
Lemma (Wintner)

σpT q Ă W pT q for T P LpHq

FA II

Lemma

Numerical Range of Self-adjoint / Positive

Operators

FA II

Continuous functional calculus

For every T “ T ˚ P LpHq D! cts., lin.,

multiplicative, involutive homomorphism of

algebras ΦT : CpσpT qq Ñ LpHq with

ΦT pidq “ T , ΦT p1q “ id.

FA II

Properties of the Continuous Functional Calculus

Let T “ T˚ P LpHq and f ÞÑ fpT q be the CFC for

f P CpσpT qq. 1. Then }fpT q} “ }f}8 :“ supλPσpT q |fpλq|

holds. 2. If f |σpT q ě 0, then fpT q is positive. 3. If Tx “ λ

for some x P H, then fpT qx “ fpλqx. 4. The spectral

mapping theorem holds for all f P CpσpT qq. 5.

tfpT qufPCpσpT qq is a commutative Banach operator-algebra.

6. All fpT q are normal; if f is real, then fpT q is self-adjoint.

FA II

Theorem

Riesz-Markov-Kakutani

FA II

All you need to know about. . .

Orthogonal projections

FA II

Definition

(complex) signed Radon measure

FA II

Idea of Borel measurable Calculus

Let T “ T˚ P LpHq. 1. For every x P H there exists a

non-negative Radon-measure Ex such that

x fpT qx, x y “
ş

σpT q
f dEx holds for all f P CpσpT qq.

2. For every on σpT q bounded Borel-measurable function g

there exists a unique G P LpHq such that

xGx, x y “
ş

σpT q
g dEx holds for all x P H. If g is real

(non-negative), G is self-adjoint (positive).

FA II

Definitions

Unbounded Operator

FA II

Theorem

Hellinger-Toeplitz

FA II



For T “ T˚ P LpHq we have σpT q Ă rinfpW pT qq, suppW pT qqs

“
“

minpσpT qq,maxpσpT qq
‰

and for T ě 0: σpT q Ă r0,8q.

}T } “ sup}x}“1 xTx, x y for self-adjoint operators.

Self-adjoint operators with σpT q Ă r0,8q are positive. Posi-

tive operators are self-adjoint.

T P LpHq is self-adjoint if and only if xTx, x y P R for all

x P H.

Let λ R W pT q and d :“ distpλ,W pT qq ą 0. Then d ď |λ ´ xTx, x y ď

}pλ id´T qx} ¨ }x} for }x} “ 1. Thus T injective, pλ id´T q´1 :

Rpλ id´T q Ñ H bounded below. Hence Rpλ id´T q closed. As-

sume Dx0 P Rpλ id´T qK, }x0} “ 1. Then 0 “ xpλ id´T qx0, x0 y “

λ´ xTx0, x0 y. Thus Rpλ id´T q “ H and λ P ρpT q.
Case 1: λ P σppT q. Then there exists a v P H such that Tv “ λv. Thus

x v, Tv y “ λ}v}2 holds, implying x v
}v} , T

v
}v} y “ λ, which means λ P W pT q.

Case 2: λ P σrpT q. Since the range is not dense, we have pRpT ´ λqqK ‰ t0u.
For v P pRpT ´ λqqK we have x v, pT ´ λqv y “ 0. Thus 0 “

x v,pT´λqv y

}v}2
“

x v,Tv y

}v}2
´ λ holds, implying λ P W pT q. Case 3: λ P σcpT q. There exist a

sequence of unit vectors zn with pT ´ λqzn Ñ 0, otherwise T ´ λ would

be bounded from below and would necessarily have a closed range. Thus
x zn,Tzn y

}zn}2
´ λ “

x zn,pT´λqzn y

}zn}2
Ñ 0, holds, implying λ P W pT q.

2. Let f ě 0 and g P CpσpT qq with g2 “ f and g ě 0. Then

x fpT qx, x y “ x gpT qx, gpT qx y “ x gpT qx, gpT qx y “ }gpT qx}2 ě 0.

4. ”Ă”: Let µ R fpσpT qq. Then gpxq :“ 1
fpxq´µ

P CpσpT qq and gpf´µq “
pf ´ µqg “ 1. Hence we get gpT qpfpT q ´ µ idq “ pfpT q ´ µ idqgpT q “ id,

hence µ P ρpfpT qq.

”Ą”: Let µ “ fpλq, λ P σpT q and choose polynomials fn with }fn´f}8 ď
1
n
. Then |fpλq ´ fnpλq| ď

1
n

and }fpT q ´ fnpT q} ď
1
n
. We know that

fnpλq P σpfnqT qq, i.e. Dxn P H: }xn} “ 1, }pfnpT q ´ fnpλq idqxn} ď
1
n
.

Thus, }pfpT q´µ idqxn} ď }pfpT q´fnpT qqxn}`}pfnpT q´fnpλq idqxn}`

}pfnpλq ´ µ idqxn} ď
1
n
` 1

n
` 1

n
holds, implying that pfpT q ´ µ idq is

not boundedly invertible, i.e. µ P σpfpT qq. 6.: fpT q˚ “ fpT q and

fpT q˚fpT q “ ffpT q “ ffpT q “ fpT qfpT q˚. 1 and 3: approximation.

