$$
\sigma(T) \subset \overline{W(T)} \text { for } T \in L(H)
$$

Numerical Range of Self-adjoint / Positive Operators

Continuous functional calculus

For every $T=T^{*} \in L(\mathcal{H}) \exists$! cts., lin., multiplicative, involutive homomorphism of

$$
\text { algebras } \Phi_{T}: \mathcal{C}(\sigma(T)) \rightarrow L(\mathcal{H}) \text { with }
$$

$$
\Phi_{T}(\mathrm{id})=T, \Phi_{T}(\mathbb{1})=\mathrm{id} .
$$

Properties of the Continuous Functional Calculus
Let $T=T^{*} \in L(\mathcal{H})$ and $f \mapsto f(T)$ be the CFC for $f \in \mathcal{C}(\sigma(T))$. 1. Then $\|f(T)\|=\|f\|_{\infty}:=\sup _{\lambda \in \sigma(T)}|f(\lambda)|$ holds. 2. If $\left.f\right|_{\sigma(T)} \geqslant 0$, then $f(T)$ is positive. 3. If $T x=\lambda$ for some $x \in \mathcal{H}$, then $f(T) x=f(\lambda) x$. 4. The spectral mapping theorem holds for all $f \in \mathcal{C}(\sigma(T)) .5$.
$\{f(T)\}_{f \in \mathcal{C}(\sigma(T))}$ is a commutative BANACH operator-algebra.
6. All $f(T)$ are normal; if f is real, then $f(T)$ is self-adjoint.

FA II

Theorem

Riesz-Markov-Kakutani

All you need to know about...

Orthogonal projections

Definition

(complex) signed Radon measure

Idea of Borel measurable Calculus
Let $T=T^{*} \in L(\mathcal{H})$. 1. For every $x \in \mathcal{H}$ there exists a non-negative RADON-measure E^{x} such that $\langle f(T) x, x\rangle=\int_{\sigma(T)} f \mathrm{~d} E^{x}$ holds for all $f \in \mathcal{C}(\sigma(T))$.
2. For every on $\sigma(T)$ bounded Borel-measurable function g there exists a unique $G \in L(\mathcal{H})$ such that
$\langle G x, x\rangle=\int_{\sigma(T)} g \mathrm{~d} E^{x}$ holds for all $x \in \mathcal{H}$. If g is real (non-negative), G is self-adjoint (positive).

FA II

For $T=T^{*} \in L(\mathcal{H})$ we have $\sigma(T) \subset[\inf (W(T)), \sup (W(T))]$ $=[\min (\sigma(T)), \max (\sigma(T))]$ and for $T \geqslant 0: \sigma(T) \subset[0, \infty)$. $\|T\|=\sup _{\|x\|=1}\langle T x, x\rangle$ for self-adjoint operators.
Self-adjoint operators with $\sigma(T) \subset[0, \infty)$ are positive. Positive operators are self-adjoint.
$T \in L(\mathcal{H})$ is self-adjoint if and only if $\langle T x, x\rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$.

Let $\lambda \notin \overline{W(T)}$ and $d:=\operatorname{dist}(\lambda, W(T))>0$. Then $d \leqslant \mid \lambda-\langle T x, x\rangle \leqslant$ $\|(\lambda \mathrm{id}-T) x\| \cdot\|x\|$ for $\|x\|=1$. Thus T injective, $(\lambda \mathrm{id}-T)^{-1}$: $\mathcal{R}(\lambda \mathrm{id}-T) \rightarrow \mathcal{H}$ bounded below. Hence $\mathcal{R}(\lambda \mathrm{id}-T)$ closed. Assume $\exists x_{0} \in \mathcal{R}(\lambda \mathrm{id}-T)^{\perp},\left\|x_{0}\right\|=1$. Then $0=\left\langle(\lambda \mathrm{id}-T) x_{0}, x_{0}\right\rangle=$ $\lambda-\left\langle T x_{0}, x_{0}\right\rangle$. Thus $\mathcal{R}(\lambda \operatorname{id}-T)=\mathcal{H}$ and $\lambda \in \rho(T)$.
Case 1: $\lambda \in \sigma_{p}(T)$. Then there exists a $v \in H$ such that $T v=\lambda v$. Thus
 Case 2: $\lambda \in \sigma_{r}(T)$. Since the range is not dense, we have $(\overline{\mathcal{R}(T-\lambda)})^{\perp} \neq\{0\}$. For $v \in(\overline{\mathcal{R}(T-\lambda)})^{\perp}$ we have $\langle v,(T-\lambda) v\rangle=0$. Thus $0=\frac{\langle v,(T-\lambda) v\rangle}{\|v\|^{2}}=$ $\frac{\langle v, T v\rangle}{\|v\|^{2}}-\lambda$ holds, implying $\lambda \in W(T)$. Case 3: $\lambda \in \sigma_{c}(T)$. There exist a sequence of unit vectors z_{n} with $(T-\lambda) z_{n} \rightarrow 0$, otherwise $T-\lambda$ would be bounded from below and would necessarily have a closed range. Thus $\frac{\left\langle z_{n}, T z_{n}\right\rangle}{\left\|z_{n}\right\|^{2}}-\lambda=\frac{\left\langle z_{n},(T-\lambda) z_{n}\right\rangle}{\left\|z_{n}\right\|^{2}} \rightarrow 0$, holds, implying $\lambda \in \overline{W(T)}$.
2. Let $f \geqslant 0$ and $g \in \mathcal{C}(\sigma(T))$ with $g^{2}=f$ and $g \geqslant 0$. Then $\langle f(T) x, x\rangle=\langle g(T) x, \bar{g}(T) x\rangle=\langle g(T) x, g(T) x\rangle=\|g(T) x\|^{2} \geqslant 0$.
4. " \subset ": Let $\mu \notin f(\sigma(T))$. Then $g(x):=\frac{1}{f(x)-\mu} \in \mathcal{C}(\sigma(T))$ and $g(f-\mu)=$ $(f-\mu) g=1$. Hence we get $g(T)(f(T)-\mu \mathrm{id})=(f(T)-\mu \mathrm{id}) g(T)=\mathrm{id}$, hence $\mu \in \rho(f(T))$.
"כ": Let $\mu=f(\lambda), \lambda \in \sigma(T)$ and choose polynomials f_{n} with $\left\|f_{n}-f\right\|_{\infty} \leqslant$ $\frac{1}{n}$. Then $\left|f(\lambda)-f_{n}(\lambda)\right| \leqslant \frac{1}{n}$ and $\left\|f(T)-f_{n}(T)\right\| \leqslant \frac{1}{n}$. We know that $\left.f_{n}(\lambda) \in \sigma\left(f_{n}\right) T\right)$), i.e. $\exists x_{n} \in \mathcal{H}:\left\|x_{n}\right\|=1, \|\left(f_{n}(T)-f_{n}(\lambda)\right.$ id $) x_{n} \| \leqslant \frac{1}{n}$. Thus, $\left\|(f(T)-\mu \mathrm{id}) x_{n}\right\| \leqslant\left\|\left(f(T)-f_{n}(T)\right) x_{n}\right\|+\left\|\left(f_{n}(T)-f_{n}(\lambda) \mathrm{id}\right) x_{n}\right\|+$ $\left\|\left(f_{n}(\lambda)-\mu \mathrm{id}\right) x_{n}\right\| \leqslant \frac{1}{n}+\frac{1}{n}+\frac{1}{n}$ holds, implying that $(f(T)-\mu \mathrm{id})$ is not boundedly invertible, i.e. $\mu \in \sigma(f(T))$. 6.: $f(T)^{*}=\bar{f}(T)$ and $f(T)^{*} f(T)=\bar{f} f(T)=f \bar{f}(T)=f(T) f(T)^{*} .1$ and 3: approximation.
$E=\mathcal{N}(P) \oplus \mathcal{R}(P), \mathcal{R}(P)$ and $\mathcal{N}(P)$ are closed and id $-P$ is a projection, too, with $\mathcal{N}(\mathrm{id}-P)=\mathcal{R}(P), \mathcal{R}(\mathrm{id}-P)=\mathcal{N}(P)$. $P \in L(\mathcal{H}) \neq\{0\}$ projection is orthogonal $\Longleftrightarrow\|P\|=1 \Longleftrightarrow$ P self-adjoint $\Longleftrightarrow P$ normal $\Longleftrightarrow P$ positive.
P_{1}, P_{2} orthogonal projections onto U_{1}, U_{2}. TFAE: $U_{1} \subset U_{2}$, $\mathcal{R}\left(P_{1}\right) \subset \mathcal{R}\left(P_{2}\right), \mathcal{N}\left(P_{2}\right) \subset \mathcal{N}\left(P_{1}\right), P_{1} P_{2}=P_{2} P_{1}=P_{1}, P_{2}-P_{1}$ is positive.
If $T=T^{*} \in L(\mathcal{H})$ and $\sigma(T)=\{0,1\}, T$ is an ortho projection.

