Lemma (Wintner)	Lemma
$\sigma(T) \subset \overline{W(T)}$ for $T \in L(H)$	Numerical Range of Self-adjoint / Positive Operators
FA II	FA II
Continuous functional calculus	Properties of the Continuous Functional Calculus
For every $T = T^* \in L(\mathcal{H}) \exists !$ cts., lin., multiplicative, involutive homomorphism of algebras $\Phi_T : \mathcal{C}(\sigma(T)) \to L(\mathcal{H})$ with $\Phi_T(\mathrm{id}) = T, \ \Phi_T(\mathbb{1}) = \mathrm{id}.$ FA II	Let $T = T^* \in L(\mathcal{H})$ and $f \mapsto f(T)$ be the CFC for $f \in \mathcal{C}(\sigma(T))$. 1. Then $ f(T) = f _{\infty} := \sup_{\lambda \in \sigma(T)} f(\lambda) $ holds. 2. If $f _{\sigma(T)} \ge 0$, then $f(T)$ is positive. 3. If $Tx = \lambda$ for some $x \in \mathcal{H}$, then $f(T)x = f(\lambda)x$. 4. The spectral mapping theorem holds for all $f \in \mathcal{C}(\sigma(T))$. 5. $\{f(T)\}_{f \in \mathcal{C}(\sigma(T))}$ is a commutative BANACH operator-algebra. 6. All $f(T)$ are normal; if f is real, then $f(T)$ is self-adjoint. FA II
Theorem	All you need to know about
Riesz-Markov-Kakutani fa ii	Orthogonal projections FA II
Definition	Idea of Borel measurable Calculus
(complex) signed RADON measure FA II	 Let T = T* ∈ L(H). 1. For every x ∈ H there exists a non-negative RADON-measure E^x such that ⟨f(T)x, x⟩ = ∫_{σ(T)} f dE^x holds for all f ∈ C(σ(T)). 2. For every on σ(T) bounded BOREL-measurable function g there exists a unique G ∈ L(H) such that ⟨Gx, x⟩ = ∫_{σ(T)} g dE^x holds for all x ∈ H. If g is real (non-negative), G is self-adjoint (positive). FA II
Definitions	Theorem
Unbounded Operator	Hellinger-Toeplitz

For $T = T^* \in L(\mathcal{H})$ we have $\sigma(T) \subset [\inf(W(T)), \sup(W(T))]$ = $[\min(\sigma(T)), \max(\sigma(T))]$ and for $T \ge 0$: $\sigma(T) \subset [0, \infty)$. $ T = \sup_{ x =1} \langle Tx, x \rangle$ for self-adjoint operators. Self-adjoint operators with $\sigma(T) \subset [0, \infty)$ are positive. Positive operators are self-adjoint. $T \in L(\mathcal{H})$ is self-adjoint if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$.	Let $\lambda \notin \overline{W(T)}$ and $d := \operatorname{dist}(\lambda, W(T)) > 0$. Then $d \leq \lambda - \langle Tx, x \rangle \leq \ (\lambda \operatorname{id} -T)x\ \cdot \ x\ $ for $\ x\ = 1$. Thus T injective, $(\lambda \operatorname{id} -T)^{-1} : \mathcal{R}(\lambda \operatorname{id} -T) \to \mathcal{H}$ bounded below. Hence $\mathcal{R}(\lambda \operatorname{id} -T)$ closed. Assume $\exists x_0 \in \mathcal{R}(\lambda \operatorname{id} -T)^{\perp}$, $\ x_0\ = 1$. Then $0 = \langle (\lambda \operatorname{id} -T)x_0, x_0 \rangle = \lambda - \langle Tx_0, x_0 \rangle$. Thus $\mathcal{R}(\lambda \operatorname{id} -T) = \mathcal{H}$ and $\lambda \in \rho(T)$. Case 1: $\lambda \in \sigma_p(T)$. Then there exists a $v \in H$ such that $Tv = \lambda v$. Thus $\overline{\langle v, Tv \rangle = \lambda \ v\ ^2}$ holds, implying $\langle \frac{v}{\ v\ }, T\frac{v}{\ v\ } \rangle = \lambda$, which means $\lambda \in W(T)$. Case 2: $\lambda \in \sigma_r(T)$. Since the range is not dense, we have $(\overline{\mathcal{R}(T-\lambda)})^{\perp} \neq \{0\}$. For $v \in (\overline{\mathcal{R}(T-\lambda)})^{\perp}$ we have $\langle v, (T-\lambda)v \rangle = 0$. Thus $0 = \frac{\langle v, (T-\lambda)v \rangle}{\ v\ ^2} = \frac{\langle v, Tv \rangle}{\ v\ ^2} - \lambda$ holds, implying $\lambda \in W(T)$. Case 3: $\lambda \in \sigma_c(T)$. There exist a sequence of unit vectors z_n with $(T - \lambda)z_n \to 0$, otherwise $T - \lambda$ would be bounded from below and would necessarily have a closed range. Thus $\frac{\langle z_n, Tz_n \rangle}{\ z_n\ ^2} - \lambda = \frac{\langle z_n, (T-\lambda)z_n \rangle}{\ z_n\ ^2} \to 0$, holds, implying $\lambda \in \overline{W(T)}$.
2. Let $f \ge 0$ and $g \in \mathcal{C}(\sigma(T))$ with $g^2 = f$ and $g \ge 0$. Then $\langle f(T)x, x \rangle = \langle g(T)x, \overline{g}(T)x \rangle = \langle g(T)x, g(T)x \rangle = \ g(T)x\ ^2 \ge 0.$ 4. " \subset ": Let $\mu \notin f(\sigma(T))$. Then $g(x) \coloneqq \frac{1}{f(x)-\mu} \in \mathcal{C}(\sigma(T))$ and $g(f-\mu) = (f-\mu)g = 1$. Hence we get $g(T)(f(T) - \mu \operatorname{id}) = (f(T) - \mu \operatorname{id})g(T) = \operatorname{id}$, hence $\mu \in \rho(f(T))$. " \supset ": Let $\mu = f(\lambda), \lambda \in \sigma(T)$ and choose polynomials f_n with $\ f_n - f\ _{\infty} \le \frac{1}{n}$. Then $ f(\lambda) - f_n(\lambda) \le \frac{1}{n}$ and $\ f(T) - f_n(T)\ \le \frac{1}{n}$. We know that $f_n(\lambda) \in \sigma(f_n)T)$, i.e. $\exists x_n \in \mathcal{H}$: $\ x_n\ = 1$, $\ (f_n(T) - f_n(\lambda)\operatorname{id})x_n\ \le \frac{1}{n}$. Thus, $\ (f(T) - \mu\operatorname{id})x_n\ \le \ (f(T) - f_n(T))x_n\ + \ (f_n(T) - f_n(\lambda)\operatorname{id})x_n\ + \ (f_n(\lambda) - \mu\operatorname{id})x_n\ \le \frac{1}{n} + \frac{1}{n} + \frac{1}{n}$ holds, implying that $(f(T) - \mu\operatorname{id})$ is not boundedly invertible, i.e. $\mu \in \sigma(f(T))$. 