Uniqueness: ΦT pz ÞÑ znq “ Tn, hence ΦT implies uniqueness on

polynomials. σpT q Ă
“

mpT q,MpT q
‰

is compact and the polynomi-

als dense in CpσpT qq by Stone-Weierstrass. Due to continuity,

ΦT is unique on CpσpT qq.
Existence: We set ΦT pfq “

řn
k“0 akT

k for a polynomial fpzq “
řn
k“0 akz

k. If we show continuity of ΦT on polynomials, there

would be an unique extension (cf. above) to CpσpT qq, which we

denote by ΦT again. By the SMT for polynomials f we obtain

}ΦT pfq}
2
“ }ΦT pfq

˚Φpfq} “ }ΦT pffq}

“ sup
λPσpΦT pffqq

|λ| “ sup
λPσpT q

|pffqpλq| “ sup
λPσpT q

|fpλq|2 “ }f}28.

E “ N pP q‘RpP q, RpP q and N pP q are closed and id´P is a

projection, too, with N pid´P q “ RpP q, Rpid´P q “ N pP q.
P P LpHq ‰ t0u projection is orthogonal ðñ }P } “ 1 ðñ

P self-adjoint ðñ P normal ðñ P positive.

P1, P2 orthogonal projections onto U1, U2. TFAE: U1 Ă U2,

RpP1q Ă RpP2q, N pP2q Ă N pP1q, P1P2 “ P2P1 “ P1, P2´P1

is positive.

If T “ T˚ P LpHq and σpT q “ t0, 1u, T is an ortho projection.

For every functional ϕ : CpKq Ñ C there exists a Radon

measure µ PMpKq such that

ϕpfq “

ż

K

fpxqdµpxq @f P CpKq.

The isometric isomorphism Φ : CpKq˚ Ñ MpKq maps posi-

tive functionals to non-negative measures.

1. is Riesz

For 2.: Uniqueness from Exercise as G self-adjoint.

Existence:Qpxq :“
ş

σpT q
g dEx. ShowQ fulfills lemma require-

ments. Use Riesz uniqueness for parallelogram-like equality

and Qpλxq “ |λ|2Qpxq to show Ex`y ` Ex´y “ 2Ex ` 2Ey

etc.

A finite measure µ on pK,Bq is called Radon measure if

µpBq “ inf
BĂG
G open

µpGq @B P B (outer regularity)

µpGq “ inf
TĂG

G comp.

µpT q @G open (inner regularity)

hold.

A σ-additive mapping µ “ µ` ´ µ´ on B with µ˘ Radon is

called signed Radon measure.

Let T be a symmetric operator with dompT q “ H. Then

T P LpHq.
Proof. Let xn Ñ 0 and Txn Ñ y. By the CGT it suffices to

show y “ 0.

x y, y y “ x lim
nÑ8

Txn, y y “ lim
nÑ8

xTxn, y y “ lim
nÑ8

xxn, Ty y “ 0.

A linear operator T : H Ą dompT q Ñ H, where dompT q

is a linear subspace is called densely defined if dompT q is

dense. The scalar product on its graph GpT q :“ tpTx, xq :

x P dompT qu is xpu, vq, px, yq yHˆH :“ xu, x y` x v, y y.

T is closable if GpT q is the graph of some linear operator

T0 “: T . S is an extension of T (denote T Ă S) if GpT q Ă

GpSq ðñ dompT q Ă dompSq and S ” T on dompT q.

dompS ` T q :“ dompSq X dompT q and dompST q :“ tx P

dompT q : Tx P dompSqu.

T symmetric ðñ xTx, y y “ xx, Ty y @x, y P dompT q.



Definition

Adjoint of densely defined operator

FA II

Borel-measurable Calculus

As CFC but also fn P BpσpT qq with

supnPN }fn}8 ă 8 and fnptq Ñ fptq on

σpT q implies xΦT pfnqx, y y Ñ xΦT pfqx, y y.

FA II

Lemma

Let Q : HÑ C. Then D!A P LpHq :

Qpxq “ xAx, x y iff DC ą 0 :

|Qpxq| ď C}x}, Qpx` yq `Qpx´ yq “

2pQpxq `Qpyqq and Qpλxq “ |λ|2Qpxq.

FA II

Definition

Spectral measure

FA II

Lemma

Properties of spectral measures

FA II

Lemma

Properties of spectral integrals

FA II

Applications

Spectral theorem (bounded, self-adjoint)

FA II

Theorem

Spectral theory for unbounded operators

FA II

Theorem

Spectral theorem for unbounded operators

FA II

Basic properties

Fourier transform

FA II



Uniqueness: as above + Werner lemma.

For bounded measurable g on σpT q define ΦT pgq “ G. CFC

guarantees ΦT pidq “ T , Φp1q “ id.

For real-valued g we have }ΦT pgq} “ }G} “

sup}x}“1 | xGx, x y | ď sup}x}“1 }g}8}x}
2 “ }g}8. The

last property follows from xΦT pfnqx, x y “
ş

σpT q
fn dEx Ñ

ş

σpT q
f dEx “ xΦpfqx, x y, Lebesgue, polarisation.

