LEMMA (WINTNER)

o(T)c W(T) for T € L(H)
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LEMMA

Numerical Range of Self-adjoint / Positive

Operators
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CONTINUOUS FUNCTIONAL CALCULUS

For every T'= T* € L(#H) 3! cts., lin.,
multiplicative, involutive homomorphism of
algebras @7 : C(o(T)) — L(H) with
Or(id) =T, &p(1) = id.

PROPERTIES OF THE CONTINUOUS FUNCTIONAL CALCULUS

Let T =T* e L(H) and f — f(T) be the CFC for

[ Co(T)). 1. Then [F(T)] = |l i= suprea(r LF (V)]
holds. 2. If fl,(ry = 0, then f(T') is positive. 3. If Tz = X
for some x € H, then f(T)z = f(A)z. 4. The spectral
mapping theorem holds for all f e C(o(T)). 5.

{f(T)} rec(o(y) is a commutative BANACH operator-algebra.
6. All f(T') are normal; if f is real, then f(T) is self-adjoint.
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THEOREM ALL YOU NEED TO KNOW ABOUT...
RIESZ-MARKOV-KAKUTANI Orthogonal projections
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DEFINITION IDEA OF BOREL MEASURABLE CALCULUS

(complex) signed RADON measure

FA II

Let T =T%* € L(H). 1. For every x € H there exists a
non-negative RADON-measure E* such that
(f(D)zyz)y = SU(T) fdE? holds for all f e C(a(T)).

2. For every on ¢(7T') bounded BOREL-measurable function g
there exists a unique G € L(#H) such that
(Gr,x) = SU(T) gdE® holds for all z € H. If g is real

(non-negative), G is self-adjoint (positive).
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DEFINITIONS

Unbounded Operator

FA II

THEOREM

HELLINGER-TOEPLITZ

FA II




For T = T* € L(H) we have o(T) c [inf(W(T)),sup(W(T))]
= [min(o(T)), max(c(T))] and for T = 0: o(T) < [0, ).

|7 = supjyj=1 { Tz, z ) for self-adjoint operators.

Self-adjoint operators with o(T) < [0,00) are positive. Posi-
tive operators are self-adjoint.

T € L(H) is self-adjoint if and only if (Tz,z) € R for all
xeH.

Let A ¢ W(T) and d := dist(A\, W(T)) > 0. Then d < [A —(Tz,z) <
[(Xid —T)zx| - |=| for |z|| = 1. Thus T injective, (A\id —T)~!
R(Aid—T) — H bounded below. Hence R(Aid —T) closed. As-
sume Jzg € R(\id—T)*, |xo| = 1. Then 0 = {((A\id —=T)xo,x0 ) =
XA —{Tzg,z0 ). Thus R(Aid —T) = H and X € p(T).

Case 1: X € 0,(T'). Then there exists a v € H such that Tv = Av. Thus
(v, Tv) = A|v|? holds, implying ¢ o Trer > = A, which means A € W(T).
Case 2: A € 0,.(T). Since the range is not dense, we have (R(T — X))+ # {0}.
For v € (R(T — A))* we have (v, (T — A)v) = 0. Thus 0 = % =
<L‘L7Hﬂ§> — X holds, implying A € W(T). Case 3: X\ € 0.(T). There exist a

sequence of unit vectors z, with (T — M)z, — 0, otherwise T" — X\ would

be bounded from below and would necessarily have a closed range. Thus
CanaTany ) o C2n 4(T7§)7,,,,> — 0, holds, implying A € W(T).

lznl lznl

2. Let f >0 and g € C(o(T)) with g2 = f and g > 0. Then
(f(D)a,z) = (g(T)a,g(T)z ) = {g(T)x,g(T)z) = |g(T)z|* = 0.

4.7c”: Let p ¢ f(o(T)). Then g(x) := f(xl)—u €C(o(T)) and g(f—p) =
(f = #)g = 1. Hence we get g(T)(f(T) ~ juid) = (F(T) — pid)g(T) = id,
hence p € p(f(T)).

