpxn, yq.

This can be difficult due to the large number of possible y. But if the
structure if φ permits, we can use dynamic programming to quickly find
such labelling:

Example 3.2.6 (Dynamic programming (Viterbi))
Assume the output y is a sequence and that the function wTφpx, yq

decomposes into a sum of subfunctions involving only adjacent terms
of the sequence. In the case of the figure of the right, the function to

Fig. 58: Think of this diagram as a
Markov chain. Each circle is a state and a
column of circles is the set of possible states.
Different columns represent the state at dif-
ferent time steps. The path shown with
lines depicts a possible sequence of states.
Our goal is to find the best possible se-
quence of states and the variable a repre-
sents the cost or reward of transitioning
between the different states.

optimise takes the form

wTφpx, pyi, yj , yk, yℓq “ ai ` aij ` aj ` ajk ` ak ` akℓ ` aℓ,

but there e.g. can not be any terms depending on i and k.

The maximisation of that function can be achieved by "pushing" the max
function "into" the sum:

max
i,j,k,ℓ

wTφpx, pyi, yj , yk, yℓq

“ max
i

ˆ

ai ` max
j

ˆ

ai,j ` aj ` max
k

ˆ

ajk ` ak ` max
ℓ
ak,ℓ ` aℓ

˙˙˙

,

which can be solved in linear (each max takes constant time) instead of
exponential time. The maximising elements can then be recovered by
backtracking the max operation (i.e. this works also for argmax, not
only for max).

In order to design feature maps that obey this subfunction conditions
there are two approaches.

1 (Sum structure) If the map φ fulfills the condition

φpx, pyi, yj , yk, yℓq “ φijpxq ` φjkpxq ` φkℓpxq,

so does wTφ:

wTφpx, pyi, yj , yk, yℓq “ wTφijpxq ` wTφjkpxq ` wTφkℓpxq

“: aij ` ajk ` akℓ.

44

3.2 Structured Prediction / Outputs

2 (Concatenation structure) If we instead concatenate the com-
ponents (which yields a larger feature map), i.e.

φpx, pyi, yj , yk, yℓq “ rφijpxq, φjkpxq, φkℓpxqs ,

the function wTφ fulfills the condition (where w is as large as the
feature map)

wTφpx, pyi, yj , yk, yℓq “ wT
r1,...,hsφijpxq ` wT

rh`1,...,2hsφjkpxq

` wT
r2h`1...,3hsφkℓpxq

“: aij ` ajk ` akℓ.

Both forms lead to a sum-decomposition. The feature map or kernel can
be designed to introduce desired prior knowledge and invariances. ˛

Example 3.2.7
Consider output sequences to predict to be of the type y P t´1, 1uL and
the feature map

φpx, yq :“ rxd y, 3 ¨ py1, . . . , yL´1q d py2, . . . , yLqs.

The structured output model aims to solve

max
yPt˘1uL

wTφpx, yq (14)

for w P R2L´1.

Assume L “ 3 and that the current parameter is w :“ p1, . . . , 1q and we
receive the input x “ p1,´1, 1q. We then have

(14) “ max
yPt˘1uL

y1 ´ y2 ` y3 ` 2y1y2 ` 2y2y3

“ max
y1Pt˘1u

"

y1 ` max
y2Pt˘1u

"

2y1y2 ´ y2 ` max
y3Pt˘1u

t2y2y3 ` y3u

**

.

This can be solved iteratively, using Viterbi’s procedure:

max
y3Pt˘1u

t2y2y3 ` y3u “ 2y2 ` 1

(so y3 “ 1) and

max
y2Pt˘1u

2y1y2 ´ y2 ` 2y2 ` 1 “ max
y2Pt˘1u

2y1y2 ` y2 ` 1 “ 2y1 ` 2

(so y2 “ 1) and, finally,

max
y1Pt˘1u

y1 ` 2y1 ` 2 “ 5,

so y “ p1, 1, 1q. ˛

Dual formulation

For the cases where we can not use the procedure incorporating dynamic
programming outlined above, we now introduce an extension of the primal
formulation, which will allow us to have the feature map be expressed as
dot products. This is useful when we don’t want to compute the feature

45

3.2 Structured Prediction / Outputs

map explicitly but access the data and compare it via a kernel function
directly.

The dual formulation of (13) is

max
a

N
ÿ

n“1

ÿ

y‰yn

an,y ´
1

2

ÿ

n1,n2

ÿ

y1‰n1
y2‰n2

an1,y1
an2,y2

¨ xΨn1,y1
,Ψn2,y2

y

such that @N
n“1@y‰yn : an,y ě 0 and

ÿ

y‰yn

an,y ď C.

Proof. The Lagrangian is

Lpw, ξ, a, bq :“
}w}22

2
`C

N
ÿ

n“1

p1´bnqξn`

N
ÿ

n“1

ÿ

y‰yn

an,y
`

1 ´ ξn ´ wTΨn,y

˘

.

We have

B

Bw
Lpw, ξ, a, bq “ 0 ðñ w “

N
ÿ

n“1

ÿ

y‰yn

an,yΨn,y

and
B

Bξn
Lpw, ξ, a, bq “ 0 ðñ C ´

ÿ

y‰yn

an,y ´ βn “ 0

for n P t1, . . . , Nu. The dual formulation thus is

max
a,bě0

1

2

›

›

›

›

›

N
ÿ

n“1

ÿ

y‰yn

an,yΨn,y

›

›

›

›

›

2

2

`

�
�
�
�

C
N
ÿ

n“1

ξn

`

N
ÿ

n“1

ÿ

y‰yn

an,y

¨

˝1��´ξn ´

˜

N
ÿ

n“1

ÿ

y‰yn

an,yΦn,y

¸T

Ψn,y

˛

‚

�
�
�

�
�

´

N
ÿ

n“1

bnξn,

which is

max
aě0

1

2

›

›

›

›

›

N
ÿ

n“1

ÿ

y‰yn

an,yΨn,y

›

›

›

›

›

2

2

`

N
ÿ

n“1

ÿ

y‰yn

an,y

¨

˝1 ´

˜

N
ÿ

n“1

ÿ

y‰yn

an,yΨn,y

¸T

Ψn,y

˛

‚,

which is equivalent to

max
aě0

´
1

2

›

›

›

›

›

N
ÿ

n“1

ÿ

y‰yn

an,yΨn,y

›

›

›

›

›

2

2

`

N
ÿ

n“1

ÿ

y‰yn

an,y.

Since
ř

y‰yn
an,y “ C´βn and βn, we can rewrite it as

ř

y‰yn
an,y ď C.l

Unlike in the primal formulation, there is no simple procedure to reduce
the large number of constraints.

Loss functions

Another extension of the structured SVM is the incorporation of a loss
function. So far, we have implicitly use a 0-1-loss function with slack
variables: if y|xn ‰ yn, then the prediction is wrong, but we don’t know
"how wrong" it is. Instead, we can introduce a loss function ℓpy1, y2q

46

3.2 Structured Prediction / Outputs

on the labellings, which can determine e.g. how many segments in
the sequence are wrong or missing, or how different the segments are.
With this more sophisticated loss function, we can penalise very wrong
predictions more than slightly wrong ones.

There are two variants of the SVM with this loss function

1 Margin rescaling. We replace the size of the margin, which is
one in the primal formulation, by the loss function:

Fig. 59: Geometric interpretation of margin
rescaling.

wTΨn,y ě ℓpy, ynq ´ ξn

Thus for very incorrect predictions, the margin and the slack vari-
able will have to be larger than for slightly incorrect ones.

2 Slack rescaling. Here, the loss functions is incorporated as the
denominator of the slack function:

Fig. 60: Geometric interpretation of slack
rescaling.

wTΨn,y ě 1 ´
ξn

ℓpy, ynq
,

thus forcing ξn to be large if ℓpy, ynq is large, which in turn enlarges
C
řN

n“1 ξn. So if ℓpy, ynq is large, we treat the output yn causing the
wrong prediction in a hard-margin setting, whereas if the prediction
is mildly wrong, the soft-margin is active.