6.: $f(T)^* = \overline{f}(T)$ and $f(T)^*f(T) = \overline{f}f(T) = f\overline{f}(T) = f(T)f(T)^*$. 1 and 3: approximation.	$\begin{array}{l} \underline{\text{Uniqueness:}} \ \Phi_T(z \mapsto z^n) = T^n, \text{ hence } \Phi_T \text{ implies uniqueness on} \\ \hline \text{polynomials. } \sigma(T) \subset [m(T), M(T)] \text{ is compact and the polynomials} \\ \text{als dense in } \mathcal{C}(\sigma(T)) \text{ by STONE-WEIERSTRASS. Due to continuity,} \\ \Phi_T \text{ is unique on } \mathcal{C}(\sigma(T)). \\ \hline \underline{\text{Existence:}} \text{ We set } \Phi_T(f) = \sum_{k=0}^n a_k T^k \text{ for a polynomial } f(z) = \\ \sum_{k=0}^n a_k z^k. \text{ If we show continuity of } \Phi_T \text{ on polynomials, there} \\ \text{would be an unique extension (cf. above) to } \mathcal{C}(\sigma(T)), \text{ which we} \\ \text{denote by } \Phi_T \text{ again. By the SMT for polynomials } f \text{ we obtain} \\ \ \Phi_T(f)\ ^2 = \ \Phi_T(f)^* \Phi(f)\ = \ \Phi_T(\overline{f}f)\ \\ = \sup_{\lambda \in \sigma(\Phi_T(\overline{f}f))} \lambda = \sup_{\lambda \in \sigma(T)} (\overline{f}f)(\lambda) = \sup_{\lambda \in \sigma(T)} f(\lambda) ^2 = \ f\ _{\infty}^2. \end{array}$
$E = \mathcal{N}(P) \oplus \mathcal{R}(P), \mathcal{R}(P) \text{ and } \mathcal{N}(P) \text{ are closed and id } -P \text{ is a projection, too, with } \mathcal{N}(\text{id } -P) = \mathcal{R}(P), \mathcal{R}(\text{id } -P) = \mathcal{N}(P).$ $P \in L(\mathcal{H}) \neq \{0\} \text{ projection is orthogonal } \iff P = 1 \iff$ $P \text{ self-adjoint } \iff P \text{ normal } \iff P \text{ positive.}$ $P_1, P_2 \text{ orthogonal projections onto } U_1, U_2. \text{ TFAE: } U_1 \subset U_2,$ $\mathcal{R}(P_1) \subset \mathcal{R}(P_2), \mathcal{N}(P_2) \subset \mathcal{N}(P_1), P_1P_2 = P_2P_1 = P_1, P_2 - P_1$ is positive. If $T = T^* \in L(\mathcal{H}) \text{ and } \sigma(T) = \{0, 1\}, T \text{ is an ortho projection.}$	For every functional $\varphi : \mathcal{C}(K) \to \mathbb{C}$ there exists a RADON measure $\mu \in \mathcal{M}(K)$ such that $\varphi(f) = \int_K f(x) d\mu(x) \forall f \in \mathcal{C}(K).$ The isometric isomorphism $\Phi : \mathcal{C}(K)^* \to \mathcal{M}(K)$ maps posi- tive functionals to non-negative measures.
1. is Riesz For 2.: Uniqueness from Exercise as G self-adjoint. <u>Existence</u> : $Q(x) \coloneqq \int_{\sigma(T)} g dE^x$. Show Q fulfills lemma require- ments. Use Riesz uniqueness for parallelogram-like equality and $Q(\lambda x) = \lambda ^2 Q(x)$ to show $E^{x+y} + E^{x-y} = 2E^x + 2E^y$ etc.	A finite measure μ on (K, \mathcal{B}) is called RADON measure if $\mu(B) = \inf_{\substack{B \subset G \\ G \text{ open}}} \mu(G) \forall B \in \mathcal{B} \qquad (\text{outer regularity})$ $\mu(G) = \inf_{\substack{T \subset G \\ G \text{ comp.}}} \mu(T) \forall G \text{ open} \qquad (\text{inner regularity})$ hold. A σ -additive mapping $\mu = \mu^+ - \mu^-$ on \mathcal{B} with μ^{\pm} RADON is called signed RADON measure.
Let T be a symmetric operator with dom $(T) = \mathcal{H}$. Then $T \in L(\mathcal{H})$. <i>Proof.</i> Let $x_n \to 0$ and $Tx_n \to y$. By the CGT it suffices to show $y = 0$. $\langle y, y \rangle = \langle \lim_{n \to \infty} Tx_n, y \rangle = \lim_{n \to \infty} \langle Tx_n, y \rangle = \lim_{n \to \infty} \langle x_n, Ty \rangle = 0$.	A linear operator $T : \mathcal{H} \supset \operatorname{dom}(T) \to \mathcal{H}$, where $\operatorname{dom}(T)$ is a linear subspace is called densely defined if $\operatorname{dom}(T)$ is dense. The scalar product on its graph $G(T) := \{(Tx, x) : x \in \operatorname{dom}(T)\}$ is $\langle (u, v), (x, y) \rangle_{\mathcal{H} \times \mathcal{H}} := \langle u, x \rangle + \langle v, y \rangle$. T is closable if $\overline{G(T)}$ is the graph of some linear operator $T_0 =: \overline{T}$. S is an extension of T (denote $T \subset S$) if $G(T) \subset$ $G(S) \iff \operatorname{dom}(T) \subset \operatorname{dom}(S)$ and $S \equiv T$ on $\operatorname{dom}(T)$. $\operatorname{dom}(S + T) := \operatorname{dom}(S) \cap \operatorname{dom}(T)$ and $\operatorname{dom}(ST) := \{x \in$ $\operatorname{dom}(T) : Tx \in \operatorname{dom}(S)\}$. T symmetric $\iff \langle Tx, y \rangle = \langle x, Ty \rangle \ \forall x, y \in \operatorname{dom}(T)$.

