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Primer in functional analysis

definition 0.0.1 (Duality and separability)
Let pX, } ¨ }q be a normed space. We call

X˚ :“
␣

f : X Ñ R : f linear and bounded
(

the dual space dual spaceof X and equip it with the dual norm

} ¨ }˚ : X˚ Ñ R, f ÞÑ sup
xPX
x‰0

|xf, xyX˚ˆX |

}x}
.

Then pX˚, } ¨ }˚q is a Banach-Space, where fpxq :“ xf, xyX˚ˆX denotes the dual
pairing dual pairing.

X is separable separableif it contains a dense at most countable subset.

Example 0.0.2 The space LppIq is separable only for p P r1,8q.

Proof. In the appendix. l

definition 0.0.3 (Bidual space, canonical embedding)
We call X˚˚ :“ pX˚q˚ the bidual space bidual spaceof X and ι̂ : X Ñ X˚˚ defined by
xι̂pxq, fyX˚˚ˆX :“ xf, xyX˚ˆX . the canonical embedding canonical

embedding
, where x P X and f P X˚˚.

Corollary 0.0.4 (of the Hahn-Banach theorem)
The canonical embedding is linear, isometric and injective.

definition 0.0.5 (reflexive space)
pX, } ¨ }q is called reflexive reflexiveif the canonical embedding is surjective.

Example 0.0.6 Every finite dimensional Banach space is reflexive, and by the Fréchet–Riesz
representation theorem so is every Hilbert space. A space which is not separable is ℓ8,
which contains the uncountable subset t0, 1uN.

In the following, let I Ă R be an open interval.

Lemma 0.0.7 (Dual space of Lp)
We have pLppIqq

˚
– LqpIq, where q is the Hölder-conjugate to p P r1,8q, but

pL8pIqq
˚

Ą L1pIq.

Corollary 0.0.8
For p P p1,8q the space LppIq is reflexive.

Lemma 0.0.9 (Continuity in the p-mean)
Let p P r1,8q and u P LppIq be a function. Then we have

@ε ą 0 Dδ ą 0 : |h| ă δ ùñ

˜

ż b

a

|upx` hq ´ upxq|p

¸
1
p

ă ε

1
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where, outside of I, u is continued with 0.

Proof. In the appendix. l

We will now introduce two function spaces which, to some extent, lie on opposite sides of the
regularity spectrum.

definition 0.0.10 (locally integrable functions)
The space LplocpIq defined by

␣

u : I Ñ R measurable : u|K P LppKq @K Ă I compact
(

is not a normed space.

Example 0.0.11 (locally but not globally integrable function)
Consider I :“ p0, 1q and upxq :“ 1

x or alternatively I :“ p0, π{2q and upxq :“ tanpxq. Since
the compact domain is bounded away from the critically point, we have u P L8

locpIqzL1pIq.

definition 0.0.12 (compactly supported functions)
We define C8

0 pIq :“
␣

u P C8
pIq : supppuq Ă I compact

(

.

Example 0.0.13 (C Ć C8
0 )

The function φ : p0, πq, x ÞÑ sinpxq is in C8
pp0, πq;Rq but not even in C0pp0, πq;Rq and thus

not in C8
0 pp0, πq;Rq, either .

Example 0.0.14 Consider the function
x

1

1
e

Figure 1: The test func-
tion J P C8

0 .

J : R Ñ R, x ÞÑ

$

&

%

exp
´

1
x2´1

¯

, for |x| ă 1,

0, otherwise

Then, supppJq “ r´1, 1s. For ε ą 0 define Jεpxq :“ Jpxε q for x P R.

2



1 Generalised Derivatives and Regularisation in
One Dimension

1.1 The weak derivative
09.04.2019

Example 1.1.1 (Why do we need weak solutions in real life?)

Figure 2: The bending
of a beam.

To understand why we would want to allow non-continuous coefficient functions cpxq and
dpxq, we revisit the first example of a stationary partial differential equation from the very
first chapter in DGL I and allow the bean to consist of different material.

Alternatively, consider the elliptical Poisson’s equation
$

&

%

´∆u “ f on Ω,

u “ 0 on BΩ.

Its solutions are hard to find, therefore we want to find a generalised definition of solutions.
If we want to u P C2

pΩq, we have to require f P CpΩq, which might be unrealistic.

Example 1.1.2 (V, Not at all classically differentiable function)
Consider

upxq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

x` 1, if x P p´1, 0q,

6
5 , if x “ 0,

1 ´ x if x P p0, 1q,

0, else.

Then, f is neither continuous in zero nor differentiable in ´1, 0 or 1 but still has a weak

Figure 3: The men-
tioned functions u and ν.

derivative

vpxq :“

$

’

’

&

’

’

%

´1, if x P p´1, 0q,

1 if x P p0, 1q,

0, else.

which is in W 1,pp´1, 1q (see section 2).

From now on, let I :“ pa, bq be an open real interval with a ă b, but we will later see that
most of the following theory holds true for any open subset of Rd.

Figure 4: A test func-
tion v P C0

8pIq.
Example 1.1.3 (Weak formulation for a BVP)
Consider the following boundary value problem with homogeneous Neumann boundary
conditions

#

´u2pxq “ fpxq, x P I, (1)

upaq “ upbq “ 0. (2)

1 Multiply (1) with a suitable test function test functionv satisfying (2).

2 Integrating over the domain yields

´

ż b

a

u2pxqvpxqdx “

ż b

a

fpxqvpxqdx.

3



1.1 The weak derivative

3 Integration by parts yields

ż b

a

u1pxqv1pxqdx`
“

u1pxqvpxq
‰b

x“a
loooooooomoooooooon

“0

“

ż b

a

fpxqvpxqdx.

Instead of (1) we can consider it’s variational formulation variational
formulation

ż b

a

u1pxqv1pxqdx “

ż b

a

fpxqvpxqdx. (3)

for suitable v with vpaq “ vpbq “ 0, where fv, u1v1 P L1pIq (alternative: u, u1, v P L2pI;Rq)
and u1 and v1 are weak derivative weak derivatives.

definition 1.1.4 (weak derivative (Sobolev, Schwartz))
Let u, v P L1

locpIq. If the equation

ż b

a

upxqφ1pxqdx “ ´

ż b

a

vpxqφpxqdx, (4)

holds for all φ P C8
0 pI;Rq, we call u weakly differentiable with the weak derivative v.

The above integrals are well defined as for φ P C8
0 pI;Rq we have

ż b

a

vpxqφpxqdx “

ż

supppφq

vpxqφpxqdx ď max
xPsupppφq

|φpxq| ¨ }v}L1psupppφqq ă 8.

Remark 1.1.5 Notice that this is not a pointwise definition. The weak derivative is unique
(up to null sets), which will be proven later. The weak derivative is linear, that is, the
weak derivative of a linear combination of functions is the linear combinations of its weak
derivatives.

Lemma 1.1.6 (Fundamental Lemma for continuous functions)
Let u P Cpra, bs;Rq be chosen such that

şb

a
upxqφpxq dx “ 0 for all φ P C8

0 ppa, bq;Rq. Then
u|ra,bs ” 0.

Proof. Assume that there exists a x0 P pa, bq so that upx0q ‰ 0, without loss of generality
upx0q ą 0. Because u is continuous there exists an interval pα, βq Ă pa, bq containing x0 so
that u|pα,βq ą 0. Now, define

φ : R Ñ R, x ÞÑ

$

&

%

exp
´

1
px´αqpx´βq

¯

, x P pα, βq,

0, elsewhere.

Then, we have φ P C8
0 ppa, bq;Rq, supppφq “ rα, βs and

0 “

ż b

a

upxqφpxqdx “

ż β

α

upxqφpxq
loooomoooon

ą0

dx ą 0,

which is a contradiction. l
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1.1 The weak derivative

Lemma 1.1.7 (Classical and weak derivatives)
1 Let u P C1

pra, bs;Rq. Then the weak derivative of u coincides with its classic
derivative.

2 Let u1 be the weak derivative of u on pa, bq. Then for all intervals pα, βq Ă pa, bq it
holds that u1|pα,βq is also the weak derivative of u|pα,βq on pα, βq.

Proof. 1 Follows directly from the formula for integration and supppφq Ă pa, bq. The
uniqueness of the weak derivative will be proven later.

2 Let pα, βq Ă pa, bq and φ P C8
0 pα, βq and define the trivial extension of φ by φ̃ P C8

0 pa, bq.
Then, we conclude

ż β

α

uφ1 dx “

ż b

a

uφ̃1 dx “ ´

ż b

a

u1φ̃dx “ ´

ż β

α

u1φdx,

which implies the proposition. l

Example 1.1.8 For i P t1, 2u define the two functions

uipxq :“

$

&

%

x, if x P p0, 1s,

i, if x P p1, 2q

From Lemma 1.1.7 we know that their weak derivative coincide almost everywhere with the
function

u1pxq :“

$

&

%

1, if x P p0, 1s,

0, if x P p1, 2q

Using the Definition of weak differentiability, for all φ P C8
0 p0, 2q we obtain

ż 2

0

u1pxqφ1pxqdx “

ż 1

0

xφ1pxqdx`

ż 2

1

φ1pxqdx

“���φp1q ´

ż 1

0

φpxqdx���´φp1q “ ´

ż 2

0

u1pxqφpxqdx.

Now we choose an φ P C8
0 p0, 2q so that φp1q ‰ 0, then we obtain

ż 2

0

u2pxqφ1pxqdx “ φp1q ´

ż 1

0

φpxqdx´ 2φp1q

“ ´

ż 1

0

φpxqdx´ φp1q ‰ ´

ż 2

0

u1pxqφpxqdx.

Therefore, u1 is weakly differentiable with weak derivative u1 but u2 is not.

Counterexample 1.1.9
The function

f : p´1, 1q Ñ R, x ÞÑ

$

&

%

x2 sin
`

1
x

˘

, x ‰ 0,

0, x “ 0,

is continuous as
0 “ lim

xÑ0
´x2 ď lim

xÑ0
fpxq ď lim

xÑ0
x2 “ 0

and differentiable everywhere except in the origin: for x ‰ 0 we have

d

dx
x2 sin

ˆ

1

x

˙

“ 2x sin

ˆ

1

x

˙

´ cos

ˆ

1

x

˙

.

5



1.1 The weak derivative

The function

v : p´1, 1q Ñ R, x ÞÑ

$

&

%

2x sin
`

1
x

˘

´ cos
`

1
x

˘

, x ‰ 0,

0, x “ 0,

is not continuous in zero, but integrable over p´1, 1q.

Thus the weak derivative of f TODO
Figure 5: The function
x ÞÑ x2 sin

`

1
x

˘

.The following corollary shows that weak derivatives generalise classical derivatives.
Corollary 1.1.10 (Link to classical derivatives)

Let u : I Ñ R be absolutely continuous. Then (shown in DGL I) u is classically differentiable
almost everywhere and u1 P L1pIq. Therefore, u is also weakly differentiable with weak
derivative u1, which exists almost everywhere.

Corollary 1.1.11 (V)
f continuous and weakly differentiable ðñ f absolutely continuous.

Corollary 1.1.12 (V)
If g is the weak derivative of f , then the Fundamental Theorem of Calculus holds:

fpbq ´ fpaq “

ż b

a

gpxqdx

TODOund die Produktregel gilt auch!

Example 1.1.13 (Weak derivative of the absolute value)
Consider some open interval p´a, aq for a P p0,8s and the functions upxq :“ |x| and
vpxq :“ sgnpxq. Then v is the weak derivative of u: For all test functions φ P C8

0 pp´a, aqq we
have

ż a

´a

upxqφ1ptq dx “

ż a

0

xφ1pxq dx´

ż 0

´a

xφ1pxq dx

“
“

´ xφpxq
‰0

x“´a
loooooooomoooooooon

“0

`

ż 0

´a

φpxq dx

`
“

xφpxq
‰a

x“0
looooomooooon

“0

´

ż a

0

φpxq dx

“ ´

ż a

´a

vpxqφpxq dx.

Example 1.1.14 (Heaviside function has no weak derivative)
Consider the Heaviside function

H : p´1, 1q Ñ R, x ÞÑ

$

&

%

1 if x ą 0

0 if x ď 0

Assume it had a weak derivative v P L1pp´1, 1q;Rq, then this implies x
1

1
e

Figure 6: The test
function Jε for ε P
␣

1
2
, 1
4
, 1
(

.

φp0q “ ´

ż 1

0

φ1pxqdx “ ´

ż 1

´1

Hpxqφ1pxqdx “

ż 1

´1

vpxqφpxqdx

for all φ P C8
0 pp´1, 1q;Rq. Now, choose Φpxq :“ Jεpxq :“ J

`

x
ε

˘

for ε P p0, 1q. Then we have
Φ P C8

0 p´1, 1q for all ε P p0, 1q and thus

1

e
“ Jεp0q “

ż 1

´1

vpxqJεpxqdx “

ż ε

´ε

vpxq Jεpxq
loomoon

ď 1
e

dx

6



1.1 The weak derivative

ď
1

e

ż ε

´ε

|vpxq|dx
εŒ0

ÝÝÝÝÝÝÝÝÝÝÑ
vPL1pp´1,1q;Rq

0

holds by the Dominated Convergence Theorem, which is a contradiction.

Lemma 1.1.15 (Completeness of W 1,p (HW 1.3))
Let punqnPN Ă L1ppa, bq;Rq be a sequence of functions that converges to some u P

L1ppa, bq;Rq with regard to the L1ppa, bq;Rq-norm. Furthermore the weak derivative
u1
n of un exists for each n P N as a function in L1ppa, bq;Rq and the sequence pu1

nqnPN

also converges to some v P L1ppa, bq;Rq with regard to the L1ppa, bq;Rq-norm. Then the
weak derivative of u exists and coincides with v.

Proof. As un
nÑ8

ÝÝÝÑ u, there exists a subsequence punk
qkPN Ă punqnPN such that unk

pxq
kÑ8

ÝÝÝÑ

upxq for almost all x P pa, bq. As u1
nk

kÑ8
ÝÝÝÑ v, there exists a subsequence pu1

nkj
qjPN Ă pu1

nk
qkPN

such that unkj
pxq

jÑ8
ÝÝÝÑ vpxq for almost all x P pa, bq.