1. is Riesz

For 2.: Uniqueness from Exercise as G self-adjoint.
Existence: $Q(x):=\int_{\sigma(T)} g \mathrm{~d} E^{x}$. Show Q fulfills lemma requirements. Use Riesz uniqueness for parallelogram-like equality and $Q(\lambda x)=|\lambda|^{2} Q(x)$ to show $E^{x+y}+E^{x-y}=2 E^{x}+2 E^{y}$ etc.

Let T be a symmetric operator with $\operatorname{dom}(T)=\mathcal{H}$. Then $T \in L(\mathcal{H})$.
Proof. Let $x_{n} \rightarrow 0$ and $T x_{n} \rightarrow y$. By the CGT it suffices to show $y=0$.
$\langle y, y\rangle=\left\langle\lim _{n \rightarrow \infty} T x_{n}, y\right\rangle=\lim _{n \rightarrow \infty}\left\langle T x_{n}, y\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, T y\right\rangle=0$.

Uniqueness: $\Phi_{T}\left(z \mapsto z^{n}\right)=T^{n}$, hence Φ_{T} implies uniqueness on polynomials. $\sigma(T) \subset[m(T), M(T)]$ is compact and the polynomials dense in $\mathcal{C}(\sigma(T))$ by Stone-Weierstrass. Due to continuity, Φ_{T} is unique on $\mathcal{C}(\sigma(T))$.
Existence: We set $\Phi_{T}(f)=\sum_{k=0}^{n} a_{k} T^{k}$ for a polynomial $f(z)=$ $\sum_{k=0}^{n} a_{k} z^{k}$. If we show continuity of Φ_{T} on polynomials, there would be an unique extension (cf. above) to $\mathcal{C}(\sigma(T))$, which we denote by Φ_{T} again. By the SMT for polynomials f we obtain

$$
\begin{aligned}
\left\|\Phi_{T}(f)\right\|^{2} & =\left\|\Phi_{T}(f)^{*} \Phi(f)\right\|=\left\|\Phi_{T}(\bar{f} f)\right\| \\
& =\sup _{\lambda \in \sigma\left(\Phi_{T}(\bar{f} f)\right)}|\lambda|=\sup _{\lambda \in \sigma(T)}|(\bar{f} f)(\lambda)|=\sup _{\lambda \in \sigma(T)}|f(\lambda)|^{2}=\|f\|_{\infty}^{2} .
\end{aligned}
$$

For every functional $\varphi: \mathcal{C}(K) \rightarrow \mathbb{C}$ there exists a RADON measure $\mu \in \mathcal{M}(K)$ such that

$$
\varphi(f)=\int_{K} f(x) \mathrm{d} \mu(x) \quad \forall f \in \mathcal{C}(K)
$$

The isometric isomorphism $\Phi: \mathcal{C}(K)^{*} \rightarrow \mathcal{M}(K)$ maps positive functionals to non-negative measures.

A finite measure μ on (K, \mathcal{B}) is called Radon measure if

$$
\begin{array}{lll}
\mu(B)= & \inf _{\substack{B \subset G \\
G \text { open }}} \mu(G) \quad \forall B \in \mathcal{B} & \text { (outer regularity) } \\
\mu(G)=\inf _{\substack{T \subset G \\
G \text { comp. }}} \mu(T) \quad \forall G \text { open } & \text { (inner regularity) }
\end{array}
$$

hold.
A σ-additive mapping $\mu=\mu^{+}-\mu^{-}$on \mathcal{B} with $\mu^{ \pm}$RADON is called signed Radon measure.

A linear operator $T: \mathcal{H} \supset \operatorname{dom}(T) \rightarrow \mathcal{H}$, where $\operatorname{dom}(T)$ is a linear subspace is called densely defined if $\operatorname{dom}(T)$ is dense. The scalar product on its graph $G(T):=\{(T x, x):$ $x \in \operatorname{dom}(T)\}$ is $\langle(u, v),(x, y)\rangle_{\mathcal{H} \times \mathcal{H}}:=\langle u, x\rangle+\langle v, y\rangle$.
T is closable if $\overline{G(T)}$ is the graph of some linear operator $T_{0}=: \bar{T} . S$ is an extension of T (denote $T \subset S$) if $G(T) \subset$ $G(S) \Longleftrightarrow \operatorname{dom}(T) \subset \operatorname{dom}(S)$ and $S \equiv T$ on $\operatorname{dom}(T)$.
$\operatorname{dom}(S+T):=\operatorname{dom}(S) \cap \operatorname{dom}(T)$ and $\operatorname{dom}(S T):=\{x \in$ $\operatorname{dom}(T): T x \in \operatorname{dom}(S)\}$.
T symmetric $\Longleftrightarrow\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in \operatorname{dom}(T)$.

Adjoint of densely defined operator
As CFC but also $f_{n} \in \mathcal{B}(\sigma(T))$ with
$\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{\infty}<\infty$ and $f_{n}(t) \rightarrow f(t)$ on
$\sigma(T)$ implies $\left\langle\Phi_{T}\left(f_{n}\right) x, y\right\rangle \rightarrow\left\langle\Phi_{T}(f) x, y\right\rangle$.

Lemma

Definition

Let $Q: \mathcal{H} \rightarrow \mathbb{C}$. Then $\exists!A \in L(\mathcal{H})$:

$$
Q(x)=\langle A x, x\rangle \text { iff } \exists C>0:
$$

$|Q(x)| \leqslant C\|x\|, Q(x+y)+Q(x-y)=$ $2(Q(x)+Q(y))$ and $Q(\lambda x)=|\lambda|^{2} Q(x)$.