Definition	Borel-measurable Calculus
Adjoint of densely defined operator	As CFC but also $f_n \in \mathcal{B}(\sigma(T))$ with $\sup_{n \in \mathbb{N}} f_n _{\infty} < \infty$ and $f_n(t) \to f(t)$ on $\sigma(T)$ implies $\langle \Phi_T(f_n)x, y \rangle \to \langle \Phi_T(f)x, y \rangle.$
FA II	FA II
Lemma	Definition
Let $Q : \mathcal{H} \to \mathbb{C}$. Then $\exists ! A \in L(\mathcal{H}) :$ $Q(x) = \langle Ax, x \rangle$ iff $\exists C > 0 :$ $ Q(x) \leq C x , Q(x+y) + Q(x-y) =$ $2(Q(x) + Q(y))$ and $Q(\lambda x) = \lambda ^2 Q(x).$	Spectral measure
FA II	FA II
Lemma	Lemma
Properties of spectral measures	Properties of spectral integrals
FA II	FA II
Applications	Theorem
Spectral theorem (bounded, self-adjoint)	Spectral theory for unbounded operators
FA II	FA II
Theorem	Basic properties
Spectral theorem for unbounded operators	Fourier transform
FA II	FA II

Uniqueness: as above + Werner lemma. For bounded measurable g on $\sigma(T)$ define $\Phi_T(g) = G$. CFC guarantees $\Phi_T(\mathrm{id}) = T$, $\Phi(\mathbb{1}) = \mathrm{id}$. For real-valued g we have $\ \Phi_T(g)\ = \ G\ =$ $\sup_{\ x\ =1} \langle Gx, x \rangle \leq \sup_{\ x\ =1} \ g\ _{\infty} \ x\ ^2 = \ g\ _{\infty}$. The last property follows from $\langle \Phi_T(f_n)x, x \rangle = \int_{\sigma(T)} f_n \mathrm{d} E^x \to$ $\int_{\sigma(T)} f \mathrm{d} E^x = \langle \Phi(f)x, x \rangle$, Lebesgue, polarisation. (ii) Prinzip der guten Menge: $g \in \mathcal{C}(\sigma(T))$, $U := \{f \in \mathcal{B}(\sigma(T)) :$ property holds }. U closed under pointwise lim- its of uniformly bounded sequences. Thus $U = \mathcal{B}(\sigma(T))$.	dom $(T^*) := \{y \in \mathcal{H} : x \mapsto \langle Tx, y \rangle \text{ cts on dom}(T)\}$. By RIESZ we can extend (uniquely due denseness) the above map- ping for $y \in \text{dom}(T^*)$ and can be represented as $x \mapsto \langle x, z \rangle$, $T^*y := z$. We have $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in \text{dom}(T), y \in$ dom (T^*) .
Let Σ be the σ -Algebra of BOREL sets on \mathbb{R} . $E: \Sigma \to L(\mathcal{H})$, $A \mapsto E_A$ is called SM if E_A is a orthogonal projection for all $A \in \Sigma$, $E_{\emptyset} = 0$, $E_{\mathbb{R}} = \text{id}$ and $\sum_{k \ge 1} E_{A_k}(x) = E_{\bigcup_{k \ge 1} A_k}(x)$ for pw. disjoint $(A_k)_k \subset \Sigma$. E has compact support if $\exists K \subset \mathbb{R}$ compact with $E_K = \text{id}$.	$\begin{array}{l} 2 \implies 1:\\ \Phi(x,y) \coloneqq \displaystyle \frac{Q(x+y) - Q(x-y) + iQ(x+iy) - iQ(x-iy)}{4}\\ Ax \coloneqq \displaystyle \sum_{k \in O} \Phi(x,e_k)e_k\\ \text{for an ONB } (e_k)_{k \in O} \text{ of } \mathcal{H}. \text{ We have } \Phi(x,y) = \langle Ax,y \rangle \text{ (proven as in FA I (parallelogram identity)).} \end{array}$
$\begin{array}{l} f \text{ simple } \Longrightarrow \ \int f \mathrm{d}E\ \leqslant \ f\ _{\infty} \implies \text{ well-definedness.} \\ f \mapsto \int f \mathrm{d}E \text{ linear, continuous, } \ \int f \mathrm{d}E\ \leqslant \ f\ _{\infty}. \ f \text{ real } \Longrightarrow \\ \int f \mathrm{d}E \text{ self-adjoint} \end{array}$	 E_A + E_B = E_{A∩B} + E_{A\B} = E_{A∩B} + E_{A∪B}. A ⊂ B. Then E_{B\A} = E_B - E_A projection. E_BE_A = E_AE_B = E_A. A ∩ B = Ø. Then E_A + E_B = E_{A∪B}, E²_A + E_AE_B = E_AE_{A∪B} = E_A, hence E_AE_B = 0. Thus E_AE_B = E_AE_{A∩B} + E_AE_{B\A} = E_{A∩B}. A ∩ B = Ø. Then ⟨E_Ax, E_By⟩ = ⟨E[*]_BE_Ax, y⟩ = ⟨E_BE_Ax, y⟩ = ⟨0, y⟩ = 0.
$\begin{split} \lambda &\in \rho(T) \iff \lambda - T : \operatorname{dom}(T) \to \mathcal{H} \text{ boundedly invertible.} \\ \text{Resolvent mapping: } R(\lambda) &\coloneqq (\lambda - T)^{-1} \text{ is analytic and } R(\lambda) - \\ R(\mu) &= (\mu - \lambda) R(\lambda) R(\mu). \sigma(T) &\coloneqq \rho(T)^{\complement} \text{ closed. } \mathcal{N}(T^*) = \\ \mathcal{R}(T)^{\bot}. \\ \text{Let } z &\in \mathbb{C} \setminus \mathcal{R}, \ T \text{ dense, symmetric. } T = T^* \iff T \text{ closed} \\ \text{and } \mathcal{N}(T^* - z) &= \mathcal{N}(T^* - \overline{z}) = \{0\} \iff \mathcal{R}(T - z) = \mathcal{R}(T - \overline{z}) = \\ \mathcal{H}. \\ T &= T^* \text{ dense } \implies \sigma(T) \subset \mathbb{R}. \text{ (By HELLINGER-TOEPLITZ it suffices to show: everywhere defined.)} \end{split}$	$\begin{split} T &= T^* \in L(\mathcal{H}), \ g : \sigma(T) \to \mathbb{R}, \ f : \mathbb{R} \to \mathbb{R} \text{ B-meas., bd.} \\ (f \circ g)(S) &= f(g(S)). \\ T \in L(\mathcal{H}) \text{ positive. } \exists ! S \in L(\mathcal{H}) \text{ positive, } S^n = T. \\ Proof. \ f_n(t) &\coloneqq t^{\frac{1}{n}} \text{ cts. bd. non-negative on } \sigma(T) \subset [0, \infty). \\ g_n(t) &\coloneqq t^n. \text{ Then } (f_n \circ g_n)(t) = t, \ t \in \sigma(S) \subset [0, \infty). \text{ Uniqueness: } S = (f_n \circ g_n)(S) = f_n(g_n(S)) = f_n(S^n) = f_n(T). \\ T \in L(\mathcal{H}), \ T &\coloneqq \sqrt{T^*T}. \ \exists \text{ partial isometry } U : T = U T . \\ \ T x\ ^2 &= \ Tx\ ^2. \ U(T x) &\coloneqq Tx : \mathcal{R}(T) \to \mathcal{R}(T) \text{ isometry, extended to } \overline{\mathcal{R}(T)}, \ U \equiv 0 \text{ on } \mathcal{R}(T)^{\perp} = \mathcal{N}(T) = \mathcal{N}(T). \end{split}$
• $\mathcal{F}: L^1(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$ linear, bd. • $\mathcal{F}(f(\cdot - y)) = e^{-i\langle y, \cdot \rangle} \hat{f}(\cdot), \mathcal{F}(e^{i\langle y, \cdot \rangle} f(\cdot)) = \hat{f}(\cdot - y)$ • $\widehat{f(\lambda^{-1} \cdot)} = \lambda^n \widehat{f(\lambda \cdot)}, g(x) = \overline{f(-x)} \implies \hat{g} = \overline{\hat{f}}$ • $f, g \in L^1(\mathbb{R}^n) \implies f * g \in L^1(\mathbb{R}^n), \widehat{f * g} = (2\pi)^{\frac{n}{2}} \hat{f} \hat{g}$ • $g(x) = -ix_k f(x), g \in L^1(\mathbb{R}^n) \implies \partial_k \hat{f} = \hat{g}.$	Let $T = T^*$: dom $(T) \to \mathcal{H}$. $\exists !$ SM E on BOREL sets of $\sigma(T)$: $T = \int_{\sigma(T)} \lambda \mathrm{d}E_{\lambda}$, i.e. $\langle Tx, y \rangle = \int_{\sigma(T)} \lambda \mathrm{d}\langle E_{\lambda}x, y \rangle$ for all $x \in \mathrm{dom}(T), y \in \mathcal{H}$. $\sigma(T) \subset \mathbb{R}$ might be unbounded!

Theorem	Theorem
RIEMANN-LEBESGUE Lemma	FOURIER inversion formula
FA II	FA II
Theorem	Theorem
Plancherel	First Uncertainty principle
FA II	FA II
Theorem	Definition
Second Uncertainty Principle	Schwartz space
FA II	FA II
Theorem	Тнеогем
Properties of SCHWARTZ convergence	Fourier transform on $\mathcal{S}(\mathbb{R}^n)$
FA II	FA II
Theorem	Definition & Properties
SCHWARTZ FOURIER inversion formula	Tempered distributions
FA II	FA II