For φ P C8
0 ppa, bq;Rq we have by the weak differentiability of the unk

and Dominated
Convergence Theorem (the functions unk

and u8nkj
1 are in L1 and both φ and φ1 are

bounded functions)

ż b

a

upxqφ1pxqdx “

ż b

a

lim
kÑ8

unk
pxqφ1pxqdx “ lim

kÑ8

ż b

a

unk
pxqφ1pxqdx

“ lim
kÑ8

´

ż b

a

u1
nk

pxqφpxqdx “ ´

ż b

a

lim
kÑ8

u1
nk

pxqφpxqdx

“ ´

ż b

a

lim
jÑ8

u1
nkj

pxqφpxqdx “ ´

ż b

a

vpxqφpxqdx,

so v is the weak derivative of u. l

7



1.2 The Fundamental Theorem & mollifiers

1.2 The Fundamental Theorem & mollifiers
To prove the uniqueness of the weak derivative (up to null sets), we first show the following
Theorem.

Theorem 1.2.1: Fundamental Theorem of the Calculus of Vari-
ations

Let u P L1
locpIq be a function such that

ż b

a

upxqφpxq “ 0 @φ P C8
0 pIq. (5)

Then, u|I ” 0 almost everywhere.

If φpxq :“ signpupxqq were in C8
0 pIq, we could test with it:

0 “

ż b

a

upxqφpxqdx “

ż b

a

|upxq|dx “ }u}1 ùñ u ” 0 a.e.

But φ is neither smooth nor compactly supported. We can modify φ so that it is
compactly supported: consider ψ :“ φ ¨ 1rc,ds for a ă c ă d ă b. To "make ψ smooth"
we will convolve it with a C8

0 function, a so called mollifier.

Proof idea

To prove this theorem, we need to smoothen the sign function with mollifiers mollifiers(dt.: Glät-
tungskern, also called smoothing operators / kernels). Set Jεpxq :“ cε ¨ Jεpxq, where cε ą 0 is
a constant chosen such that

ş

R Jεpxqdx “ 1, that is, 1
cε

“
ş

R Jεpxqdx. By the substitution
u “ x

ε , we have cε “ c
ε , where 1

c “
ş

R Jpxqdx. Then, Jε P C8
0 pRq is a nonnegative function

with supppJεq Ă r´ε, εs and Jεpxq “ 1
εJ1

`

x
ε

˘

. This is sometimes called "Friedrichssche
Glättungsfunktion".

definition 1.2.1 (Mollifier)
A function Jε P C8

0 pRq is called mollifier if

‚

ż

R
Jεpxqdx “ 1 ‚ JεpRq Ă

„

0,
1

ε

ȷ

‚ supp pJεq Ă r´ε, εs.

x
1

Figure 7: The mollifier
Jε for ε P

␣

1
4
, 1
2
, 1
(

.

definition 1.2.2 (Regularisation / Mollification)
Let u : I Ñ R be a function extended by zero outside of I. For ε ą 0 its regularisation
is uεpxq :“ pJε ˚ uqpxq “

ş

R Jεpyqupx´ yqdy.

The value of uεpxq is a weighted mean over the interval rx´ ε, x` εs: we have

uεpxq “

ż x`ε

x´ε

Jεpx´ yqupyqdy.

We will now see that the mollification of u inherits the differentiability of Jε and can be as
similar to u as we want it to be:

8
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1.2 The Fundamental Theorem & mollifiers

Theorem 1.2.2: Properties of the mollifier

Let u P LppI;Rq and p P r1,8q. Then uε is well defined and
1 we have uε P C8

pRq and for all k P N we have

upkq
ε pxq “

ż

R
Jpkq
ε px´ yqupyqdy.

2 If supppuq Ă I and ε ă dist psupppuq, δIq, then supppuεq Ă I and therefore,
uε P C8

0 pIq.
3 }u´ uε}p

εŒ0
ÝÝÝÑ 0.

4 }uε}p ď }u}p (also holds for p “ 8).
5 uεpxq

εŒ0
ÝÝÝÑ upxq for almost all x P I.

6 }uε ´ u}CpKq

εŒ0
ÝÝÝÑ 0 for compact subsets K Ă I if u P CpIq.

Proof. Since Jε P C8
0 pRq we have Jε P LqpI;Rq, where q P p1,8s is the Hölder conjugate

of p. Since u P LppI;Rq, it follows from Hölder’s inequality that Jε ˚ u P L1pI;Rq hence
the convolution is well defined.

1 We show the classical differentiability of uε. The claim then follows iteratively. For
x P R and h ‰ 0 we have

uεpx` hq ´ uεpxq

h
loooooooooomoooooooooon

hÑ0
ÝÝÝÑu1

εpxq

“

ż

R

Jεpx` h´ yq ´ Jεpx´ yq

h
loooooooooooooooomoooooooooooooooon

hÑ0
ÝÝÝÑJεpx´yqPC8

0
Jε continuous

¨upyqdy

hÑ0
ÝÝÝÝÝÝÑ
Lebesgue

ż

R
J1
εpx´ yqupyqdy.

Detailed argument on why we can exchange integral and limit: We want to use the Mean Value Theorem.
The function J1

ε is also bounded and compactly supported, therefore, }J1
ε}8 exists. We now find an integrable

majorant g by building a "box" around J1
ε and multiplying with u: g :“ u ¨ }J1

ε}8 ¨ 1rx´h´ε,x`h`εs. Note
that u ¨ }J1

ε}8 doesn’t have to be in L1 since u is only in Lp. With the Dominated Convergence Theorem we
obtain for an ξ P r0, hs

lim
hÑ0

ż

R

Jεpx ` h ´ yq ´ Jεpx ´ yq

h
¨ upyq dy “ lim

hÑ0

ż

R
J

1
εpx ´ y ` ξqupyq dy

“

ż

R
upyq ¨ lim

hÑ0
J

1
εpx ´ y ` ξq dy “

ż

R
J

1
εpx ´ yq ¨ upyq dy.

2 We have uεpxq “
şε

´ε
Jεpyqupx ´ yqdy. Thus if supppuq Ă rc, ds Ă pa, bq, then

supppuεq Ă rc ´ ε, d ` εs, which is precisely the case if ε ą 0 is chosen like in the
Theorem.

3 For p “ 1 the claim is trivial. Let p P p1,8q. Using that
şε

´ε
Jεpyqdy “ 1, the

Hölder-inequality (‹q (as detailed in 4 ) and Fubini’s theorem (;), we have

}uε ´ u}pp “

ż b

a

ˇ

ˇ

ˇ

ˇ

ż ε

´ε

Jεpyqupx´ yq ´ upxqdy

ˇ

ˇ

ˇ

ˇ

p

dx

ď

ż b

a

ˆ
ż ε

´ε

Jεpyq|upx´ yq ´ upxq| dy

˙p

dx

p‹q

ď

ż b

a

ż ε

´ε

Jεpyq|upx´ yq ´ upxq|p dy dx

p;q
“

ż ε

´ε

Jεpyq

ż b

a

|upx´ yq ´ upxq|p dxdy

ď sup
|y|ăε

ż b

a

|upx´ yq ´ upxq|p dx

ż ε

´ε

Jεpyqdy
loooooomoooooon

“1

εŒ0
ÝÝÝÝÑ
L 0.0.9

0.
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1.2 The Fundamental Theorem & mollifiers

4 Additionally using the the translational invariance of the Lebesgue integral (:q, we
have

}uε}
p
p “

ż b

a

|uεpxq|p dx ď

ż b

a

ˆ
ż

R
Jεpx´ yq

1
p ` 1

q |upyq|dy

˙p

dx

p‹q

ď

ż b

a

ˆ
ż

R
Jεpx´ yq

p
p |upyq|p dy

˙

p
p
ˆ
ż

R
Jεpx´ yq

q
q dy

looooooooomooooooooon

“1

˙

p
q

dx

p:q
“

ż b

a

ˆ
ż

R
Jεpx´ yq|upyq|p dy

˙

dx

p;q
“

ż

R
|upyq|p

ż b

a

Jεpx´ yqdy
loooooooomoooooooon

“1

“

ż

R
|upyq|p dy

“

ż b

a

|upyq|p dy “ }u}pp.

5 We have

|uε ´ u| ď

ż

R
Jεpyq|upx´ yq ´ upxq|dy

“

ż ε

´ε

Jεpyq|upx´ yq ´ upxq|dy

“ }Jε}8
loomoon

“ c
ε ¨ 1ε

ż ε

´ε

|upx´ yq ´ upxq| dy

“
2c

ε
¨
1

2ε

ż ε

´ε

|upx´ yq ´ upxq|dy,

which converges to 0 almost everywhere as u P Lp and hence almost all points are
Lebesgue points (cf. DGL I).

6 Let K Ă pa, bq be compact. Then u is uniformly continuous on a compact interval
rc, ds Ă pa, bq chosen such that x´ y P rc, ds for all x P K and for all |y| ă ε for some
small enough ε ą 0. Then, for some η ą 0 we have |upx´ yq ´ pxq| ă η and, therefore,

(
a

)
b

[
c

]
d

K

Figure 8: The support
of a function.

sup
xPK

|uεpxq ´ upxq| ď sup
xPK

ż ε

´ε

Jεpyq |upx´ yq ´ upxq|
looooooooomooooooooon

ăη

dy ă η. l

23.04.19

Proof. (Fundamental theorem) Let u P L1
locppa, bq;Rq and rc, ds Ă pa, bq. Define w “

sgnpuq1rc,ds. Then we have w P L1
locppa, bq;Rq and supppwq Ă rc, ds. We define wε :“ Jε ˚ w.

Then, wε Ñ w almost everywhere on pa, bq and supppwεq Ă rc ´ ε, d ` εs, hence wε P

C8
0 ppa, bq;Rq if ε is small enough by Theorem 1.2.2.

We test (5) with φ “ wε P C8
0 ppa, bq;Rq, obtaining

0 “

ż b

a

upxqwεpxq
loooomoooon

a.e.
ÝÝÑupxqwpxq

dx “

ż d`ε

c´ε

upxqwεpxqdx

“

ż b

a

upxq1rc´ε,d`εspxqwεpxqdx.

We have

|wεpxq| ď

ż b

a

Jεpx´ yq |wpyq|
loomoon

ď1

dy ď 1.

10



1.2 The Fundamental Theorem & mollifiers

For ε0 ă minpc´ a, b´ dq and all ε ă ε0 we get

|upxqwεpxq| ď |upxq|1rc´ε0,d`ε0spxq

This function is integrable on pa, bq. Lebesgue’s Theorem shows

0 “

ż b

a

upxqwpxqdx “

ż d

c

|upxq| dx,

hence u ” 0 almost everywhere on rc, ds. As rc, ds Ă pa, bq was chosen arbitrarily, this yields
the claim. l

Corollary 1.2.3 (HW 1.5)
Let u P L1

locppa, bq;Rq be a function such that

ż b

a

upxqφ1pxqdx “ 0 @φ P C8
0 ppa, bq;Rq. (6)

Then there exists an c P R so that u ” c almost everywhere on pa, bq.

Proof. Let φ P C8
0 ppa, bq;Rq, take ϱ0 P C8

0 ppa, bq;Rq with
şb

a
ϱ0pyqdy “ 1 and define

ψpxq :“ φpxq ´ ϱ0pxq

ż b

a

φpyqdy (7)

for any x P pa, bq. In particular ψ P C8
0 ppa, bq;Rq and

şb

a
ψpyqdy “ 0. We can now define

κpxq :“

ż x

a

ψpyqdy

for any x P pa, bq. By the fundamental theorem of calculus κ1 “ ψ, thus κ is smooth. In fact,
κ is also compactly supported. This follows from ψ integrating to 0 and ψ having support
contained in rα, βs as now for x ă α there follows κpxq “ 0 and for x ą β we have

κpxq “

ż x

a

ψpyqdy “

ż β

α

ψpyqdy “ 0.

Using (7) we now know

ż b

a

upxqφpxqdx “

ż b

a

upxq

´

ψpxq ` ϱ0pxq

ż b

a

φpyqdy
¯

dx

and using ψ “ κ1 we have
ż b

a

upxqφpxqdx “

ż b

a

upxqκ1pxqdx`

ż b

a

upxqϱ0pxq

ż b

a

φpyqdy dx.

Because κ P C8
0 ppa, bq;Rq the first summand equates to 0 by assumption. Using Fubini’s

theorem on the second summand yields
ż b

a

upxqφpxqdx “

ż b

a

ż b

a

upyqϱpyqdy φpxqdx.
l

As φ was chosen arbitrarily, defining c :“
şb

a
upyqϱpyqdy concludes the proof, because the

fundamental lemma of calculus of variations implies u ” c holds almost everywhere.

Corollary 1.2.4 (Uniqueness)
If the weak derivative exists, it is unique.

11



1.2 The Fundamental Theorem & mollifiers

Proof. Assume v, w P L1
locppa, bq;Rq were weak derivatives of u P L1

locppa, bq;Rq. This implies
that for all φ P C8

0 ppa, bq;Rq

ż b

a

pv ´ wqpxqφpxqdx “

ż b

a

vpxqφpxqdx´

ż b

a

wpxqφpxqdx

“ ´

ż b

a

upxqφ1pxqdx`

ż b

a

upxqφ1pxqdx “ 0.

The Fundamental Theorem implies v ´ w ” 0 almost everywhere on pa.bq. l

Example 1.2.5 Let

M1 :“ tu : ra, bs Ñ R : Df : ra, bs Ñ R continuous : f ” u a. e.u

and
M2 :“ tu : ra, bs Ñ R : u is continuous almost everywhereu

Then we have M1 Ć M2 and M2 Ć M1: Consider f1 :“ 1R z Q P M1 but f1 R M2 and
f

pεq

2 :“ 1ra`ε,b´εs P M2 but f pεq

2 R M1 or the heaviside function.

12



1.3 Weak differentiability and absolute continuity

1.3 Weak differentiability and absolute continuity
The following shows W 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq (cf. Chapter 2).

Theorem 1.3.1: W 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq

Let u P L1ppa, bq;Rq be weakly differentiable with u1 P L1ppa, bq;Rq. Alternatively: there
exists an absolutely
continuous function on
ra, bs whose restriction
to pa, bq is in the
equivalence class of u.

Then u coincides
almost everywhere with a function, which is absolutely continuous on pa, bq and which
can then be extended to an absolutely continuous function on ra, bs ("u is absolutely
continuous"). We have

}u}8 :“ }u}Cpra,bs;Rq ď
maxp1, b´ aq

b´ a

`

}u}1 ` }u1}1
˘

This is generalises the fact that continuously differentiable functions are absolutely continuous.

Proof. Set vpxq :“
şx

a
u1pyqdy. As u1 P L1ppa, bq;Rq, v is absolutely continuous and v1 “ u1

almost everywhere on pa, bq. Therefore, we obtain

ż b

a

uφ1 dx “ ´

ż b

a

u1φdx “ ´

ż b

a

v1φdx “

ż b

a

vφ1 dx

for all φ P C8
0 ppa, bq;Rq and hence by Corollary 1.2.3 u ” v ` c for some c P R almost

everywhere on pa, bq, so u is almost everywhere equal to an absolutely continuous function,
which we will call u, too p˛q.