Example 3.2.8 (Application: Gene sequence tagging)
We have a gene sequence and aim to assign a tag to each element of
the sequence. Each element of the sequence is a state and between
different elements of the sequences there a transitions. Typically they are
Markovian segment level, so it switches from one segment to the other in
a Markovian way and non-Markovian within segments in order to stay in
one segment longer. The function f represents the score assigned to a

Fig. 61: The lower diagram shows the tran-
sition policy between the different states,
which our structured outputs model will
learn to implement.

certain predicted sequence y:

fpyq :“
J´1
ÿ

j“1

SGT pfGT
j q `

J
ÿ

j“2

SAGpfAG
j q

loooooooooooooooooooomoooooooooooooooooooon

Splice signals

x`

J´1
ÿ

j“1

SLI
ppj`1 ´ qjq `

J
ÿ

j“1

SLE
pqj ´ pjq

loooooooooooooooooooooooomoooooooooooooooooooooooon

Segment lengths

,

which is composed of sums corresponding to different elements of the
sequence of pairs of elements of the sequence, which implements the
constraint on the relation between the different elements of the sequence
or the preference of a given element of the sequence.

We have to tune free parameters (in the functions SGT , SAG, SLE and
SLI

) by solving a linear program using a training set with known splice
forms.

[Missing: Picture (slide21) is it relevant?] ˛

Hidden Markov Model

In this lecture we have looked at structured prediction, but there is another
model, which also has structure and has been around for several decades:

47

3.3 Kernel for anomaly detection

the Hidden Markov Model (HMM). It is a joint probability model over
inputs and outputs, whee the probability distribution factorises into
adjacent terms:

ppx, yq “
ź

i

ppxi|yiqppyi|yi´1q,

which can be seen as satisfying the Markov property, where p is the joint

Fig. 62: Source?

distribution over inputs x and output sequence y. The log probability
logpppx, yqq decomposes into a sum of contributions that involve only
adjacent terms. Thus we can use dynamic programming techniques we
have used in structured prediction to infer the most likely outputs.

Remark 3.2.9 (Structured prediction vs. HMM)
In HMM, the model is learned in a fully unsupervised manner. Once the
model has been learned, the procedure for sequence prediction is fully
determined. In structured prediction, however, the choice of feature map
and loss function give more flexibility into the structure of the model
and the model parameter w P Rh can be actively optimised for best
performance on the supervised task. ♢

In summary,

• Structured output learning enables the prediction of structured
objects such as sequences or trees.

• Structured prediction operates very different from standard machine
learning models by assigning matching scores to input/output pairs
instead of predicting the output directly.

• The problem of structure output learning can be embedded in a
kernel-based framework, enabling the use of desirable kernels for a
given domain, such as text or biological data.

• The main difficulty of structured output learning is to efficiently
infer which output y P Y maximises the score fpy|xq. (Different to
standard machine learning algorithms.)

• For specific models f and feature maps φ with sum-decomposability,
inference can be made much faster (e.g. in linear time) with dynamic
programming.

• Structured prediction is a supervised algorithm which can be ad-
vantageous compared to older unsupervised structured approaches
such as HMMs.

3.3 Kernel for anomaly detection
08.06.2020

Example 3.3.1 (Hacking)
In order to detect intrusions to a system, one can extract signatures of
the packet sent over the network by searching for significant patterns in
malicious data. A disadvantage of this technique is that it can only detect
already known attacks and is thus ineffective against attack variants.

We can use machine learning methods to identify unknown attacks by
embedding the byte stream in a vector space. Assuming that malicious

48

3.3 Kernel for anomaly detection

byte steams somehow deviate from harmless ones, we can strive to learn
a concise description of normal data.

We can use the already introduced structured kernels for the embedding.
For example, we can

Fig. 63: TODO: Warum ist das nicht
ein binary system?

• construct a N -gram vector space by representing any substring of
length n as a dimension. In Fig. 63, we have build a dictionary
with two letter combinations. The corresponding vector entry is 1
if the two letter string appears in the message.

• construct a binary structure, which is one is the substring occurs
in the message and zero else.

• construct a frequency based model such as a histogram, counting
the occurrences of substrings in the message. ˛

Fig. 64: One could treat this as a two class
problem (with large margin) and find a de-
cision boundary between known anomalies
and normal data. This approach might
be insufficient, since new anomalies must
not obey this decision boundary. We thus
must find a way to effectively enclosed the
normal data, but it is not clear how to do
that.

We present three approaches to anomaly detection.

• Density based: Learn a density model of the inlier data ppxq and
then classify a new data point as "outlier" when the probability
assigned to it is low.

• Reconstruction based: Learn a reconstruction model of the data
x ÞÑ projDpxq, where D is the data manifold and then classify as
outlier when the reconstruction error is too high.

Fig. 65: Left: Geometric interpretation of
reconstruction based methods. Right: The
surface separating the inliers and outliers
is adjusted into the direction opposite of
the outliers.

• Boundary based: Instead of learning a surrogate method as in
the two approaches above, we simply learn a separating surface
between the inlier and outlier data, e.g. a hypersphere enclosing
all inliers.

Kernel density estimation (KDE)

We build a probability function

ppxq “
1

Z

N
ÿ

i“1

kpx, xiq,

where we typically choose kpx, xiq :“ exp
`

´γ}x´ xi}
2
˘

, which is a
Gaussian "bump" centered at xi, and Z is a normalisation factor.

Fig. 66: TODO

Feature map view

Assume k induces a feature map φ : Rd
Ñ H. Then we have

ppxq “
1

Z

N
ÿ

i“1

kpx, xiq “
1

Z

N
ÿ

i“1

xφpxq, φpxiq y “ xφpxq, w y,

where w :“ 1
Z

řN
i“1 φpxiq is proportional to the mean in feature space.

Thus the p becomes a linear model in feature space. The function p is
bounded as φpRd

q “ tx P H : }x} “ 1u. (WHYYY?)

49

3.3 Kernel for anomaly detection

Kernel PCA for anomalies (uncentered)

The uncentered PCA projection in feature space can be written as

φpxq “

a
ÿ

i“1

uiu
T
i φpxq

loooooomoooooon

PCA model

`

h
ÿ

i“a`1

uiu
T
i φpxq

loooooooomoooooooon

residuals residuals

,

where pukqak“1 are the principal components. The reconstruction error reconstruction error/
outlier score is given by the norm of the residuals:

opxq “

›

›

›

›

›

h
ÿ

i“a`1

uiu
T
i φpxq

›

›

›

›

›

2

“

h
ÿ

i“a`1

puTi φpxqq2 (15)

by orthonormality of the ui.

Fig. 67: Consider PCA in R2 with one
principal component, PCA1. For an outlier
the norm of the residual is the length of
the projection onto PCA1.

For high dimensions, we only compute empirical principal components
generated by the data, i.e. K “ UΛUT, whereK is the Gram-Matrix, and
U and Λ contain the eigenvectors and -values, respectively. All training
points can be embedded in a feature space based on this decomposition.
For a point outside the training set, we need a interpolation scheme in
order to produce the kernel between new data points and old data points
in the training set and the projecting them onto the principal component
and then multiplying by (the scaling factor) λ´ 1

2 :

projipxq :“ kpx,Xq ¨ U:i ¨ λ
´ 1

2
j .

We can then compute the outlier score

opxq “

h
ÿ

i“a`1

pprojipxqq2.

One can show that this coincides with (15) when x is in the training set.

Fig. 68: For a “ 1 (one component is re-
served for the PCA model and one for the
residual) we get ... for different types of ker-
nels. For the linear model we see that the
outlier function increases along the residual
components, placing most of the data in
the white area. But there are data points,
for which the model does not work well.
Furthermore there are white regions, which
do not contain any inliers. The Gaussian
kernel works well locally but not globally,
which is clear as e´x xÑ˘8

ÝÝÝÝÝÑ 0

Example 3.3.2 (Support vector data description (SVDD))
This boundary based model is an enclosing sphere with center c and
radius R ą 0.Points inside the sphere are considered inliers, points outside

Fig. 69: TODO

the sphere outliers. The minimum enclosing sphere can be optimised via
constrained quadratic programming:

min
R,c,ξ

R2`
1

Nν

N
ÿ

i“1

ξi s.t. @N
i“1}φpxiq´c}2 ď R2`ξ and ξi ě 0, (16)

where the ξi are slack variables, one for each data point.