FA II

Lemma

Properties of spectral measures
Spectral measure

Applications

Spectral theorem (bounded, self-adjoint)

Theorem

Spectral theorem for unbounded operators

Uniqueness: as above + Werner lemma.
For bounded measurable g on $\sigma(T)$ define $\Phi_{T}(g)=G$. CFC guarantees $\Phi_{T}(\mathrm{id})=T, \Phi(\mathbb{1})=$ id.
For real-valued g we have $\left\|\Phi_{T}(g)\right\|=\|G\|=$ $\sup _{\|x\|=1}|\langle G x, x\rangle| \leqslant \sup _{\|x\|=1}\|g\|_{\infty}\|x\|^{2}=\|g\|_{\infty}$. The last property follows from $\left\langle\Phi_{T}\left(f_{n}\right) x, x\right\rangle=\int_{\sigma(T)} f_{n} \mathrm{~d} E^{x} \rightarrow$ $\int_{\sigma(T)} f \mathrm{~d} E^{x}=\langle\Phi(f) x, x\rangle$, Lebesgue, polarisation.
(ii) Prinzip der guten Menge: $g \in \mathcal{C}(\sigma(T)), U:=\{f \in$ $\mathcal{B}(\sigma(T))$: property holds $\}$. U closed under pointwise limits of uniformly bounded sequences. Thus $U=\mathcal{B}(\sigma(T))$.

Let Σ be the σ-Algebra of Borel sets on \mathbb{R}. $E: \Sigma \rightarrow L(\mathcal{H})$, $A \mapsto E_{A}$ is called SM if E_{A} is a orthogonal projection for all $A \in \Sigma, E_{\varnothing}=0, E_{\mathbb{R}}=$ id and $\sum_{k \geqslant 1} E_{A_{k}}(x)=E_{\bigcup_{k \geqslant 1} A_{k}}(x)$ for pw. disjoint $\left(A_{k}\right)_{k} \subset \Sigma$.
E has compact support if $\exists K \subset \mathbb{R}$ compact with $E_{K}=$ id.
f simple $\Longrightarrow\left\|\int f \mathrm{~d} E\right\| \leqslant\|f\|_{\infty} \Longrightarrow$ well-definedness. $f \mapsto \int f \mathrm{~d} E$ linear, continuous, $\left\|\int f \mathrm{~d} E\right\| \leqslant\|f\|_{\infty} . f$ real \Longrightarrow $\int f \mathrm{~d} E$ self-adjoint
$\operatorname{dom}\left(T^{*}\right):=\{y \in \mathcal{H}: x \mapsto\langle T x, y\rangle$ cts on $\operatorname{dom}(T)\}$. By Riesz we can extend (uniquely due denseness) the above mapping for $y \in \operatorname{dom}\left(T^{*}\right)$ and can be represented as $x \mapsto\langle x, z\rangle$, $T^{*} y:=z$.
We have $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x \in \operatorname{dom}(T), y \in$ $\operatorname{dom}\left(T^{*}\right)$.
$2 \Longrightarrow 1$:

$$
\Phi(x, y):=\frac{Q(x+y)-Q(x-y)+i Q(x+i y)-i Q(x-i y)}{4}
$$

for an ONB $\left(e_{k}\right)_{k \in O}$ of \mathcal{H}. We have $\Phi(x, y)=\langle A x, y\rangle$ (proven as in FA I (parallelogram identity)).

- $E_{A}+E_{B}=E_{A \cap B}+E_{A \backslash B}=E_{A \cap B}+E_{A \cup B}$.
- $A \subset B$. Then $E_{B \backslash A}=E_{B}-E_{A}$ projection. $E_{B} E_{A}=$ $E_{A} E_{B}=E_{A}$.
- $A \cap B=\varnothing$. Then $E_{A}+E_{B}=E_{A \cup B}, E_{A}^{2}+E_{A} E_{B}=$ $E_{A} E_{A \cup B}=E_{A}$, hence $E_{A} E_{B}=0$.
- Thus $E_{A} E_{B}=E_{A} E_{A \cap B}+E_{A} E_{B \backslash A}=E_{A \cap B}$.
- $A \cap B=\varnothing$. Then $\left\langle E_{A} x, E_{B} y\right\rangle=\left\langle E_{B}^{*} E_{A} x, y\right\rangle=$ $\left\langle E_{B} E_{A} x, y\right\rangle=\langle 0, y\rangle=0$.
$\lambda \in \rho(T) \Longleftrightarrow \lambda-T: \operatorname{dom}(T) \rightarrow \mathcal{H}$ boundedly invertible. Resolvent mapping: $R(\lambda):=(\lambda-T)^{-1}$ is analytic and $R(\lambda)-$ $R(\mu)=(\mu-\lambda) R(\lambda) R(\mu) . \quad \sigma(T):=\rho(T)^{\text {С }}$ closed. $\mathcal{N}\left(T^{*}\right)=$ $\mathcal{R}(T)^{\perp}$.
Let $z \in \mathbb{C} \backslash \mathcal{R}, T$ dense, symmetric. $T=T^{*} \Longleftrightarrow T$ closed and $\mathcal{N}\left(T^{*}-z\right)=\mathcal{N}\left(T^{*}-\bar{z}\right)=\{0\} \Longleftrightarrow \mathcal{R}(T-z)=\mathcal{R}(T-\bar{z})=$ \mathcal{H}.
$T=T^{*}$ dense $\Longrightarrow \sigma(T) \subset \mathbb{R}$. (By Hellinger-Toeplitz it suffices to show: everywhere defined.)
$T=T^{*} \in L(\mathcal{H}), g: \sigma(T) \rightarrow \mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{R}$ B-meas., bd. $(f \circ g)(S)=f(g(S))$.
$T \in L(\mathcal{H})$ positive. $\exists!S \in L(\mathcal{H})$ positive, $S^{n}=T$.
Proof. $f_{n}(t):=t^{\frac{1}{n}}$ cts. bd. non-negative on $\sigma(T) \subset[0, \infty)$. $g_{n}(t):=t^{n}$. Then $\left(f_{n} \circ g_{n}\right)(t)=t, t \in \sigma(S) \subset[0, \infty)$. Uniqueness: $S=\left(f_{n} \circ g_{n}\right)(S)=f_{n}\left(g_{n}(S)\right)=f_{n}\left(S^{n}\right)=f_{n}(T)$.
$T \in L(\mathcal{H}),|T|:=\sqrt{T^{*} T}$. \exists partial isometry $U: T=U|T|$.
$\||T| x\|^{2}=\|T x\|^{2} . U(|T| x):=T x: \mathcal{R}(|T|) \rightarrow \mathcal{R}(T)$ isometry, extended to $\overline{\mathcal{R}(|T|)}, U \equiv 0$ on $\mathcal{R}(|T|)^{\perp}=\mathcal{N}(|T|)=\mathcal{N}(T)$.

Let $T=T^{*}: \operatorname{dom}(T) \rightarrow \mathcal{H} . \quad \exists!$ SM E on Borel sets of $\sigma(T): T=\int_{\sigma(T)} \lambda \mathrm{d} E_{\lambda}$, i.e. $\langle T x, y\rangle=\int_{\sigma(T)} \lambda \mathrm{d}\left\langle E_{\lambda} x, y\right\rangle$ for all $x \in \operatorname{dom}(T), y \in \mathcal{H}$.
$\sigma(T) \subset \mathbb{R}$ might be unbounded!