By the Integral Mean Value Theorem p‹q there exists a x0 P ra, bs so that
şb

a
upxqdx “

upx0qpb´ aq. This implies

|upxq|
p˛q

ď
△‰

|upx0q| `

ˇ

ˇ

ˇ

ˇ

ż x

x0

u1pxqdx

ˇ

ˇ

ˇ

ˇ

p‹q

ď
△‰

1

b´ a

ż b

a

|upxq|dx`

ż b

a

|u1pxq|dx. l

Remark 1.3.1 This doesn’t hold in higher dimensions, u must not even by continuous. (cf.
Sobolev Embedding Theorem. We only have W 1,1pΩq ãÑLqpΩq for q ď d

d´1 P p1, 2s, where
Ω Ă Rd is a bounded Lipschitz domain) TODOexample needed!

definition 1.3.2 (Higher weak derivatives)
Let u, v P L1

locppa, bq;Rq. Then v is the n-th weak derivative of u if

ż b

a

upxqφpnq dx “ p´1qn
ż b

a

vpxqφpxqdx

holds for all φ P C8
0 ppa, bq;Rq.

Remark 1.3.3 (Higher order derivatives) We could also define the n-th weak derivative
iteratively. In one dimension, this yields the definition as above, in multiple dimensions it
does not. More precisely: If u P L1pIq and v P L1

locpI;Rq is the n-th weak derivative of u, we
have v P L1pI;Rq the k-th weak derivatives of u exist for all k P t1, . . . , n´ 1u.

13



1.3 Weak differentiability and absolute continuity

Theorem 1.3.2: In between weak derivatives

Let u P L1ppa, bq;Rq so that the n-th weak derivative upnq P L1ppa, bq;Rq exists. Then,
for all k ď n´ 1 the weak derivative upkq exists and is absolutely continuous.

Proof. It suffices to consider n “ 2. Let u2 P L1ppa, bq;Rq. Then v1pxq :“
şx

a
u2pyqdy is

absolutely continuous with v1
1 “ u2 almost everywhere in pa, bq.

We set v0pxq :“
şx

a
v1pyqdy. Then v0 is absolutely continuous with v1

0 “ v1. Then, we have

p´1q2
ż b

a

upxqφ2pxqdx “

ż b

a

u2pxqφpxqdx “

ż b

a

v1
1pxqφpxqdx

“ ´

ż b

a

v1pxqφ1pxqdx “ ´

ż b

a

v1
0pxqφ1pxqdx

“

ż b

a

v0pxqφ2pxqdx.

Hence
şb

a
pu ´ v0qpxqφ2pxqdx “ 0. Similar to the Fundamental Theorem this implies that

u ” v0 ` p, where p is a polynomial of degree one. Hence, u1 exists and coincides with v1

plus an polynomial of degree zero (and u2 coincides with v0). l

Remark 1.3.4 This is not true for d ą 1. TODO(TODO:example needed!).
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2 Sobolev spaces

2.1 First definitions and properties
We now aim to combine the notion of weak derivatives and Lebesgue norms.
Later, we will see that the Sobolev spaces have "nice geometry" because they are uniformly
convex uniformly convexand thus reflexive, which in turn gives concrete representation of linear functionals,
enabling reformulation of problems using duality and weak compactness weak compactnessof bounded sets,
leading the way to calculus of variations calculus of

variations
.

Also, the smooth functions are dense, therefore one can prove statements for them first and
then extend to the whole space by density, see Lemma 1.1.15, which is used in Lemma 2.1.5.

definition 2.1.1 (Sobolev space W k,p (Sobolew))
Let k P Ną0 and p P r1,8s. We call

W k,pppa, bq;Rq :“ tu P Lpppa, bq;Rq : weak derivative uplq P Lpppa, bq;Rq @ℓ ď ku

a Sobolev space Sobolev spaceand equip it with the Sobolev norm

}u}k,p :“

˜

k
ÿ

ℓ“0

}upℓq}pp

¸

1
p

and }u}k,8 “
k

max
ℓ“0

}upℓq}8.

A seminorm on W k,p is |u|k,p :“ }upkq}p.

The Sobolev norm measures both regularity and size of a function.

definition 2.1.2 (Sobolev inner product space)
We set Hkppa, bq;Rq :“ W k,2ppa, bq;Rq and equip it with the inner product

xu, vyk,2 :“
k
ÿ

ℓ“0

xupℓq, vpℓqy2,

where x ¨, ¨ y2 is the L2ppa, bq;Rq inner product.

We have W 0,p “ Lp and H0 “ L2.

Remark 2.1.3 (Wiki, todo proofs)
• The norm }f}p ` }f pkq}p is equivalent to the norm above.

• W 1,8pa, bq is the space of the Lipschitz continuous functions.

• W 2,1
0 pa, bq Ă L2pa, bq is dense. proof. TODO

Theorem 2.1.1: Properties of Sobolev spaces

1 W k,pppa, bq;Rq is a Banach space.
2 W k,pppa, bq;Rq is separable for p P r1,8q.
3 W k,pppa, bq;Rq is reflexive for p P p1,8q.
4 Hkppa, bq;Rq is a Hilbert space.

We have W k,pppa, bq;Rq ãÑW k,qppa, bq;Rq for q ď p and W k,pppa, bq;Rq ãÑW j,pppa, bq;Rq for

15
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2.1 First definitions and properties

j ď k. The embedding W 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq (cf. Theorem 1.3.1) is not compact. We
haveW 1,pppa, bq;Rq ãÑW 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq continuously, and thusW 1,pppa, bq;Rq ãÑ Cpra, bs;Rq

Proof. (k “ 1) 1 Let punqnPN Ă W 1,p be a Cauchy sequence. Then the sequences
punqnPN and pu1

nqnPN are Cauchy sequences in Lppa, bq. Hence there exists functions
u, v P Lppa, bq with un Ñ u and u1

n Ñ v.

As p ě 1 we can use Lemma 1.1.15 to show that u1 “ v.

2 Define
T : W 1,ppa, bq Ñ Lppa, bq2, u ÞÑ xu, u1y.

Then, T is well defined. Further, we have

}Tu}Lppa,bq2 “

´

}u}
p
Lpppa,bq;Rq

` }u1}
p
Lpppa,bq;Rq

¯
1
p

“ }u}1,p.

Hence W 1,ppa, bq isometrically coincides with a subspace of pLppa, bqq2. This subspace
is closed as W 1,ppa, bq is complete. As Lppa, bq is separable, so is pLppa, bqq2 and hence
the closed subspace, and hence W 1,ppa, bq.

For k ą 1, show that

T : W k,pppa, bq;Rq Ñ pLpppa, bq;Rqqk`1, u ÞÑ pu, u1, . . . , upkqq l

is an isomorphism.

3 TODO

4 TODO

Counterexample 2.1.4 (W 1,8pa, bq is not reflexive)
W 1,8pa, bq is isomorphic to RˆL8pa, bq via v ÞÑ pvpaq, v1q but L8pa, bq is not reflexive.

Lemma 2.1.5 (Classical rules for H1)
Let u, v P H1pa, bq. Then the product rule puvq1 “ uv1 ` u1v holds and the mean value
theorem

upxq ´ vpxq “ px´ yq

ż 1

0

u1py ` tpx´ yqqdt

holds, where pointwise evaluation of u is defined via its absolutely continuous representative.

Proof. Product rule. Since C8
pra, bsq

d
ãÑ H1pa, bq

d
ãÑ Cpra, bsq, we can find sequences

punqnPN, pvnqnPN Ă C8
pra, bsq so that un Ñ u and vn Ñ v in H1pa, bq. (BUT WE

HAVEN’T DEFINED EMBEDDINGS YET!!) TODOBecause of the dense em-
beddings we have

}uv}0,2 ď }u}C}v}C ă 8, }u1v}0,2 ď }u1}0,2}v}C , }v1u}0,2 ď }u}C}v}0,2.

Therefore, we have uv, u1v ` uv1 P L2 and

}unvn ´ uv}0,1
△‰

ď }unpvn ´ vq}0,1 ` }pun ´ uqv}0,1

(H)
ď }un}0,2

loomoon

ďC

}vn ´ v}0,2
looooomooooon

nÑ8
ÝÝÝÑ0

` }un ´ u}0,2}v}0,2
looooooooomooooooooon

nÑ8
ÝÝÝÑ0

.

and

}u1
nvn ´ u1v}0,1 ď }u1

n}0,2}vn ´ v}0,2 ď???

16



2.1 First definitions and properties

and, analogously, }unv
1
n ´ uv1}

nÑ8
ÝÝÝÑ 0.

Putting this together, we have

punvnq1 “ unv
1
n ` u1

nvn
nÑ8

ÝÝÝÝÝÑ
L1pa,bq

uv1 ` u1v and unvn
nÑ8

ÝÝÝÝÝÑ
L1pa,bq

uv.

With Lemma 1.1.15 the proposition follows.

Mean value theorem. Analogously to the above, we can choose a sequence punqnPN Ă

C8
pra, bsq so that un

nÑ8
ÝÝÝÝÝÝÑ
W 1,1pa,bq

u.

Because ofW 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq we know that }un´u}C Ñ 0 hence also unpxq Ñ upxq

for all x P ra, bs.

We conclude
ˇ

ˇ

ˇ

ˇ

ż 1

0

u1
npy ` tpx´ yqqdt´

ż 1

0

u1py ` tpx´ yqqdt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż y

x

u1
npξq ´ u1pξqdξ

ˇ

ˇ

ˇ

ˇ

ď

ż b

a

ˇ

ˇu1
npξq ´ upξq

ˇ

ˇdξ

“ }u1
n ´ u1}0,1

un

W1,1pa,bq
ÝÝÝÝÝÝÑu

ÝÝÝÝÝÝÝÝÝÝÑ 0.

Using the mean value theorem for C8, we have

upxq ´ upyq “ lim
nÑ8

unpxq ´ unpyq “ lim
nÑ8

px´ yq

ż 1

0

u1
npy ` tpx´ yqqdt. l

Lemma 2.1.6 (Chain rule in H1 (HW 2.2))
Let f P C1

pR,Rq with fp0q “ 0 be such that there exists a M ą 0 with |f 1pxq| ď M for
all x P R. Then for u P H1ppa, bq;Rq we have f ˝ u P H1ppa, bq;Rq and

pf ˝ uq1 “ pf 1 ˝ uqu1.

Proof. Let punqnPN Ă H1ppa, bq;Rq converge to u P H1ppa, bq;Rq. For n P N we have

}pf 1 ˝ unqu1
n ´ pf 1 ˝ uqu1}20,2 “

ż b

a

|f 1punpxqqu1
npxq ´ f 1pupxqqu1pxq|2 dx

“

ż b

a

|f 1punpxqqu1
npxq ´ f 1punpxqqu1pxq ` f 1punpxqqu1pxq ´ f 1pupxqqu1pxq|2 dx

“

ż b

a

|f 1punpxqqu1
npxq ´ f 1punpxqqu1pxq|2 dx

` 2

ż b

a

f 1punpxqqpu1
npxq ´ u1pxqqpf 1punpxqq ´ f 1pupxqqqu1pxqdx

`

ż b

a

|f 1punpxqqu1pxq ´ f 1pupxqqu1pxq|2 dx

p‹q

ď }f 1}28}u1
n ´ u1}20,2 `

ż b

a

|f 1punpxqq ´ f 1pupxqq|2|u1pxq|2 dx

`

ż b

a

|f 1punpxqq|2|u1
npxq ´ u1pxq|2 ` |f 1punpxqq ´ f 1pupxqq|2|u1pxq|2 dx

ď 2}f 1}28}un ´ u1}20,2 ` 2

ż b

a

|f 1punpxqq ´ f 1pupxqq|2|u1pxq|2 dx.

using 2cd ď c2 ` d2 in p‹q. Up to a subsequence, which we will again call punqnPN, we
have un Ñ u pointwise almost everywhere and by the continuity of f we have fpunpxqq Ñ
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fpupxqq almost everywhere. Hence the second integral converges to zero by the Dominated
Convergence Theorem. Hence we have

}pf ˝ unq1 ´ pf 1 ˝ uqu1}0,2 “ }pf 1 ˝ unqu1
n ´ pf 1 ˝ uqu1}0,2 Ñ 0. l

Lemma 2.1.7
Let f, g P L1ppa, bq;Rq such that

´

ż b

a

φ1pxqgpxqdx ď

ż b

a

φpxqfpxqdx

for all φ P C8
0 ppa, bq;Rě0q. Then for almost all s, t P pa, bq we have

gptq ´ gpsq ď

ż t

s

fpxqdx.

Proof. Let s, t P pa, bq and w – 1rs,ts with s ă t with s, t P pa, bq and wε :“ Jε ˚w. We have

wεpxq “

ż

R
Jεpx´ yqwpyqdy “

ż t

s

Jεpx´ yqdy “

ż x´s

x´t

Jεpyqdy “

ż ε

´ε

Jεpyqdy “ 1

for all x with r´ε, εs Ă rx´ s, x´ ts. We have wε P C8
0 ppa, bq;Rq by Theorem ... and for all

x P pa, bq

w1
εpxq “

d

dx

ż x´s

x´t

Jεpyqdy “ Jεpx´ sq ´ Jεpx´ tq

and thus for most x
ż b

a

pJεpx´ tq ´ Jεpx´ sqq gpxqdx ď

ż b

a

fpxqdx. l

Example 2.1.8 (Sign and Heaviside function in fractional Sobolev spaces)
For σ P p0, 1q we define the fractional order Sobolev space

Hσpa, bq :“ tu P L2pa, bq : |u|σ ă 8u

with the Slobodeckij seminorm

|u|σ :“

˜

ż b

a

ż b

a

|upxq ´ upyq|2

|x´ y|1`2σ
dxdy

¸
1
2

.

For which choice of σ are the Heaviside function and sign function an element of Hσp´1, 1q?