(ii) Prinzip der guten Menge: g P CpσpT qq, U :“ tf P

BpσpT qq : property holds u. U closed under pointwise lim-

its of uniformly bounded sequences. Thus U “ BpσpT qq.

dompT˚q :“ ty P H : x ÞÑ xTx, y y cts on dompT qu. By

Riesz we can extend (uniquely due denseness) the above map-

ping for y P dompT˚q and can be represented as x ÞÑ xx, z y,

T˚y :“ z.

We have xTx, y y “ xx, T˚y y for all x P dompT q, y P

dompT˚q.

Let Σ be the σ-Algebra of Borel sets on R. E : Σ Ñ LpHq,
A ÞÑ EA is called SM if EA is a orthogonal projection for all

A P Σ, EH “ 0, ER “ id and
ř

kě1EAkpxq “ EŤ

kě1 Ak
pxq for

pw. disjoint pAkqk Ă Σ.

E has compact support if DK Ă R compact with EK “ id.

2 ùñ 1:

Φpx, yq :“
Qpx` yq ´Qpx´ yq ` iQpx` iyq ´ iQpx´ iyq

4

Ax :“
ÿ

kPO

Φpx, ekqek

for an ONB pekqkPO of H. We have Φpx, yq “ xAx, y y (proven

as in FA I (parallelogram identity)).

f simple ùñ }
ş

f dE} ď }f}8 ùñ well-definedness.

f ÞÑ
ş

f dE linear, continuous, }
ş

f dE} ď }f}8. f real ùñ
ş

f dE self-adjoint

• EA ` EB “ EAXB ` EAzB “ EAXB ` EAYB .

• A Ă B. Then EBzA “ EB ´ EA projection. EBEA “

EAEB “ EA.

• A X B “ H. Then EA ` EB “ EAYB , E2
A ` EAEB “

EAEAYB “ EA, hence EAEB “ 0.

• Thus EAEB “ EAEAXB ` EAEBzA “ EAXB .

• A X B “ H. Then xEAx,EBy y “ xE˚BEAx, y y “

xEBEAx, y y “ x 0, y y “ 0.

λ P ρpT q ðñ λ ´ T : dompT q Ñ H boundedly invertible.

Resolvent mapping: Rpλq :“ pλ´T q´1 is analytic and Rpλq´

Rpµq “ pµ ´ λqRpλqRpµq. σpT q :“ ρpT q{ closed. N pT˚q “
RpT qK.

Let z P C zR, T dense, symmetric. T “ T˚ ðñ T closed

andN pT˚´zq=N pT˚´zq “ t0u ðñ RpT´zq “ RpT´zq “
H.

T “ T˚ dense ùñ σpT q Ă R. (By Hellinger-Toeplitz it

suffices to show: everywhere defined.)

T “ T˚ P LpHq, g : σpT q Ñ R, f : R Ñ R B-meas., bd.

pf ˝ gqpSq “ fpgpSqq.

T P LpHq positive. D!S P LpHq positive, Sn “ T .

Proof. fnptq :“ t
1
n cts. bd. non-negative on σpT q Ă r0,8q.

gnptq :“ tn. Then pfn ˝ gnqptq “ t, t P σpSq Ă r0,8q. Unique-

ness: S “ pfn ˝ gnqpSq “ fnpgnpSqq “ fnpS
nq “ fnpT q.

T P LpHq, |T | :“
?
T˚T . D partial isometry U : T “ U |T |.

}|T |x}2 “ }Tx}2. Up|T |xq :“ Tx : Rp|T |q Ñ RpT q isometry,

extended to Rp|T |q, U ” 0 on Rp|T |qK “ N p|T |q “ N pT q.

• F : L1pRnq Ñ L8pRnq linear, bd.

• Fpfp¨´yqq “ e´i x y,¨ yf̂p¨q, Fpei x y,¨ yfp¨qq “ f̂p¨´yq

• {fpλ´1¨q “ λnzfpλ¨q, gpxq “ fp´xq ùñ ĝ “ f̂

• f, g P L1pRnq ùñ f ˚g P L1pRnq, zf ˚ g “ p2πq
n
2 f̂ ĝ

• gpxq “ ´ixkfpxq, g P L1pRnq ùñ Bkf̂ “ ĝ.

Let T “ T ˚ : dompT q Ñ H. D! SM E

on Borel sets of σpT q : T “
ş

σpT q λ dEλ,

i.e. xTx, y y “
ş

σpT q λ dxEλx, y y for all

x P dompT q, y P H.

σpT q Ă R might be unbounded!



Theorem

Riemann-Lebesgue Lemma

FA II

Theorem

Fourier inversion formula

FA II

Theorem

Plancherel

FA II

Theorem

First Uncertainty principle

FA II

Theorem

Second Uncertainty Principle

FA II

Definition

Schwartz space

FA II

Theorem

Properties of Schwartz convergence

FA II

Theorem

Fourier transform on SpRnq

FA II

Theorem

Schwartz Fourier inversion formula

FA II

Definition & Properties

Tempered distributions

FA II



f, f̂ P L1pRnq ùñ fpxq “ p2πq´
n
2

ş

Rn f̂pξqe
i x x,ξ y dξ “

F´1
pF fqpxq.