$f, \hat{f} \in L^{1}(\mathbb{R}^{n}) \implies f(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{i\langle x,\xi \rangle} d\xi = \mathcal{F}^{-1}(\mathcal{F}f)(x).$ FEJÉR-kernels $F_{\lambda} := \lambda D_{\lambda^{-1}}F$, where $\lambda > 0$, $F(x) := \frac{1}{2\pi} \int_{-1}^{1} (1- t) e^{ixt} dt$ satisfy $ f-f*F_{\lambda} _{1} \to 0$ and $f*F_{\lambda}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} f(t) \left[\lambda \int_{-1}^{1} (1- \theta) e^{i(x-t)\theta\lambda} d\theta\right] d\lambda \to f(x)$ pointwise a.e. We show $f*F_{\lambda}(x) \to \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\theta) e^{ix\theta} d\theta$ for $\lambda \to \infty$.	$\begin{split} f \in L^1(\mathbb{R}^n) \implies \hat{f} \in \mathcal{C}_0(\mathbb{R}^n, \mathbb{R}^n). \\ \text{Continuity of } \hat{f}: \text{ LEBESGUE Let } f &:= \mathbbm{1}_{\prod_{k=1}^n [a_k, b_k]}. \text{ Then } \\ \left \hat{f}(\xi) \right &= \frac{1}{(2\pi)^{\frac{n}{2}}} \prod_{k=1}^n \frac{\left e^{-ib_k \xi_k} - e^{-ia_k \xi_k} \right }{ \xi_k } \xrightarrow{\ \xi\ \to \infty} 0. \text{ holds.} \\ \text{By denseness } \exists \text{ step function } h \text{ arbitrarily close to } f: \\ \left \mathcal{F}(f(\xi)) \right \stackrel{\Delta \neq}{\leqslant} \left \mathcal{F}(f-h)(\xi) \right + \left \mathcal{F}(h(\xi)) \right \leqslant \frac{\ f-h\ _1}{(2\pi)^{\frac{n}{2}}} + \left \mathcal{F}(h(\xi)) \right \\ &\leqslant \varepsilon (2\pi)^{-\frac{n}{2}} + \left \mathcal{F}(h(\xi) \right \xrightarrow{ \xi \to \infty} \varepsilon (2\pi)^{-\frac{n}{2}}. \end{split}$
$\begin{split} &f \in L^{2}(\mathbb{R}), a, b \in \mathbb{R}. \ g \coloneqq (\cdot - a)f, h \coloneqq (\cdot - b)\hat{f}. \ \ g\ _{2}\ h\ _{2} \geq \frac{\ f\ _{2}^{2}}{2}. \\ &1. \text{Density} \ (S). \text{W.l.o.g} \ \ f\ _{2} \ = \ 1, \ a \ = \ b \ = \ 0 \ (\tilde{f} \ \coloneqq f(\cdot + a)e^{-ib\cdot}). \ \text{PI:} \ 1 = -\int_{\mathbb{R}} x \frac{\mathrm{d}}{\mathrm{d}x} f(x) ^{2} \mathrm{d}x \ = -\int_{\mathbb{R}} x f'(x) \overline{f(x)} + x \overline{f'(x)} f(x) \mathrm{d}x. \ \text{Hence} \ 1 \le 2 \int_{\mathbb{R}} x f'(x) f(x) \mathrm{d}x \le 2 \ g\ _{2} \ f'\ _{2}. \\ &\text{Plancherel:} \ \ f'\ _{2} = \ \xi \widehat{f}\ _{2}. \\ &2. (Sf)(x) \ \coloneqq x f(x), \ f \ \in L^{2}(\mathbb{R}^{n}). \ (Tf)(x) \ \coloneqq i f'(x) \ \text{for} \\ &\mathrm{diff'ble} \ f \in L^{2}(\mathbb{R}^{n}). \ ([S,T]f)(x) \ = -if(x). \ \text{By UP II} \ \frac{1}{2} \ f\ _{2}^{2} \leqslant \\ &\ (S-aI)f\ _{2} \ (T-bI)f\ _{2}. \ \text{Plancherel analogous to the above.} \end{split}$	For $f, g \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ we have $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$. $h(x) := (f * (g - \cdot))(x)$. $\hat{h}(\xi) = (2\pi)^{\frac{n}{2}} \hat{f}(\xi) \overline{\hat{g}(\xi)}$. $\hat{f}, \hat{g} \in L^2(\mathbb{R}^n)$ (dense!) $\implies \hat{h} \in L^1(\mathbb{R}^n)$. FOURIER-inversion: $\langle f, g \rangle =$ $h(0) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \hat{f}(\xi) d\xi = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} (2\pi)^{\frac{n}{2}} \hat{f}(\xi) \overline{\hat{g}(\xi)} d\xi =$ $\langle \hat{f}, \hat{g} \rangle$. Extension to L^2 : $f_k := f \mathbb{1}_{[-k,k]^n} \in L^1 \cap L^2$. $ f - f_k \to 0$. PLANCHEREL: $ \hat{f}_k - \hat{f}_\ell _2 = f_k - f_\ell _2$. Thus CAUCHY in L^2 . Completeness $\implies f_k \to g =: \hat{f}$.
$\begin{split} \mathcal{S}(\mathbb{R}^n) &\coloneqq \{f \in \mathcal{C}^{\infty}(\mathbb{R}^n) : \ f\ _{(k,\ell)} < \infty \ \forall k, l \in \mathbb{N}_0\} \\ &= \{f : \mathcal{C}^{\infty}(\mathbb{R}^n) : \ f\ _{\alpha,\beta} < \infty \ \forall \alpha, \beta \in \mathbb{N}_0^n\} \\ \ f\ _{(k,\ell)} &\coloneqq \sup_{x \in \mathbb{R}^n} (1 + x ^2)^{\frac{k}{2}} \sum_{ \alpha \leq \ell} D^{\alpha}f(x) , \\ &\ f\ _{\alpha,\beta} \coloneqq \sup_{x \in \mathbb{R}^n} x^{\alpha}D^{\beta}f(x) , \\ \ f\ _{(N)} &\coloneqq \max_{ \alpha \leq N} \sup_{x \in \mathbb{R}^n} (1 + x ^2)^{\frac{N}{2}} D^{\alpha}f(x) \\ &f_j \xrightarrow{\mathcal{S}} f \iff \ f_j - f\ _{(k,\ell)} \to 0 \ \forall k, \ell \in \mathbb{N}_0. \end{split}$	$S : \operatorname{dom}(S) \to \mathcal{H}, \ T : \operatorname{dom}(T) \to \mathcal{H} \text{ self-adjoint, } a, b \in \mathbb{R}.$ $\ (S - aI)f\ \ (T - bI)f\ \ge \frac{1}{2} \langle [S,T] \rangle \forall f \in \operatorname{dom}(ST) \cap \operatorname{dom}(TS).$ Easy: $[S - aI, T - bI] = [S,T]. \ S - aI, \ T - bI \text{ self-adjoint.}$ $\langle [S,T]f, f \rangle = \langle (S - aI)(T - bI) - (T - bI)(S - aI)f, f \rangle$ $= \langle (T - bI)f, (S - aI)f \rangle - \langle (S - aI)f, (T - bI)f \rangle$ $= 2i \cdot \Im \left(\langle (T - bI)f, (S - aI)f \rangle \right)$ holds. Now Cauchy-Schwarz-inequality.