7>”: Let u = f(A), A € o(T) and choose polynomials f, with || frn— flleo <
%. Then |f(A) — fn(N)] < % and | f(T) — fo(T)] < % We know that
Fa ) € a(fa)T)), L. Fm € H: [2nl = 1, [(fa(T) — fa(A)id)za] < L.
Thus, |(f(T) —pid)za| < [(f(T) = f(T))2n] + 1 (fn(T) = fn(X) id)zn| +
[(frn(N) — pid)zn| < % + % + % holds, implying that (f(T) — pid) is
not boundedly invertible, i.e. p € o(f(T)). 6.: f(T)* = f(T) and
FD*F(T) = ££(T) = ff(T) = f(T)f(T)*. 1 and 3: approximation.

Uniqueness: ®r(z — 2") = T", hence ®r implies uniqueness on
polynomials. ¢(T) < [m(T), M(T)] is compact and the polynomi-
als dense in C(o (7)) by STONE-WEIERSTRASS. Due to continuity,
&7 is unique on C(a(T)).

Existence: We set ®r(f) = Y;_,arT" for a polynomial f(z) =
Dho apz®. If we show continuity of ®r on polynomials, there
would be an unique extension (cf. above) to C(c(T')), which we

denote by ®r again. By the SMT for polynomials f we obtain

|or(HIF = [@r(N)*@(f)] = |2 (F 1)
= sup A= suwp [(FHN= sup [FO)* = If]5.
reo (o1 (71)) Neo(T) Neo(T)

E =N(P)®R(P), R(P) and N'(P) are closed and id —P is a
projection, too, with A'(id —P) = R(P), R(id —P) = N (P).
P e L(H) # {0} projection is orthogonal < ||P| =1 <
P self-adjoint <= P normal <= P positive.

Py, P, orthogonal projections onto Uy, Us. TFAE: U; < Uy,
R(P) < R(Py), N(P) = N(Py), PPy = PP, = P, P,— P
is positive.

IfT =T* e L(H) and o(T) = {0,1}, T is an ortho projection.

For every functional ¢ : C(K) — C there exists a RADON
measure pu € M(K) such that

o(f) = fK f@)du(z)  VfeC(K).

The isometric isomorphism ® : C(K)* — M(K) maps posi-

tive functionals to non-negative measures.

1. is Riesz

For 2.: Uniqueness from Exercise as G self-adjoint.
Existence: Q(z) = §,
ments. Use Riesz uniqueness for parallelogram-like equality
and Q(A\z) = |A\?Q(x) to show E**Y + E*~Y = 2E* + 2EY
etc.

gdE?*. Show @ fulfills lemma require-

A finite measure p on (K, B) is called RADON measure if

w(B) = inf u(G) VBeB (outer regularity)
GBonCe:n

w(G) = inf pu(T)

TcG
G comp.

VG open (inner regularity)
hold.

A o-additive mapping g = p* — = on B with y* RADON is
called signed RADON measure.

Let T be a symmetric operator with dom(7) = H. Then
Te L(H).

Proof. Let x, — 0 and Tz, — y. By the CGT it suffices to
show y = 0.

(oyy = lim Tay,y) = lim (Tap,y) = lim (2o, Ty ) = 0.

A linear operator T' : H > dom(7T') — H, where dom(T)
is a linear subspace is called densely defined if dom(7T) is
dense. The scalar product on its graph G(T') = {(Tz,z) :
x € dom(T)} is ((u,v), (2,Y) Dy p = {uy ) +{v,y).

T is closable if G(T) is the graph of some linear operator
To = T. S is an extension of T' (denote T' < S) if G(T) <
G(S) < dom(T) < dom(S) and S =T on dom(T).
dom(S + T) = dom(S) n dom(T) and dom(ST) = {x €
dom(T) : Tz € dom(S)}.

T symmetric <= (Tz,y) =z, Ty) Vx,y € dom(T).




DEFINITION

Adjoint of densely defined operator

BOREL-MEASURABLE CALCULUS

As CFC but also f,, € B(o(T')) with

$uDyets | fulle < o0 and £ (t) — (£) on
o(T) implies (Or(fu)z,y) — ( Dr(f)a,y).
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LEMMA DEFINITION
Let Q:H — C. Then 31Ae L(H) :
Q(x) = Az, x ) iff 3C > 0 :
Spectral measure
Q)] < Cllz], Q(z +y) + Qz —y) =
2(Q(z) + Q(y)) and Q(A\z) = [APQ(2).
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LEMMA LEMMA
Properties of spectral measures Properties of spectral integrals
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APPLICATIONS

Spectral theorem (bounded, self-adjoint)

THEOREM

Spectral theory for unbounded operators
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THEOREM BASIC PROPERTIES
Spectral theorem for unbounded operators FOURIER transform
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Uniqueness: as above + Werner lemma.