Fejér-kernels Fλ :“ λDλ´1F , where λ ą 0, F pxq :“
1
2π

ş1

´1
p1´|t|qeixt dt satisfy }f ´ f ˚Fλ}1 Ñ 0 and f ˚Fλpxq “

1
2π

ş

R fptq
”

λ
ş1

´1
p1´ |θ|qeipx´tqθλ dθ

ı

dλÑ fpxq pointwise a.e.

We show f ˚ Fλpxq Ñ
1
2π

ş

R f̂pθqe
ixθ dθ for λÑ8.

f P L1pRnq ùñ f̂ P C0pRn,Rnq.
Continuity of f̂ : Lebesgue Let f :“ 1śn

k“1rak,bks
. Then

ˇ

ˇf̂pξq
ˇ

ˇ “ 1

p2πq
n
2

śn
k“1

|e´ibkξk´e´iakξk |
|ξk|

}ξ}Ñ8
ÝÝÝÝÑ 0. holds.

By denseness D step function h arbitrarily close to f :

|Fpfpξqq|
4‰
ď |Fpf ´ hqpξq| ` |Fphpξq| ď }f ´ h}1

p2πq
n
2
` |Fphpξq|

ď εp2πq´
n
2 ` |Fphpξq| |ξ|Ñ8ÝÝÝÝÑ εp2πq´

n
2 .

f P L2pRq, a, b P R. g :“ p¨ ´ aqf , h :“ p¨ ´ bqf̂ . }g}2}h}2 ě
}f}22
2 .

1. Density (S). W.l.o.g }f}2 “ 1, a “ b “ 0 (f̃ :“

fp¨`aqe´ib¨). PI: 1 “ ´
ş

R x
d
dx |fpxq|

2 dx “ ´
ş

R xf
1pxqfpxq`

xf 1pxqfpxqdx. Hence 1 ď 2
ş

R |x|f
1pxq||fpxq|dx ď 2}g}2}f

1}2.

Plancherel: }f 1}2 “ }ξf̂}2.

2. pSfqpxq :“ xfpxq, f P L2pRnq. pTfqpxq :“ if 1pxq for

diff’ble f P L2pRnq. prS, T sfqpxq “ ´ifpxq. By UP II 1
2}f}

2
2 ď

}pS´ aIqf}2}pT ´ bIqf}2. Plancherel analogous to the above.

For f, g P L1pRnq X L2pRnq we have x f, g y “ x f̂ , ĝ y.

hpxq :“ pf ˚ pg ´ ¨qqpxq. ĥpξq “ p2πq
n
2 f̂pξqĝpξq. f̂ , ĝ P L2pRnq

(dense!) ùñ ĥ P L1pRnq. Fourier-inversion: x f, g y “

hp0q “ p2πq´
n
2

ş

Rn f̂pξqdξ “ p2πq´
n
2

ş

Rnp2πq
n
2 f̂pξqĝpξqdξ “

x f̂ , ĝ y.

Extension to L2: fk :“ f 1r´k,ksn P L
1 X L2. }f ´ fk} Ñ 0.

Plancherel: }f̂k ´ f̂`}2 “ }fk ´ f`}2. Thus Cauchy in L2.

Completeness ùñ fk Ñ g “: f̂ .

SpRnq :“ tf P C8pRnq : }f}pk,`q ă 8 @k, l P N0u

“ tf : C8pRnq : }f}α,β ă 8 @α, β P Nn0 u

}f}pk,`q :“ sup
xPRn

p1` |x|2q
k
2

ÿ

|α|ď`

|Dαfpxq|,

}f}α,β :“ sup
xPRn

|xαDβfpxq|,

}f}pNq :“ max
|α|ďN

sup
xPRn

p1` |x|2q
N
2 |Dαfpxq|

fj
S
ÝÑ f ðñ }fj ´ f}pk,`q Ñ 0 @k, ` P N0.

S : dompSq Ñ H, T : dompT q Ñ H self-adjoint, a, b P R.

}pS ´ aIqf}}pT ´ bIqf} ě 1
2 | xrS, T s y |@f P dompST q X

dompTSq.

Easy: rS ´ aI, T ´ bIs “ rS, T s. S ´ aI, T ´ bI self-adjoint.

xrS, T sf, f y “ xpS ´ aIqpT ´ bIq ´ pT ´ bIqpS ´ aIqf, f y

“ xpT ´ bIqf, pS ´ aIqf y´ xpS ´ aIqf, pT ´ bIqf y

“ 2i ¨ = pxpT ´ bIqf, pS ´ aIqf yq

holds. Now Cauchy-Schwarz-inequality.

Let pfjqjPN Ă SpRnq Schwartz-converge to f P SpRnq.

1. It holds that f̂ , f̌ P SpRnq.

2. For all α P Nn0 and x P Rn we have

Dαf̂pξq “ p´iq|α|yxαfpξq and ξαf̂pξq “ p´iq|α|zDαfpξq

3. It holds that f̂j
S
ÝÑ f̂ and f̌j

S
ÝÑ f̌ .