Let $(f_j)_{j \in \mathbb{N}} \subset S(\mathbb{R}^n)$ SCHWARTZ-converge to $f \in S(\mathbb{R}^n)$. 1. It holds that $\hat{f}, \check{f} \in S(\mathbb{R}^n)$. 2. For all $\alpha \in \mathbb{N}_0^n$ and $x \in \mathbb{R}^n$ we have $D^{\alpha} \hat{f}(\xi) = (-i)^{ \alpha } \widehat{x^{\alpha} f}(\xi)$ and $\xi^{\alpha} \hat{f}(\xi) = (-i)^{ \alpha } \widehat{D^{\alpha} f}(\xi)$ 3. It holds that $\hat{f}_j \xrightarrow{S} \hat{f}$ and $\check{f}_j \xrightarrow{S} \check{f}$. 4. $\widehat{\varphi \otimes \psi}(\xi, \eta) = \hat{\varphi}(\xi) \hat{\psi}(\eta), \ \widehat{\varphi \psi} = (2\pi)^{-\frac{n}{2}} \hat{\varphi} * \hat{\psi}$ and $\hat{f} = f$ for $f(x) = e^{-\frac{ x ^2}{2}}$.	Let $(f_j)_{j \in \mathbb{N}} \subset \mathcal{S}(\mathbb{R}^n)$ with $f_j \xrightarrow{S} f \in \mathcal{S}(\mathbb{R}^n)$. 1. $f_j \to f$ in $L^p(\mathbb{R}^n)$ holds for all $p \in (0, \infty)$. 2. $D^{\alpha} f_j \xrightarrow{S} D^{\alpha} f$ holds for all $\alpha \in \mathbb{N}_0^n$. 3. $(x \mapsto x^{\alpha} f_j(x)) \xrightarrow{S} (x \mapsto x^{\alpha} f(x))$ holds for all $\alpha \in \mathbb{N}_0^n$. 4. Then $T_h f \xrightarrow{S}_{h \to 0} f$ holds. 5. For $g \in \mathcal{S}(\mathbb{R}^n)$ also $fg, f * g \in \mathcal{S}(\mathbb{R}^n)$. 6. $D^{\alpha}(f * g) = (D^{\alpha} f) * g = f * (D^{\alpha} g)$ holds for all $\alpha \in \mathbb{N}_0^n$.
$\begin{split} \mathcal{S}'(\mathbb{R}^n) &= \text{cts dual space of } \mathcal{S}(\mathbb{R}^n), \text{ i.e. } Tf_k \to Tf \ \forall \ f_k \xrightarrow{S} f. \\ T_k \xrightarrow{S} T \iff T_k f \to Tf \ \forall f \in \mathcal{S}(\mathbb{R}^n). \\ T : \mathcal{S}(\mathbb{R}^n) \to \mathbb{C} \text{ linear. } T \in \mathcal{S}'(\mathbb{R}^n) \iff \exists c > 0, k, \ell \in \mathbb{N}_0 : \\ Tf &\leq c \ f\ _{(k,\ell)} \ \forall f \in \mathcal{S}(\mathbb{R}^n). \\ \text{``1. } \implies 2.\text{'`: } \text{ Assume } \forall c > 0, \ k, \ell \in \mathbb{N}_0 \ \exists f_{c,k,\ell} \text{ s.t. } 1 = \\ Tf_{c,k,\ell} > c \ f_{c,k,\ell}\ _{(k,\ell)}. \ f_k := f_{k,k,k} \xrightarrow{S} 0, \text{ by cts: } Tf_k \to 0. \text{ A contradiction.} \\ T_f : \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}, \ g \mapsto \int_{\mathbb{R}^n} fg dx. \ T_fg \leq \ g\ _{(0,0)} \ f\ _1. \text{ Also } \\ T_f \in \mathcal{S}'(\mathbb{R}^n). \text{ Extendable to } f \in L^p(\mathbb{R}^n), \ p \in [1,\infty]. \\ \text{Finite BOREL measure } \mu \text{ via } \mu(g) = \int_{\mathbb{R}^n} f(x) d\mu(x). \end{split}$	$\begin{split} \check{f} &= \hat{f} = f \in \mathcal{S}(\mathbb{R}^n), \mathcal{F} \text{ and } \mathcal{F}^{-1} \text{ are bijective on } \mathcal{S}(\mathbb{R}^n).\\ I(\varepsilon) &:= (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i\langle x,\xi \rangle} e^{-\varepsilon^2 \frac{ \xi ^2}{2}} \mathrm{d}\xi \xrightarrow{\varepsilon \to 0} \check{f} \text{ by (L).}\\ g(x) &:= \exp\left(-\varepsilon^2 \frac{ x ^2}{2}\right). \ \hat{g}(\xi) = \varepsilon^{-n} \exp\left(-\frac{ \xi ^2}{2\varepsilon^2}\right) \text{ by FP, } D_{\varepsilon^{-1}}.\\ (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i\langle x,\xi \rangle} h(\xi) \mathrm{d}\xi = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} T_{-x} f(\xi) \hat{h}(\xi) \mathrm{d}\xi\\ &= (2\pi\varepsilon^2)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(x+y) \exp\left(-\frac{1}{2} \left \frac{y}{\varepsilon}\right ^2\right) \mathrm{d}y\\ &= (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(x+\varepsilon z) \exp\left(-\frac{ z ^2}{2}\right) \mathrm{d}z \xrightarrow{\varepsilon \to 0} f(x). \end{split}$