This is a fully unsupervised method (needs no outlier labels) and a convex
optimisation problem. The quantity ν is an upper bound on the fraction
of outliers and a lower bound on the fraction of support vectors. TODO:
WHY?

The dual problem is

max
a

aikpxi, xiq ´

N
ÿ

i,j“1

aiajkpxi, xjq

s.t @N
i“1

N
ÿ

i“1

ai “ 1 and @N
i“1ai P

„

0,
1

Nν

ȷ

50

3.3 Kernel for anomaly detection

Thus the dual formulation is suitable for few high dimensional data points,
whereas the primal formulation works better on low dimensional data
points.

If the kernel is Gaussian, only the dual problem is solvable (???)

One typically chooses this model if d " N or if the feature map φ is
not known. The center c can be recovered from the dual solution by
c “

řN
i“1 aiφpxiq and the radius R can be inferred from support vectors

which can themselves be identified from box-constraints. (s. HW).

The outlier decision }φpxq ´ c}2 ą R2 can be rewritten as

kpx, xq ´

N
ÿ

i“1

aikpx, xiq `

N
ÿ

i,j“1

aiajkpxi, xjq ą R2,

i.e. we don’t need the feature map explicitly. ˛

We now turn to one-class SVM (OC-SVM), which is another variant of
the problem of anomaly detection. Instead of finding an enclosing sphere,
we aim to learn a hyperplane, which maximally separates the data from
the origin. Here, the origin is not a specific point but a point, which does
not have the specific orientation in feature space. Points closer to the
origin are outliers, while points beyond the hyperplane are inliers.

The maximum separating hyperplane can be optimised via constrained
quadratic programming:

min
w,ρ,ξ

1

2
}w}2´ρ`

1

Nν

N
ÿ

i“1

ξi s.t @N
i“1 xφpxiq, w y ě ρ´ξi and ξi ě 0.

The dual problem is

max
a

´
1

2

N
ÿ

i,j“1

aiajkpxi, xjq s.t
N
ÿ

i“1

ai “ 1 and @N
i“1ai P

„

0,
1

Nν

ȷ

Proof. Observe that strong duality holds by Slater’s condition: if there
exists w, xi, ξ, ρ with xφpxiq, w y “ ρ ´ ξ, then xφpxiq, w y ă ρ ´ ξ̃ for
ξ̃ ą ξ. The Lagrangian is

Lpw, ρ, ξ, a, bq :“
}w}22

2
´ ρ`

N
ÿ

i“1

1

Nν
ξi ` aipρ´ ξi ´ xφpxiq, w yq ´ biξi.

We have
B

Bw
Lpw, ρ, ξ, a, bq “ 0 ðñ w “

N
ÿ

i“1

aiφpxiq (17)

and
B

Bw
Lpw, ρ, ξ, a, bq “ 0 ðñ

N
ÿ

i“1

ai “ 1

and
B

Bξn
Lpw, ρ, ξ, a, bq “

1

Nν
´ an ´ bn

!
“ 0

51

3.3 Kernel for anomaly detection

for n P t1, . . . , Nu. The dual problem thus becomes

max
a,bě0

1

2

›

›

›

›

›

N
ÿ

i“1

aiφpxiq

›

›

›

›

›

2

2

��́ρ

�
�
�
�
��

`
1

Nν

N
ÿ

i“1

ξi ` �ρ

�
�
�

��
´

N
ÿ

i“1

aiξi

´

N
ÿ

i“1

ai

C

φpxiq,
N
ÿ

i“1

aiφpxiq

G

�
�
�

��
´

N
ÿ

i“1

biξi,

which reduces to

max
a

´
1

2

›

›

›

›

›

N
ÿ

i“1

aiφpxiq

›

›

›

›

›

2

2

“ min
a

1

2

N
ÿ

i,j“1

aiajkpxi, xjq “ min
a

1

2
aTKa

subject to 0 ď ai ď 1
Nν , i.e.

`

´I
I

˘

a ĺ 1
Nν p 0

1 q, where ĺ denotes entry-wise
inequality, and

řN
i“1 ai “ 1, i.e. aT 1 “ 1 where K “ pkpxi, xjqqi,j . l

The decision rule in the primal for classifying a data point as an outlier is
given by xφpxiq, w y ă ρ. Also, one can verify that for any data point xi,
whose associated dual variables satisfies the strict inequality ai P

`

0, 1
Nν

˘

and calling one such point a support vector xSV, then the following
equality holds: xφpxSVq, w y “ ρ. The outlier detection rule can thus, by
(17) be expressed as

N
ÿ

i“1

aikpx, xiq ă

N
ÿ

i“1

aikpxSV, xiq,

We observe that SVDD is equivalent to OC-SVM if kpx, xq “ const for
all x, since then

řN
i“1 aikpxi, xiq “ kpx, xq “ const independent of α.

An example for such a kernel is the Gaussian kernel (kpx, xq “ 1) or
any other radial basis function (RBF) kernel. Geometric interpretation:
all data points have unit norm in feature space: }φpxq}2 “ kpx, xq “ 1.

Fig. 70: TODO

The enclosing sphere and the separating hyperplane produce the same
decision boundary on φpRd

q.

The boundary approach is interesting as one has flexibility in the mod-
elling task: One can generalise SVDD by including labels in a SVM
fashion and then make them subject to a different constraint, for exam-
ple that they should be outside the hypersphere. This can affect the
hypersphere compared to what we would learn with only inlier data.

Fig. 71: TODO

The semi-supervised (unlabeled and labeled data) setting can imple-
mented by modifying (16), the extended SVDD is

min
R,γ,c,ξ

R2 ´ κγ ` νu

n
ÿ

i“1

ξi ` ηI

n`m
ÿ

j“n`1

ξj

s.t. @N
n“1}φpxiq ´ c}2 ď R2 ` ξi, ξi ě 0,

@
n`m
j“n`1yj

`

}φpxjq ´ c}2 ´R2
˘

ď ´γ ` ξj , ξj ě 0,

where γ is the confidence margin. Unfortunately, this problem is not
convex, but there exists a convex relaxation.

For each kernel based method, there also a deep counterpart:

52

3.3 Kernel for anomaly detection

-based / Kernel Deep
Density KDE DBMs, Hierchical latent

Reconstruction KPCA Autoencoder
Boundary OC-SVM GAN, deep OC-SVM

and many more (isolation forest, local outlier factor).

Beyond Prediction: Explaining Anomalies

Sometimes, it is important to not only detect that a point is anomalous,
but also to understand why it has been classified as such to very that
the detection is justified.

Fig. 72: The explanation highlights which pixels are responsible for the
anomaly detection.

In order to explain KDE and OC-SVM, we note that both models are of
the type

fpxq “
ÿ

i

ai exp
`

´γ}x´ xi}
2
˘

,

which is closed to an inlier function because [inaudible].

We can convert it into an outlier function by applying a decreasing
function to it:

opxq “ ´
1

γ
logpfpxqq “ ´

1

γ
logp

ÿ

i

exp
`

´γ}x´ xi}
2 ´ logpaiq

˘

“
γ

min
i

t}x´ xi}
2 ´ logpaiqu,

i.e. a soft minimum over the squared distances, which can be interpreted
as the minimum distance of x to an inlier. This outlier score can there

Fig. 73: The lines represent kind of level
lines, to illustrated the outlier function.

be redistributed in two steps

• min-take-most in the pooling layer (argminγi t¨u) (in this step, the
xi, which attains the minimum in the outlier score, is identified),

• directional redistribution in the distance layer px´xiq
2

}x´xi}2
(given use

attribution on input features of xi).

53

4 Deep Learning

4.1 Neural Networks for Structured Data
15.06.2020Neural networks recapitulation

With neural networks we want to solve nonlinear problems, we show
three approaches to tackle such problems.