4. {ϕb ψpξ, ηq “ ϕ̂pξqψ̂pηq, xϕψ “ p2πq´
n
2 ϕ̂ ˚ ψ̂ and f̂ “ f

for fpxq “ e´
|x|2

2 .

Let pfjqjPN Ă SpRnq with fj
S
ÝÑ f P SpRnq.

1. fj Ñ f in LppRnq holds for all p P p0,8q.

2. Dαfj
S
ÝÑ Dαf holds for all α P Nn0 .

3. px ÞÑ xαfjpxqq
S
ÝÑ px ÞÑ xαfpxqq holds for all α P Nn0 .

4. Then Thf
S

ÝÝÝÑ
hÑ0

f holds.

5. For g P SpRnq also fg, f ˚ g P SpRnq.

6. Dαpf ˚ gq “ pDαfq ˚ g “ f ˚ pDαgq holds for all α P Nn0 .

S 1pRnq “ cts dual space of SpRnq, i.e. Tfk Ñ Tf @ fk
S
ÝÑ f .

Tk
S
ÝÑ T ðñ Tkf Ñ Tf @f P SpRnq.

T : SpRnq Ñ C linear. T P S 1pRnq ðñ Dc ą 0, k, ` P N0 :

|Tf | ď c}f}pk,`q @f P SpRnq.
”1. ùñ 2.”: Assume @c ą 0, k, ` P N0 Dfc,k,` s.t. 1 “

|Tfc,k,`| ą c}fc,k,`}pk,`q. fk :“ fk,k,k
S
ÝÑ 0, by cts: Tfk Ñ 0. A

contradiction.

Tf : SpRnq Ñ C, g ÞÑ
ş

Rn fg dx. |Tfg| ď }g}p0,0q}f}1. Also

Tf P S 1pRnq. Extendable to f P LppRnq, p P r1,8s.
Finite Borel measure µ via µpgq “

ş

Rn fpxqdµpxq.

ˇ̂
f “ ˆ̌f “ f P SpRnq, F and F´1 are bijective on SpRnq.
Ipεq :“ p2πq´

n
2

ş

Rn f̂pξqe
i x x,ξ ye´ε

2 |ξ|
2

2 dξ
εÑ0
ÝÝÝÑ

ˇ̂
f by (L).

gpxq :“ exp
´

´ε2 |x|
2

2

¯

. ĝpξq “ ε´n exp
´

´
|ξ|2

2ε2

¯

by FP, Dε´1 .

p2πq´
n
2

ż

Rn
f̂pξqei x x,ξ yhpξqdξ “ p2πq´

n
2

ż

Rn
T´xfpξqĥpξqdξ

“ p2πε2q´
n
2

ż

Rn
fpx` yq exp

ˆ

´
1

2

ˇ

ˇ

ˇ

y

ε

ˇ

ˇ

ˇ

2
˙

dy

“ p2πq´
n
2

ż

Rn
fpx` εzq exp

ˆ

´
|z|2

2

˙

dz
εÑ0
ÝÝÝÑ fpxq.



Definition & Lemma

Regular distribution
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Context

Convolution and Fourier transform of

measures
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Definition, Corollary

Tempered distributions and derivative /

Fourier transforms.
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Definition

The spaces DpΩq and D1pΩq
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Definition

Decomposition of the spectrum
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Properties

Normal operator
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Definition & more

Weighted L2 space
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Definition & more

Bessel potential spaces Hs
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Definition

Locally compact abelian topological group

FA II

Definition & theorem

Haar measure
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Measure µ on Rn with density ϕ P SpRnq, λ, ψ analog. pϕ ˚

ψqpfq “
ş

RnˆRn fpz ` yqdµpzqdλpyq (uniqueness by Riesz),

f P C0pRnq. Extendable to B-meas. functions, i.e. zµ ˚ λpξq “

p2πq
n
2 µ̂pξqλ̂pξq }µ ˚ λ} ď }µ} ¨ }λ} (total variation), µ̂pξq :“

ş

e´i x x,ξ y dµpxq.

pµ ˚ λqpEq “ pµ b λqptpx, yq P Rn ˆ Rn : x ` y P Euq for all

B-meas. E Ă Rn.

T P S 1pRnq regular if Df P L1pRnq s.t. T “ Tf .

f, g P L1pRnq, Tf ” Tg. Then f “ g a.e.

Suffices: Th ” 0 ùñ h “ 0 a.e. Mollifier ωε (symmetric,

unit int., unit supp.) h ˚ ωε P CpRnq. 0 “
ş

Rn hωε ˚ f dx “
ş

Rn fh ˚ ωε dx. x P Ux s.t. pωε ˚ hqpxq ą 0. ϕx P SpRnq
s.t. supppϕxq Ă Ux. Denseness of cts compactly supported

fct in L1: h “ h1 ` h2, h1 cts. compact supp, }h2}1 ď t.

}h}1 ď }h1 ´ ωε ˚ h1}1 ` }h2}1 ` }ωε ˚ h2}1.

}h1´ωεh1}1 ď sup|y|ďε }h1p¨q´h1p¨´yq}1 Ñ 0 using Fubini,

ε, t ą 0 small enough.