Let upxq “ signpxq. We have

|u|2σ “

ż 1

´1

ż 1

´1

|upxq ´ upyq|2

|x´ y|1`2σ
dxdy

“

ż 0

´1

ż 0

´1

| ´ 1 ´ p´1q|2

|x´ y|1`2σ
dxdy

looooooooooooooooomooooooooooooooooon

“0

`

ż 0

´1

ż 1

0

|1 ´ p´1q|2

|x´ y|1`2σ
dxdy

`

ż 1

0

ż 0

´1

| ´ 1 ´ 1|2

|x´ y|1`2σ
dxdy `

ż 1

0

ż 1

0

|1 ´ 1|2

|x´ y|1`2σ
dx dy

loooooooooooooomoooooooooooooon

“0

18



2.1 First definitions and properties

“

ż 0

´1

ż 1

0

|1 ´ p´1q|2

|x´ y|1`2σ
dx dy `

ż 1

0

ż 0

´1

| ´ 1 ´ 1|2

|x´ y|1`2σ
dxdy

“ 8

ż 1

0

ż 0

´1

1

|x´ y|1`2σ
dxdy “ 8

ż 1

0

ż 1

0

1

px` yq1`2σ
dxdy

“
8

2σ

21´2σ ´ 2

2σ ´ 1
“ 8

2´2σ ´ 1

σp2σ ´ 1q
,

where the evaluation of the integral of is only valid 2σ ` 1 ă 2, i.e. for σ ă 1
2 , otherwise the

integral diverges TODO

Now let h be the Heaviside function. Then we have

|h|2σ “

ż 1

´1

ż 1

´1

|hpxq ´ hpyq|2

|x´ y|1`2σ
dxdy “ 2

ż 0

´1

ż 1

0

1

|x´ y|1`2σ
dx dy

“ 2

ż 1

0

ż 1

0

1

px` yq1`2σ
dxdy

as before so we have h P Hσp´1, 1q only for σ ă 1
2 .
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2.2 Embedding theorems

2.2 Embedding theorems

definition 2.2.1 (Embeddings)
Let X and Y be normed spaces.

1 X is embedded embeddedinto Y if and only if there exists an a injective linear function
ι : X Ñ Y and X can identified with a subspace of Y .

2 X is continuously / compactly embedded into Y and we write X ãÑY / X c
ãÑY if

ι is continuous / compact.

3 X is densely embedded into Y and we write X d
ãÑY if ιpXq is dense in Y with

respect to } ¨ }Y .

Remark 2.2.2 (Embeddings) In the case of 2 , there exists an c ą 0 such that }ιpxq}Y ď

c}x}X for all x P X. Mostly, ι ” id and therefore, }x}Y ď c}x}X for all x P X. If X c
ãÑY ,

then any bounded sequence in X admits a subsequence converging with respect to the Y
norm.

Lemma 2.2.3 (Continuous noncompact Lq ãÑ Lp for p ď q)
For a bounded interval pa, bq Ă R and 1 ď p ď q ď 8 we have Lqppa, bq;Rq ãÑLpppa, bq;Rq

but the embedding is not compact.

Proof. Set ι̂ : Lqpa, bq Ñ Lppa, bq, u ÞÑ u. For q ă 8 we have

}ι̂u}pp “

ż b

a

1|u|p dx
(H)
ď

˜

ż b

a

1
q

q´p dx

¸

q´p
p

˜

ż b

a

|u|q dx

¸

p
q

“ pb´ aq
q´p
q }u}pq .

where for the Hölder inequality (H) uses r :“ q
p and s :“ q

q´p as conjugated exponents. For
q “ 8 we have

}ι̂u}p “

˜

ż b

a

|u|p dx

¸
1
p

ď pb´ aq
1
p }u}8.

The sequence pfnpxq :“ sinpnxqqnPN Ă Lqppa, bq;Rq is bounded, as for all n P N we have

}fn}qq “

ż b

a

| sinpnxq|q
loooomoooon

ď1

dx ď b´ a.

But the sequence pfnqnPN does not contain any Lp-convergent subsequences, as it doesn’t
even contain Lp Cauchy subsequences: suppose there is a subsequence pfnk

qkPN of pfnqnPN

such that
}fnk`1

´ fnk
}p

kÑ8
ÝÝÝÑ 0.

By Hölder’s inequality we have

}fnk`1
´ fnk

}22

(H)
ď }fnk`1

´ fnk
}p}fnk`1

´ fnk
}q

ď }fnk`1
´ fnk

}pp}fnk`1
}q ` }fnk

}qq

ď 2pb´ aq
1
q }fnk`1

´ fnk
}p

kÑ8
ÝÝÝÑ 0,

but the left hand side is constant and equal to b´ a ą 0, which is a contradiction. l

TODOWe have Cpra, bs;Rq ãÑLpppa, bq;Rq but the embedding is not compact (sinpnxq) With
Arzelá-Ascoli we get C1

pra, bs;Rq
c

ãÑ Cpra, bs;Rq.

In the following Theorem we "spend" one degree of differentiability and "gain compactness".
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2.2 Embedding theorems

Theorem 2.2.1: W 1,pppa, bq;Rq
c

ãÑ Cpra, bsq

If p ą 1 then W 1,pppa, bq;Rq
c

ãÑ Cpra, bsq.

Proof. As Lpppa, bq;Rq ãÑL1ppa, bq;Rq (as p ą 1) we have

W 1,pppa, bq;Rq ãÑW 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq.

Let A Ă W 1,pppa, bq;Rq be bounded. Then there exists an M ě 0 such that }u}1,p ď M for
all u P A. As W 1,pppa, bq;Rq ãÑ Cpra, bsq, there exists a c ą 0 such that }u}8 ď c}u}1,p ď cM

for all u P A.

We now show that A is equicontinuous. For u P A and x1, x2 P ra, bs we get From now on, we use
maxpm,nq :“ m_n and
minpm,nq :“ m ^ n.

|upx1q ´ upx2q| “

ˇ

ˇ

ˇ

ˇ

ż x2

x1

u1ptqdt

ˇ

ˇ

ˇ

ˇ

△‰

ď

ż x1_x2

x1^x2

|u1ptq|dt

(H)
ď

ˆ
ż x1_x2

x1^x2

|u1ptq|p dt

˙
1
p
ˆ
ż x1_x2

x1^x2

1q dt

˙

1
q

ď }u}1,p|x1 ´ x2|
1
q ď M |x1 ´ x2|

1
q ,

where q P r1,8q is the Hölder conjugate to p. The Theorem of Arzelá-Ascoli yields
the claim since the identity maps bounded set to relatively compact sets and therefore is
compact. l

Corollary 2.2.4
We have H1ppa, bq;Rq

c
ãÑL2ppa, bq;Rq.

Proof. By Theorem 2.2.1 we have

H1ppa, bq;Rq “ W 1,2ppa, bq;Rq
c

ãÑ Cpra, bs;Rq ãÑL2ppa, bq;Rq

and the composition of a continuous and a compact map is compact. l

Counterexample 2.2.5 (R)
W 1,1pa, bq is continuously (cf. theorem 1.3.1) but not compactly embedded in Cpra, bsq:
consider fn : r0, 1s Ñ R, x ÞÑ 2np1 ´ nxq for n P N. The sequence pfnqnPN Ă Cpr0, 1sq is
bounded in W 1,1p0, 1q

}fn}1,1 “ }fn}0,1 ` }f 1
n}0,1 “ 2n

ż 1
n

0

1 ´ nx dx`

ż 1
n

0

p´2n2qdx “ 1 ´ 2n ď 1.

But there exists no convergent subsequence of pfnqnPN in Cpr0, 1sq.

We will now see that u P W k,p can be approximated by smooth functions. This fact often
allows us to translate properties of smooth functions to Sobolev functions.

Theorem 2.2.2: Meyer-Serrin

The space C8
pra, bs;Rq Ă W 1,pppa, bq;Rq is dense for p P r1,8q.

Geht auch für alle anderen k und alle offenen Teilmenge Ω Ă Rn! TODOsame
proof but with induction?

Remark 2.2.6
• C8

pra, bsq “ tu P C8ppa, bqq : upkq are uniformly continuous on pa, bq for all k P N }.
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2.2 Embedding theorems

• Then, C8pra, bsq is a subset of W 1,ppa, bq, but C8
pa, bq is not.

• Something similar holds for Lipschitz domain in Rd.

Lemma 2.2.7 (Auxiliary lemma: local approximation)
For u P W 1,ppa, bq and ε0 P

`

0, b´a
2

˘

, }uε ´ u}W 1,ppa`ε0,b´ε0q

εŒ0
ÝÝÝÑ 0.

Alternative formulation u P H1pa, bq, then for any compact subinterval K Ă pa, bq we have
}u´ uε}H1pKq

εŒ0
ÝÝÝÑ 0.

Proof. Let x P K. For ε ą 0 small enough (ε ă distpK, Bpa, bqq) we have Jεpx ´ ¨q P

C8
0 ppa, bq;Rq. Then

pu1qεpxq “

ż b

a

Jεpx´ yqu1pyqdy “ ´

ż b

a

d

dy
J1
εpx´ yqupyqdy

“

ż b

a

d

dx
Jεpx´ yqupyqdy “

d

dx

ż b

a

Jεpx´ yqupyqdy

“
d

dx
uεpxq “ puεq

1pxq.

a a` ε b´ ε b

Figure 9: Unnamed fig-
ure

Proof. We know uε Ñ u in Lppa, bq, hence Lppa ` ε0, b ´ ε0q pu1qε Ñ u1 in Lppa, bq hence
Lppa` ε0, b´ ε0q. (??)

For x P ra` ε0, b´ ε0s we have pu1qεpxq “ puεq
1pxq. For sufficiently small ε ă ε0 the function

y ÞÑ Jεpx´ yq is in C8
0 pa, bq. Hence,

Figure 10: Unnamed
figure

pu1qεpxq “

ż b

a

Jεpx´ yqu1pyqdy “ ´

ż b

a

d

dy
J1
εpx´ yqupyqdy

“

ż b

a

d

dx
Jεpx´ yqupyqdy “ u1

εpxq.

Altogether we have uε Ñ u in Lppa` ε0, b´ ε0q and puεq
1 “ pu1qε Ñ u1 in Lppa` ε0, b´ ε0q.

This yields uε Ñ u in W 1,ppa` ε0, b´ ε0q. l

Proof. (of the theorem) Let u P W 1,ppa, bq and I1, I2, I3 Ă R be open intervals such
that

Figure 11: Unnamed
figure

a P I1, b P I3, I2 Ă pa, bq and ra, bs Ă

3
ď

k“1

Ik .

Let pΨkq3k“1 be a corresponding partition of unity, i.e.

Figure 12: Unnamed
figure

Ψk P C8
0 pRq, supppΨkq Ă Ik @k P t1, 2, 3u and

3
ÿ

k“1

Ψk|pa,bq ” 1.

We set uk :“ u ¨ Ψk P W 1,ppa, bq with u1
k “ u1Ψk ` uΨ1

k.

(2) As u2 P W 1,ppa, bq and distpI2, Bpa, bqq ą 0 the lemma shows pu2qε Ñ u2 in W 1,ppI2q.

(1) For a sufficiently small δ ą 0 we set v1pxq :“ u1px ` δq, as n R supppv1q then v1 P

W 1,ppa´ δ, b` δq. The lemma shows pv1qε Ñ v1 in W 1,pp??q.

As the Lp continuity of u1 yields that }u1 ´ v1}0,p Ñ 0 and }u1 ´ v1}0,p Ñ 0 for δ ą 0

Figure 13: Unnamed
figure

˜

ż b

a

|u1pxq ´ u1px` δq|p

¸
1
p

˜

ż b

a

|u1
1pxq ´ u1

1px` δq|p

¸
1
p
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2.2 Embedding theorems

for δ Œ 0 and hence }u1 ´ v1}0,p
δŒ0

ÝÝÝÑ 0 we get for η ą 0 fix δ so that }u1 ´ v1}1,p ă
η
2 and

ε so that }v1 ´ pv1qε}1,p ă
η
2 .

Hence, }u1 ´ pv1qε}1,p ă η. Recall that pv1qε P C8
pRq.

(3) The same for u3.

(4) We know pu2qε P C8
pRq and pu2qε Ñ u2 in W 1,ppa, bq.

We define w :“ pv1qε ` pu2qε ` pv3qε P C8
pRq. Hence, w|pa,bq P C8

pra, bsq and

}u´ w}1,p ď }u1 ´ pv1qε}1,p ` }u2 ´ pu2qε}1,p ` }u3 ´ pv3qε}1,p ă 3η. l

Remark 2.2.8 C8
0 pa, bq is a subset of W 1,ppa, bq but in general it is not dense. TODOwhy

Remark 2.2.9 (V, Defining Sobolev space as topological closure)
Let Ck,ppa, bq be the space of C8 functions f so that f pℓq P Lp for all ℓ ď k. Then, we have

Ck,ppa, bq Ă W k,ppa, bq Ă Lppa, bq.

The space Ck,ppa, bq isn’t complete with respect to the norm on W k,p; its completion is
W k,ppΩq (Serrin-Meyer). The derivatives up to order k, being continuous operators can
be uniquely continued. These continuations are precisely the weak derivatives.

definition 2.2.10 (Sobolev space w/ compact support)
We define the closed subspace

W 1,p
0 ppa, bq;Rq :“ C8

0 ppa, bq;Rq
}¨}1,p

Ă W 1,pppa, bq;Rq.

Theorem 2.2.3: Characterisation of W 1,p
0 ppa, bq;Rq

We have W 1,p
0 ppa, bq;Rq “

␣

u P W 1,pppa, bq;Rq : upaq “ upbq “ 0
(

.

Remark 2.2.11
• As W 1,pppa, bq;Rq ãÑ Cpra, bs;Rq, this makes sense.

• This not true in Rd for d ą 1 (further reading: trace operators)

Proof. "Ă": Let u P W 1,p
0 ppa, bq;Rq and punqnPN Ă C8

0 ppa, bq;Rq so that un Ñ u in
W 1,pppa, bq;Rq ãÑ Cpra, bsq. Hence,

sup
xPra,bs

|unpxq ´ upxq| “ }un ´ u}8 ď c}un ´ u}1,p Ñ 0

in part 0 “ unpaq Ñ upaq, 0 “ unpbq Ñ upbq.

"Ą": Let u P W 1,pppa, bq;Rq such that upaq “ upbq “ 0. Let η ą 0. We construct
uη P C8

0 ppa, bq;Rq so that }u´ uη} ă 2η.

Figure 14: The mollifier
uη with compact sup-
port.

The “cut-off function” w – 1r´1,1s is in C8
0 ppa, bq;Rq. First, we cut off u in a neighbourhood

of a. For ε ą 0 we define

wεpxq :“ w

ˆ

x´ a

ε

˙

“

$

&

%

0, for |x´ a| ď ε,

1, for |x´ a| ě 2ε.
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2.2 Embedding theorems

and uε :“ u ¨ wεpxq “

$

&

%

0, for x P ra, a` εs,

upxq, else.
.