Example 4.1.1 (Feature Engineering)
In the most basic approach one extracts features from the input, which
one believes to be relevant for the task. If one has extracted good
features, on can train a linear classifier on top of those features and get
good results. Typically, features are designed to incorporate knowledge.
A disadvantage of this approach is that for every new task one needs to

Fig. 74: To build a assistance to drive on
likes to detect the lanes and the other vehi-
cles. Based on those features, the classifier
might take a decision such as turning left
or right. (The vector should rather look
like . . . , x3, x4, . . . , x7, x8, x9,)

code new features, so this approach fails for tasks, where we don’t know
the features a priori. ˛

Example 4.1.2 (Kernels / Expansions)
The polynomial kernel kpx, yq :“ p1 ` xx, y yqd induces the feature map

φpxq :“

«

1,
?
dpxiqi,

c

dpd´ 1q

2
pxixjqij , . . .

ffT

,

from which we can represent the task linearly (if d is large enough). A
disadvantage of this automatic feature expansions approach is that one
never knows if the expansion will produce features that are relevant for
the task of if there will be a lot of redundancies and features modelling
task-unrelated features. ˛

Example 4.1.3 (Neural networks)
Neural networks are inspired by the brain, which has the ability to learn
a problem representation using a large but finite number of neurons. A(n)
(artificial) neural network is a machine learning model that mimics this
capability.

A visual stimulus can be a input x for the brain, which produces a neural
response, which can be thought of as the feature map φpxq. Something
unique about this neural network is that the problem representation can
be learned: by inputting several stimuli over a certain period of time, the
neural response will change: it will increasingly well represent what has
been received as inputs. This feature is called "plasticity".

We simplify the biological neuron to only retain the essential components
for learning: nonlinearity and plasticity. The nonlinearity can be imple-
mented by some activation function g and the plasticity is implemented
by the parameters wij and bj , which are learned from the data.

Fig. 75: A simple three-layer network

54

4.1 Neural Networks for Structured Data

The forwards pass of the neural network in Fig. 75 is

zj “
ÿ

i

xiwij ` bj aj “ gpzjq (layer 1)

zk “
ÿ

j

xiwjk ` bk aj “ gpzkq (layer 2)

y “
ÿ

k

akvk ` c, (layer 3)

where i represents the inputs in layer 0, j the neurons in layer 1 and k
the neurons in layer 2 and e.g. wij is the weight of the edge connecting
xi and aj .

The error gradient can be computed efficiently with error backpropaga-
tion, which reuses intermediate computation in the graph to be able to
compute the gradient in linear time of the number of neurons (instead of
exponential time) Consider an error function E depending on the output
y and some targets (e.g. ground truth) t. We then have

BE

Bwij
“

Bzj
Bwij

ÿ

k

Bzk
Bzj

By

Bzk

BE

By
looomooon

δk
loooooooomoooooooon

δj

. (18)

The last terms only depend on zk and thus be stored in the variable δk
and need not be recomputed, and similarly for δj . ˛

Example 4.1.4 (Shared parameters (HA 7-1)) Let x1, x2 be two
observed variables. Consider the two-layer neural network that takes
these two variables as input and builds the prediction y by computing
iteratively

z3 “ x1w13, z4 “ x2w24, a3 “
1

2
z23 , a4 “

1

2
z24 , y “ a3 ` a4

Consider the loss function ℓpy, tq :“ 1
2 py ´ tq2, where t is the target

variable that the neural network learns to approximate. Using the rules
for backpropagation (cf. (18)) yields

Bℓpy, tq

Bw13
“

Bℓpy, tq

By

By

Ba3

Ba3
Bz3

Bz3
Bw13

“ py ´ tqz3x1

and, similarly, Bℓpy,tq
Bw24

“ py ´ tqz4x2. Since the variables y and zi are
computed in the forward pass, they are available and one need not express
them in terms of the input variables and the weights.

Assume that the weights cannot be adapted freely, but are a function of
the same shared parameter v:

w13 “ logp1 ` exppvqq, w24 “ ´ logp1 ` exppvqq.

Assuming, we have computed Bℓpy,tq
Bw13

and Bℓpy,tq
Bw24

, we obtain

Bℓ

Bv
“

Bℓpy, tq

Bw13

Bw13

Bv
`

Bℓpy, tq

Bw24

Bw24

Bv
“

py ´ tqz3x1
1 ` e´v

`
py ´ tqz4x1

1 ` ev
. ˛

55

4.1 Neural Networks for Structured Data

Remark 4.1.5 (Machine Learning Desiderata)
• Universality. The method can be applied to any task, also on

such where we do not know what the features should be a priori.

• Compactness. We don’t want the model to require exponentially
neurons / features to represent a certain task.

• Convexity. We want our algorithm to converge to the optimum.
♢

The feature engineering approach is compact as we just have to select a
few features for the task. The kernel expansion approach might produce
very large expansions before being able to extract task relevant features,
so one ends up with exponentially many features to deal with. Fig. 76
shows that that neural networks are universal: think of the input neurons
as extracting a direction in the input space. If one combines several of the
such obtained tanh functions (we choose g ” tanh), we obtain a "bump"
with sufficiently many neurons. One more layer now combines many
different bumps and many different locations, which gives the power to
approximate any function. This can be thought of as a kernel map which
produces an RBF function at a certain location. If these kernel maps are
universal approximators, so are the neural networks.

Fig. 76: Constructive "proof" of universal-
ity of neural networks.

The feature engineering approach is convex as we just have to train the
top layer classifier (???). The kernel approach is also convex as they are
a way of representing a linear model in a induced feature map. We will
show that neural networks are not convex, but they can still be optimised
with heuristic effort.

Approach Universal Compact Convex

Feature engineering No Yes Yes
Kernels / Expansions Yes No Yes
Neural networks Yes Yes No

Table 2: Machine learning desiderata and the three approaches.

Compactness of neural networks

Consider approximating the parity function

f : t0, 1ud Ñ t0, 1u, x ÞÑ paritypx1, . . . , xdq,

which is one if and only if the number of ones in x is odd and zero else.
Plotting t0, 1ud one a hypercube and colouring the vertices according to
f , one sees that neighbouring vertices always have the opposite colour.

A naive approach using one neuron / basis function to handle each cor-
ner of the hypercube yields 2d neurons, whilst building the composition
(fpxq “ x1 _x2 _ . . ._xd) progressively yields only 4d neurons: building
a bit parity between the first two dimension can be realised with four
neurons. Adding one dimension takes four neurons again. This archi-

Fig. 77: Progressive exclusive-or composi-
tion. [dai]

tecture is way deeper than the naive approach, but avoids the curse of
dimensionality.

56

4.1 Neural Networks for Structured Data

More practically, one task of interest is image recognition. Solving this
problem with random basis functions, they would typically look like
random images and one might need a lot of them to be able to extract
good feature extraction. The idea is that if one can train the neurons,
each of the neurons might convergence to useful and very clean filter
(edge / color / high frequency texture detectors). Slide 12 is very
confusing.

Remark 4.1.6 (Optimisation of neural networks)
Neural networks are non-convex: Even the simplest two-layer networks
φpx, θq :“ θ1θ2x is non-convex in θ. Thus many hyperparameters (e.g.
initialisation, learning rate, etc.) can affect the learning outcome.

Multiple layers can cause pathological curvature, i.e. the gradient vanish-
ing along certain directions of the parameter space. The optimiser might
then get stuck on large plateaus.

With heuristics on the neural network design (e.g. choice of layers
and nonlinearities (ReLU works well, sigmoid doesn’t) and optimisation
(whether one should use momentum, where one should reparametrise the
network) it is however possible to train neural networks efficiently. ♢

Neural networks for structured data

Molecules, volumetric data, parsing trees, images or documents (e.g.
historical tables), DNA sequences and general graphs are all high-level
structures we want to classify.

Example 4.1.7 (Neocognitron (1980))
For image recognition, the Neocognitron was proposed 40 years ago in
[Fuk80]. It very much resembles convolutional neural networks we still
use nowadays. The Neococognitron is an architecture for representing
images, where the produced representation is not affected by a translation
of the input image: If one moves elements of the image by some amount,
they will also move by that amount in the convolutional layers. In the
pooling layers takes a receptive field and aggregates all what one sees
in a specific location. This process can be alternated; progressively,
the relevant information persists but the spatial information becomes
more and more coarse until it becomes completely invariant to the exact
positing. We say the Neocognitron consists of an alternation of "simple

Fig. 78: Schematic diagram illustrating
the interconnections between layers in the
neocognitron. [Fuk80]

cells" (convolutions) and "complex cells" (pooling), which progressively
build the desired representation. ˛

Convolutional neural networks

Then came the convolutional neural network (CNN) (1989, 2012) [L`89].