Definition & Lemma	Context
Regular distribution	Convolution and FOURIER transform of measures
FA II	FA II
Definition, Corollary	Definition
Tempered distributions and derivative / FOURIER transforms.	The spaces $D(\Omega)$ and $D'(\Omega)$
FA II	FA II
Definition	Properties
Decomposition of the spectrum	Normal operator
FA II	FA II
Definition & more	Definition & more
Weighted L^2 space	Bessel potential spaces H^s
FA II	FA II
Definition	Definition & theorem
Locally compact abelian topological group	HAAR measure
FA II	FA II

Measure μ on \mathbb{R}^n with density $\varphi \in \mathcal{S}(\mathbb{R}^n)$, λ, ψ analog. ($\varphi * \psi$) $(f) = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(z+y) d\mu(z) d\lambda(y)$ (uniqueness by RIESZ), $f \in \mathcal{C}_0(\mathbb{R}^n)$. Extendable to B-meas. functions, i.e. $\widehat{\mu * \lambda}(\xi) = (2\pi)^{\frac{n}{2}} \hat{\mu}(\xi) \hat{\lambda}(\xi) \ \mu * \lambda\ \leq \ \mu\ \cdot \ \lambda\ $ (total variation), $\hat{\mu}(\xi) := \int e^{-i\langle x,\xi \rangle} d\mu(x)$. $(\mu * \lambda)(E) = (\mu \otimes \lambda)(\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : x+y \in E\})$ for all B-meas. $E \subset \mathbb{R}^n$.	$T \in \mathcal{S}'(\mathbb{R}^n) \text{ regular if } \exists f \in L^1(\mathbb{R}^n) \text{ s.t. } T = T_f.$ $f, g \in L^1(\mathbb{R}^n), T_f \equiv T_g. \text{ Then } f = g \text{ a.e.}$ Suffices: $T_h \equiv 0 \implies h = 0$ a.e. Mollifier ω_{ε} (symmetric, unit int., unit supp.) $h * \omega_{\varepsilon} \in \mathcal{C}(\mathbb{R}^n). \ 0 = \int_{\mathbb{R}^n} h\omega_{\varepsilon} * f dx = \int_{\mathbb{R}^n} fh * \omega_{\varepsilon} dx. \ x \in U_x \text{ s.t. } (\omega_{\varepsilon} * h)(x) > 0. \ \varphi_x \in \mathcal{S}(\mathbb{R}^n)$ s.t. $\operatorname{supp}(\varphi_x) \subset U_x.$ Denseness of cts compactly supported fct in $L^1: \ h = h_1 + h_2, \ h_1 \text{ cts. compact supp, } \ h_2\ _1 \leqslant t.$ $\ h\ _1 \leqslant \ h_1 - \omega_{\varepsilon} * h_1\ _1 + \ h_2\ _1 + \ \omega_{\varepsilon} * h_2\ _1.$ $\ h_1 - \omega_{\varepsilon}h_1\ _1 \leqslant \sup_{ y \leqslant \varepsilon} \ h_1(\cdot) - h_1(\cdot - y)\ _1 \to 0 \text{ using FUBINI, } \varepsilon, t > 0 \text{ small enough.}$
$\mathcal{D}(\Omega) \cong \mathcal{C}^{\infty}_{c}(\Omega). f_{j} \xrightarrow{\mathcal{D}} f \in \mathcal{D}(\Omega) \iff \exists K \subset \Omega \text{ compact},$ $\operatorname{supp}(f_{j}) \subset K, \ D^{\alpha}f_{j} \to D^{\alpha}f \ \forall \alpha \in \mathbb{N}^{n}_{0}.$ Distributions $D'(\Omega)$ like $\mathcal{S}'.$ $T_{j} \to T \text{ in } \mathcal{D}(\Omega) \text{ if } T_{j}(f) \to T(f) \ \forall f \in \mathcal{D}(\Omega).$ FOURIER transforms or convolutions do not have an easy counterpart on $\mathcal{D}(\Omega).$	$\begin{split} T \in \mathcal{S}'(\mathbb{R}^n), f, g \in \mathcal{S}(\mathbb{R}^n), \alpha \in \mathbb{N}_0^n. \\ \bullet & (D^{\alpha}T)(f) = (-1)^{ \alpha }T(D^{\alpha}f) \\ \bullet & \widehat{T}(f) = T(\widehat{f}), \check{T}(f) = T(\check{f}) \\ \bullet & (fT)(g) = T(fg). \\ D^{\alpha}T, fT, \widehat{T}, \check{T} \in \mathcal{S}'(\mathbb{R}^n). \\ \mathcal{F}, \mathcal{F}^{-1} \text{ bijective, cts., } D^{\hat{\alpha}}T = i^{ \alpha }x^{\alpha}\widehat{T}, \widehat{x^{\alpha}T} = i ^{\alpha}D^{\alpha}\widehat{T}, \\ \widehat{D_{\lambda}T} = \lambda^{-n}\widehat{T(\lambda^{-1} \cdot)}, \widehat{\tau_hT} = e^{-i\langle h,\xi \rangle}\widehat{T}, \widehat{M_hT} = \tau_h\widehat{T}. \end{split}$
$T \text{ normal} \iff T^* \text{ normal} \iff Tx = T^*x \text{ for all } x \in \mathcal{H}.$ For normal T the following statements hold: 1. $\mathcal{N}(T) = \mathcal{N}(T^*), \overline{\mathcal{R}}(T) = \overline{\mathcal{R}}(T^*) \text{ and } \mathcal{H} = \mathcal{N}(T) \oplus \overline{\mathcal{R}}(T).$ 2. If $\alpha \neq \beta$ are eigenvalues, $\mathcal{N}(T - \alpha) \perp \mathcal{N}(T - \beta).$ 3. $\sigma_r(T) = \emptyset$ 4. $r(T) = T $, which follows from $ T^*T = T ^2 = T^2 .$ 5. $\sigma_{app}(T) = \sigma(T)$	Let $R := \mathcal{R}(T_{\lambda} := T - \lambda)$. $\sigma(T)$ is the <i>disjoint</i> union of the point spectrum $\sigma_p(T) := \{\lambda \in \sigma(T) : T_{\lambda} \text{ not injective}\}$, con- tinuous spectrum $\sigma_c(T) := \{\lambda \in \sigma(T) \setminus \sigma_p(T) : R \subsetneq \mathcal{H} \text{ dense}\}$, residual spectrum $\sigma_r(T) := \sigma(T) \setminus (\sigma_p(t) \cup \sigma_c(T)) \text{ or}$ $\sigma_r(T) = \{\lambda \in \sigma(T) : T_{\lambda} \text{ injective, } R \subset \mathcal{H} \text{ not dense}\}$, Furthermore the approximate point spectrum is $\sigma_{app}(T) := \{\lambda \in \mathbb{C} : \inf_{\ x\ =1} \ T_{\lambda}x\ = 0\} \supset \sigma_p(T).$
$H^{s}(\mathbb{R}^{n}) := \{ f \in \mathcal{S}'(\mathbb{R}^{n}) : w_{s}\hat{f} \in L^{2}(\mathbb{R}^{n}) \}, s \in \mathbb{R}.$ $\langle f, g \rangle_{H^{s}(\mathbb{R}^{n})} := \int_{\mathbb{R}^{n}} w_{s}(x)\hat{f}(x)\overline{w_{s}(x)\hat{g}(x)} \mathrm{d}x.$ $\mathcal{S}(\mathbb{R}^{n}) \stackrel{\mathrm{d}}{\subset} H^{s}(\mathbb{R}^{n}) \subset \mathcal{S}'(\mathbb{R}^{n}).$	$w \text{ cts positive fct } L^2(\mathbb{R}^n, w) \coloneqq \{f \in L^1_{\text{loc}}(\mathbb{R}^n) : wf \in L^2(\mathbb{R}^n)\} \langle \cdot, \cdot \rangle_{L^2(\mathbb{R}^n, w)} \coloneqq \langle w \cdot, w \cdot \rangle_{L^2(\mathbb{R}^n)}.$ $L^2(\mathbb{R}^n, w) \to L^2(\mathbb{R}^n), f \mapsto wf \text{ unitary.}$ $w_s \colon \mathbb{R}^n \to [0, \infty), x \mapsto (1 + x ^2)^{\frac{s}{2}}, s \in \mathbb{R}.$ $\mathcal{D}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n) \stackrel{d}{\subset} L^2(\mathbb{R}^n, w_s) \subset \mathcal{S}'(\mathbb{R}^n).$ $\mathcal{F}(W_2^k(\mathbb{R}^n)) = \mathcal{F}^{-1}(W_2^k(\mathbb{R}^n)) = L^2(\mathbb{R}^n, w_k) \text{ unitary.}$
A left (right) HAAR measure on a LCG G is a non- zero RADON measure μ satisfying $\mu(xE) = \mu(E)$	A topological group is a group G equipped with a topology such that the group operations $(x, y) \mapsto xy$ and $x \mapsto x^{-1}$ are continuous

 $(\mu(Ex) = \mu(E))$ for all BOREL sets $E \subset G$ and all $x \in G$. (e.g. integral on \mathcal{C}^{∞}_{c})

(HAAR, 1933) Every locally compact group possesses a left (right) HAAR measure uniquely determined up to rescaling by a positive number.

A topology is *locally compact* if every point has a compact neighbourhood. In a HAUSDORFF space points can be separated by open sets.

If the topology of G is locally compact and HAUSDORFF, G is a locally compact group.

 $\mathbb{R}, \mathbb{Z}, \mathbb{T}$ and \mathbb{Z}_k are LCAGs.

Definition & Theorem	Definition & Properties
Pontryagin duality	FOURIER transform on $L^1(G)$
FA II	FA II
Theorem	Definition & properties
FOURIER inversion formula on $L^1(G)$	Convolution on $L^1(G)$
FA II	FA II
Lemma	Definition
Werner	Derivative, FOURIER-transform in $\mathcal{S}'(\mathbb{R}^n)$
FA II	FA II
Theorem	Definition
FOURIER transform of SCHWARTZ functions under dilation etc.	Least-squares and minimal norm solution
FA II	FA II
Definition & theorem	Theorem
Moore-Penrose inverse	Normal equation
FA II	FA II