Then we have uε P W 1,pppa, bq;Rq with u1
ε “ u1wε ` uw1

ε P Lp since u, u1 P Lp and wε ď 1

and w1
ε is also bounded (see (8)).

We now show that }u´ uε}1,p ď η for sufficiently small ε:

}u´ uε}
p
1,p “

ż b

a

|upxq ´ uεpxq|p ` |u1pxq ´ u1
εpxq|p dx

ď

ż b

a

|upxq|p|1 ´ wεpxq|p ` |u1pxq|p|1 ` wεpxq|p

` |upxq|p|w1
εpxq|p dx

ď

ż a`2ε

a

|upxq|p dx`

ż a`ε

a

|u1pxq|p dx` 2

ż a`2ε

a`ε

|u1pxq|p dx

`

ż a`2ε

a`ε

|upxq|p|w1
εpxq|p dx

ď 2

ż a`2ε

a

|upxq|p ` |u1pxq|p dx`

ż a`2ε

a

|upxq|p |w1
εpxq|p

looomooon

εŒ0
ÝÝÝÑ8

dx.

As w1
εpxq “ 1

εw
1
`

x´a
ε

˘

(chain rule) there exists an C ą 0 so that

|w1
εpxq| ď

1

ε
}w1}8 ď

C

ε
. (8)

As upaq “ 0 we have upxq “
şx

a
u1pyqdy. Hence,

ż y

a

|upξq|p dξ “

ż y

a

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

1 ¨ u1ptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

p

dξ
(H)
ď

ż y

a

ż ξ

a

|u1ptq|p dt ¨ |ξ ´ a|
p
q dξ. (9)

Hence,
a a` 2ε

a

a` 2ε

ξ “ tv

integration

domain

Figure 15: The integra-
tion domain

ż a`2ε

a`ε

|upxq|p|w1
εpxq|p dx ď

ż a`2ε

a

|upxq|p|w1
εpxq|p dx

ď

ˆ

C

ε

˙p ż a`2ε

a

ż ξ

a

|u1ptq|p dt ¨ |ξ ´ a|
p
q dξ

“
Cp

εp

ż a`2ε

a

ż a`2ε

t

|u1ptq|p|ξ ´ a|
p
q dξ dt

ď
Cp

εp

ż a`2ε

a

ż a`2ε

a

|u1ptq|p|ξ ´ a|
p
q dξ dt

(F?)
ď

Cp

εp

ż a`2ε

a

|u1ptq|p dt

ż a`2ε

a

| ξ ´ a
loomoon

ď2ε

|
p
q dξ

p‹q

ď Cp2
p
q

loomoon

“: rC
pwq
p,q

ż a`2ε

a

|u1ptq| dt

where in p‹q we use ´p`
p
q ` 1 “ p

´

´1 ` 1
q ` 1

p

¯

“ 0. We conclude

}u´ uε}1,p ď rCpwq
p,q

ż a`2ε

a

|upxq|p ` |u1pxq|p dx
u,u1

PLp

ÝÝÝÝÝÝÝÝÑ
ε suff. small

0.

Proceeding analogously with the right endpoint, b, we get a function ũη P W 1,pppa, bq;Rq

with }u´ ũη}1,p ď 2η and supppũηq Ă pa, bq.

Hence Jδ ˚ ũη P C8
0 ppa, bq;Rq for δ small enough and }Jδ ˚ ũη ´ ũη}1,p ă η. l
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Corollary 2.2.12
W 1,pppa, bq;Rq Ă Lpppa, bq;Rq is dense for p P r1,8q.

Proof. Exercise. Use that test functions are dense in Lp. l

The Characterisation ofW 1,2
0 is also true for higher dimensions: If pa, bq is bounded the injectionW 1,2

0 ppa, bq;Rq Ñ L2

is compact. (See the Poincare inequality.)

Theorem 2.2.4: Poincaré-Friedrichs-Inequality

For u P W 1,p
0 ppa, bq;Rq we have

}u}0,p ď pb´ aq|u|1,p.

Remark 2.2.13 This is not true for W 1,pppa, bq;Rq.

Corollary 2.2.14
On W 1,p

0 , the norms } ¨ }1,p and | ¨ |1,p are equivalent. Thus, pW 1,p
0 ppa, bq;Rq, | ¨ |1,pq is a

closed and therefore complete subspace of W 1,pppa, bq;Rq.

Proof. By Theorem 2.2.3 we have upaq “ 0 and thus as in (9)

}u}pp “

ż b

a

|upxq|p dx ď

ż b

a

ˆ
ż x

a

1 ¨ |u1pyq|dy

˙p

dx
(H)
ď

ż b

a

˜

ˆ
ż x

a

1q dy

˙
1
q
ˆ
ż x

a

|u1pyq|p dy

˙
1
p

¸p

dx

“

ż b

a

ż x

a

|u1pyq|p dy
looooooomooooooon

ď}u1}
p
p

|x´ a|
p
q dx ď |b´ a|

1`
p
q |u|

p
1,p.

and
´

|b´ a|
1`

p
q

¯
1
p

“ |b´ a|
1
p ` 1

q “ b´ a. l

Remark 2.2.15 For p “ 2 we even have }u}0,2 ď b´a?
2

|u|1,2, as
şb

a
|x ´ a|

2
2 dx “ 1

2 pb ´ aq2

and we can even instead have b´a
π . TODO

Remark 2.2.16 This is not true for unbound domains but for open subsets Ω of Rd we

have }u}0,2 ď

´

|Ω|

wd

¯
1
d

|u|1,2, where wd is the measure of the unit ball.

Remark 2.2.17 (Poincaré-Friedrichs-Inequality on a cone)
The Poincaré-Friedrichs-Inequality also holds for all u P tu P H1ppa, bq;Rq :

şb

a
upxq “

0u “: H1
Dppa, bq;Rq Ă H1ppa, bq;Rq. Suppose not, then there exists a sequence punqnPN Ă

H1
Dppa, bq;Rq with }un}0,2 ě n}u1

n}0,2. Let vn :“ un

}un}0,2
Ă H1

Dppa, bq;Rq. Then }vn}1,2 “

}un}0,2`}u1
n}0,2

}un}0,2
ď 1 ` 1

n ď 2, so pvnqnPN Ă H1ppa, bq;Rq is bounded. Thus there exists a
weakly convergent subsequence pvnk

qkPN with vnk
á v with

ş

Ω
vpxq “ 0. We have }vn}0,2 “ 1

and }∇vn}0,2 Ñ 0, so ∇v “ 0 and thus v is constant and thus v “ 0 (as
ş

vpxq dx “ 0), which
contradicts }vn}0,2 “ 1.

Dual Spaces
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2.2 Embedding theorems

definition 2.2.18 (Dual space of W 1,p
0 pa, bq)

We set W´1,qpa, bq :“
´

W 1,p
0 pa, bq

¯˚

, where p and q are Hölder conjugates. It is
equipped with the norm

}f}´1,q :“ sup
uPW 1,p

0
u‰0

x f, u y

|u|1,p

Attention: W´1,qpa, bq ‰
`

W 1,ppa, bq
˘˚. (but Ă??)

Reminder pLpq˚ – Lq via x f, u ypLpq˚ˆLp “
ş

vfudx, where vf P Lq is unique and u P Lp.

Lemma 2.2.19
• Lq ãÑW´1,q.

• for all f P W´1,q there exists a not necessarily unique uf P Lqpa, bq so that

x f, v yW´1,qˆW 1,p
0

“

ż

ufv
1 dx,

where v P W 1,p
0 pa, bq.

Proof. Exercise. l

Remark 2.2.20 We could identify the Hilbert space H´1 with H1
0 by the H1

0 inner product
(Riesz). But we won’t do that and rather identify H1

0 ãÑL2 – pL2q˚ ãÑH´1 and therefore
regard H1

0 as a subspace of H´1 via the L2 inner product.

If f̃ P L2ppa, bq;Rq, then f , defined by

x f, u y :“

ż b

a

fpxqupxqdx,

where u P H1
0 ppa, bq;Rq is an element of H´1ppa, bq;Rq such that there exists a constant

C ą 0 with }f}´1,2 ď C}f̃}0,2. thus

L2ppa, bq;Rq ãÑH´1ppa, bq;Rq

Counterexample 2.2.21 (Lp convergence ùñ W k,p convergence)
The function family fnpxq :“ sinpnxq

n converges in any Lpra, bs to zero but does not converge
in any W k,p.

Theorem 2.2.5: Meyers-Serrin

Instead of pa, bq, one can
use any open subset of
Rn.

For p P r1,8q the subspace C8
pa, bq XW k,p Ă W k,ppa, bq is dense.

C8
0 ppa, bq;Rq Ă Lpppa, bq;Rq is dense for p ă 8. But C8

0 ppa, bq;Rq Ă W k,pppa, bq;Rq is not
dense. C8

pra, bs;Rq is dense in W k,pppa, bq;Rq. Formally, C8
pra, bs;Rq Ć W k,pppa, bq;Rq but

we show that

C8
pra, bs;Rq “ tu P C8

ppa, bq;Rq : upℓq is uniformly continuous @ℓ P Nu
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2.2 Embedding theorems

Generalizations of Sobolev spaces include Besov and Sobolev-Slobodeckij spaces.

Further Reading

Lemma 2.2.22 (Important inequalities. Tut, needs to be somewhere else)
For p P r1,8q and pakqnk“1 ě 0 we have

n
ÿ

k“1

apk ď

˜

n
ÿ

k“1

ak

¸p

ď np´1
n
ÿ

k“1

apk

For p P p0, 1q the inequalities are reversed.

Proof. For p ě 1 the function fpxq :“ xp is convex. With Jensens inequality (J) we have
˜

n
ÿ

k“1

ak

¸p

“ np

˜

n
ÿ

k“1

ak
n

¸p
(J)
ď np

n
ÿ

k“1

apk
n

“ np´1
n
ÿ

k“1

apk.

Now, let aj ‰ 0 for one j P t1, . . . , nu. Then we have

xk :“ ak ¨

˜

n
ÿ

k“1

ak

¸´1

ď 1 ùñ

n
ÿ

k“1

xpk ď

n
ÿ

k“1

xk “ 1,

which shows the claim. l

The following is a Lp-Generalization of the theorem of Arzela-Ascoli:

Theorem 2.2.6: Fréchet–Kolmogorov-Riesz

Let pa, bq Ă R and punqnPN a bounded sequence in Lpppa, bq;Rq where p P r1,8q. If
for all ε ą 0 and all intervals rα, βs Ă pa, bq there is an δ P p0,minpα´ a, b´ βqq such
that for all h P R with |h| ă δ and all n P N it holds that

ż β

α

|unpx` hq ´ unpxq|p dx ă ε

and if there exists an interval rα1, β1s Ă pa, bq such that for all n P N it holds that

ż α1

a

|unpxq|p dx`

ż b

β1

|unpxq|p dx ă ε

then there is subsequence of punqnPN that converges in Lpppa, bq;Rq.

Lemma 2.2.23 (Wikipedia formulation of the above)
A bounded set F Ă LppRnq, with p P r1,8q is relatively compact if and only if
ş

|x|ąr
|f |p

rÑ8
ÝÝÝÑ 0 and }τaf ´ f}LppRnq

aÑ0
ÝÝÝÑ, both uniformly on F .

Theorem 2.2.7: Rellich

H1ppa, bq;Rq
c

ãÑL2pra, bs;Rq.

Proof. The embedding H1ppa, bq;Rq ãÑL2pra, bsq is clear since

}u}20,2 ď }u}20,2 ` }u1}20,2 “ }u}21,2.
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2.2 Embedding theorems

Let punqnPN Ă H1ppa, bq;Rq a bounded sequence so that }u}1,2 ď M for all n P N, ε ą 0 and
rα, βs given. Choose

δ :“ min

"

ε

Mpβ ´ αq
,mintα ´ a, b´ βu

*

.

For x P pa, bq and h P R such that |h| ă δ. Then we have

ż β

α

|unpx` hq ´ unpxq|2 dx
MVT

“

ż β

α

ˇ

ˇ

ˇ

ˇ

ˇ

ż x`h

x

h ¨ u1
npξqdξ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx

(H)
ď
△‰

ż β

α

|h|

ż x`h

x

|u1
npξq|2 dξ dx

ď |h||β ´ α|}u1}20,2 ď ε.

Let δ̃ P

´

0,min
´

b´ a, ε
2pcMq2

¯¯

, where x is the embedding constant ofH1ppa, bq;Rq ãÑ Cpra, bsq.

Set rα1, β1s :“ ra` δ̃, b´ δ̃s. Then we have

ż α1

a

|unpxq|2 dx`

ż b

β1

|unpxq|2 dx ď 2δ̃}un}28 ď 2δ̃c2}un}21,2 ă ε.

With the Theorem of Fréchet-Kolmogorov-Riesz we get the existence of a convergent
subsequence. l

definition 2.2.24 (Hölder continuity / Space)
For α P p0, 1q a function u : ra, bs Ñ R is α-Hölder continuous if

Dc ě 0 : |upxq ´ upyq| ď c|x´ y|α @x, y P ra, bs.

The space of Hölder continuous functions

C0,α
pra, bsq :“

"

v P Cpra, bsq : |u|α :“ sup
x‰y

|upxq ´ upyq|

|x´ y|α
ă 8

*

equipped with the norm }u}C0,α :“ }u}8 ` |u|α is complete.

Lemma 2.2.25 (Hölder embeddings)
1 For 0 ă α ă β ă 1 we have C0,β

pra, bsq
c

ãÑ C0,α
pra, bsq.

2 We have H1ppa, bq;Rq
c

ãÑ C0,α
pra, bsq for α P

`

0, 12
˘

Proof. 1 Continuity. Since

|u|α “ sup
x‰y

|upxq ´ upyq|

|x´ y|α´β |x´ y|β
ď sup

x‰y
|x´ y|β´α ¨ sup

x‰y

|upxq ´ upyq|

|x´ y|β

ď |b´ a|β´α|u|β ,

the claim follows.

Compactness. Let punqnPN Ă C0,β
pra, bsq a bounded sequence, i.e. there exists a M ą 0

such that }un}β ď M . Particularly punqnPN is uniformly bounded. We have

|unpxq ´ unpyq| ď |un|β |x´ y|β ď M |x´ y|β .