Here we not only have this alternation of convolution and pooling layers,
but they will be provided with an algorithm to train their parameters
using the backpropagation algorithm which was introduced some years
earlier. This architecture is, up to very minor changes (ReLU instead
of tanh nonlinearities), the state-of-the-art in many image recognition
tasks, which became apparent, when the ILSVRC (ImageNet Large Scale

57

4.1 Neural Networks for Structured Data

Visual Recognition Challenge) 2012 was won by a wide margin by CNNs.
CNNs are resource-hungry for training data, typically they have to be

Fig. 79: Architecture of a CNN. [NL]

trained on GPUs. One advantage of CNNs is that there are a lot of
repositories with pretrained CNNs. The idea is that one can just cut
the last classification layer and use it as a feature map and just train a
linear or shallow classifier on the task. There are a lot of applications,
where generic neural networks for images have been transferred to tasks
in medical applications.

Fig. 80: The convolution layer.

A convolutional layer takes in different input tensors that are response
maps to the input image, e.g. one response to horizontal / vertical edges
or color blobs, which are of the same dimensions as the input image. One
creates a layer of convolution, where each output response map will be
the weighted sum of the convolution of the input response map with a
convolution kernel:

@ja
pjq “ g

˜

ÿ

i

wij ‹ xpiq

¸

.

Typically, one doesn’t use convolution but cross-correlation, which is the
same except some flipping of the convolution kernel: zpijq “ wpijq ˚ xpiq

The input tensor is an array of numbers and the convolution kernel is

Fig. 81: A convolution operation with zero
padding so as to retain in-plane dimensions.
[YNDT18]

wij . One applies the kernel to the first input patch (orange) and the
slide it over the matrix, yielding a new response map which contains all
the dot products between the input patches and the convolution kernel.

An advantage of cross-correlation is that one can backpropagate the
gradient in an efficient way:

zt “ rw ‹ xst “
ÿ

sPZ
ws ¨ xt`s.

Consider E to be an error function depending on z. By the chain rule
the backward pass is

BE

Bxu
“

ÿ

tPZ

BE

Bzt

Bzt
Bxu

“
ÿ

tPZ

BE

Bzt
wu´t “

„

BE

Bz
˚ w

ȷ

u

and the parameter gradient

BE

Bwu
“

ÿ

tPZ

BE

Bzt

Bzt
Bwu

“
ÿ

tPZ

BE

Bzt
xu`t “

„

BE

Bz
‹ w

ȷ

u

Consider the activation function g to be apℓq

t :“ maxp0, z
pℓq

t q, where the
forward pass is

z
pℓq

t “

K
ÿ

k“1

”

xpkq ˚ wpk,ℓq
ı

t
“

K
ÿ

k“1

ÿ

sPZ
xpkq
s w

pk,ℓq

t´s ,

where K is the number of input signals to the convolutional layer. The
convolutional filters w “ ppwpk,ℓqKk“1qLℓ“1 have to be learned from the
data. After passing the data through the convolutional layer, the neural
networks output is given by some function fpaq. To learn the model, the
parameter gradients need to be computed. Assuming one knows Bf

Ba , we

58

4.1 Neural Networks for Structured Data

can express Bf
Bw via the chain rule:

„

Bf

Bwpk,ℓq

ȷ

u

“
ÿ

tPZ

Bf

Ba
pℓq

t

¨ 1pz
pℓq

t ą 0q ¨
Bz

pℓq

t

Bw
pk,ℓq
u

“
ÿ

tPZ

Bf

Ba
pℓq

t

¨ 1pz
pℓq

t ą 0q ¨
B

Bw
pk,ℓq
u

ÿ

sPZ
xpkq
s w

pk,ℓq

t´s

“
ÿ

tPZ

Bf

Ba
pℓq

t

¨ 1pz
pℓq

t ą 0q ¨ x
pkq

t´u.

We have seen that CNNs are

• universal: the CNN model is (this is empirically verified) able to
recognise most known visual objects (ImageNet classes, handwritten
digits, traffic signs, spectrograms (speech), volumetric data from
the brain, other time series, etc.) Because the convolution network
is not relying on a specific filter but instead a general architecture
which consists of building the features progressively, it does not
limit itself to a specific set of classes.

• compact: the representation remains finite-dimensional (as in not
exponentially many neurons) at each layer. The spatial resolution
is progressively traded for semantic resolution: One progressively
looses spatial resolution, the feature map becomes less and less
resolved until they are not spatially resolved at all: they correspond
to a single scalar. On the other hand one increases the semantic
content of the representation: the number of filters increases as
their spatially resolution decreases. This makes sense as the more
one has detected high level concepts, the less one has to keep track
of their position in order to be able to relate them. We arrive at
a very high dimensional representation with no spatial resolution
from which we can build a classifier.

• nonconvex. However, it still converges to good solutions with a
careful initialisation and choice of optimisation parameters.

Remark 4.1.8 (Adding CNNs to high-level structure)
CNNs need many labels to preform well. In new problems, one may
have less labels because it requires experts or simply because there is not
enough interest in the task to be able to assign enough resources to it.
In that case there are two possible approaches: the first one is to take
a pretrained network and retrain the top layer, which might work well
if the task is related. For other tasks with very specific composition in
the input image, this might not be optimal. In this case one can train
the CNN on local patches and augment it with a high-level structure,
which is making use to prior knowledge (e.g. known compositions and
invariance). One can hardcode this in the top layer of the CNN and get
a classifier solving the task. ♢

Example 4.1.9 (Bigram network [EBK`20])
The Bigram network (developed at TUB, too) aims to detect if two tables
from historical textbooks are similar. If one inputs such a table into a
state-of-the-art image recognition CNN, it would probably not detect
what the digits are and how they are related and not be able to ignore

59

4.1 Neural Networks for Structured Data

the perturbing factors that are the lines of the table. It is also not clear,
what a similarity measure for tables should be, if it focuses on the overall
cell structure or the content within.

For the task of matching tables based on their numeric content, one
feeds the table to a standard digit-recognising CNN. Instead of building
a single output, the CNN outputs are response maps for every digit. The
idea is that one can hardcode some layers (high-level structure) by using
min-pooling to compose two adjacent digits:

Fig. 82: TODO

a
pτq

jk pxq :“ minpajpxq, τpakpxqqq,

where aj is the activation map for digit j, where τ is some small translation
operation, which account for a variety of shifts (there are tables where
the digits are more condensed than in others). Instead of detecting digits,
one can now detect two-digit numbers. We build a local shift invariance
by having a max-pooling over these shifts:

max
τ

a
pτq

jk pxq.

The min can be understood as a logical soft and, which tests whether we
have an activation both in aj and ak. If one of them is missing, we have
minp¨, 0q “ 0. The max can be interpreted as a soft logical or.

Once we have done the local shift invariance, we can build translation
invariance:

φjkpxq :“ }ajkpxq}1, ˛

which yields a histogram of all digits in the table, which can be used as
a representation to compare tables.

Fig. 83: Based on their similarity, the historical tables can be mapped
into an embedded space using e.g. t-SNE. Points that are mapped to the
same location, can indeed be verified to have a similar numerical content,
they would often correspond to the same table taken from different books.

Text classification

In the context of image classification, images are seen as arrays of pixels
and every pixel is given by its RGB components xp P r0, 1s3. Therefore,
they can be readily given as input to a neural network.

On the other hand, texts are collections of words. Words are abstract
symbols that do not possess a numerical representation. Instead they

60

4.1 Neural Networks for Structured Data

need to be embedded into one such representation so that they can be
given as an input to a neural network. There are various ways of vector

Fig. 84: A vector embedding on a sentence.

embedding

• One-hot encoding: Represent a word as a one-sparse vector:

erws :“ p1pw “1 a1q,1pw “1 able1q,1pw “1 about1qq P R#words,

i.e. er1able1s “ p0, 1, 0, . . .q. This approach is very simple to setup
and doesn’t loose any information and any pair or words can be
linearly separated, but this is a very high dimensional representation,
which can be very inefficient by the curse of dimensionality

• kPCA embedding: One relies on a structured kernel (cf. lecture 4)
k, which measures similarity between words (e.g. co-occurrence of
lexical similarity). The embedding is obtained by diagonalising the
Gram matrix K “ pkpxi, xjqqi,j “ UΛUT and defining

erws :“ Uw,:d d p
a

λ1, . . . ,
a

λdq P Rd .