DpΩq – C8c pΩq. fj
D
ÝÑ f P DpΩq ðñ DK Ă Ω compact,

supppfjq Ă K, Dαfj Ñ Dαf @α P Nn0 .

Distributions D1pΩq like S 1.
Tj Ñ T in DpΩq if Tjpfq Ñ T pfq @f P DpΩq.
Fourier transforms or convolutions do not have an easy coun-

terpart on DpΩq.

T P S 1pRnq, f, g P SpRnq, α P Nn0 .

• pDαT qpfq “ p´1q|α|T pDαfq

• pT pfq “ T pf̂q, qT pfq “ T pf̌q

• pfT qpgq “ T pfgq.

DαT , fT , pT , qT P S 1pRnq.
F , F´1 bijective, cts., ˆDαT “ i|α|xα pT , yxαT “ |i|αDα

pT ,
zDλT “ λ´n {T pλ´1¨q, yτhT “ e´i xh,ξ y pT , zMhT “ τh pT .

T normal ðñ T˚ normal ðñ }Tx} “ }T˚x} for all x P H.

For normal T the following statements hold:

1. N pT q “ N pT˚q, RpT q “ RpT˚q and H “ N pT q‘RpT q.

2. If α ‰ β are eigenvalues, N pT ´ αq K N pT ´ βq.

3. σrpT q “ H

4. rpT q “ }T }, which follows from }T˚T } “ }T }2 “ }T 2}.

5. σapppT q “ σpT q

Let R :“ RpTλ :“ T ´ λq. σpT q is the disjoint union of the

point spectrum σppT q :“ tλ P σpT q : Tλ not injectiveu, con-

tinuous spectrum σcpT q :“ tλ P σpT qzσppT q : R ( H denseu,

residual spectrum σrpT q :“ σpT qzpσpptq Y σcpT qq or

σrpT q “ tλ P σpT q : Tλ injective, R Ă H not denseu,

Furthermore the approximate point spectrum is

σapppT q :“ tλ P C : inf
}x}“1

}Tλx} “ 0u Ą σppT q.

Hs
pRn

q :“ tf P S 1pRn
q : wsf̂ P L

2
pRn

qu, s P R.

x f, g yHspRnq :“

ż

Rn
wspxqf̂pxqwspxqĝpxq dx.

SpRn
q

d
ĂHs

pRn
q Ă S 1pRn

q.

w cts positive fct L2pRn, wq :“ tf P L1
locpRnq : wf P

L2pRnqu x ¨, ¨ yL2pRn,wq :“ xw¨, w ¨ yL2pRnq.

L2pRn, wq Ñ L2pRnq, f ÞÑ wf unitary.

ws : Rn Ñ r0,8q, x ÞÑ p1` |x|2q
s
2 , s P R.

DpRn
q,SpRn

q
d
ĂL2

pRn, wsq Ă S 1pRn
q.

FpW k
2 pRnqq “ F´1pW k

2 pRnqq “ L2pRn, wkq unitary.

A left (right) Haar measure on a LCG G is a non-

zero Radon measure µ satisfying µpxEq “ µpEq

(µpExq “ µpEq) for all Borel sets E Ă G and all

x P G. (e.g. integral on C8c )

(Haar, 1933) Every locally compact group possesses

a left (right) Haar measure uniquely determined up

to rescaling by a positive number.

A topological group is a group G equipped with a topology

such that the group operations px, yq ÞÑ xy and x ÞÑ x´1 are

continuous.

A topology is locally compact if every point has a compact

neighbourhood. In a Hausdorff space points can be sepa-

rated by open sets.

If the topology of G is locally compact and Hausdorff, G is

a locally compact group.

R, Z, T and Zk are LCAGs.



Definition & theorem

Pontryagin duality
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Definition & Properties

Fourier transform on L1pGq
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Theorem

Fourier inversion formula on L1pGq
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Definition & properties

Convolution on L1pGq
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Lemma

Werner
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Definition

Derivative, Fourier-transform in S 1pRnq
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Theorem

Fourier transform of Schwartz

functions under dilation etc.
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Definition

Least-squares and minimal norm solution
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Moore-Penrose inverse
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Normal equation
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Let f P L1pGq and µ be the left-invariant Haar measure on

G. For γ P pG the Fourier transform of f is

F fpγq :“ f̂pγq :“

ż

G

fpxqγpxqdµpxq.

Denote by C0p pGq the set of continuous and bounded functions

on pG. We have F : L1pGq Ñ C0p pGq.
Plancherel: The Fourier transform on L1pGq X L2pGq

uniquely extends to a unitary isomorphism from L2pGq to

L2p pGq.

A continuous homomorphism γ : G Ñ T is a character of G.

The dual group of G, pG, is the set of all its characters.
pR – R via x ÞÑ γx, where γxpyq :“ eixy.
pT – Z via m ÞÑ γm, where γmpθq :“ θm.
pZ – T via θ ÞÑ γθ, where γθpmq :“ θm.
pZk – Zk via m ÞÑ γm, where γmpnq :“ exp

`

2πimnk
˘

.

For LCAGs pGkq
n
k“1,

Ân
k“1Gk

Ź

–
Ân

k“1
pGk holds.