Let $f \in L^1(G)$ and μ be the left-invariant HAAR measure on G . For $\gamma \in \hat{G}$ the FOURIER transform of f is $\mathcal{F} f(\gamma) \coloneqq \hat{f}(\gamma) \coloneqq \int_G f(x) \overline{\gamma(x)} \mathrm{d}\mu(x).$ Denote by $\mathcal{C}_0(\hat{G})$ the set of continuous and bounded functions on \hat{G} . We have $\mathcal{F} : L^1(G) \to \mathcal{C}_0(\hat{G}).$ PLANCHEREL: The FOURIER transform on $L^1(G) \cap L^2(G)$ uniquely extends to a unitary isomorphism from $L^2(G)$ to $L^2(\hat{G}).$	A continuous homomorphism $\gamma : G \to \mathbb{T}$ is a <i>character</i> of G . The <i>dual group</i> of G , \hat{G} , is the set of all its characters. $\hat{\mathbb{R}} \cong \mathbb{R}$ via $x \mapsto \gamma_x$, where $\gamma_x(y) \coloneqq e^{ixy}$. $\hat{\mathbb{T}} \cong \mathbb{Z}$ via $m \mapsto \gamma_m$, where $\gamma_m(\theta) \coloneqq \theta^m$. $\hat{\mathbb{Z}} \cong \mathbb{T}$ via $\theta \mapsto \gamma_{\theta}$, where $\gamma_{\theta}(m) \coloneqq \theta^m$. $\hat{\mathbb{Z}}_k \cong \mathbb{Z}_k$ via $m \mapsto \gamma_m$, where $\gamma_m(n) \coloneqq \exp\left(2\pi i \frac{mn}{k}\right)$. For LCAGs $(G_k)_{k=1}^n, \widehat{\bigotimes}_{k=1}^n \widehat{G}_k \cong \bigotimes_{k=1}^n \widehat{G}_k$ holds. The map $\Phi : G \to \widehat{G}$, $(\Phi(x))(\gamma) \coloneqq \gamma(x)$ is an isomorphism of topological groups.
For $f, g \in L^1(G)$ $(f * g)(x) \coloneqq \int_G f(y)g(y^{-1}x) d\mu(x)$ a.e. in G . For $f, g \in L^1(G)$) we have $ f * g _1 \leq f _1 g _1$. For $f, g \in L^2(G)$ we have $\widehat{fg} = \widehat{f} * \widehat{g}$.	Let $f \in L^1(G)$ such that $L^1(\widehat{G})$. Then $f(x) = \widehat{f}(x^{-1})$ holds for almost all $x \in G$, i.e. $f(x) = \int_{\widehat{G}} \widehat{f}(\gamma(\gamma(x) d\mu(\gamma) \text{ a.e. in } G,$ where μ is the appropriately normalised left-invariant HAAR invariant HAAR measure on \widehat{G} .
For $T \in \mathcal{S}'(\mathbb{R}^n)$, $f, g \in \mathcal{S}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$ we define $(D^{\alpha}T)(f) := (-1)^{ \alpha }T(D^{\alpha}f), \qquad (\mathcal{F}T)(f) := T(\mathcal{F}f),$ $(\mathcal{F}^{-1}T)(f) := T(\mathcal{F}^{-1}f), \qquad (fT)(g) := T(fg).$	Let $K \subset \mathbb{C}$ be compact and $(\mathcal{B}(K), \ \cdot\ _{\infty})$ the BA- NACH space of bounded BOREL-measurable func- tions on K and $\mathcal{C}(K) \subset U \subset \mathcal{B}(K)$ a set of func- tions with the following property: for all $(f_n)_{n\in\mathbb{N}} \subset$ with $f(t) := \lim_{n\to\infty} f_n(t)$ existing everywhere and $\sup_{n\in\mathbb{N}} \ f_n\ _{\infty} < \infty$ implies that $f \in U$. Then $U = \mathcal{B}(K)$.
 Let y ∈ Y and (P) be given as Tx = y. Then x ∈ X is a <i>least-square-solution</i> of (P) if x = arg min_{z∈X} Tz - y . <i>minimal norm solution</i> of (P) if x is a least-square solution x = arg min_{z∈X} z . 	 Let T ∈ S'(ℝⁿ). F⁻¹ FT = FF⁻¹T = T holds. F⁽⁻¹⁾ map S'(ℝⁿ) bijectively and continuously onto itself. F(D^αT) = i^αx^α FT and F(x^αT) = i^αD^α FT holds. For ε > 0 let T_ε(f) := T(ε⁻ⁿf(ε⁻¹·)) for f ∈ S(ℝⁿ) be the dilation of T. Then FT_ε = ε⁻ⁿ F(T)(ε⁻¹·) holds. For h ∈ ℝⁿ and f ∈ S(ℝⁿ), the translation of T is (τ_hT)(f) := T(f(·+h)) and F(τ_hT) = e^{-i < h,· >} FT holds. The modulation of T is (M_hT)(f) := T(e^{i < h,· >} f) and F(M_hT) = τ_h(FT) holds.
For $y \in \mathcal{D}(T^+)$, $x \in X$ is a least-square solution of $Tx = y$ if and only if $x \in X$ satisfies the normal equation $T^*Tx = T^*y$. If in addition $x \in \mathcal{N}(T)^{\perp}$, we have $x = x^+$. By the proof of the previous theorem, (1) is equivalent to $Tx = P_{\overline{\mathcal{R}}(T)}y$. By the properties of orthogonal projections this is equivalent to $Tx \in \overline{\mathcal{R}}(T)$ and $Tx - y \in \overline{\mathcal{R}(T)}^{\perp} = \mathcal{N}(T^*)$, i.e. $T^*(Tx - y) = 0$.	Set $\tilde{T} := T _{\mathcal{N}(T)^{\perp}} : \mathcal{N}(T)^{\perp} \to \mathcal{R}(T)$. The MOORE-PENROSE Pseudoinverse T^+ is the unique linear extension of \tilde{T}^{-1} with $\mathcal{D}(T^+) = \mathcal{R}(T) \oplus \mathcal{R}(T)^{\perp}$ and $\mathcal{N}(T^+) = \mathcal{R}(T)^{\perp}$. T^+ satisfies $\mathcal{R}(T^+) = \mathcal{N}(T)^{\perp}$ and we have (these four equa- tions characterise T^+ uniquely.) 1. $TT^+T = T$ 3. $T^+T = \mathrm{id} - P_{\mathcal{N}(T)} = P_{\mathcal{N}(T)^{\perp}}$ 2. $T^+TT^+ = T^+$ 4. $TT^+ = (P_{\overline{\mathcal{R}(T)}}) _{\mathcal{D}(T^+)}$ hold.

Theorem	Theorem
$T^+ \in L(\mathcal{D}(T^+), X)$ implies that $\mathcal{R}(T)$ is closed.	If $\mathcal{R}(T)$ is closed, $T^+ \in L(\mathcal{D}(T^+), X)$
FA II	FA II
Korollar	Definition
Let $K \in \mathcal{K}(X, Y)$ with $\dim(\mathcal{R}(K)) = \infty$. Then K^+ is not continuous.	SVD of a compact operator
FA II	FA II
Theorem	Theorem
For $K \in \mathcal{K}(X, Y)$ there exists a singular value decomposition.	PICARD condition
Definition Types of ill-conditionedness FA II	CONTEXT Functional calculus with SVD FA II
Definition	Theorem
Regularisation of T^+	If $y \in \mathcal{D}(T^+)$, then $Tx = y$ has a unique minimal norm solution
FA II	FA II