Therefore punqnPN is equicontinuous. By the theorem of Arzelá-Ascoli there exists
an convergent subsequence pu1

nqnPN Ă Cpra, bsq converging to u P Cpra, bsq.
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2.2 Embedding theorems

We now show }u1
n ´ u}8

n1
Ñ8

ÝÝÝÝÑ 0.
Let ε ą 0 and δ ă min

´

`

ε
6M

˘
1

β´α , 1
¯

and j ď n so that

}u´ uj}8 ă
ε

6
δk ă

ε

3
.

and let x ‰ y, |x´ y| ă δ. Then,

|pu´ ujqpxq ´ pu´ ujqpyq|

|x´ y|α
“ lim
n1Ñ8

|pun1 ´ ujqpxq ´ pun1 ´ ujq

|x´ y|β
¨ |x´ y|β´α

ď δβ ´ α sup
n1PN

|un1 ´ uj |β

ď δβ´α sup
n1PN

}un1 }β ¨ 2 ď
ε

3
.

For |x´ y| ě δ we have

|pu´ ujqpxq ´ pu´ ujq

|x´ y|α
ď δ´α}u´ uj}8 ă

ε

3
.

Therefore, we have

}u´ uj}α ď sup }u´ uj}8 ` |u´ uj |α ă
ε

3
`
ε

3
`
ε

3
“ ε. l
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3 Reformulation using variational formulations and
operator equations

3.1 Reformulation using variational formulations

Example 3.1.1 (Obtaining variational formulation from BVP)
Consider the linear second order boundary value problem with homogeneous Dirichlet
boundary conditions

$

&

%

´u2pxq ` cpxqu1pxq ` dpxqupxq “ fpxq, x P pa, bq,

upaq “ upbq “ 0,
(10)

where c, d P Cpra, bs;Rq. A classical solution to (10) is a function u P C2
ppa, bq;RqXCpra, bs;Rq.

1 Multiply (10) with a (yet to be specified) test function v and

2 integrate over the domain:
ż b

a

u2pxqvpxq ` cpxqu1pxqvpxq ` dpxqupxqvpxqdx “

ż b

a

fpxqvpxqdx

3 Integrate by parts in the highest order derivative.
ż b

a

u1pxqv1pxqdx´upxqv1pxq
ˇ

ˇ

b

x“a
`

ż b

a

cpxqu1pxqvpxq`dpxqupxqv dx “

ż b

a

fpxqvpxqdx

If vpaq “ vpbq “ 0 we obtain

ż b

a

u1pxqv1pxq ` cpxqu1pxqvpxq ` dpxqupxqvpxqdx “

ż b

a

fpxqvpxqdx. (11)

The equation (11) is well defined for e.g. u, v P H1
0 ppa, bq;Rq, c, d P L8ppa, bq;Rq,

f P L2ppa, bq;Rq (or L1).

Instead of finding a classical solution to (10) we now search a function u P V :“

H1
0 ppa, bq;Rq so that (11) holds for all v P V .

For sake of brevity we define the bilinear bilinearform

α : V ˆ V Ñ R, pu, vq ÞÑ

ż b

a

u1pxqv1pxq ` cpxqu1pxqvpxq ` dpxqupxqvpxqdx.

and

x f̃ , v y :“

ż b

a

fpxqvpxqdx

Then, f̃ is linear in v and bounded: With the Cauchy-Schwartz inequality (CS) and the
Poincaré-Friedrichs-inequality (PF) we obtain

| x f̃ , v y |
(CS)
ď }f}2}v}2

(PF)
ď C}f}2|v|1,2.

for a constant C “ b´a
π ą 0.

Similarly, for u, v P H1
0 ppa, bq;Rq, α fulfills

|αpu, vq|
(CS)
ď C p1 ` }c}0,8 ` }d}0,8q |u|1,2|v|1,2. (12)

for a constant C ą 0, hence it is bounded.
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3.1 Reformulation using variational formulations

Find u P V :“ H1
0 ppa, bq;Rq such that

αpu, vq “ x f̃ , v y @v P V.

Current Formulation of BVP (I)

Remark 3.1.2
1 We want to consider the same space V for solution and test function e.g to "test with

the solution" (see below).

2 We will write f P H´1ppa, bq;Rq instead of f̃ .

3 As we started out with a linear equation the bilinear form α is linear in u, too (it is
always linear in v by construction).

4 For homogeneous Dirichlet boundary conditions (DBCs) we always (need to) choose
a "zero-space".

5 When finding a solution to the variational formulation we have to be aware that this
might not make any sense in the classical sense.

Example 3.1.3 (Transforming inhomogeneous Dirichlet BCs)
Consider the boundary value problem

$

&

%

´u2pxq “ fpxq, x P pa, bq

upaq “ α, upbq “ β.

To obtain the variational formulation we write

´

ż b

a

u2pxqvpxqdx “

ż b

a

u1pxqv1pxqdx´ u1pxqvpxq

ˇ

ˇ

ˇ

ˇ

b

x“a

.

We could choose
V :“

␣

u P H1ppa, bq;Rq : upaq “ α, upbq “ β
(

,

but this is not a linear space since it does not contain the zero function.

Therefore we choose g P H1ppa, bq;Rq such that gpaq “ α and gpbq “ β and set ũ :“ u ´ g.
Because we are in one dimension, this g always exists and can be a line and is therefore
regular enough. In higher dimensions

this can be problematic:
Consider the unit circle
U with the boundary
conditions upxq “ 0 if
x ă 0 on δU and
upxq “ 1 if x ě 0 on δU .
Then, h must have a
very steep derivative in
the neighbourhood of
x “ 0. Therefore, we
require h P H

1
2 pδUq in

this case.

If u P H1ppa, bq;Rq with upaq “ α and upbq “ β consider ũ P H1
0 ppa, bq;Rq

and vice versa.

We set αpu, vq :“
şb

a
u1pxqv1pxqdx and x f, v y “

şb

a
fpxqvpxqdx.

Then, αpũ, vq “ αpu, vq ´αpg, vq. Hence if αpu, vq “ x f, v y then αpũ, vq “ x f, v y ´αpg, vq “:

x f̃ , v y and vice versa.

Our problem now reads

Find ũ P V :“ H1
0 ppa, bq;Rq such that

αpũ, vq “ x f̃ , v y @v P V.

Current Formulation of BVP (II)
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3.1 Reformulation using variational formulations

Example 3.1.4 (Transforming Neumann boundary condition)
Consider the boundary value problem

$

&

%

´u2pxq “ fpxq, x P pa, bq

u1paq “ α, u1pbq “ β.

Analogously to above we write

ż b

a

u1pxqvpxqdx` u1pxqvpxq

ˇ

ˇ

ˇ

ˇ

b

x“a
looooooomooooooon

“βvpbq´αvpaq

“

ż b

a

fpxqvpxqdx.

Thus we want to find u P H1ppa, bq;Rq (not H1
0 !) such that

αpu, vq :“

ż b

a

u1pxqv1pxqdx “

ż b

a

fpxqvpxqdx` αvpaq ´ βvpbq

for all v P H1ppa, bq;Rq. We observe that the variational formulation of this problem differs
from the last example by the fact that we consider V :“ H1ppa, bq;Rq instead of H1

0 ppa, bq;Rq.

For homogeneous Neumann boundary conditions we just search a u P H1ppa, bq;Rq such
that

ş

u1v1 “ x f, v y for all v P H1ppa, bq;Rq, while for homogeneous Dirichlet boundary
conditions we search a u P H1

0 ppa, bq;Rq such that
ş

u1v1 “ x f, v y for all v P H1
0 ppa, bq;Rq;

only the space differs. We will later see that if f is the Heaviside function, the Neumann
problem is not uniquely solvable, while the Dirichlet problem is.

Example 3.1.5 (Variational formulation of Robin BCs)
The weak formulation of the boundary value problem

$

’

’

&

’

’

%

´u2pxq ` cpxqu1pxq ` dpxqupxq “ fpxq, on pa, bq,

u1paq ` caupaq “ α,

u1pbq ` cbupbq “ β,

where c, d P L8ppa, bq;Rq, f P L2ppa, bq;Rq and ca, cb, α, β P R can be obtained as follows:

Multiply by v P H1ppa, bq;Rq and integrate (by parts):

LHS “

ż b

a

´u2pxqvpxqdx
loooooooooomoooooooooon

“:p‹q

`

ż b

a

cpxqu1pxqvpxq ` dpxqupxqvpxqdx,

where

p‹q “

ż b

a

u1pxqv1pxqdpxq ´ ru1pxqvpxqsbx“a

“

ż b

a

u1pxqv1pxqdpxq ´ rpβ ´ cbupbqqvpbq ´ pα ´ caupaqqvpaqs .

The variational formulation then is:
$

&

%

For f P L2ppa, bq;Rq find u P V :“ H1ppa, bq;Rq such that for all v P V ˚ we have
şb

a
u1v1 ` cu1v ` duv1 dx` cbupbqvpbq ´ caupaqvpbq “

şb

a
fv dx` βvpbq ´ αvpaq.
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3.1 Reformulation using variational formulations

Example 3.1.6 (Variational formulation of periodic BCs)
The weak formulation of the boundary value problem

$

’

’

&

’

’

%

´u2pxq ` cpxqu1pxq ` dpxqupxq “ fpxq, on pa, bq,

u1paq “ u1pbq,

upaq “ upbq,

where c, d P L8ppa, bq;Rq and f P L2ppa, bq;Rq can be obtained as follows:

Let V :“ tv P H1ppa, bq;Rq : vpaq “ vpbqu the space of periodic H1ppa, bq;Rq functions.

Taking the same steps as with Robin boundary conditions, this time we obtain

ru1pxqvpxqsbx“a “ u1pbqvpbq ´ u1paqvpaq “ pu1pbq ´ u1paqqvpaq “ 0.

Therefore, our variational formulation reads

For f P L2ppa, bq;Rq find u P V :“ H1ppa, bq;Rq such that
ż b

a

u1v1 ` cu1v ` duv1 dx “

ż b

a

fv dx.

for all v P V ˚.

Remark 3.1.7 In both of the former examples we could have also chosen f P H´1ppa, bq;Rq,
weakening the requirement f P L2.

Example 3.1.8 Let H be the Heaviside function. Consider the boundary value problem
$

&

%

´u2pxq “ 2Hpxq ` δ0pxq, on p´1, 1q

up´1q “ up1q “ 0.

We find the variational formulation

V :“ H1
0 p´1, 1q, αpu, vq :“

ż 1

´1

u1pxqv1pxqdx,

x f, v y :“ 2

ż 1

´1

Hpxqvpxqdx` x δ0, v y “ 2

ż 1

0

vpxqdx` vp0q.

Then, f P H´1ppa, bq;Rq is linear and we have

| x f, v y | ď 2}v}0,1 ` |vp0q| ď 2}v}0,2 ` }v}0,8
(PF)
ď C|v|1,2,

because v is absolutely continuous.

We can see that our solution is

Figure 16: The solution
u for x P r´1, 1s.upxq “

$

&

%

x` 1, if x P r´1, 0q,

1 ´ x2, if x P r0, 1s,

Then for v P H1
0 p´1, 1q we have

ż 1

´1

u1pxqv1pxqdx “

ż 0

´1

v1pxqdx` p´2q

ż 1

0

xv1pxqdx

“ vp0q ´ vp´1q ` 2

ż 1

0

vpxqdx´ 2xvpxq

ˇ

ˇ

ˇ

ˇ

1

x“0

“ vp0q ´ vp´1q ´ 2vp´1q ` 2

ż 1

0

vpxqdx.
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3.1 Reformulation using variational formulations

The solution is unique by the superposition principle. But we can also show it like this:
Let u, ũ be solutions and define w :“ u ´ ũ P H1

0 ppa, bq;Rq. Then for v “ w (this is the
aforementioned testing with the solution). Then, we have

αpw, vq “ αpu,wq ´ αpũ, wq “ x f, w y ´ x f, w y “ 0.

From this we obtain

0 “ αpw, vq “

ż b

a

w1pxqw1pxqdx “

ż b

a

|w1pxq|2 dx “ |w|21,2

hence w ” 0 in H1
0 ppa, bq;Rq.

For v P V we define the integral operator

A : V Ñ V ˚, xAu, v y :“ αpu, vq or Au :“ αpu, ¨q.

As we have seen in (12) we have

| xAu, v y | “ |αpu, vq| ď C|u|1,2|v|1,2 “ C}u}V }v}V .

Thus we have Au P V ˚ with

}Au}˚ “ sup
vPV
vı0

xAu, v y

}v}V
ď C}u}V

Since α is linear in its first argument, A is linear.

Our problem now reads

For f P V ˚ find u P V such that

Au “ f (in V ˚q.

Final Formulation of BVP (III)

Lemma 3.1.9 (Emmerich Lemma 3.4.5)
Let V be a real reflexive Banach space and a : V ˆ V Ñ R defined by A : V Ñ V ˚. Then

• A is linear if and only if a is bilinear.

• A is symmetric if and only if a is symmetric.

• if a is bilinear, A is bounded if and only if a is bounded.

• A is strongly positive if and only if a is strongly positive.

Remark 3.1.10 (Emmerich, remark 3.4.7) The restriction onto real spaces is not nec-
essary. If V is a complex Hilbert space, we replace bilinearity by sesquilinearity and instead
of strong positivity we require ℜpapv, vqq ě µ}v}2 for all v P V .

Example 3.1.11 (Tut, Weak solutions can be strong)
Let u P C2

ppa, bq;Rq X Cra, bs be a weak solution of

´u2pxq ` cpxqu1pxq ` dpxqupxq “ fpxq in pa, bq

equipped with homogeneous Dirichlet boundary conditions, where c, d, f P Cra, bs. Then u
is already a classical solution of the boundary value problem:
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3.1 Reformulation using variational formulations

Since u P C2
ppa, bq;Rq X Cra, bs, the point evaluation of u, u1, u2 is well defined. Since u is

weak solution,
ż b

a

u1v1 ` pcu1 ` duqv dx “ x f, v y

holds for all v P H1
0 ppa, bq;Rq Ą C8

0 ppa, bq;Rq. Since u is regular enough, we can integrate by
parts to obtain

0 “

ż b

a

p´u2 ` cu1 ` du´ fqv dx`
“

u1v
‰b

x“a
looomooon

“0

@v P C8
0 ppa, bq;Rq

The Fundamental theorem of the Calculus of Variations implies that

´u2 ` cu1 ` du´ f ” 0

for almost all x P pa, bq. But since all functions involved are continuous, the identity holds
everywhere.
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3.2 Linear variational problems with strongly positive bilinear form

3.2 Linear variational problems with strongly positive
bilinear form
definition 3.2.1 (Operator Properties)

Let α : V ˆ V Ñ R be a bilinear form. We call α

• symmetric symmetricif αpu, vq “ αpv, uq holds for all u, v P V .

• strongly positive strongly positivethere exists a µ ą 0 such that αpu, uq ě µ}u}2 for all u P V .

• positive positiveif αpu, uq ě 0 for all u P V .