Typically, this will retain most of the variance: one will get use-
ful principal components, which hopefully capture all of the task
subspace. We want d to be in the order of a few hundreds and not
many thousands.

• Learned embedding (e.g. Word2Vec): Start with a random embed-
ding erws P Rd and learn the embedding on the supervised task
(e.g. text classification) directly or on some related unsupervised
task (checking if the embedding of two similar words is similar) E
via the update

erws Ð erws ´ γ
BE

Berws

for some learning rate γ ą 0.

Once we have such an embedding for words, we can build a neural network
architecture for a sentence. One approach is to use recursive neural
networks (RecNNs), which makes use of a parsing tree of the sentence,
which can always be extracted based on some rules (cf. Stanford parser),
if the sentence if grammatically correct). If one has a binary parsing tree,
one can build a function, which is applied recursively from the leaves
at every node to finally arrive at the complete sentence. From the root,
something can be predicted about the sentence.

Example 4.1.10 (RecNNs for sentiment analysis [SPW`13])
Sentiment analysis aims to find out whether a sentiment is positive or
negative. The "merge" neural network takes two words and merges them
into one word. The "readout" neural network, which takes the output
of the merge function and converts it to a scalar, represents the actual
sentiment prediction. Ideally, one would like to use this function only
at the root of the tree, but since "readout" always maps to the same
domain, we can also apply this function anywhere in the tree. ˛

Fig. 85: In this toy example, "good" is
positive, "very good" is very positive and
"not very good" is negative: "not" inverts
the sentiment.

Fig. 86: Applying the readout function on
each node allows to visualise how the sen-
timent builds up in the recursive neural
network. [SPW`13]

61

4.1 Neural Networks for Structured Data

Graph neural networks (GNNs)

GNNs are networks specialised for classifying graphs, which are a very
general data representation including pixel lattices, trees or sequences
as special cases. GNNs receive a graph as input and implement, at
each layer, a propagation step along its edges. The parameters of that
propagation can be learned.

Fig. 87: The input not layer zero, it is the
graph, which is a initial state. At each
layer, the GNN preforms at diffusion step
in the graph until one achieves a prediction.
Thus the input graph is at every layer of
the GNN. [SEL`20]

Example 4.1.11 (GNN from [KW16])
Consider a graph with adjacency matrix A and associated normalised
Laplacian Λt :“ D´0.5AD´0.5, where D is a diagonal matrix containing
the degrees of the nodes in the graph. If one multiplies the Laplacian
by itself several times, it does not produce [inaudible] data only for
high-degree nodes but it will implement some diffusion process in that
graph. Let H0 be some initial state (cf. t “ 0 in Fig. 87) and W a set of
trainable parameters of GNN, which we learn from the data.

The t-th layer of a GNN consists of two matrix multiplications follows by
a nonlinearity g:

Ht :“ gpΛtHt´ 1Wtq.

Multiplication of Ht´1 by Λt performs a pooling of messages coming from
neighbouring nodes, making the states propagate along the edge of the
graph. Multiplication of Ht´1 by Wt (which can be seen as a rotation in
the dimension of initial state) extracts features that are relevant for the
prediction task.

Progressively, one hops that information circulates along the graph to
e.g. detect graph patterns like highly connected areas. This will become
more apparent after several layers of representation. ˛

Example 4.1.12 (Application of GNNs to molecules)
A molecule can be expressed as a graph. The GNN exchanges information
between the different atoms to identify interesting structures and reaches a
prediction. This accelerates quantum chemical computation by bypassing
expensive DFT simulations, which give us the true quantum chemical
properties of the molecule. When comparing many molecules, the slow
DFT is infeasible. ˛

Fig. 88: A Message Passing Neural Network
predicts quantum properties of an organic
molecule by modelling a computationally
expensive DFT calculation. [GSR`17]

Example 4.1.13 (Application of GNNs to meshes)
Recognising objects not from images but from meshes, where instead
of an image we have a 3D-model, can be solved with GNNs, too. We
define a graph on the mesh and each diffusion step takes the nodes of
that graph which are connected to nodes of interest. In every step the
dimensionality of the state increases. Finally, a fully connected layer
classifies the mesh. ˛

Fig. 89: Source?

Example 4.1.14 (Application of GNNs to)
GNNs can also be used in the context of semi-supervised learning. We
have a graph, which is not a single data point, but a whole data set.
Similar data points are connected by an edge. Several layers of the NN
"let the points communicate". Only labels for some data points exists.
Due to the diffusion steps, the classes of points that are unlabelled can
be predicted with a readout function. ˛

Fig. 90: [KW16]
62

4.2 Structured Prediction

Remark 4.1.15 (CNNs as a special case of GNNs)
GNNs are general and incorporate CNNs as a special case, where the
graph is a two-dimensional lattice. Although, it would not be a good idea
to implement CNNs directly as GNNs because CNNs have an efficient way
of structuring computations. In the image, the red node has a receptive
field of size 3 x 3 and the convolution takes the neighbours and computes
a center point. ♢

Fig. 91: Left: 2D convolution. Analo-
gous to a graph, each pixel in an image
is taken as a node where the neighbours
are determined by the filter size. The 2D
convolution takes the weighted average of
pixel values of the red node along with its
neighbours. Right: Graph convolution.
To get a hidden representation of the red
node, one simple solution of the graph con-
volutional operation is to take the average
value of the node features of the red node
along with its neighbours. [WPC`20]

In summary,

• neural networks can learn compact representations for any rele-
vant tasks, because it does not extract hardcoded features. This
joint capability comes at the cost of a more difficult (nonconvex)
optimisation problem.

• Structured networks are generalisation of standard networks that
allow handling of various real world data, e.g. images by CNNs,
text (via an embedding) by RecNNs and graphs by GNNs.

• CNNs efficiently extract image representations by progressively
expanding the semantic content while compress inf the pixel-wise
information.

• GNNs generalised NNs to any graph-structured input, including
trees and pixel lattices.

4.2 Structured Prediction
22.06.2020Motivation (Forward vs. Inverse Problem)

In Fig. 92 one can see a typical machine learning problem, where one
has an input x and an unknown function f producing the target t
via t “ fpxq ` noise. We can approximate f with standard neural
networks, as one can predict the expected target given the input, which
is a deterministic function. If one wants to solve an inverse problem e.g.

Fig. 92: todo: citation

predicting the input from only the output, one can run into trouble as
the function f mapping the input to the target is not invertible. Thus
for given input, there are several possible outputs. The idea for tackling

Fig. 93: Taking the mean of multiple out-
puts may result in a bad prediction: the
mean point is at a point where there are
no data points.todo: citation

an inverse problem thus is to view the task of prediction as that of
learning a conditional probability model pθpt|xq: for given x we look
at all the possible values of t and build a probability distribution of
t|x. We then minimise the objective minθD pppt|xq}pθpt|xqq, where D

Fig. 94: todo: citation

is some divergence measure between the two distributions such as the
KL-divergence of the Wasserstein distance. Here, ppt|xq is the true target
distribution, which will simply be an empirical estimate of the target
given x.

Mixture Density Networks (MDNs)

MDNs are neural networks specialised for predicting conditional prob-
ability densities, which typically are (Gaussian) mixture models. The
MDNs will not predict the output directly but instead the parameters of
the distribution.

63

4.2 Structured Prediction

First we model the output as a Gaussian mixture:

ppt|xq “

m
ÿ

i“1

aipxqφipt|xq,

where

φipt|xq :“
1

p2πq
c
2σipxqc

exp

ˆ

´
}t´ µipxq}2

2σipxq2

˙

are the mixture elements. The parameters of the mixture are the output
of the network. One then optimises Gaussian mixture’s likelihood

Eq :“ ´ ln

˜

m
ÿ

i“1

aipx
qqφipt

q|xqq

¸

,

which is he contribution to the error function of one data point q. Using

Fig. 95: The output of the network are
the parameters z “ pai, µi, σiq. If we have
a mixture of three components, we have
three values of a, three vectors µ and three
positve scalars σ. TODO citation 2 from
slides

Bayes’ theorem, the posterior distribution is

πipx, tq :“
αiφi

řm
j“1 αjφj

.