For bounded measurable g on o(T) define ®7(g) = G. CFC
guarantees @ (id) = T, ®(1) = id.

For real-valued ¢ we have |®r(g)|] = |G| =
sup||=1 [( Gz, 2)| supjzj=1 l9lwlz|> = |gle-  The
last property follows from {7 (f,)z,z) = SU(T) fndE* —

SG(T) fdE® = {®(f)x,x ), Lebesgue, polarisation.

(ii) Prinzip der guten Menge: g € C(o(T)), U := {f €
B(o(T)) : property holds }. U closed under pointwise lim-
its of uniformly bounded sequences. Thus U = B(o(T)).

dom(T*) == {y € H : © — {(Tx,y) ctson dom(T)}. By
RIESZ we can extend (uniquely due denseness) the above map-
ping for y € dom(T*) and can be represented as x — {x, 2 ),
T*y = 2.
We have (Tz,y) = {(x,T*y) for all x € dom(T), y €
dom(T*).

Let X be the o-Algebra of BOREL sets on R. F : ¥ — L(H),
A — E4 is called SM if E4 is a orthogonal projection for all
AeX, Eg =0, Er =id and 3o, Ea, () = Ey,_, a, () for
pw. disjoint (Ag)x < X.

E has compact support if 3K < R compact with Ex = id.

2 = 1t
B(a,y) = AEFV QU 0+ 1) Z 10w — )
Az = Z ®(z, er)er
keO

for an ONB (eg)reo of H. We have ®(z,y) = ( Az, y ) (proven
as in FA | (parallelogram identity)).

[ simple = | {fdE|| <|f|c = well-definedness.
[ — § fdE linear, continuous, | §fdE| <
§ f dE self-adjoint

[floo- f real =

Es+ Ep=FEanp+ Eap = FEanp + Eausb.

e A c B. Then Eg 4 = Ep — E4 projection. EpEs =
EsEp = E4.

AnB = . Then Ex + Eg = EauB, E124 + EarEp =
EAEAUB = EA, hence EAEB =0.

o Thus EoFg = EAFEA~B +EAEB\A = FpnB.

e AnB = . Then (Esx,Epy) =
<EBEAmay>:<an>:O'

<EEEAx7y> =

Aep(T) < A—T :dom(T) — H boundedly invertible.
Resolvent mapping: R(\) := (A—T)~1! is analytic and R()\) —
R(p) = (u — MRNR(p). o(T) == p(T)C closed. N(T*) =
R(T)* .

Let z € C\R, T dense, symmetric. T = T* <= T closed
and N (T*—2)=N(T*-2) = {0} < R(T—-z2)=R(T-2) =
H.

T =T%* dense = o(T) c R. (By HELLINGER-TOEPLITZ it

suffices to show: everywhere defined.)

T =T*%e LIH), g
(f 0 9)(S) = £(g(S)).
T € L(H) positive. IS € L(H) positive, S™ = T.

Proof. fu(t) :== tw cts. bd. non-negative on o(T) < [0, 0).
gn(t) ==1t". Then (f, 0g,)(t) =t,t€c(S) < [0,00). Unique-
ness: S = (fr 0 gn)(S) = fn(9n(5)) = fn(S™) = fu(D).

:0(T) > R, f: R - R B-meas., bd.