• bounded boundedif there exists a β ą 0 such that αpu, vq ď β}u}}v} holds for all u, v P V .

Let A : V Ñ V ˚ be a linear operator. We call A

• symmetric symmetricif xAu, v y “ xAv, u y holds for all u, v P V .

• strongly positive strongly positiveif there exists a µ ą 0 such that xAu, u y ě µ}u}2 for all u P V .

• positive positiveif xAu, u y ě 0 for all u P V .

• bounded boundedif it maps bounded sets to bounded sets. Since A is linear, this is
equivalent to requiring that there exists a β ą 0 such that }Au}˚ ď β}u} holds for
all u P V .

Remark In the literature, strong positive is also called (strong) coercivity or strong ellipticity.

Lemma 3.2.2 (Boundedness of symmetric bilinear forms)
Let V be a Banach space and α : V ˆ V Ñ R a symmetric bilinear form. Then α is
bounded if and only if |αpu, uq| ď M}u}2 holds for some M ě 0.

Proof. " ùñ " is trivial.

" ðù ": Because α is symmetric we have

|αpu, vq| “

ˇ

ˇ

ˇ

ˇ

1

2
αpu, uq `

1

2
αpv, vq ´

1

2
αpu´ v, u´ vq

ˇ

ˇ

ˇ

ˇ

△‰

ď
M

2
p }u´ v}2

looomooon

ď2p}u}2`}v}2q

`}u}2 ` }v}2q ď
3M

2
p}u}2 ` }v}2q.

For }u} “ 1 “ }v} it follows that |αpu, vq| ď 3M for all u, v P V implying
ˇ

ˇ

ˇ

ˇ

α

ˆ

u

}u}
,
v

}v}

˙
ˇ

ˇ

ˇ

ˇ

ď 3M
L

ùñ |αpu, vq| ď 3M}u}}v}. l

Example 3.2.3 (from Physics: Minimising Energy Functional) Let a : V ˆ V Ñ R
be a symmetric bilinear form. We define the corresponding energy functional

J : V Ñ R, v ÞÑ
apv, vq

2
´ x f, v y,

where V is comprised of all the states v of a certain system and Jpvq gives its energy in that
state. Our goal is find minimisers of J .

If u is a minimiser, then "J 1puq “ 0" should hold. We aim to give meaning to that expression.
Let v P V . Then,

x J 1puq, v y “ lim
hÑ0

1

h
pJpu` hvq ´ Jpuqq
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3.2 Linear variational problems with strongly positive bilinear form

“ lim
hÑ0

1

h

ˆ

apu` hv, u` hvq

2
´ x f, u` hv y ´

apu, vq

2
` x f, u y

˙

“ lim
hÑ0

1

h

ˆ

hapu, vq `
h2

2
apv, vq ´ h x f, v y

˙

“ apu, vq ´ x f, v y
!

“ 0.

Hence the necessary condition J 1puq “ 0 is fulfilled if u is a variational solution of our
boundary value problem (Ñ DGL II B).

Theorem 3.2.1: Lax-Milgram (1954)

Let pV, p¨, ¨q, }¨}q be a (real) Hilbert space and A : V Ñ V ˚ a linear, strongly positive,
bounded operator. Then A is bijective.

Proof. As V is a Hilbert space, there is an isometric isomorphism ι̂ : V ˚ Ñ V , the Riesz
map, such that x f, v y “ pι̂pfq, vq and }f}˚ “ }ι̂pfq} for all f P V ˚ and all v P V .

Since A is strongly positive and bounded, there exist µ, β ą 0 such that

xAu, u y ě µ}u}2 and xAu, v y ď β}u}}v} @u, v P V.

Fix f P V ˚, choose τ ą 0 such that τ ă
2µ
β2 , i.e. 1 ´ 2µτ ` τ2β2 ă 1 and define

Φ: V Ñ V, v ÞÑ v ` τ ι̂pf ´Avq.

Then f “ Au if and only if Φpuq “ u. To use Banach’s Fixed Point Theorem it remains to
verify that Φ is a contraction: for u, v P V we have

}Φpuq ´ Φpvq}2 “ }u´ v ` τ ι̂pf ´Au´ f `Avq}2

“ }u´ v}2 ` 2τpu´ v, ι̂pApv ´ uqqq ` τ2}ι̂pApu´ vqq}2

“ }u´ v}2 ´ 2τpι̂pApu´ vqq, u´ vq ` τ2}ι̂pApu´ vqq}2

“ }u´ v}2 ´ 2τ xApu´ vq, u´ v y `τ2}Apu´ vq}2˚

ď }u´ v}2 ´ 2τµ}u´ v}2 ` τ2β2}u´ v}2

“ p1 ´ 2µτ ` τ2β2q
looooooooomooooooooon

ă1

}u´ v}2. l

Corollary 3.2.4 (Solution operator)
Under the above conditions the bijectivity of A implies the existence of a unique solution
u P V to the problem Au “ f for all f P V ˚ as well as the existence of the solution
operator solution operatorA´1 : V ˚ Ñ V , which is linear, bounded and strongly positive.

Proof. (Left as an exercise) By the Theorem of Lax-Milgram A is bijective, implying
the existence of the linear A´1. Its boundedness i.e follows from the inverse mapping theorem
but can be show with much more elementary means: For all f P V ˚ we have

µ}A´1pfq}2V ď xAA´1f,A´1f y “ x f,A´1f y ď }f}V ˚ }A´1f}V .

Finally, the strict positivity follows from

}f}2V ˚ “ }AA´1f}2V ˚ ď β2}A´1f}2V

ď
β2

µ
xAA´1f,A´1f y “

β2

µ
x f,A´1f y . l
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3.2 Linear variational problems with strongly positive bilinear form

Corollary 3.2.5 (Continuous dependence)
There exists a c ą 0 such that }A´1f} ď c}f}˚ for all f P V ˚, proving stability /
continuous dependence continuous

dependence
(because A is linear even Lipschitz dependence) on the right

hand side.

TODO: prove Lax-Milgram with Galerkin scheme

Proof. Let u, ũ P V be solutions to the right hand sides f, f̃ . Then, there exists a c ą 0

such that
}u´ ũ} “ }A´1pfq ´A´1pf̃q}

(L)
“ }A´1pf ´ f̃q} ď C}f ´ f̃}˚ l

Remark 3.2.6 (Energy Norm) Let pV, } ¨ }q be a real Banach space and A : V Ñ V ˚

linear, strongly positive and bounded operator.

• If A is symmetric, we define

p¨, ¨qA : V ˆ V Ñ R, pu, vq ÞÑ xAu, v y,

which is a inner product on V . The induced norm is given by }u}2A :“ pu, uqA :“ xAu, u y,
called the energy norm. Both norms are equivalent:

µ}u}2 ď xAu, u y “ }u}2A ď β}u}2. (13)

• If A is not symmetric we consider its symmetric part:

p¨, ¨qA : V ˆ V Ñ R, pu, vq ÞÑ
1

2
pxAu, v y ` xAv, u yq .

Proof. (My idea of how to simplify proof of Lax-Milgram if A is symmetric)
As pV, p¨, ¨qAq is a Hilbert space (due to the equivalence of the induced norms), there is an iso-
metric isomorphism ι̂ : V ˚ Ñ V , the Riesz map, such that x f, v y “ pι̂pfq, vqA “ xAι̂pfq, v y

for all f P V ˚ and all v P V , i.e. Aι̂ “ ι̂A “ id. Hence A is invertible. l

Lemma 3.2.7 (Laplacian fulfills Lax-Milgram conditions on H1
0)

Let V :“ H1
0 ppa, bq;Rq. Then

α : V ˆ V Ñ R, pu, vq ÞÑ

ż b

a

u1pxqv1pxqdx

defines a symmetric, strongly positive bounded bilinear form on V .

Proof. The symmetry and bilinearity is clear.
Strong positivity: For u P V we have

αpu, uq “

ż b

a

u1pxqu1pxqdx “

ż b

a

|u1pxq|2 dx “ |u|21,2. (14)

Boundedness: For u, v P V we have

|αpu, vq| ď

ż b

a

|u1||v1|dx
CS
ď }u1}0,2}v1}0,2 “ |u|1,2|v|1,2 (15)

so α is bounded with β “ 1. l
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3.2 Linear variational problems with strongly positive bilinear form

Consider
$

&

%

´u2pxq “ Hpxq, x P p´1, 1q,

up´1q “ 0 “ up1q,

where H is the Heaviside function. We consider V :“ H1
0 pp´1, 1q;Rq as above and de-

fine x f, v y :“
ş1

0
vpxqdx. Then f P V ˚ “ H´1pp´1, 1q;Rq; the linearity is clear and the

boundedness follows from

x f, v y “

ż 1

0

vpxqdx ď }v}0,1 ď c}v}0,2
PF
ď C|v|1,2

for all v P H1
0 pp´1, 1q;Rq, where c ą 0 exists by the continuous embedding L2pp´1, 1q;Rq ãÑL1pp´1, 1q;Rq,

so the problem is uniquely solvable by the Theorem of Lax-Milgram.

Example 3.2.8 (Nonuniqueness because of Neumann boundary conditions)
Now consider the same boundary value problem with homogeneous Neumann boundary
conditions

$

&

%

´u2pxq “ Hpxq, x P p´1, 1q,

u1p´1q “ 0 “ u1p1q.

We choose V “ H´1pp´1, 1q;Rq and define a and x f, ¨ y exactly as above. The only difference
to the Dirichlet problem above is the different norm. The bilinear form a is again bounded:
for all u, v P V we have

apu, vq
(15)
ď |u|1,2|v|1,2 ď }u}1,2}v}1,2.

But a is not strongly positive as the Poincaré-Friedrichs-Inequality does not hold on
H1ppa, bq;Rq: we have

apu, uq
(14)
“ |u|21,2,

which we can’t bound below by C}u}1,2. The bilinear form α is only positive: for u ” 1 P

H1pa, bqzH1
0 pa, bq we have

αpu, uq “

ż b

a

|u1pxq|2 “ 0

and }u}1,2 “ b´ a` 0 ą 0, so the inequality αpu, uq ě µ}u}21,2 is only fulfilled for µ “ 0. But
the problem is not uniquely solvable, as TODO

Thus the Theorem of Lax-Milgram can not be applied, as the seminorm | ¨ |1,2 is not
a norm on H1pp´1, 1q;Rq. Instead of H1ppa, bq;Rq we can consider H̃ :“ H1ppa, bq;Rq{ „,
where u „ 0 if and only if u is constant almost everywhere. Then pH̃, | ¨ |1,2q is a normed
space, as then | ¨ |1,2 is definite.

Another approach is to add a u to the left side, that is, we consider
$

&

%

´u2pxq ` upxq “ 0, x P pa, bq,

u1paq “ u1pbq “ 0

because then apu, vq “
şb

a
u1pxqv1pxq ` upxqvpxqdx and thus |apu, uq| “ }u}21,2.

Example 3.2.9 (Applications of the Lax-Milgram Theorem) 1 Consider the bound-
ary value problem

$

&

%

´u2pxq “ δ0pxq on p´1, 1q,

up´1q “ up1q “ 0.
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3.2 Linear variational problems with strongly positive bilinear form

Its variational formulation is given by V :“ H1
0 , x f, v y “ x δ0, v y “ vp0q. As

H1
0 pp´1, 1q;Rq ãÑ Cpr´1, 1s;Rq, the point evaluation and hence f P V ˚ is well defined,

bounded and linear:
| x f, v y | “ |vp0q| ď }v}8 ď C|v|1,2,

where C is the embedding constant.

Now, let A : V Ñ V ˚ be defined by

xAu, v y “

ż 1

´1

u1pxqv1pxqdx “ αpu, vq

for α : V ˆ V Ñ R, which is bilinear since A is linear. Furthermore, α is bounded: for
u, v P H´1

0 p´1, 1q

αpu, vq “

ż 1

´1

u1pxqv1pxqdx ď }u}0,2}v}0,2 “ |u|1,2|v|1,2.

This implies A is well defined and bounded:

xAu, v y ď |u|1,2|v|1,2 ùñ }Au}˚ ď }v}1,2 ùñ β “ 1.

Furthermore, a and A are strongly positive:

αpu, uq “ xAu, u y “

ż 1

´1

u1pxqu1pxqdx “

ż 1

´1

|u1pxq|2 dx “ |u|21,2.

This implies µ “ 1, meaning that the energy norm is equivalent to the } ¨ }1,2 norm! By
the Theorem of Lax-Milgram there exists a unique solution, which is upxq :“ 1

2 p1´|xq.

2 For f P L2p0, πq consider the linear second order imhomogeneous boundary value
problem with homogeneous Dirichlet boundary conditions

$

&

%

´u2pxq ´ upxq “ fpxq x P p0, πq,

up0q “ upπq “ 0.

The variational formulation is V :“ H1
0 p0, πq, x f, v y :“

şπ

0
fpxqvpxqdx (here we are

abusing notation, again: the f on the left hand side of the equation is the functional f̃
and the f on the right hand side a function!). Then f P H´1p0, πq. For u, v P V define

apu, vq :“

ż π

0

u1pxqv1pxq ´ upxqvpxqdx,

which is bilinear, well-defined and bounded:

|apu, vq|
△‰

ď

ż π

0

|u1pxqv1pxq| ` |upxqvpxq| dx
CS
ď |u|1,2|v|1,2 ` |u|0,2|v|0,2

PF
ď

˜

1 `

ˆ

π ´ 0

π

˙2
¸

|u|1,2|v|1,2 “ 2|u|1,2|v|1,2.

Due to the Poincaré-Friedrichs inequality, a is positive: for v P V we have

apv, vq “ |v|21,2 ´ }v}20,2
PF
ě |v|21,2 ´

π ´ 0

π
|v|21,2 “ 0.

But a is not strongly positive, as for v :“ sin P V we have

apv, vq “

ż π

0

cos2pxq ´ sin2pxqdx “ 0.

Indeed the problem is not uniquely solvable for f “ 0: the family pupxq :“ c sinpxqqcPR

solves the boundary value problem. For f ” 1, there is no solution.
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3.2 Linear variational problems with strongly positive bilinear form

Lemma 3.2.10 (Linear second order inhomogeneous boundary value problem)
Consider the linear second order inhomogeneous boundary value problem with homogeneous
Dirichlet boundary conditions

$

&

%

´u2pxq ` cpxqu1pxq ` dpxqupxq “ fpxq, x P pa, bq,

upaq “ 0 “ upbq

with f P H´1ppa, bq;Rq, c, c1, d P L8ppa, bq;Rq such that there is a D P R with

dpxq ´
1

2
c1pxq ě D ą ´

π2

pb´ aq2
.

for almost all x P pa, bq. Then the problem has a unique solution.