First we show that T^+ is closed. Let $(y_n)_{n\in\mathbb{N}} \subset \mathcal{D}(T^+)$ converge to $y \in Y$ with $T^+y_n \to x \in X$. By the fourth MOORE- PENROSE formula $TT^+y_n = P_{\overline{\mathcal{R}(T)}}y_n \to P_{\overline{\mathcal{R}(T)}}y$ holds by the continuity of orthogonal projections. Since T is continuous, $P_{\overline{\mathcal{R}(T)}}y = \lim_{n\to\infty} P_{\overline{\mathcal{R}(T)}}y_n = \lim_{n\to\infty} TT^+y_n = Tx$, implying that x is a least-square solution to $Tx = y$. As $T^+y_n \in \mathcal{R}(T^+) = \mathcal{N}(T)^{\perp}$, which is closed, holds for all $n \in \mathbb{N}$ we have that $T^+y_n \to x \in \mathcal{N}(T)^{\perp} = \overline{\mathcal{R}(T^*)}$. thus x is a minimal norm solution to $Tx = y$, so T^+ is closed. The closed graph theorem finishes the proof.	As $\mathcal{D}(T^+) \subset Y$ is dense, T^+ can be uniquely and continuously extended to Y by $\overline{T^+} \in L(Y, X)$ defined by $\overline{T^+y} \coloneqq \lim_{n\to\infty} T^+y_n$ for some sequence $(y_n)_{n\in\mathbb{N}} \subset$ $\mathcal{D}(T^+)$ converging to $y \in Y$. Let $(y_n)_{n\in\mathbb{N}} \subset \mathcal{R}(T)$ be a sequence converging to $y \in \overline{\mathcal{R}(T)}$. By the fourth MOORE-PENROSE equation and the continuity of T , $y = P_{\overline{\mathcal{R}(T)}}y = \lim_{n\to\infty} P_{\overline{\mathcal{R}(T)}}y_n = \lim_{n\to\infty} TT^+y_n =$ $TT^+y \in \mathcal{R}(T)$, hence $\mathcal{R}(T) = \overline{\mathcal{R}(T)}$.
A sequence $((\sigma_n, u_n, v_n))_{n \in \mathbb{N}}$ is the singular value de- composition of K if $(\sigma_n)_n \subset \mathbb{R}^+$ is a decreasing se- quence converging to 0, $(u_n)_{n \in \mathbb{N}} \subset Y$ an ONB of $\overline{\mathcal{R}(K)}$ and $(v_n)_{n \in \mathbb{N}} \subset X$ an ONB of $\overline{\mathcal{R}(K^*)}$ such that 1. $Kv_n = \sigma_n v_n$ and $K^*u_n = \sigma_n v_n$ holds for all $n \in \mathbb{N}$ 2. $Kx = \sum_{n \in \mathbb{N}} \sigma_n \langle x, v_n \rangle u_n$ holds for all $x \in X$.	Towards contradiction assume that K^+ is continu- ous. Now $\mathcal{R}(K)$ is closed. Let $\tilde{K} := K _{\mathcal{N}(K)^{\perp}} :$ $\mathcal{N}(K)^{\perp} \to \mathcal{R}(K)$, which is bijective. Then $\tilde{K}^{-1} \in$ $L(\mathcal{R}(K), \mathcal{N}(K)^{\perp})$ holds by the inverse mapping the- orem. As K is compact, so is $K \circ \tilde{K}^{-1}$, which is the iden- tity on $\mathcal{R}(K)$. In FA I this way shown to imply $\dim(\mathcal{R}(K)) < \infty$, a contradiction.
Let $((\sigma_n, u_n, v_n))_{n \in \mathbb{N}}$ be a singular system for K and $y \in \overline{\mathcal{R}(K)}$. Then $y \in \mathcal{R}(K)$ holds if and only if the PICARD condition $\sum_{n \in \mathbb{N}} \sigma_n^{-2} \langle y, u_n \rangle ^2 < \infty$ is satisfied. In this case we have $K^+ y = \sum_{n \in \mathbb{N}} \sigma_n^{-1} \langle y, u_n \rangle v_n.$	As $K^*K \in \mathcal{K}(X, X)$ is SA, $\exists (\lambda_n)_{n \in \mathbb{N}} \in \mathbb{R} \setminus \{0\} \to 0$, decreasing in $ \cdot $, ONS $(v_n)_{n \in \mathbb{N}} \subset X$: $K^*Kx = \sum_{n \in \mathbb{N}} \lambda_n \langle x, v_n \rangle v_n$. Thus $\lambda_n = \lambda \ v_n\ ^2 = \langle \lambda_n v_n, v_n \rangle = \langle K^*Kv_n, v_n \rangle = \langle Kv_n, Kv_n \rangle = \ Kv_n\ ^2 > 0$. Set $\sigma_n := \sqrt{\lambda_n} > 0$, $u_n := \sigma_n^{-1}Kv_n \in Y$. Then $(u_n)_{n \in \mathbb{N}} \subset Y$ is ONS: $\langle u_i, u_j \rangle = \frac{1}{\sigma_i \sigma_j} \langle Kv_i, Kv_j \rangle = \frac{1}{\sigma_i \sigma_j} \langle K^*Kv_i, v_j \rangle = \frac{\lambda_i}{\sigma_i \sigma_j} \langle v_i, v_j \rangle = \delta_{i,j}$. Thus $K^*u_n = \sigma_n^{-1}K^*Kv_n = \sigma_n^{-1}\lambda_nv_n = \sigma_nv_n$ By spectral theorem, $(v_n)_{n \in \mathbb{N}}$ is ONB for $\overline{\mathcal{R}(K^*K)} = \overline{\mathcal{R}(K)}$ Hence $(v_n)_{n \in \mathbb{N}}$ extendable to ONB V for X, as the rest must be in $\mathcal{N}(K) = \overline{\mathcal{R}(K^*)}^{\perp}$. Thus $Kx = \sum_{v \in V} \langle x, v \rangle Kv = \sum_{n \in \mathbb{N}} \langle x, v_n \rangle Kv_n = \sum_{n \in \mathbb{N}} \langle x, v_n \rangle u_n = \sum_{n \in \mathbb{N}} \langle Kx, u_n \rangle u_n$ thus $(u_n)_{n \in \mathbb{N}}$ is ONB for $\overline{\mathcal{R}(K)}$.
SVD allows us to define functions of compact operators: Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous (locally bounded?) function. For $K \in \mathcal{K}(X, Y)$ with singular sys- tem $((\sigma_n, u_n, v_n))_{n \in \mathbb{N}}$ and $x \in X$ define $f(K^*K) : X \to X$, $x \mapsto \sum_{n \in \mathbb{N}} f(\sigma_n^2) \langle x, v_n \rangle v_n + f(0) P_{\mathcal{N}(K)} x$ This series con- verges in X , as f is evaluated on the compact interval $[0, \sigma_1^2] = [0, \ K\ ^2]$. We have $f(K^*K) \in L(X)$: $\ f(K^*K)\ =$ $\sup_{n \in \mathbb{N}} \ f(\sigma_n^2)\ \leq \sup_{\lambda \in [0, \sigma_1^2]} \ f(\lambda)\ < \infty$. Let $f = \sqrt{\cdot}$. The absolute value of K is $ K := f(K^*K) = \sum_{n \in \mathbb{N}} \sigma_n \langle \cdot, v_n \rangle v_n$.	 Tx = y is moderately ill-conditioned if the decay of the singular values is at most polynomial, i.e there exist c, r > 0 such that σ_n ≥ cn^{-r} for all n ∈ N. If 1. is not the case, Tx = y is strongly ill-conditioned. Tx = y is called exponentially ill-conditioned if there exists c, r > 0 such that σ_n ≤ ce^{-nr} ∀n ∈ N.
$\dots x^+ = T^+ y$. The set of all least squares solutions is given by $x^+ + \mathcal{N}(T)$.	A family $(R_a)_{a>0} \subset L(Y, X)$ is called <i>regu-</i> larisation of T^+ if $R_a y \xrightarrow{a \to 0} T^+ y$ holds for all $y \in \mathcal{D}(T^+)$.

Theorem	SPECTRAL THEOREM FOR BOUNDED SA OPERATORS
E compactly supported spectral measure, $T = \int \lambda dE_{\lambda} \in L(\mathcal{H})$ is self-adjoint. Then $\Psi : \mathcal{B}(\sigma(T)) \to L(\mathcal{H}), f \mapsto \int_{\sigma(T)} f dE$ is the BM FC, especially $E_{\sigma(T)} = id$	$T = T^* \in L(\mathcal{H}). \exists ! E \text{ compactly supported SM:} $ $T = \int_{\sigma(T)} \lambda \mathrm{d}E_{\lambda}.\Psi : \mathcal{B}(\sigma(T)) \to L(\mathcal{H}), $ $f \mapsto f(T) = \int f(\lambda) \mathrm{d}E_{\lambda} \text{ coincide with BM FC}, $ $\langle f(T)x, y \rangle = \int_{\sigma(T)} f(\lambda) \mathrm{d}\langle E_{\lambda}x, y \rangle, \text{ where } \langle E_{\lambda}x, y \rangle $ is the complex-valued measure $A \mapsto \langle E_A x, y \rangle.$
FA II	FA II
The double adjoint	
Let T dense.	
• T^* closed. T^* dense $\implies T \subset T^{**}$ and $\overline{T} = T^{**}$.	
• T symmetric $\iff T \subset T^*$. Then $T \subset T^{**} \subset T^* = T^{***}, T^{**}$ symmetric.	
• T closed, symmetric $\iff T = T^{**} \subset T^*$.	
• T self-adjoint $\iff T = T^* = T^{**}$.	
FA II	