T e L(H), |T|:=+vT*T. 3 partial isometry U : T = U|T|.
[|T|z|?* = |Tz|* U(T|x) :== Tz : R(|T|) — R(T) isometry,

extended to R(|T|), U =0 on R(|T|)* = N(|T|) = N(T).

o F:L'(R") — L*(R") linear, bd.

o F(f(—y) = e Of(), Fe@f() = f(-—y)
o FAT) =M (V). gla) = < 0 = =1

o f.ge LNR") = fxge LNR"), f+g=(2m)%f§
o g(x) = —izpf(z), g L'(R") — (%cf:g

Let T = T*
on BOREL sets of o(T) : T
ie. (Tx,y) = SU(T)
x € dom(T), y e H.

o(T) < R might be unbounded!

dom(T) — H. 3 SM E
~ 1§, ME,
Ad{ Eyz,y ) for all




THEOREM THEOREM
RIEMANN-LEBESGUE Lemma FOURIER inversion formula
FA 11 FA 11
THEOREM THEOREM
Plancherel First Uncertainty principle
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THEOREM DEFINITION
Second Uncertainty Principle SCHWARTZ space
FA 11 FA 11
THEOREM THEOREM
Properties of SCHWARTZ convergence FOURIER transform on S(R")
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THEOREM DEFINITION & PROPERTIES
SCHWARTZ FOURIER inversion formula Tempered distributions
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ff e IMRY) = fla) = (2m)7F [ f(©e
“HF ().

FEJER-kernels Fy := ADy 1 F, where A > 0, F(x) =

L §0 (L |t])e dt satisty | f — [ Fali — 0 and f = Fy(z) =

Lfa £ [ §hL(—|o])eit ““d@] d\ — f(z) pointwise a.e.

i{z.8) ¢ =

We show f * FA( ) - 0)e? df for X — 0.

ESR

feLYR") — feCo(R™,R").

Continuity of f: LEBESGUE Let f := Iyjp_ [4,.b,]- Then
; “REE kSR | ¢

O = & | B2, . holds,

n |e
Bl [Tt 13
By denseness 3 step function A arbitrarily close to f:

If = Al
(2m)%

n

e(2m)~ 2.

| FHEON L 1FF = m©)] + | Fhi©)] < + | F(h(E)]

|§]—00
—_—

<e(2m)F + [ F(h(9)]

L), abe R gim (= 0f him (=0 ol >
ity

1. Density (S). W.lo.g [|fllz = 1, a = 0 (f =
fG+a)e ™). Pl 1= -zl |f(z)da = S]Rxf (z)f(z)+
af'(x)f(x)dz. Hence 1 < 2§ [x]f'(: )Hf( )| dz < 2| g2]f]2-

Plancherel: || f/||l2 = [ £f]..

2 (Sf)@) == of(e), | € PRY. (Tf)() == if'() for
diff’ble f € L2(R™). ([S,T]f)(z) = —if(z). By UPIL 3| f|3 <
[(S—al)f|2|(T —bI)f|2. Plancherel analogous to the above.

For f,g e L'(R") n L?(R") we have({,g} <f g).
h(x) = (f = (g — )(@). h(&) = 2m)F f()3(E). f,§e L*R™)

(dense!) — h e L'(R™). FOURIER-inversion: {f,g) =
h(0) = (2m) % S f(§)dg = (2m) 7% (. (2m) 2 £()g(€) A =
(f.9)-

Extension to L?: fi == fL_p» € L' n L% |f — fu| — 0.
PLANCHEREL: || fi, — fel2 = ||fx — fe|2. Thus CAUCHY in L2.
Completeness = fi, — g =: f.

S(R") == {f € C*(R™) : | fll(x,ey < o0 ¥k, L € No}
={f:C7R") : [flap <0 Va,B€ Nn}
1f [l k.0 sup (1+ %) Z |D* f(

|| <l
| fla,s = sup 2D f(x)],
zeR™
NHa
[fllny = max sup (1 + |z[*) =D f(z)]
la|<N zern

fi S f = |fi = flgn — 0 Yk, £ € N,

S i dom(S) > H, T : dom(T) — H self-adjoint, a,b € R.
IS = aDfII(T — bD)f| = IS, TI)IVf € dom(ST) n
dom(TS).

Easy: [S —al, T —bI] =[S, T]. S—al, T —bI self-adjoint.

S, T1f, 1) =L(S = al) (T =bI) = (T = bI)(S —al)f, f)
=T =bD)f,(S—al)f)={S—al)f,(T=bI)f)
=2i- ST =bD)f, (S —al)f))

holds. Now Cauchy-Schwarz-inequality.

Let (f;)jen © S(R™) SCHWARTZ-converge to f € S(R™).
1. Tt holds that f, f € S(R™).