The map Φ : GÑ
p

pG, pΦpxqqpγq :“ γpxq is an isomorphism of

topological groups.

For f, g P L1pGq

pf ˚ gqpxq :“

ż

G

fpyqgpy´1xq dµpxq a.e. in G.

For f, g P L1pGqq we have }f ˚ g}1 ď }f}1}g}1. For

f, g P L2pGq we have xfg “ f̂ ˚ ĝ.

Let f P L1pGq such that L1p pGq. Then fpxq “
p

pfpx´1q

holds for almost all x P G, i.e.

fpxq “

ż

pG

f̂pγpγpxq dµpγq a.e. in G,

where µ is the appropriately normalised left-invariant

Haar invariant Haar measure on pG.

For T P S 1pRnq, f, g P SpRnq and α P Nn
0 we define

pDαT qpfq :“ p´1q|α|T pDαfq, pF T qpfq :“ T pF fq,
pF´1 T qpfq :“ T pF´1 fq, pfT qpgq :“ T pfgq.

Let K Ă C be compact and pBpKq, } ¨ }8q the Ba-

nach space of bounded Borel-measurable func-

tions on K and CpKq Ă U Ă BpKq a set of func-

tions with the following property: for all pfnqnPN Ă

with fptq :“ limnÑ8 fnptq existing everywhere and

supnPN }fn}8 ă 8 implies that f P U . Then U “

BpKq.

Let y P Y and (P) be given as Tx “ y. Then x P X is a

• least-square-solution of (P) if x “ arg minzPX }Tz ´ y}.

• minimal norm solution of (P) if x is a least-square solution

x “ arg minzPX }z}.

1. Let T P S 1pRnq. F´1 F T “ F F´1 T “ T holds. F p´1q

map S 1pRnq bijectively and continuously onto itself.

2. FpDαT q “ i|α|xα F T and FpxαT q “ i|α|Dα F T holds.

3. For ε ą 0 let Tεpfq :“ T pε´nfpε´1¨qq for f P SpRnq be the

dilation of T . Then F Tε “ ε´n FpT qpε´1¨q holds.

4. For h P Rn and f P SpRnq, the translation of T is

pτhT qpfq :“ T pfp¨ ` hqq and FpτhT q “ e´i xh,¨ y F T holds.

5. The modulation of T is pMhT qpfq :“ T pei xh,¨ yfq and

FpMhT q “ τhpF T q holds.

For y P DpT`q, x P X is a least-square solution of

Tx “ y if and only if x P X satisfies the normal

equation T ˚Tx “ T ˚y.

If in addition x P N pT qK, we have x “ x`.

By the proof of the previous theorem, (1) is equiva-

lent to Tx “ PRpT qy. By the properties of orthogo-

nal projections this is equivalent to Tx P RpT q and

Tx´ y P RpT q
K
“ N pT ˚q, i.e. T ˚pTx´ yq “ 0.

Set T̃ :“ T |N pT qK : N pT qK Ñ RpT q. The Moore-Penrose

Pseudoinverse T` is the unique linear extension of T̃´1 with

DpT`q “ RpT q ‘RpT qK and N pT`q “ RpT qK.

T` satisfies RpT`q “ N pT qK and we have (these four equa-

tions characterise T` uniquely.)

1. TT`T “ T 3. T`T “ id´PN pT q “ PN pT qK

2. T`TT` “ T` 4. TT` “ pPRpT qq|DpT`q

hold.



Theorem

T` P LpDpT`q, Xq implies that RpT q is

closed.
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Theorem

If RpT q is closed, T` P LpDpT`q, Xq
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Korollar

Let K P KpX, Y q with dimpRpKqq “ 8.

Then K` is not continuous.

FA II

Definition

SVD of a compact operator
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Theorem

For K P KpX, Y q there exists a singular

value decomposition.
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Theorem

Picard condition
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Definition

Types of ill-conditionedness
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Context

Functional calculus with SVD
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Definition

Regularisation of T`
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Theorem

If y P DpT`q, then Tx “ y has a unique

minimal norm solution . . .

FA II



First we show that T` is closed. Let pynqnPN Ă DpT`q con-

verge to y P Y with T`yn Ñ x P X. By the fourth Moore-

Penrose formula TT`yn “ PRpT qyn Ñ PRpT qy holds by

the continuity of orthogonal projections. Since T is contin-

uous, PRpT qy “ limnÑ8 PRpT qyn “ limnÑ8 TT
`yn “ Tx,

implying that x is a least-square solution to Tx “ y. As

T`yn P RpT`q “ N pT qK, which is closed, holds for all n P N
we have that T`yn Ñ x P N pT qK “ RpT˚q. thus x is a min-

imal norm solution to Tx “ y, so T` is closed. The closed

graph theorem finishes the proof.

As DpT`q Ă Y is dense, T` can be uniquely and

continuously extended to Y by T` P LpY,Xq defined

by T`y :“ limnÑ8 T
`yn for some sequence pynqnPN Ă

DpT`q converging to y P Y . Let pynqnPN Ă RpT q be

a sequence converging to y P RpT q. By the fourth

Moore-Penrose equation and the continuity of T ,

y “ PRpT qy “ limnÑ8 PRpT qyn “ limnÑ8 TT
`yn “

TT`y P RpT q, hence RpT q “ RpT q.