Simple calculations show that BEq

Bai
“ ´πi

ai
and BEq

Bµik
“ πi

µik´tk
σ2
i

. With
theses gradients, we can backpropagate to update the parameters of the
network.

The parameters are subject to constraints, for example, a, the probability
of generating a component of the mixture is nonnegative and all a sum
up to 1. We thus reparametrise

ai “
exppzai

řM
j“1 exppzaj q

with a softmax function to ensure these constraints hold true. We then
get

BEq

Bzai
“

m
ÿ

j“1

BEq

Baj

Baj
Bzai

“

m
ÿ

j“1

´
πj
aj

pδijai ´ aiajq “ ai ´ πi.

There are no constraints on µ, so we write µik “ zµik. As σi has to be
positive, we reparametrise as σi “ exppzσi q. We have build the parameter
vector z from Fig. 95.

Example 4.2.1 (MDNs for inferring planet composition)
A data set of artificial planets is build form physics-based simulations. We
want to predict certain hidden properties (composition) of a planet from
a limit number of observed variables (mass/radius/k2q. But for certain

Fig. 96: [BPT`20]

set of parameters, there might be several composition that correspond to
those parameters. We use a MDN to handle this multi modality.

The MDN model can first be verified on planets for which the interior
structure is known. TODO: can find plot form slide 7 he MDN
model can then be used to infer the com,position of less known exoplanets
from a limited number of measurements. ˛

Boltzmann machines

Fig. 97: One can think of the Boltzmann
machine as implementing (linear) decision
boundaries in the input space and attribut-
ing high probability to points that are on
one side and low probability for points on
the other side.

Gaussian mixture models (GMMs) capture local regions of high density
but are not efficient for distributions that are shaped by global effects.

64

4.2 Structured Prediction

Boltzmann machines (BMs) (sometimes called product of experts)
describe the probability function as a product of factors. Each factor
captures a global effect in the distribution.

Example 4.2.2 (Conditional RBM)
A conditional restricted Boltzmann machine (CRBM) is a system of
binary variables composed of an input x P t0, 1ud, an output y P t0, 1uc (t
in the previous subsection) and a latent state h P t0, 1uK . It is governed

Fig. 98: [JyHL`14]

by an energy function

E : t0, 1ud`c`K , px, h, yq ÞÑ ´xTWh´ yTUh

and associates to each joint configuration the probability

ppx, h, yq :“ Z´1 exp p´Epx, h, yqq ,

where Z is a normalisation term (chosen such that
ř

x,h,y ppx, h, yq “ 1).

We can calculate

pphk “ 1|x, yq “ spxTW:,k ` yTU:,kq and ppyj “ 1|h, xq “ spUT
j,:hq,

where sptq :“ 1
1`e´t is the sigmoid function. Furthermore, marginalisation

can easily be achieved: ppx, yq “ Z´1 expp´F px, yqq, where

F px, yq :“ ´

K
ÿ

k“1

logp1 ` exppWT
:,kx` UT

:,kyqq

is called the free energy (think of it as energy that has been freed from
the latent variable) and can be interpreted as a two-layer neural network
(activation function is logp1 ` exppxqq!). The lower the free energy, the
more likely the joint configuration px, yq. Hence, structured prediction
can be performed as

y|x “ argmin
y

F px, yq.

We see that the lower the energy of a configuration, the more like it is.
This is different from the scores we used in the context of structured
output for kernels. This is mainly because the system are inspired by
physics, where probability relates to negative energy: high probability
relates to low energy, as physical system tend to be in a state of low
energy in most cases, i.e. with a high probability. ˛

Example 4.2.3 (Training an CRBM)
A common training procedure is to maximise the data likelihood ℓ :“
1
N

řN
n“1 logpppxn, ynq, where pxnqNn“1 and pynqNn“1 are the data points.

Its gradient is given by

Bℓ

BWik
“ Ep̂px,yqrxi ¨ spWT

:kxqs ´ Eppx,yqrxi ¨ spWT
:kxqs

Bℓ

BUjk
“ Ep̂px,yqryi ¨ spUT

:kyqs ´ Eppx,yqryi ¨ spUT
:kxqs,

where p̂ is a empirical distribution, which is 1
N at each data point and zero

else and p is the distribution generated by the CRBM. This expectation
is intractable, because on has to go over |t0, 1ud`c| states. But one can

65

4.2 Structured Prediction

still sample according to this distribution using alternate Gibbs sampling,
i.e. iteratively sampling ppx, y|hq and pph|x, yqq, which can be visualised
in Fig. 98 by the arrow labelled W . This will converge to an unbiased
sample. ˛

[Missing: slide 12 - 14]

General framework: Energy-based learning

So far we have seen two models for structured output: MDN and RBM.
They are simple to train and the parameters of the RBM can be inspected
to verify that the model has learned meaningful filters. But they also
have limitation: the CRBM has a rigid product structure; there might be
other functions that better model the input-output relation. The mixture
density model captures the conditional distribution as a Gaussian dis-
tribution, but the true distribution might be better expressed by another
distribution.

So far, we have only considered outputs that are real-valued vectors,
while in practice we might want to predict more complicated structures
such as trees or sequences.

Fig. 99: A model measures the compati-
bility between observed variables X and
variables to be predicted Y using an energy
function EpY,Xq. For example, X could
be the pixels of an image, and Y a discrete
label describing the object in the image.
Given X, the model produces the answer
Y that minimises the energy E. [LCH`06]

Energy-based learning [LCH`06] is a general framework for performing
structured predictions with neural networks. A energy function has two
inputs: the observed variables and the variables Y to be predicted (very
similar to the structured prediction kernel). For a given input there are
different energy scores to possible predicted outputs (here: classes). The
predicted output will be the class with the lowest energy, in this case:
animal.

Fig. 100: Several applications of energy-
based learning: (a) face recognition: Y is
a high-cardinality discrete variable: an in-
put image is detected to be Einstein or
not Einstein; (b) face detection and pose
estimation: Y is compromised of bounding
boxes: a collection of vectors with location
and pose of each possible face; (c) image
segmentation: Y is an image in which each
pixel is a discrete label (belonging to the
nuclei or not); (d-e) handwriting recogni-
tion and sequence labelling: Y is a sequence
of symbols from a highly structured but po-
tentially infinite set (the set of English sen-
tences). The situation is similar for many
applications in natural language process-
ing and computational biology; (f) image
restoration: Y is a high-dimensional con-
tinuous variable (an image). [LCH`06]

The model can be trained using a push/pull-approach.

Fig. 101: For the correct answer Y i, one wants the energy to be low and
for the wrong one (so any other answer that is incorrect) to be high. We
receive pairs of outputs, a correct and a incorrect one and one adapts the
model W to increase/decrease the energy function accordingly. [LCH`06]

To achieve this training, one can use the generalised perceptron loss
function

LpY i, EpW,Y,Xiqq :“ EpW,Y i, Xiq ´ min
Y PY

EpW,Y,Xi.

But this loss function has a margin of zero: it halts as soon as one has pro-
duced a valid decision boundary, i.e. EpW,Y i, Xiq “ minY PY EpW,Y,Xiq.

66

4.2 Structured Prediction

The hinge loss forces this difference to be at least m.

Fig. 102: Examples of loss functions. Margin is an important component
to ensure that the learned model generalises well to test data.

Notice that the hinge loss looks like a ReLU and the log loss like a
softplus. The log loss is desirable for complex energy functions.

How can we find the contrastive examples Y for which the loss function
is high?

Missing: slides 19 - 21.

Example 4.2.4 (Structured Prediction: Kernels vs Networks)
One advantage of kernel-based structured prediction is that the margin
is maximised in a well-defined feature space φpxq (margin corresponds to
distance in euclidean terms), whereas for neural networks, the margin
is defined on some representation, which might distort the geometry of
the input data, which is out of your control. Furthermore, the learning
algorithm is convex, yielding reproducibility, whereas neural networks
are nonconvex.