2. For all o € Njj and x € R" we have
Df(€) = (=)*lze f(€) and £ (€) = (=)D F(€)

3. It holds that f; = f and f; 5 f.

Let (f;)jen < S(R™) with f; 5 f e S(R™).
1. f; — f in LP(R™) holds for all p € (0, ).
2. Dof; S5 DO f holds for all o € N7
3. (w2 fi(2)) S
4. Then T), f ﬁ» £ holds.

(x — z®f(x)) holds for all « € Nj.

4. 80/@3\1/1(5777) 5(6)d(n), o o0 = (2r) %@t and f = f 5. For g € S(R™) also fg, f * ge S(R™).
_l=?
for f(z) =e™ 2. 6. D*(fxg) = (D*f)xg = f*(D*) holds for all v € N7

S'(R™) = cts dual space of S(R™), i.e. Tfy = TfV f CNyS f: ]g =fe S( ™), F and F~! are bijective on S(R™).
T, ST — Tif —TfVfeSR. () = (2m)7 % §,, f(©ei (@O ag =% f by (L).
T:SR") — C linear. T € S'(R") < 3Jc > 0,k, L € Ny : gla) = exp( 2|L\ ) §(6) = e exp (_%) by FP, D, 1.
TSl < | fllir,ey VS € S@R™).
71. 2.7 A Ve > 0, k,0 € Ny 3fepe st 1 = _n G, n -

T Asmete = 00 RLE T See s 07 [ FOSCOneds - en 7 [ T
T ferel >l ferelre fr= ferr—0,bycts: Tfi, - 0. A Rn
&) < 10t 2
contradiction. = (27£2)"% Flz +y) exp <; g‘ > dy
Ty : S(R") - C, g = (g foda. Trgl < lglo,0)lfl. Also R N
Ty € 8'(R™). Extendable to f € LP(R"), p € [1,0]. — @)t [ fw+en)exp (ZI) dz =20 f(a).
Finite BOREL measure p via u(g) = §. f(z) du(z). R 2




DEFINITION & LEMMA

Regular distribution

CONTEXT

Convolution and FOURIER transform of

measures
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DEFINITION, COROLLARY DEFINITION
Tempered distributions and derivative / )
The spaces D(2) and D'(2)
FOURIER transforms.
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DEFINITION PROPERTIES
Decomposition of the spectrum Normal operator
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DEFINITION & MORE DEFINITION & MORE
Weighted L? space Bessel potential spaces H?
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DEFINITION DEFINITION & THEOREM
Locally compact abelian topological group HAAR measure
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Measure p on R™ with density ¢ € S(R™), A, ¢ analog. (¢ *
V)(f) = SRann f(z+y)du(z) dA\(y) (uniqueness by RIESZ),
f € Co(R™). Extendable to B-meas. functions, i.e. ,u/:k\)\(f) =
2m) 5 A(OAE) I+ Al < [l - [A] (total variation), (&) :=
§ e (T dp(w).

(L= N)(E)=(p®N{(z,y) e R" xR : z +y € E}) for all
B-meas. £ < R™.

T € §'(R") regular if 3f € L'(R") s.t. T = T}.

frge L*(R™), Ty = T,. Then f = g a.e.

Suffices: T, = 0 = h = 0 a.e. Mollifier w. (symmetric,
unit int., unit supp.) h=w. € C(R™). 0 = SR" hw, * fdx =
Spn fR¥ wede. z € Uy st (we * h)(z) > 0. ¢, € S(R™)
s.t. supp(¢.) © U,. Denseness of cts compactly supported

fct in L': h = hy + hg, hy cts. compact supp, |ha]1 < t.
A1 < 1 — we = halli + [|haf1 + [we = hall1.
[h1(-) —h1(-—y)|1 — 0 using FUBINI,

|1 —wehi|1 < supp, <.

e,t > 0 small enough.

D(Q) = CP(Q). f; 2 feDN) «— IK < Q compact,
supp(f;) € K, D*f; — D®f Yo e Njj.

Distributions D’(Q2) like S'.

T; — T in D(Q) if T;(f) — T(f) Vf € D(Q).

FOURIER transforms or convolutions do not have an easy coun-
terpart on D().

TeS'R"), f,ge S(R™), a € Njj.

o (D°T)(f) = (=1 T(D*f)

~

o T(f)=T(f), T(f) = T(f)
o (/T)(9) = T(f9).