A sequence ppσn, un, vnqqnPN is the singular value de-

composition of K if pσnqn Ă R` is a decreasing se-

quence converging to 0, punqnPN Ă Y an ONB of

RpKq and pvnqnPN Ă X an ONB of RpK˚q such that

1. Kvn “ σnvn and K˚un “ σnvn holds for all

n P N

2. Kx “
ř

nPN σn xx, vn yun holds for all x P X.

Towards contradiction assume that K` is continu-

ous. Now RpKq is closed. Let K̃ :“ K|N pKqK :

N pKqK Ñ RpKq, which is bijective. Then K̃´1 P

LpRpKq,N pKqKq holds by the inverse mapping the-

orem.

As K is compact, so is K ˝ K̃´1, which is the iden-

tity on RpKq. In FA I this way shown to imply

dimpRpKqq ă 8, a contradiction.

Let ppσn, un, vnqqnPN be a singular system for K and

y P RpKq. Then y P RpKq holds if and only if the

Picard condition

ÿ

nPN

σ´2n | x y, un y |
2
ă 8

is satisfied. In this case we have

K`y “
ÿ

nPN

σ´1n x y, un y vn.

As K˚K P KpX,Xq is SA, DpλnqnPN P Rzt0u Ñ 0, decreasing in

| ¨ |, ONS pvnqnPN Ă X: K˚Kx “
ř

nPN λn xx, vn y vn. Thus λn “

λ}vn}
2
“ xλnvn, vn y “ xK

˚Kvn, vn y “ xKvn,Kvn y “ }Kvn}
2
ą

0. Set σn :“
?
λn ą 0, un :“ σ´1

n Kvn P Y . Then punqnPN Ă Y

is ONS: xui, uj y “
1

σiσj
xKvi,Kvj y “

1
σiσj

xK˚Kvi, vj y “
λi
σiσj

x vi, vj y “ δi,j . ThusK˚un “ σ´1
n K˚Kvn “ σ´1

n λnvn “ σnvn

By spectral theorem, pvnqnPN is ONB for RpK˚Kq “ RpKq Hence

pvnqnPN extendable to ONB V for X, as the rest must be in N pKq “
RpK˚qK. Thus Kx “

ř

vPV xx, v yKv “
ř

nPN xx, vn yKvn “
ř

nPN xx, vn yσnun “
ř

nPN xx,K
˚un yun “

ř

nPN xKx, un yun

thus punqnPN is ONB for RpKq.

SVD allows us to define functions of compact operators:

Let f : r0,8q Ñ R be a piecewise continuous (locally

bounded?) function. For K P KpX,Y q with singular sys-

tem ppσn, un, vnqqnPN and x P X define fpK˚Kq : X Ñ X,

x ÞÑ
ř

nPN fpσ
2
nq xx, vn y vn ` fp0qPN pKqx This series con-

verges in X, as f is evaluated on the compact interval

r0, σ2
1s “ r0, }K}

2s. We have fpK˚Kq P LpXq: }fpK˚Kq} “

supnPN |fpσ
2
nq| ď supλPr0,σ2

1s
|fpλq| ă 8. Let f “

?
¨. The

absolute value of K is |K| :“ fpK˚Kq “
ř

nPN σn x ¨, vn y vn.

1. Tx “ y is moderately ill-conditioned if the decay

of the singular values is at most polynomial, i.e

there exist c, r ą 0 such that σn ě cn´r for all

n P N.

2. If 1. is not the case, Tx “ y is strongly ill-

conditioned.

3. Tx “ y is called exponentially ill-conditioned if

there exists c, r ą 0 such that σn ď ce´nr @n P N.

. . . x` “ T`y. The set of all least squares

solutions is given by x` `N pT q.
A family pRaqaą0 Ă LpY,Xq is called regu-

larisation of T` if Ray
aÑ0
ÝÝÑ T`y holds for

all y P DpT`q.



Theorem

E compactly supported spectral measure,

T “
ş

λ dEλ P LpHq is self-adjoint. Then

Ψ : BpσpT qq Ñ LpHq, f ÞÑ
ş

σpT q f dE is the

BM FC, especially EσpT q “ id

FA II

spectral Theorem for bounded SA operators

T “ T ˚ P LpHq. D!E compactly supported SM:

T “
ş

σpT q
λ dEλ.Ψ : BpσpT qq Ñ LpHq,

f ÞÑ fpT q “
ş

fpλq dEλ coincide with BM FC,

x fpT qx, y y “
ş

σpT q
fpλq dxEλx, y y, where xEλx, y y

is the complex-valued measure A ÞÑ xEAx, y y.
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The double adjoint

Let T dense.

• T˚ closed. T˚ dense ùñ T Ă T˚˚ and T “ T˚˚.

• T symmetric ðñ T Ă T˚. Then T Ă T˚˚ Ă T˚ “

T˚˚˚, T˚˚ symmetric.

• T closed, symmetric ðñ T “ T˚˚ Ă T˚.

• T self-adjoint ðñ T “ T˚ “ T˚˚.
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