Riemann-Lebesgue Lemma

$f, \hat{f} \in L^{1}\left(\mathbb{R}^{n}\right) \Longrightarrow f(x)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{i\langle x, \xi\rangle} \mathrm{d} \xi=$ $\mathcal{F}^{-1}(\mathcal{F} f)(x)$.
Fejér-kernels $F_{\lambda}:=\lambda D_{\lambda^{-1}} F$, where $\lambda>0, F(x):=$ $\frac{1}{2 \pi} \int_{-1}^{1}(1-|t|) e^{i x t} \mathrm{~d} t$ satisfy $\left\|f-f * F_{\lambda}\right\|_{1} \rightarrow 0$ and $f * F_{\lambda}(x)=$ $\frac{1}{2 \pi} \int_{\mathbb{R}} f(t)\left[\lambda \int_{-1}^{1}(1-|\theta|) e^{i(x-t) \theta \lambda} \mathrm{d} \theta\right] \mathrm{d} \lambda \rightarrow f(x)$ pointwise a.e. We show $f * F_{\lambda}(x) \rightarrow \frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(\theta) e^{i x \theta} \mathrm{~d} \theta$ for $\lambda \rightarrow \infty$.
$f \in L^{2}(\mathbb{R}), a, b \in \mathbb{R} . g:=(\cdot-a) f, h:=(\cdot-b) \hat{f} .\|g\|_{2}\|h\|_{2} \geqslant$ $\frac{\|f\|_{2}^{2}}{2}$.

1. Density (S). W.l.o.g $\|f\|_{2}=1, a=b=0(\tilde{f}:=$ $\left.f(\cdot+a) e^{-i b} \cdot\right)$. PI: $1=-\int_{\mathbb{R}} x \frac{\mathrm{~d}}{\mathrm{~d} x}|f(x)|^{2} \mathrm{~d} x=-\int_{\mathbb{R}} x f^{\prime}(x) \overline{f(x)}+$ $x \overline{f^{\prime}(x)} f(x) \mathrm{d} x$. Hence $1 \leqslant 2 \int_{\mathbb{R}}|x| f^{\prime}(x)| | f(x) \mid \mathrm{d} x \leqslant 2\|g\|_{2}\left\|f^{\prime}\right\|_{2}$. Plancherel: $\left\|f^{\prime}\right\|_{2}=\|\xi \hat{f}\|_{2}$.
2. $(S f)(x):=x f(x), f \in L^{2}\left(\mathbb{R}^{n}\right)$. (Tf) $(x):=i f^{\prime}(x)$ for diff'ble $f \in L^{2}\left(\mathbb{R}^{n}\right)$. $([S, T] f)(x)=-i f(x)$. By UP II $\frac{1}{2}\|f\|_{2}^{2} \leqslant$ $\|(S-a I) f\|_{2}\|(T-b I) f\|_{2}$. Plancherel analogous to the above.
$f \in L^{1}\left(\mathbb{R}^{n}\right) \Longrightarrow \hat{f} \in \mathcal{C}_{0}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
Continuity of \hat{f} : Lebesgue Let $f:=\mathbb{1}_{\prod_{k=1}^{n}\left[a_{k}, b_{k}\right]}$. Then $|\hat{f}(\xi)|=\frac{1}{(2 \pi)^{\frac{n}{2}}} \prod_{k=1}^{n} \xrightarrow[\left|e^{-i b_{k} \xi_{k}}-e^{-i c_{k} \xi_{k}}\right|]{\left|\xi_{k}\right|} \xrightarrow{\|\xi\| \rightarrow \infty} 0$. holds.
By denseness \exists step function h arbitrarily close to f :

$$
\begin{aligned}
|\mathcal{F}(f(\xi))| & \stackrel{\Delta \neq}{\leqslant}|\mathcal{F}(f-h)(\xi)|+\left\lvert\, \mathcal{F}\left(h(\xi)\left|\leqslant \frac{\|f-h\|_{1}}{(2 \pi)^{\frac{n}{2}}}+\right| \mathcal{F}(h(\xi) \mid\right.\right. \\
& \leqslant \varepsilon(2 \pi)^{-\frac{n}{2}}+\left\lvert\, \mathcal{F}\left(h(\xi) \left\lvert\, \xrightarrow{|\xi| \rightarrow \infty} \varepsilon(2 \pi)^{-\frac{n}{2}} .\right.\right.\right.
\end{aligned}
$$

For $f, g \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ we have $\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle$. $h(x):=(f *(g-\cdot))(x) . \hat{h}(\xi)=(2 \pi)^{\frac{n}{2}} \hat{f}(\xi) \overline{\hat{g}}(\xi) . \hat{f}, \hat{g} \in L^{2}\left(\mathbb{R}^{n}\right)$ (dense!) $\Longrightarrow \hat{h} \in L^{1}\left(\mathbb{R}^{n}\right)$. Fourier-inversion: $\langle f, g\rangle=$ $h(0)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) \mathrm{d} \xi=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}}(2 \pi)^{\frac{n}{2}} \hat{f}(\xi) \overline{\hat{g}}(\xi) \mathrm{d} \xi=$ $\langle\hat{f}, \hat{g}\rangle$.
Extension to $L^{2}: f_{k}:=f \mathbb{1}_{[-k, k]^{n}} \in L^{1} \cap L^{2} .\left\|f-f_{k}\right\| \rightarrow 0$. Plancherel: $\left\|\hat{f}_{k}-\hat{f}_{\ell}\right\|_{2}=\left\|f_{k}-f_{\ell}\right\|_{2}$. Thus Cauchy in L^{2}. Completeness $\Longrightarrow f_{k} \rightarrow g=: \hat{f}$.

$$
\begin{gathered}
\mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right):\|f\|_{(k, \ell)}<\infty \forall k, l \in \mathbb{N}_{0}\right\} \\
=\left\{f: \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right):\|f\|_{\alpha, \beta}<\infty \forall \alpha, \beta \in \mathbb{N}_{0}^{n}\right\} \\
\|f\|_{(k, \ell)}:=\sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{\frac{k}{2}} \sum_{|\alpha| \leqslant \ell}\left|D^{\alpha} f(x)\right|, \\
\|f\|_{\alpha, \beta}:=\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|, \\
\|f\|_{(N)}:=\max _{|\alpha| \leqslant N} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{\frac{N}{2}}\left|D^{\alpha} f(x)\right| \\
f_{j} \xrightarrow{\mathcal{S}} f \Longleftrightarrow\left\|f_{j}-f\right\|_{(k, \ell)} \rightarrow 0 \forall k, \ell \in \mathbb{N}_{0} .
\end{gathered}
$$

Let $\left(f_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$ SchwartZ-converge to $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

1. It holds that $\hat{f}, \check{f} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
2. For all $\alpha \in \mathbb{N}_{0}^{n}$ and $x \in \mathbb{R}^{n}$ we have

$$
D^{\alpha} \hat{f}(\xi)=(-i)^{|\alpha|} \widehat{x^{\alpha} f}(\xi) \text { and } \xi^{\alpha} \hat{f}(\xi)=(-i)^{|\alpha|} \widehat{D^{\alpha} f}(\xi)
$$