DT, T, T, T e S'(R").
F, F! bijective, cts., DT = i‘a‘xo‘ﬁ 2T = |i\aDa1A",
DT = AT\, 7, T = e~ mT M, T = 7,7

T normal < T* normal < |Tz| = |T*z| for all x € H.

For normal T the following statements hold:
1. N(T) = N(T*), R(T) = R(T*) and H = N(T)®R(T).
2. If a # 3 are eigenvalues, N (T — a) L N(T — 3).
3.0.(T)=¢
4. r(T) = ||T||, which follows from |T*T| = ||T|* = ||T?.

5. Capp(T) = o(T)

Let R = R(Ty =T — X). o(T) is the disjoint union of the
point spectrum o, (") := {\ € o(T) : T) not injective}, con-
tinuous spectrum o.(T) = {A € o(T)\o,(T) : R C H dense},
residual spectrum o,.(T') := o(T')\(0p(t) v 0(T)) or

0.(T) ={A € o(T) : Ty injective, R < H not dense},
Furthermore the approximate point spectrum is

Oapp(T) ={ e C: Hiﬁlil [Thx| = 0} 2 o,(T).

H*R") = {f e S'(R") : w,f € L*(R")}, seR.

(f, 9>Hs(Rn) = fn ws(I)f(I)ws(I)Q(x) dz.

S(R™) & H¥(R") < S'(R).

w cts positive fet L2(R™, w) == {f € LL (R") : wf €
L*(R™)} <'7‘>L2(Rn,w) =(w,w- >L2(]R")'
L*(R™, w) — L*(R™), f+— wf unitary.

wy : R" — [0,0), 2+ (1 + |z]?)3, se R.

D(R"), S(R") & LA(R", w,) = S'(R™).
F(WFR™) = FHWFR") = L*(R", w;,) unitary.

A left (right) HAAR measure on a LCG G is a non-
zero RADON measure p satisfying pu(zF) = u(E)
(u(Ex) = p(FE)) for all BOREL sets £ — G and all
x € G. (e.g. integral on C)

(HAAR, 1933) Every locally compact group possesses
a left (right) HAAR measure uniquely determined up
to rescaling by a positive number.

A topological group is a group G equipped with a topology
such that the group operations (x,y) + xy and x — z~! are
continuous.

A topology is locally compact if every point has a compact
neighbourhood. In a HAUSDORFF space points can be sepa-
rated by open sets.

If the topology of G is locally compact and HAUSDORFF, G is
a locally compact group.

R, Z, T and Zj, are LCAGs.




DEFINITION & THEOREM

PONTRYAGIN duality

DEFINITION & PROPERTIES

FOURIER transform on L!(G)
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FOURIER transform of SCHWARTZ

functions under dilation etc.
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Least-squares and minimal norm solution
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MOORE-PENROSE inverse
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Normal equation
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Let f € L'(G) and u be the left-invariant HAAR measure on
G. For v e G the FOURIER transform of fis

FI0) = F() ff (x).

Denote by Co (é) the set of continuous and bounded functions
on G. We have F : LY(G) — Co(G).
PLANCHEREL: The FOURIER transform on L!'(G) n L?*(G)

uniquely extends to a unitary isomorphism from L?(G) to

L(G).

A continuous homomorphism v : G — T is a character of G.
The dual group of G, @, is the set of all its characters.

1Ty

R = R via  — ,, where v (y) =€
T = Z via m — 4, where Ym (0) == 0™.

Z =T via 6 — o, where yg(m) == ™.

2k ~ 7 via m — 7, where v,,(n) := exp (2m'%).

For LCAGs (Gr)ji—, m ~ ®7_, Gy, holds.

The map ® : G — G, (®(x))(y) = 7v(z) is an isomorphism of

topological groups.

For f,ge LY(G)

- JGf<y>g<y1x> du(x) ae inG.

For f,g € L}(G)) we have | f = g|
f.g€ L*(G) we have fg = f=g.

< ||flilgl:. For

~
~

Let f € LY(G) such that L'(G). Then f(z) = f(z~1)
holds for almost all x € G, i.e.

T) = L fr(v(@) dp(y) ae. in G,

where p is the appropriately normalised left-invariant
HAAR invariant HAAR measure on G.