On the other hand, neural network based structured prediction grants
more flexibility by letting the model extract the representation it needs
for the task. Furthermore, the output space Y can be continuous (e.g.
images) and inference of y|x can be done via gradient descent (not directly
in the output space but using e.g. a generator). ˛

In summary, like kernel machines, neural networks need to be adapted to
be able to perform structure predictions. Simple methods for structured
output learning include MDNs and CRBMs. More general structured
predictions (e.g. sequences, trees) can be achieved within the flexible
framework of energy-based learning.

67

4.3 Explainable Models

4.3 Explainable Models

68

5 Federated Learning

69

References

References
[BC04] Tijl De Bie and Nello Cristianini, Kernel methods for ex-

ploratory pattern analysis: A demonstration on text data,
SSPR/SPR, 2004.

[BPH`12] F. Bießmann, J. Papaioannou, A. Harth, M. Jugel, K. Müller,
and M. Braun, Quantifying spatiotemporal dynamics of twit-
ter replies to news feeds, 2012 IEEE International Workshop
on Machine Learning for Signal Processing, 2012, pp. 1–6.

[BPT`20] Philipp Baumeister, Sebastiano Padovan, Nicola Tosi, Gré-
goire Montavon, Nadine Nettelmann, Jasmine MacKenzie,
and Mareike Godolt, Machine-learning inference of the in-
terior structure of low-mass exoplanets, The Astrophysical
Journal 889 (2020), no. 1, 42.

[dai] http://vlsi-design-engineers.blogspot.com/2015/
10/exclusive-or-gates-parity-circuits-and.html.

[EBK`20] Oliver Eberle, Jochen Büttner, Florian Kräutli, Klaus-Robert
Müller, Matteo Valleriani, and Grégoire Montavon, Build-
ing and interpreting deep similarity models, arXiv preprint
arXiv:2003.05431 (2020).

[Fuk80] Kunihiko Fukushima, Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition unaf-
fected by shift in position, Biological Cybernetics 36 (1980),
193–202.

[GSR`17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl, Neural message passing for
quantum chemistry, ArXiv abs/1704.01212 (2017).

[HLMS04] Jihun Ham, Daniel Lee, Sebastian Mika, and Bernhard
Schölkopf, A kernel view of the dimensionality reduction
of manifolds, 07 2004.

[HOT36] HAROLD HOTELLING, RELATIONS BETWEEN TWO
SETS OF VARIATES*, Biometrika 28 (1936), no. 3-4, 321–
377.

[HZKM02] Stefan Harmeling, Andreas Ziehe, Motoaki Kawanabe, and
Klaus-Robert Müller, Kernel feature spaces and nonlinear
blind souce separation, Advances in neural information pro-
cessing systems, 2002, pp. 761–768.

[JyHL`14] How Jing, Ting yao Hu, Hung-Shin Lee, Wei-Chen Chen,
Chi-Chun Lee, Yu Tsao, and Hsin-Min Wang, Ensemble
of machine learning algorithms for cognitive and physical
speaker load detection, INTERSPEECH, 2014.

[KW16] Thomas N Kipf and Max Welling, Semi-supervised classi-
fication with graph convolutional networks, arXiv preprint
arXiv:1609.02907 (2016).

70

http://vlsi-design-engineers.blogspot.com/2015/10/exclusive-or-gates-parity-circuits-and.html
http://vlsi-design-engineers.blogspot.com/2015/10/exclusive-or-gates-parity-circuits-and.html

References

[L`89] Yann LeCun et al., Generalization and network design strate-
gies, Connectionism in perspective 19 (1989), 143–155.

[LCH`06] Yann LeCun, Sumit Chopra, Raia Hadsell, Aurelio Ranzato,
and Fu Jie Huang, A tutorial on energy-based learning, 2006.

[LM04] Julian Laub and Klaus-Robert Müller, Feature discovery in
non-metric pairwise data, J. Mach. Learn. Res. 5 (2004),
801–818.

[MH08] Laurens van der Maaten and Geoffrey Hinton, Visualizing
data using t-sne, Journal of machine learning research 9
(2008), no. Nov, 2579–2605.

[MZKM02] Frank C. Meinecke, Andreas Ziehe, Motoaki Kawanabe, and
Klaus-Robert Müller, A resampling approach to estimate the
stability of one-dimensional or multidimensional independent
components, IEEE Transactions on Biomedical Engineering
49 (2002), 1514–1525.

[NL] http://parse.ele.tue.nl/cluster/2/CNNArchitecture.
jpg.

[PCA] https://www.astroml.org/book_figures/chapter7/
fig_S_manifold_PCA.html.

[RS00] Sam T Roweis and Lawrence K Saul, Nonlinear dimensional-
ity reduction by locally linear embedding, science 290 (2000),
no. 5500, 2323–2326.

[Sch06] Matthias Scholz, Approaches to analyse and interpret biolog-
ical profile data, PhD thesis, University of Potsdam, 2006.

[SEL`20] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi
Nakajima, Kristof Schütt, Klaus-Robert Müller, and Grégoire
Montavon, Xai for graphs: Explaining graph neural network
predictions by identifying relevant walks, ArXiv (2020).

[SPW`13] Richard Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D.
Manning, A.Y. Ng, and C. Potts, Recursive deep models
for semantic compositionality over a sentiment treebank,
EMNLP 1631 (2013), 1631–1642.

[SSP`07] Sören Sonnenburg, Gabriele Schweikert, Petra Philips, Jonas
Behr, and Gunnar Rätsch, Accurate splice site prediction
using support vector machines, BMC bioinformatics, vol. 8,
Springer, 2007, p. S7.

[SWSR08] Gabriele Schweikert, Christian Widmer, Bernhard Schölkopf,
and Gunnar Rätsch, An empirical analysis of domain adap-
tation algorithms for genomic sequence analysis., vol. 8, 01
2008, pp. 1433–1440.

[VdMH12] Laurens Van der Maaten and Geoffrey Hinton, Visualizing
non-metric similarities in multiple maps, Machine learning
87 (2012), no. 1, 33–55.

[WPC`20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

71

http://parse.ele.tue.nl/cluster/2/CNNArchitecture.jpg
http://parse.ele.tue.nl/cluster/2/CNNArchitecture.jpg
https://www.astroml.org/book_figures/chapter7/fig_S_manifold_PCA.html
https://www.astroml.org/book_figures/chapter7/fig_S_manifold_PCA.html

References

Chengqi Zhang, and S Yu Philip, A comprehensive survey
on graph neural networks, IEEE Transactions on Neural
Networks and Learning Systems (2020).

[WZM`00] G. Wubbeler, A. Ziehe, B. . Mackert, K. . Muller, L. Trahms,
and C. Curio, Independent component analysis of noninva-
sively recorded cortical magnetic dc-fields in humans, IEEE
Transactions on Biomedical Engineering 47 (2000), no. 5,
594–599.

[YNDT18] Rikiya Yamashita, Mizuho Nishio, Richard K. G. Do, and
Kaori Togashi, Convolutional neural networks: an overview
and application in radiology, Insights into Imaging 9 (2018),
611 – 629.

72

Index

C

convolution kernel 34

D

differential entropy 29

E

eigendecomposition 2
empirical cross-covariance

matrices 17

I

IsoMap. 9

L

linear kernel PCA 2

M

Metric MDS. 9
model-induced kernels 39

Multiple Maps t-SNE 16
mutual information.29

P

parse tree 38

R

reconstruction error 50
residuals . 50

S

Sammon mapping.9
Shannon-Entropy 28
stochastic neighbour selection10

T

t-SNE. 12
tokenisation approach 37

W

whitening transformation 26

73

	List of Figures
	Low dimensional embedding
	Recap of PCA
	LLE
	Multidimensional Scaling (MDS) and IsoMap
	Stochastic neighbouring embedding
	Analysing non-euclidean pairwise data

	Component Analysis
	Canonical Correlation Analysis (CCA)
	Independent Component Analysis (ICA)

	Kernel Machines
	Structured Kernels / Inputs
	Structured Prediction / Outputs
	Kernel for anomaly detection

	Deep Learning
	Neural Networks for Structured Data
	Structured Prediction
	Explainable Models

	Federated Learning
	Index