3. It holds that $\hat{f}_{j} \xrightarrow{\mathcal{S}} \hat{f}$ and $\check{f}_{j} \xrightarrow{\mathcal{S}} \check{f}$.
4. $\widehat{\varphi \otimes \psi}(\xi, \eta)=\hat{\varphi}(\xi) \hat{\psi}(\eta), \widehat{\varphi \psi}=(2 \pi)^{-\frac{n}{2}} \hat{\varphi} * \hat{\psi}$ and $\hat{f}=f$ for $f(x)=e^{-\frac{|x|^{2}}{2}}$.
$\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)=$ cts dual space of $\mathcal{S}\left(\mathbb{R}^{n}\right)$, i.e. $T f_{k} \rightarrow T f \forall f_{k} \xrightarrow{\mathcal{S}} f$.
$T_{k} \xrightarrow{\mathcal{S}} T \Longleftrightarrow T_{k} f \rightarrow T f \forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
$T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ linear. $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \Longleftrightarrow \exists c>0, k, \ell \in \mathbb{N}_{0}:$ $|T f| \leqslant c\|f\|_{(k, \ell)} \forall f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
"1. $\Longrightarrow 2 . "$: Assume $\forall c>0, k, \ell \in \mathbb{N}_{0} \exists f_{c, k, \ell}$ s.t. $1=$ $\left|T f_{c, k, \ell}\right|>c\left\|f_{c, k, \ell}\right\|_{(k, \ell)} \cdot f_{k}:=f_{k, k, k} \xrightarrow{\mathcal{S}} 0$, by cts: $T f_{k} \rightarrow 0$. A contradiction.
$T_{f}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}, g \mapsto \int_{\mathbb{R}^{n}} f g \mathrm{~d} x .\left|T_{f} g\right| \leqslant\|g\|_{(0,0)}\|f\|_{1}$. Also $T_{f} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Extendable to $f \in L^{p}\left(\mathbb{R}^{n}\right), p \in[1, \infty]$.
Finite Borel measure μ via $\mu(g)=\int_{\mathbb{R}^{n}} f(x) \mathrm{d} \mu(x)$.
$S: \operatorname{dom}(S) \rightarrow \mathcal{H}, T: \operatorname{dom}(T) \rightarrow \mathcal{H}$ self-adjoint, $a, b \in \mathbb{R}$. $\|(S-a I) f\|\|(T-b I) f\| \geqslant \frac{1}{2}|\langle[S, T]\rangle| \forall f \in \operatorname{dom}(S T) \cap$ $\operatorname{dom}(T S)$.
Easy: $[S-a I, T-b I]=[S, T] . S-a I, T-b I$ self-adjoint.
$\langle[S, T] f, f\rangle=\langle(S-a I)(T-b I)-(T-b I)(S-a I) f, f\rangle$

$$
\begin{aligned}
& =\langle(T-b I) f,(S-a I) f\rangle-\langle(S-a I) f,(T-b I) f\rangle \\
& =2 i \cdot \Im(\langle(T-b I) f,(S-a I) f\rangle)
\end{aligned}
$$

holds. Now Cauchy-Schwarz-inequality.

Let $\left(f_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $f_{j} \xrightarrow{\mathcal{S}} f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

1. $f_{j} \rightarrow f$ in $L^{p}\left(\mathbb{R}^{n}\right)$ holds for all $p \in(0, \infty)$.
2. $D^{\alpha} f_{j} \xrightarrow{\mathcal{S}} D^{\alpha} f$ holds for all $\alpha \in \mathbb{N}_{0}^{n}$.
3. $\left(x \mapsto x^{\alpha} f_{j}(x)\right) \xrightarrow{\mathcal{S}}\left(x \mapsto x^{\alpha} f(x)\right)$ holds for all $\alpha \in \mathbb{N}_{0}^{n}$.
4. Then $T_{h} f \underset{h \rightarrow 0}{\mathcal{S}} f$ holds.
5. For $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ also $f g, f * g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
6. $D^{\alpha}(f * g)=\left(D^{\alpha} f\right) * g=f *\left(D^{\alpha} g\right)$ holds for all $\alpha \in \mathbb{N}_{0}^{n}$.
$\check{\hat{f}}=\hat{\tilde{f}}=f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{F}$ and \mathcal{F}^{-1} are bijective on $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
$I(\varepsilon):=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{i\langle x, \xi\rangle} e^{-\varepsilon^{2} \frac{|\xi|^{2}}{2}} \mathrm{~d} \xi \xrightarrow{\varepsilon \rightarrow 0} \check{\hat{f}}$ by (L).
$g(x):=\exp \left(-\varepsilon^{2} \frac{|x|^{2}}{2}\right) \cdot \hat{g}(\xi)=\varepsilon^{-n} \exp \left(-\frac{|\xi|^{2}}{2 \varepsilon^{2}}\right)$ by FP, $D_{\varepsilon^{-1}}$.
$(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{i\langle x, \xi\rangle} h(\xi) \mathrm{d} \xi=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} T_{-x} f(\xi) \hat{h}(\xi) \mathrm{d} \xi$
$=\left(2 \pi \varepsilon^{2}\right)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(x+y) \exp \left(-\frac{1}{2}\left|\frac{y}{\varepsilon}\right|^{2}\right) \mathrm{d} y$
$=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(x+\varepsilon z) \exp \left(-\frac{|z|^{2}}{2}\right) \mathrm{d} z \xrightarrow{\varepsilon \rightarrow 0} f(x)$.

Regular distribution

Convolution and Fourier transform of measures

Definition

Tempered distributions and derivative / Fourier transforms.

The spaces $D(\Omega)$ and $D^{\prime}(\Omega)$

Properties

Normal operator

Definition \& more

Weighted L^{2} space
Bessel potential spaces H^{s}

Locally compact abelian topological group
HaAR measure

Measure μ on \mathbb{R}^{n} with density $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \lambda, \psi$ analog. $(\varphi *$ $\psi)(f)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f(z+y) \mathrm{d} \mu(z) \mathrm{d} \lambda(y)$ (uniqueness by RIESZ), $f \in \mathcal{C}_{0}\left(\mathbb{R}^{n}\right)$. Extendable to B-meas. functions, i.e. $\widehat{\mu * \lambda}(\xi)=$ $(2 \pi)^{\frac{n}{2}} \hat{\mu}(\xi) \hat{\lambda}(\xi)\|\mu * \lambda\| \leqslant\|\mu\| \cdot\|\lambda\|$ (total variation), $\hat{\mu}(\xi):=$ $\int e^{-i\langle x, \xi\rangle} \mathrm{d} \mu(x)$.
$(\mu * \lambda)(E)=(\mu \otimes \lambda)\left(\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x+y \in E\right\}\right)$ for all B-meas. $E \subset \mathbb{R}^{n}$.
$T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ regular if $\exists f \in L^{1}\left(\mathbb{R}^{n}\right)$ s.t. $T=T_{f}$. $f, g \in L^{1}\left(\mathbb{R}^{n}\right), T_{f} \equiv T_{g}$. Then $f=g$ a.e.
Suffices: $T_{h} \equiv 0 \Longrightarrow h=0$ a.e. Mollifier ω_{ε} (symmetric, unit int., unit supp.) $h * \omega_{\varepsilon} \in \mathcal{C}\left(\mathbb{R}^{n}\right) .0=\int_{\mathbb{R}^{n}} h \omega_{\varepsilon} * f \mathrm{~d} x=$ $\int_{\mathbb{R}^{n}} f h * \omega_{\varepsilon} \mathrm{d} x . \quad x \in U_{x}$ s.t. $\left(\omega_{\varepsilon} * h\right)(x)>0 . \varphi_{x} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ s.t. $\operatorname{supp}\left(\varphi_{x}\right) \subset U_{x}$. Denseness of cts compactly supported fct in $L^{1}: h=h_{1}+h_{2}, h_{1}$ cts. compact supp, $\left\|h_{2}\right\|_{1} \leqslant t$. $\|h\|_{1} \leqslant\left\|h_{1}-\omega_{\varepsilon} * h_{1}\right\|_{1}+\left\|h_{2}\right\|_{1}+\left\|\omega_{\varepsilon} * h_{2}\right\|_{1}$.
$\left\|h_{1}-\omega_{\varepsilon} h_{1}\right\|_{1} \leqslant \sup _{|y| \leqslant \varepsilon}\left\|h_{1}(\cdot)-h_{1}(\cdot-y)\right\|_{1} \rightarrow 0$ using FUBINI, $\varepsilon, t>0$ small enough.
$T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right), \alpha \in \mathbb{N}_{0}^{n}$.