For T'e S'(R"), f,g € S(R™) and a € Nj we define

(DT)(f) = (=1)T(D*f),

(FT)S) =T(F ")), (fT)(g) =T(f9).

(FT)(f) = T(F f),

Let K < C be compact and (B(K),| - |») the Ba-
NACH space of bounded BOREL-measurable func-
tions on K and C(K) ¢ U < B(K) a set of func-
tions with the following property: for all (f,,)nen <
with f(t) =
SUPpen || fullo < oo implies that f € U. Then U =
B(K).

lim,, . fn(t) existing everywhere and

Let y € Y and (P) be given as Tz =y. Thenz € X is a
o least-square-solution of (P) if x = argmin, |Tz — y|.

e minimal norm solution of (P) if x is a least-square solution

r = argmin,_y [2].

1. Let T € S'(R"). F'FT = FF'T = T holds. F=Y
map S’'(R™) bijectively and continuously onto itself.

2. F(D°T) = il*la® FT and F(2°T) = il*!/D* F T holds.

3. For e > 0 let T.(f) :== T(e"f(¢~ 1)) for f € S(R") be the
dilation of T. Then F T, = e~ " F(T)(¢~!-) holds.

4. For h € R™ and f € S(R™), the translation of T is
(T T)(f) = T(f(- + h)) and F(r,T) = e~*<"*> FT holds.

5. The modulation of T is (MyT)(f) = T(e’<"f) and
F(MpT) = 71,(FT) holds.

For y € D(T™), x € X is a least-square solution of
Tx = y if and only if x € X satisfies the normal
equation T*Tx = T*y.

If in addition z € N (T)*
By the proof of the previous theorem, (1) is equiva-

, we have x = 7.

lent to T'x = Pmy. By the properties of orthogo-

nal projections this is equivalent to Tz € R(T') and
R —

Tex—yeR(T) =N(T%),ie T*(Tx—y)=0.

Set T := T|n () : N(T)* — R(T). The MOORE-PENROSE
Pseudoinverse T'" is the unique linear extension of T with
D(T*) = R(T)®R(T)* and N (T*) = R(T)*.

T+ satisfies R(TT) = N(T)* and we have (these four equa-

tions characterise T uniquely.)

1. TT T =T
2. TYTT* =T7

3. TTT =id —Pnrry = Prnerys
4. TTT = (PW”D(T-%—)

hold.




THEOREM

T+ e L(D(T*), X) implies that R(T) is

closed.

THEOREM

If R(T) is closed, T* € L(D(T"), X)

FA II FA II
KOROLLAR DEFINITION
Let K € K(X,Y) with dim(R(K)) = o0,
. , SVD of a compact operator
Then K™ is not continuous.
FA II FA II
THEOREM THEOREM
For K € KC(X,Y) there exists a singular .
N PICARD condition
value decomposition.
FA II FA II
DEFINITION CONTEXT
Types of ill-conditionedness Functional calculus with SVD
FA II FA II

DEFINITION

Regularisation of 7"

FA II

THEOREM

If y e D(TY), then Tx = y has a unique

minimal norm solution ...

FA II




First we show that Tt is closed. Let (yn)neny < D(T'F) con-
verge to y € Y with T+yn — 2 € X. By the fourth MOORE-

PENROSE formula TT"y, = Pry RTYUn Pmy holds by
the continuity of orthogonal projections. Since T is contin-
uous, PR(T)y = lim, .4 PR(T
implying that x is a least-square solution to Tx = y. As
THy, e R(T*) = N(T)*, which is closed, holds for all n € N
we have that Tty,, — x e N(T)t = R(T*). thus z is a min-

imal norm solution to Tx = y, so T is closed. The closed

)yn = lim, e TT+yn = Tz,

graph theorem finishes the proof.

As D(T") < Y is dense, T can be uniquely and
continuously extended to Y by T+ e L(Y, X) defined
by Ty = lim, . Ty, for some sequence (4, )nen
D(T") converging to y € Y. Let (yn)nen < R(T) be
a sequence converging to y € R(7T). By the fourth
MOORE-PENROSE equation and the continuity of 7',
Yy = Pmy = lim,, o0 Prigy R (T) Yn = lim, o, TT"y, =
TT*y e R(T), hence R(T) = R(T).