- $\left(D^{\alpha} T\right)(f)=(-1)^{|\alpha|} T\left(D^{\alpha} f\right)$
- $\widehat{T}(f)=T(\hat{f}), \check{T}(f)=T(\check{f})$
- $(f T)(g)=T(f g)$.
$D^{\alpha} T, f T, \widehat{T}, \check{T} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
$\mathcal{F}, \mathcal{F}^{-1}$ bijective, cts., $D^{\hat{\alpha}} T=i^{|\alpha|} x^{\alpha} \widehat{T}, \widehat{x^{\alpha} T}=|i|^{\alpha} D^{\alpha} \widehat{T}$, $\left.\widehat{D_{\lambda} T}=\lambda^{-n} \widehat{T\left(\lambda^{-1}\right.}.\right), \widehat{\tau_{h} T}=e^{-i\langle h, \xi\rangle} \widehat{T}, \widehat{M_{h} T}=\tau_{h} \widehat{T}$.

Let $R:=\mathcal{R}\left(T_{\lambda}:=T-\lambda\right) . \sigma(T)$ is the disjoint union of the point spectrum $\sigma_{p}(T):=\left\{\lambda \in \sigma(T): T_{\lambda}\right.$ not injective $\}$, continuous spectrum $\sigma_{c}(T):=\left\{\lambda \in \sigma(T) \backslash \sigma_{p}(T): R \subsetneq \mathcal{H}\right.$ dense $\}$, residual spectrum $\sigma_{r}(T):=\sigma(T) \backslash\left(\sigma_{p}(t) \cup \sigma_{c}(T)\right)$ or

$$
\sigma_{r}(T)=\left\{\lambda \in \sigma(T): T_{\lambda} \text { injective, } R \subset \mathcal{H} \text { not dense }\right\}
$$

Furthermore the approximate point spectrum is

$$
\sigma_{\mathrm{app}}(T):=\left\{\lambda \in \mathbb{C}: \inf _{\|x\|=1}\left\|T_{\lambda} x\right\|=0\right\} \supset \sigma_{p}(T)
$$

w cts positive fct $L^{2}\left(\mathbb{R}^{n}, w\right):=\left\{f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right): w f \in\right.$ $\left.L^{2}\left(\mathbb{R}^{n}\right)\right\}\langle\cdot, \cdot\rangle_{L^{2}\left(\mathbb{R}^{n}, w\right)}:=\langle w \cdot w \cdot\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}$. $L^{2}\left(\mathbb{R}^{n}, w\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right), f \mapsto w f$ unitary.
$w_{s}: \mathbb{R}^{n} \rightarrow[0, \infty), x \mapsto\left(1+|x|^{2}\right)^{\frac{s}{2}}, s \in \mathbb{R}$.

$$
\mathcal{D}\left(\mathbb{R}^{n}\right), \mathcal{S}\left(\mathbb{R}^{n}\right) \stackrel{\mathrm{d}}{\subset} L^{2}\left(\mathbb{R}^{n}, w_{s}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

$\mathcal{F}\left(W_{2}^{k}\left(\mathbb{R}^{n}\right)\right)=\mathcal{F}^{-1}\left(W_{2}^{k}\left(\mathbb{R}^{n}\right)\right)=L^{2}\left(\mathbb{R}^{n}, w_{k}\right)$ unitary.

A left (right) HAAR measure on a LCG G is a nonzero RADON measure μ satisfying $\mu(x E)=\mu(E)$ $(\mu(E x)=\mu(E))$ for all Borel sets $E \subset G$ and all $x \in G$. (e.g. integral on $\mathcal{C}_{\mathrm{c}}^{\infty}$)
(HAAR, 1933) Every locally compact group possesses a left (right) HAAR measure uniquely determined up to rescaling by a positive number.

A topological group is a group G equipped with a topology such that the group operations $(x, y) \mapsto x y$ and $x \mapsto x^{-1}$ are continuous.
A topology is locally compact if every point has a compact neighbourhood. In a Hausdorff space points can be separated by open sets.
If the topology of G is locally compact and Hausdorff, G is a locally compact group.
$\mathbb{R}, \mathbb{Z}, \mathbb{T}$ and \mathbb{Z}_{k} are LCAGs.

Fourier transform on $L^{1}(G)$ FA II

Theorem

FOURIER inversion formula on $L^{1}(G)$

Definition \& properties

Convolution on $L^{1}(G)$

FA II

Definition

Derivative, Fourier-transform in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$

Fourier transform of Schwartz functions under dilation etc.

Least-squares and minimal norm solution

Moore-Penrose inverse
Normal equation

Let $f \in L^{1}(G)$ and μ be the left-invariant HAAR measure on G. For $\gamma \in \widehat{G}$ the Fourier transform of f is

$$
\mathcal{F} f(\gamma):=\hat{f}(\gamma):=\int_{G} f(x) \overline{\gamma(x)} \mathrm{d} \mu(x)
$$

Denote by $\mathcal{C}_{0}(\widehat{G})$ the set of continuous and bounded functions on \hat{G}. We have $\mathcal{F}: L^{1}(G) \rightarrow \mathcal{C}_{0}(\widehat{G})$.
Plancherel: The Fourier transform on $L^{1}(G) \cap L^{2}(G)$ uniquely extends to a unitary isomorphism from $L^{2}(G)$ to $L^{2}(\widehat{G})$.

A continuous homomorphism $\gamma: G \rightarrow \mathbb{T}$ is a character of G. The dual group of G, \widehat{G}, is the set of all its characters.
$\widehat{\mathbb{R}} \cong \mathbb{R}$ via $x \mapsto \gamma_{x}$, where $\gamma_{x}(y):=e^{i x y}$.
$\widehat{\mathbb{T}} \cong \mathbb{Z}$ via $m \mapsto \gamma_{m}$, where $\gamma_{m}(\theta):=\theta^{m}$.
$\widehat{\mathbb{Z}} \cong \mathbb{T}$ via $\theta \mapsto \gamma_{\theta}$, where $\gamma_{\theta}(m):=\theta^{m}$.
$\widehat{\mathbb{Z}}_{k} \cong \mathbb{Z}_{k}$ via $m \mapsto \gamma_{m}$, where $\gamma_{m}(n):=\exp \left(2 \pi i \frac{m n}{k}\right)$.
For LCAGs $\left(G_{k}\right)_{k=1}^{n}, \overline{\bigotimes_{k=1}^{n} G_{k}} \cong \bigotimes_{k=1}^{n} \widehat{G}_{k}$ holds.
The map $\Phi: G \rightarrow \widehat{G},(\Phi(x))(\gamma):=\gamma(x)$ is an isomorphism of topological groups.

Let $f \in L^{1}(G)$ such that $L^{1}(\widehat{G})$. Then $f(x)=\widehat{\hat{f}}\left(x^{-1}\right)$ holds for almost all $x \in G$, i.e.

$$
f(x)=\int_{\hat{G}} \hat{f}(\gamma(\gamma(x) \mathrm{d} \mu(\gamma) \quad \text { a.e. in } G,
$$

where μ is the appropriately normalised left-invariant HaAR invariant HaAR measure on \widehat{G}.

For $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\alpha \in \mathbb{N}_{0}^{n}$ we define
$\left(D^{\alpha} T\right)(f):=(-1)^{|\alpha|} T\left(D^{\alpha} f\right), \quad(\mathcal{F} T)(f):=T(\mathcal{F} f)$, $\left(\mathcal{F}^{-1} T\right)(f):=T\left(\mathcal{F}^{-1} f\right)$, $(f T)(g):=T(f g)$.

Let $K \subset \mathbb{C}$ be compact and $\left(\mathcal{B}(K),\|\cdot\|_{\infty}\right)$ the BAnach space of bounded Borel-measurable functions on K and $\mathcal{C}(K) \subset U \subset \mathcal{B}(K)$ a set of functions with the following property: for all $\left(f_{n}\right)_{n \in \mathbb{N}} \subset$ with $f(t):=\lim _{n \rightarrow \infty} f_{n}(t)$ existing everywhere and $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{\infty}<\infty$ implies that $f \in U$. Then $U=$ $\mathcal{B}(K)$.

1. Let $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) . \mathcal{F}^{-1} \mathcal{F} T=\mathcal{F} \mathcal{F}^{-1} T=T$ holds. $\mathcal{F}^{(-1)}$ $\operatorname{map} \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ bijectively and continuously onto itself.
2. $\mathcal{F}\left(D^{\alpha} T\right)=i^{|\alpha|} x^{\alpha} \mathcal{F} T$ and $\mathcal{F}\left(x^{\alpha} T\right)=i^{|\alpha|} D^{\alpha} \mathcal{F} T$ holds.
3. For $\varepsilon>0$ let $T_{\varepsilon}(f):=T\left(\varepsilon^{-n} f\left(\varepsilon^{-1} \cdot\right)\right)$ for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ be the dilation of T. Then $\mathcal{F} T_{\varepsilon}=\varepsilon^{-n} \mathcal{F}(T)\left(\varepsilon^{-1}\right.$.) holds.
4. For $h \in \mathbb{R}^{n}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the translation of T is $\left(\tau_{h} T\right)(f):=T(f(\cdot+h))$ and $\mathcal{F}\left(\tau_{h} T\right)=e^{-i\langle h, \cdot\rangle \mathcal{F} T}$ holds.
5. The modulation of T is $\left(M_{h} T\right)(f):=T\left(e^{i\langle h, \cdot\rangle} f\right)$ and $\mathcal{F}\left(M_{h} T\right)=\tau_{h}(\mathcal{F} T)$ holds.

Set $\tilde{T}:=\left.T\right|_{\mathcal{N}(T)^{\perp}}: \mathcal{N}(T)^{\perp} \rightarrow \mathcal{R}(T)$. The Moore-Penrose Pseudoinverse T^{+}is the unique linear extension of \tilde{T}^{-1} with $\mathcal{D}\left(T^{+}\right)=\mathcal{R}(T) \oplus \mathcal{R}(T)^{\perp}$ and $\mathcal{N}\left(T^{+}\right)=\mathcal{R}(T)^{\perp}$. T^{+}satisfies $\mathcal{R}\left(T^{+}\right)=\mathcal{N}(T)^{\perp}$ and we have (these four equations characterise T^{+}uniquely.)

1. $T T^{+} T=T$
2. $T^{+} T T^{+}=T^{+}$
3. $T^{+} T=\mathrm{id}-P_{\mathcal{N}(T)}=P_{\mathcal{N}(T) \perp}$
4. $T T^{+}=\left.\left(P_{\overline{\mathcal{R}}(T)}\right)\right|_{\mathcal{D}\left(T^{+}\right)}$
hold.
$T^{+} \in L\left(\mathcal{D}\left(T^{+}\right), X\right)$ implies that $\mathcal{R}(T)$ is closed.

If $\mathcal{R}(T)$ is closed, $T^{+} \in L\left(\mathcal{D}\left(T^{+}\right), X\right)$

KOROLLAR

Let $K \in \mathcal{K}(X, Y)$ with $\operatorname{dim}(\mathcal{R}(K))=\infty$.
Then K^{+}is not continuous.

SVD of a compact operator

Definition

Theorem

Picard condition value decomposition.

Types of ill-conditionedness

Functional calculus with SVD

If $y \in \mathcal{D}\left(T^{+}\right)$, then $T x=y$ has a unique minimal norm solution...

First we show that T^{+}is closed. Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{D}\left(T^{+}\right)$converge to $y \in Y$ with $T^{+} y_{n} \rightarrow x \in X$. By the fourth MoorePenrose formula $T T^{+} y_{n}=P_{\overline{\mathcal{R}(T)}} y_{n} \rightarrow P_{\overline{\mathcal{R}(T)}} y$ holds by the continuity of orthogonal projections. Since T is continuous, $P_{\overline{\mathcal{R}(T)}} y=\lim _{n \rightarrow \infty} P_{\overline{\mathcal{R}(T)}} y_{n}=\lim _{n \rightarrow \infty} T T^{+} y_{n}=T x$, implying that x is a least-square solution to $T x=y$. As $T^{+} y_{n} \in \mathcal{R}\left(T^{+}\right)=\mathcal{N}(T)^{\perp}$, which is closed, holds for all $n \in \mathbb{N}$ we have that $T^{+} y_{n} \rightarrow x \in \mathcal{N}(T)^{\perp}=\overline{\mathcal{R}\left(T^{*}\right)}$. thus x is a minimal norm solution to $T x=y$, so T^{+}is closed. The closed graph theorem finishes the proof.

A sequence $\left(\left(\sigma_{n}, u_{n}, v_{n}\right)\right)_{n \in \mathbb{N}}$ is the singular value decomposition of K if $\left(\sigma_{n}\right)_{n} \subset \mathbb{R}^{+}$is a decreasing sequence converging to $0,\left(u_{n}\right)_{n \in \mathbb{N}} \subset Y$ an ONB of $\overline{\mathcal{R}(K)}$ and $\left(v_{n}\right)_{n \in \mathbb{N}} \subset X$ an ONB of $\overline{\mathcal{R}\left(K^{*}\right)}$ such that

1. $K v_{n}=\sigma_{n} v_{n}$ and $K^{*} u_{n}=\sigma_{n} v_{n}$ holds for all $n \in \mathbb{N}$
2. $K x=\sum_{n \in \mathbb{N}} \sigma_{n}\left\langle x, v_{n}\right\rangle u_{n}$ holds for all $x \in X$.

Let $\left(\left(\sigma_{n}, u_{n}, v_{n}\right)\right)_{n \in \mathbb{N}}$ be a singular system for K and $y \in \overline{\mathcal{R}(K)}$. Then $y \in \mathcal{R}(K)$ holds if and only if the Picard condition

$$
\sum_{n \in \mathbb{N}} \sigma_{n}^{-2}\left|\left\langle y, u_{n}\right\rangle\right|^{2}<\infty
$$

is satisfied. In this case we have

$$
K^{+} y=\sum_{n \in \mathbb{N}} \sigma_{n}^{-1}\left\langle y, u_{n}\right\rangle v_{n} .
$$

As $\mathcal{D}\left(T^{+}\right) \subset Y$ is dense, T^{+}can be uniquely and continuously extended to Y by $\overline{T^{+}} \in L(Y, X)$ defined by $\overline{T^{+} y}:=\lim _{n \rightarrow \infty} T^{+} y_{n}$ for some sequence $\left(y_{n}\right)_{n \in \mathbb{N}} \subset$ $\mathcal{D}\left(T^{+}\right)$converging to $y \in Y$. Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{R}(T)$ be a sequence converging to $y \in \overline{\mathcal{R}(T)}$. By the fourth Moore-Penrose equation and the continuity of T, $y=P_{\overline{\mathcal{R}}(T)} y=\lim _{n \rightarrow \infty} P_{\overline{\mathcal{R}}(T)} y_{n}=\lim _{n \rightarrow \infty} T T^{+} y_{n}=$ $T T^{+} y \in \mathcal{R}(T)$, hence $\mathcal{R}(T)=\overline{\mathcal{R}(T)}$.