A sequence ((0y,, Un, Vpn))nen is the singular value de-
composition of K if (0,), < R" is a decreasing se-
quence converging to 0, (u,)ney < Y an ONB of

R(K) and (v,)neny © X an ONB of R(K*) such that

1. Kv,, = opv, and K*u, = o,v, holds for all
neN
2. Ko =), non{x,v,)u, holds for all z € X.

Towards contradiction assume that KT is continu-
ous. Now R(K) is closed. Let K := K|yt
N(K)* — R(K), which is bijective. Then K~
L(R(K),N(K)*) holds by the inverse mapping the-
orem.

As K is compact, so is K o K, which is the iden-
tity on R(K). In FA | this way shown to imply
dim(R(K)) < oo, a contradiction.

Let ((0p, tn, Un))nen be a singular system for K and
y € R(K). Then y € R(K) holds if and only if the
PICARD condition

2 0 Ky un ) P <o

neN

is satisfied. In this case we have

K+y = 20;1<y,un>vn.

neN

As K*K € K(X,X) is SA, 3(A\n)nen € R\{0} — 0, decreasing in
[ -], ONS (vn)neny € X: K*Kz =3, A {&,n yvn. Thus A, =
Monl? = Ontn, v ) = (KF K, vn ) = (Ko, Kvg ) = || Kv,|?
0. Set op == VAn > 0, un = 0, Kv, € Y. Then (Un)neny € Y
ib ONS: (uj,u;y = i Kvj) = Kuv,v;) =
010 i (05,05 ) = 04,5. ThusK*un = o, lK* Kvn = (J’n "\pUn = Ontn
By spectral theorem, (vn)nen is ONB for R(K*K) = R(K) Hence
(vn)nen extendable to ONB V for X, as the rest must be in N'(K) =
WL. Thus Kz = ) (z,v)Kv = 3 _{(z,vn)Kv, =
Yonen (T Vn Y Onun = ZMvK*un>u" = Den KT, un yun
thus (un)nen is ONB for R(K).

\

SVD allows us to define functions of compact operators:
Let f : [0,00) — R be a piecewise continuous (locally
bounded?) function. For K € K(X,Y) with singular sys-
tem ((0p, Un,Un))neny and z € X define f(K*K) : X — X,
x = Yo flo2) @, v ) vy + f(0)Pyxyz This series con-
verges in X, as f is evaluated on the compact interval
[0,03] = [0, |K[2]. We have f(K*K) e L(X): |f(K*K)| =
SuDper | F(02)] < Suprcoo; [FN)] < 0. Let f = - The
absolute value of K is |K| = f(K*K) = >}, cnon s Un ) Un.

1. Tx = y is moderately ill-conditioned if the decay
of the singular values is at most polynomial, i.e
there exist ¢,r > 0 such that o, = cn™" for all
n e N.

2. If 1.
conditioned.

is not the case, Tx = vy is strongly ill-

3. Tx = y is called exponentially ill-conditioned if

there exists ¢, > 0 such that o, < ce™ Vn e N.

= T"y. The set of all least squares
solutions is given by =t + N(T).

A family (Rg)a=0 < L(Y X) is called regu-
larisation of TT if R,y KimaX Ty holds for
all y e D(T).




THEOREM

E compactly supported spectral measure,
T = {\dE) € L(H) is self-adjoint. Then
U:B(o(T)) — L(H), f— SU(T) fdE is the
BM FC, especially E, ) = id

FA II

SPECTRAL THEOREM FOR BOUNDED SA OPERATORS

T =T*e L(H). I'E compactly supported SM:
T = SU(T) ANAEL\Y : B(o(T)) — L(H),
f f(T) = 1§ f(\)dE, coincide with BM FC,
<f(T)ZL’, y> - SO’(T) f(/\) d< Eyz, y>’ where <E>\$7 y>
is the complex-valued measure A — ( Eqz,y ).

FA 11

THE DOUBLE ADJOINT

Let T dense.

T* closed. T* dense = T < T** and T = T**.

e T symmetric < T < T*., Then T < T** c T* =

T*** T** gymmetric.

T closed, symmetric <= T = T** < T*.

T self-adjoint <= T =T* = T**,

FA II