Towards contradiction assume that K^{+}is continuous. Now $\mathcal{R}(K)$ is closed. Let $\tilde{K}:=\left.K\right|_{\mathcal{N}(K)^{\perp}}$: $\mathcal{N}(K)^{\perp} \rightarrow \mathcal{R}(K)$, which is bijective. Then $\tilde{K}^{-1} \in$ $L\left(\mathcal{R}(K), \mathcal{N}(K)^{\perp}\right)$ holds by the inverse mapping theorem.
As K is compact, so is $K \circ \tilde{K}^{-1}$, which is the identity on $\mathcal{R}(K)$. In FA I this way shown to imply $\operatorname{dim}(\mathcal{R}(K))<\infty$, a contradiction.

As $K^{*} K \in \mathcal{K}(X, X)$ is $\mathrm{SA}, \exists\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R} \backslash\{0\} \rightarrow 0$, decreasing in $|\cdot|$, ONS $\left(v_{n}\right)_{n \in \mathbb{N}} \subset X: K^{*} K x=\sum_{n \in \mathbb{N}} \lambda_{n}\left\langle x, v_{n}\right\rangle v_{n}$. Thus $\lambda_{n}=$ $\left.\lambda\left\|v_{n}\right\|^{2}=\left\langle\lambda_{n} v_{n}, v_{n}\right\rangle=\left\langle K^{*} K v_{n}, v_{n}\right\rangle=\left\langle K v_{n}, K v_{n}\right\rangle=\left\|K v_{n}\right\|^{2}\right\rangle$ 0 . Set $\sigma_{n}:=\sqrt{\lambda_{n}}>0, u_{n}:=\sigma_{n}^{-1} K v_{n} \in Y$. Then $\left(u_{n}\right)_{n \in \mathbb{N}} \subset Y$ is ONS: $\left\langle u_{i}, u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle K v_{i}, K v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle K^{*} K v_{i}, v_{j}\right\rangle=$ $\frac{\lambda_{i}}{\sigma_{i} \sigma_{j}}\left\langle v_{i}, v_{j}\right\rangle=\delta_{i, j}$. Thus $K^{*} u_{n}=\sigma_{n}^{-1} K^{*} K v_{n}=\sigma_{n}^{-1} \lambda_{n} v_{n}=\sigma_{n} v_{n}$ By spectral theorem, $\left(v_{n}\right)_{n \in \mathbb{N}}$ is ONB for $\overline{\mathcal{R}\left(K^{*} K\right)}=\overline{\mathcal{R}(K)}$ Hence $\left(v_{n}\right)_{n \in \mathbb{N}}$ extendable to ONB V for X, as the rest must be in $\mathcal{N}(K)=$ $\overline{\mathcal{R}\left(K^{*}\right)}{ }^{\perp}$. Thus $K x=\sum_{v \in V}\langle x, v\rangle K v=\sum_{n \in \mathbb{N}}\left\langle x, v_{n}\right\rangle K v_{n}=$ $\sum_{n \in \mathbb{N}}\left\langle x, v_{n}\right\rangle \sigma_{n} u_{n}=\sum_{n \in \mathbb{N}}\left\langle x, K^{*} u_{n}\right\rangle u_{n}=\sum_{n \in \mathbb{N}}\left\langle K x, u_{n}\right\rangle u_{n}$ thus $\left(u_{n}\right)_{n \in \mathbb{N}}$ is ONB for $\overline{\mathcal{R}(K)}$.

SVD allows us to define functions of compact operators: Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous (locally bounded?) function. For $K \in \mathcal{K}(X, Y)$ with singular system $\left(\left(\sigma_{n}, u_{n}, v_{n}\right)\right)_{n \in \mathbb{N}}$ and $x \in X$ define $f\left(K^{*} K\right): X \rightarrow X$, $x \mapsto \sum_{n \in \mathbb{N}} f\left(\sigma_{n}^{2}\right)\left\langle x, v_{n}\right\rangle v_{n}+f(0) P_{\mathcal{N}(K)} x$ This series converges in X, as f is evaluated on the compact interval $\left[0, \sigma_{1}^{2}\right]=\left[0,\|K\|^{2}\right]$. We have $f\left(K^{*} K\right) \in L(X):\left\|f\left(K^{*} K\right)\right\|=$ $\sup _{n \in \mathbb{N}}\left|f\left(\sigma_{n}^{2}\right)\right| \leqslant \sup _{\lambda \in\left[0, \sigma_{1}^{2}\right]}|f(\lambda)|<\infty$. Let $f=\sqrt{ }$. The absolute value of K is $|K|:=f\left(K^{*} K\right)=\sum_{n \in \mathbb{N}} \sigma_{n}\left\langle\cdot, v_{n}\right\rangle v_{n}$.
$\ldots x^{+}=T^{+} y$. The set of all least squares solutions is given by $x^{+}+\mathcal{N}(T)$.

1. $T x=y$ is moderately ill-conditioned if the decay of the singular values is at most polynomial, i.e there exist $c, r>0$ such that $\sigma_{n} \geqslant c n^{-r}$ for all $n \in \mathbb{N}$.
2. If 1 . is not the case, $T x=y$ is strongly illconditioned.
3. $T x=y$ is called exponentially ill-conditioned if there exists $c, r>0$ such that $\sigma_{n} \leqslant c e^{-n r} \forall n \in \mathbb{N}$.

A family $\left(R_{a}\right)_{a>0} \subset L(Y, X)$ is called regularisation of T^{+}if $R_{a} y \xrightarrow{a \rightarrow 0} T^{+} y$ holds for all $y \in \mathcal{D}\left(T^{+}\right)$.
E compactly supported spectral measure, $T=\int \lambda \mathrm{d} E_{\lambda} \in L(\mathcal{H})$ is self-adjoint. Then $\Psi: \mathcal{B}(\sigma(T)) \rightarrow L(\mathcal{H}), f \mapsto \int_{\sigma(T)} f \mathrm{~d} E$ is the BM FC, especially $E_{\sigma(T)}=\mathrm{id}$
$T=T^{*} \in L(\mathcal{H}) . \exists!E$ compactly supported SM: $T=\int_{\sigma(T)} \lambda \mathrm{d} E_{\lambda} \cdot \Psi: \mathcal{B}(\sigma(T)) \rightarrow L(\mathcal{H})$, $f \mapsto f(T)=\int f(\lambda) \mathrm{d} E_{\lambda}$ coincide with BM FC, $\langle f(T) x, y\rangle=\int_{\sigma(T)} f(\lambda) \mathrm{d}\left\langle E_{\lambda} x, y\right\rangle$, where $\left\langle E_{\lambda} x, y\right\rangle$ is the complex-valued measure $A \mapsto\left\langle E_{A} x, y\right\rangle$.

The double adjoint
Let T dense.

- T^{*} closed. T^{*} dense $\Longrightarrow T \subset T^{* *}$ and $\bar{T}=T^{* *}$.
- T symmetric $\Longleftrightarrow T \subset T^{*}$. Then $T \subset T^{* *} \subset T^{*}=$ $T^{* * *}, T^{* *}$ symmetric.
- T closed, symmetric $\Longleftrightarrow T=T^{* *} \subset T^{*}$.
- T self-adjoint $\Longleftrightarrow T=T^{*}=T^{* *}$.