Proof. We have already shown that with V :“ H1
0 pa, bq that

xAu, v y :“ apu, vq :“

ż b

a

u1pxqv1pxq ` cpxqu1pxqvpxq ` dpxqupxqvpxqdx

for u, v P V is linear and bounded. It remains to show the strong positivity of a. For u P V

we have (with partial integration)

apu, uq “ |u|21,2 `

ż b

a

cpxqu1pxqupxq ` dpxq|upxq|2 dx

“ |u|21,2 `

ż b

a

ˆ

dpxq ´
1

2
c1pxq

˙

|upxq|2 dx

ě |u|1,2 `D}u}20,2

$

’

’

’

&

’

’

’

%

ě |u|21,2, if D ě 0,
PF
ě

ˆ

1 `D
pb´ aq2

π2

˙

loooooooooomoooooooooon

ą0

|u|21,2, if D ă 0

“ min

ˆ

1, 1 `D
pb´ aq2

π2

˙

looooooooooooooomooooooooooooooon

ą0

|u|21,2. l

Example 3.2.11 (Tut, Sturm–Liouville Problem)
Let p, q P Cpra, bsq. Furthermore let there be some µ ą 0 such that ppxq ě µ for all x P ra, bs

and minxPra,bs qpxq ą ´
π2µ

pb´aq2
.

1 Then for each f P H´1pa, bq there exists a unique weak solution u P H1
0 pa, bq of the

Sturm–Liouville problem

´pppxqu1pxqq1 ` qpxqupxq “ fpxq

equipped with homogeneous Dirichlet boundary conditions:

The weak formulation is
$

&

%

Find u P H1
0 pa, bq such that

şb

a
ppxqu1pxqv1pxq ` qpxqupxqvpxqdx “ x f, v y @v P H1

0 pa, bq.

Now define A : H1
0 pa, bq Ñ H´1pa, bq by xAu, v y “

şb

a
pu1v1 ` quv, which is linear.

To see that A is bounded consider

| xAu, v y |
(H)
ď }p}8|u|1,2|v|1,2 ` }q}8}u}0,2}v}0,2

PF
ď
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3.2 Linear variational problems with strongly positive bilinear form

ď maxp}p}8,
π2

pb´ aq2
}q}8q|u|1,2|v|1,2

which implies

}Au}H´1 “ sup
v‰0

| xAu, v y |

|v|1,2
ď maxp}p}8, }q}8q}u}1,2

}v}1,2

|v|1,2

(PF)
ď C ¨ maxp}p}8, }q}8q}u}1,2

Furthermore, A is strongly positive:

xAu, u y “

ż b

a

pu1q2p` qu2 dx ě µ|u|21,2 ` min
xPra,bs

qpxq}u}20,2

(PF)
ě

ˆ

µ´
pb´ aq2

2
min
xPra,bs

qpxq

˙

loooooooooooooooomoooooooooooooooon

“:cą0

|u|21,2 ě c̃}u}21,2

2 If p P C1
ra, bs and f P Cra, bs then u P C2

ra, bs: We have

ż b

a

pu1v1 dx “

ż b

a

fv ´ quv dx

“ ´

ż b

a

ˆ
ż x

a

fpξq ´ qpξqupξqdξ

˙

v1pxqdx.

The corollary from the Fundamental Theorem of the Calculus of Variations implies
that

ppxqu1pxq “

ż x

a

fpξq ´ qpξqupξqdξ ` C

almost every for some C. Diving by ppq ą 0 gives that u1 is continuously differentiable
since p P C1. Hence u P C2

ra, bs and analogously to the example 3.1.11 we have show
its a classical solution.
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3.3 Variational problems with a strongly monotone operator

3.3 Variational problems with a strongly monotone op-
erator

28.05.19

definition 3.3.1 ((strongly) monotone operator)
Let pV, } ¨ }q be a real Banach space. An operator A : V Ñ V ˚ is

• Lipschitz continuous Lipschitz
continuous

if there exists a β ą 0 such that

}Au´Av}˚ ď β}u´ v} @u, v P V.

• monotone monotoneif xAu´Av, u´ v y ě 0 for all u, v P V .

• strongly monotone strongly monotoneif there exists a µ ą 0 if

xAu´Av, u´ v y ě µ}u´ v}2 @u, v P V.

Remark 3.3.2 Let V :“ R “ R˚ and A : R Ñ R be monotone in the above sense. For all
u, v P R we have

0 ď xAu´Av, u´ v y “ pApuq ´Apvqqpu´ vq.

Then u ą v implies Apuq ´Apvq ě 0, i.e. Apuq ě Apvq and u ă v implies Apuq ´Apvq ď 0,
i.e. Apuq ď Apvq. Thus, in operators terms, (strongly) monotone is analogous to (strictly)
monotonically increasing.

Remark 3.3.3 Let A be linear. Then (cf. DGL I)

1 A Lipschitz continuous ðñ A bounded and

2 A strongly monotone ðñ A strongly positive

hold.

Theorem 3.3.1: Zarantonello (1960)

Let pV, p¨, ¨q, } ¨ }q be a (real) Hilbert space and A : V Ñ V ˚ Lipschitz continuous
and strongly monotone. Then A is bijective.

Remark 3.3.4 Let V :“ R and f be Lipschitz continuous and strongly monotone as in
the Theorem above. Then f : V Ñ V ˚ is (Lipschitz-)continuous and strongly monotonically
increasing and thus injective. Additionally, the strong monotonicity implies (by setting
v “ 0)

µu2 ď pfpuq ´ fp0qq ¨ u

for some µ ą 0. A case distinction reveals

fpuq

$

&

%

ě µu` fp0q, if u ą 0,

ď µu` fp0q, if u ă 0

implying fpuq
uÕ8

ÝÝÝÑ 8 and fpuq
uŒ´8

ÝÝÝÝÑ ´8, implying the surjectivity and therefore the
bijectivity of f .
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3.3 Variational problems with a strongly monotone operator

Proof. Let ι̂ : V ˚ Ñ V be the Riesz isomorphism and define

Φ: V Ñ V, v ÞÑ v ` τ ι̂pf ´Avq,

where τ ą 0 is chosen such that 1 ´ 2τµ` τ2β2 ă 1.

Analogously to the proof of the Theorem of Lax-Milgram we only need to show that Φ is
a contraction: for u, v P V we have

}Φpuq ´ Φpvq}2 “ }u´ v ` τ ι̂pAv ´Auq}2

“ }u´ v}2 ` 2τ pι̂pAv ´Auq, u´ vq ` τ2}ι̂pAu´Avq}2

“ }u´ v}2 ´ 2τ xAu´Av, u´ v y `τ2}Au´Av}2˚

ď p1 ´ 2τµ` τ2β2q
looooooooomooooooooon

ă1

}u´ v}2. l

Example 3.3.5 (Boundary value problem in divergence form with DBCs)
Consider the divergence form divergence formof a boundary value problem

$

&

%

´pΨp|u1pxq|qu1pxqq1 ` cpxqu1pxq ` dpxqupxq “ fpxq on pa, bq,

upaq “ upbq “ 0.
(16)

We assume f P L2pa, bq, c, c1, d P L8pa, bq and that Ψ: r0,8q Ñ R is continuous and that
there exists m,M ą 0 such that

1 m ď |Φptq| ď M for all t P r0,8q,

2 |Ψptq ¨ t´ Ψpsq ¨ s| ď M |t´ s| for all s, t ě 0 and

3 Ψptq ¨ t´ Ψpsq ¨ s ě mpt´ sq for all t ě s ě 0.

Then, the function t ÞÑ Ψptq ¨ t is Lipschitz-continuous, strictly monotonically increasing
and the function Ψ is bounded from above by M and from below by m (take s “ 0 in 3 ).

To obtain a variational formulation we choose V :“ H1
0 pa, bq to get

ż b

a

Ψp|u1|qu1v1 ` cu1v ` duv dx “

ż b

a

fv dx

for v P V .

Theorem 3.3.2: TODO

Under the above condition if the weak derivative c1 exists, c1 P L8pa, bq holds and
there exists a d̂ P

”

´ π2

pb´aq2
, dpxq ´

c1
pxq

2

ı

for almost all x P ra, bs, the the problem (16)
is unique solvable in H1

0 pa, bq.

Proof. We set

A : V Ñ V ˚, xAu, v y “

ż b

a

Ψp|u1pxq|qu1pxqv1pxq ` cpxqu1pxqvpxq ` dpxqupxqvpxqdx.

Then, A is Lipschitz continuous since for v, w P V

|xAu´Aw, v y| ď

ż b

a

ˇ

ˇΨp|u1|qu1 ´ Ψp|w1|qw1
ˇ

ˇ |v1| ` |c||u1||v| ` |d||u||v|dx
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3.3 Variational problems with a strongly monotone operator

(CS)
ď

˜

ż b

a

ˇ

ˇΨp|u1pxq|qu1pxq ´ Ψp|w1pxq|qw1pxq
ˇ

ˇ

2
dx

¸
1
2

}v1}0,2

` }c}0,8}u1 ´ w1}0,2}v}0,2 ` }d}0,8}u´ w}0,2}v}0,2.

holds. We now estimate the remaining integral term.

Case 1: u1pxq, w1pxq ě 0.

ˇ

ˇΨp|u1|qu1 ´ Ψp|w1|qw1
ˇ

ˇ

2
ď M |u1pxq ´ w1pxq|

Case 2: W.l.o.g u1pxq ě 0 ě w1pxq.

ˇ

ˇΨp|u1|qu1 ´ Ψp|w1|qw1
ˇ

ˇ

△‰

ď
ˇ

ˇΨp|u1|q
ˇ

ˇ |u1| ´
ˇ

ˇΨp|w1|q
ˇ

ˇ |w1|

2
ď Mu1pxq ´Mw1pxq “ M |u1pxq ´ w1pxq|.

Therefore,

|xAu´Aw, v y| ď M}u1 ´ w1}0,2}v1}0,2 ` }c}0,8}u1 ´ w1}0,2}v}0,2

` }d}0,8}u´ w}0,2}v}0,2

(PF)
ď C pM ` }c}0,8 ` }d}0,8q |u´ v|1,2|v|1,2.

Thus

}Au´Av}´1,2 “ sup
vPH1

0 pa,bq

v‰0

xAw ´Av, v y

|v|1,2

ď CpM ` }c}8 ` }d}8q|u´ w|1,2,

implying that A is Lipschitz continuous.

It remains to show the strong monotonicity of A. For v, w P V we have

xAu´Aw, u´ v y “

ż b

a

`

Ψp|u1pxq|qu1pxq ´ Ψp|w1pxq|qw1pxq
˘

pu1pxq ´ w1pxqqdx

`

ż b

a

cpxqpupxq ´ wpxqq1pupxq ´ wpxqqdx`

ż b

a

dpxqpupxq ´ wpxqq2 dx.

The chain rules gives pu´ wq1pu´ wq “
ppu´wq

2
q

1

2 . Partial integration yields

ż b

a

cpu´ wq1pu´ wqdx “ ´
1

2

ż b

a

c1pu´ wq2 dx.

Therefore, with z :“
şb

a
pΨp|u1|qu1 ´ Ψp|w1|qw1q pu1 ´ w1qdx we obtain

xAu´Aw, u´ v y “ z `

ż b

a

ˆ

d´
c1

2

˙

pu´ wq2 dx

ě z ` d̂}u´ w}20,2.dx.

Now, we estimate pΨp|u1|qu1 ´ Ψp|w1|qw1q pu1 ´ w1q.

Case 1: u1pxq ě w1pxq ě 0. We have

ypxq :“
`

Ψp|u1pxq|qu1pxq ´ Ψp|w1pxq|qw1pxq
˘

pu1pxq ´ w1pxqq ě m|u1pxq ´ w1pxq|2.

45



3.3 Variational problems with a strongly monotone operator

The cases w1pxq ě u1pxq ě 0, u1pxq ď w1pxq ď 0 and w1pxq ď u1pxq ď 0 are analogous to case
1.

Case 2: w.l.o.g u1pxq ď 0 ď w1pxq. Since Ψptq ě m for all t ě 0 we have

y “ Ψp|u1|q u1
loomoon

ď0

pu1 ´ w1q
looomooon

ď0

´Ψp|w1|q w1
loomoon

ě0

pu1 ´ w1q
looomooon

ď0

ě mu1pu1 ´ w1q ´ w1pu1 ´ w1q “ mpu1 ´ w1q2.

In conclusion we notice that if d̂ can be chosen non negatively, we have

pAu´Aw, u´ wq ě m|u´ w|21,2 ` d̂}u´ w}20,2
looooomooooon

ě0

ě m|u´ w|21,2.

If not, we have

pAu´Aw, u´ wq ě m|u´ w|21,2 ` d̂}u´ w}20,2

(PF)
ě

ˆ

m` d̂
π2

pb´ aq2

˙

loooooooooomoooooooooon

ą0

|u´ w|21,2. l
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4 Galerkin-Schemes and Finite Elements

4.1 Galerkin schemes and Galerkin bases
03.06.19In the following, let pV, } ¨ }q be a Banach space.

definition 4.1.1 (Galerkin scheme and Galerkin basis)
The sequence pVn Ă V qnPN of finite-dimensional subspaces is a Galerkin scheme Galerkin schemeif it
is "complete in the limit", that is, the approximation error vanishes:

lim
nÑ8

distpVn, vq “ 0 @v P V.

A pairwisely linearly independent sequence pΦkqkPN Ă V is called Galerkin basis Galerkin basisif
pVnqnPN is a Galerkin scheme, where Vn :“ spanppΦkqnk“1.

Remark 4.1.2 We have V “
Ť

nPN Vn. The Vn must not be nested.

Example 4.1.3 (Galerkin scheme and Galerkin basis)
The real polynomials of degree less than or equal to n P N are a Galerkin-Base of CpR,Rq.
The same is true for the trigonometric polynomials in L2, where the trigonometric monomials
form a Galerkin-Base.

Theorem 4.1.1: Existence of Galerkin basis

Every separable space has a Galerkin basis.

Proof. Let V be a separable space. Then there exists a countable dense subset pΨiqiPN.
We set Φ1 :“ Ψ1 and V1 :“ spanpΦ1q. We iteratively define Φk`1 “ Ψk with k “ mintℓ P

N : wℓ R Vnu and Vn`1 :“ spanpVn Y tΦn`1q. For v P V and ε ą 0 there exists a Ψi with
}v ´ Ψi} ă ε. For large enough m we thus have Ψi P Vm and hence distpv, Vmq ă ε.

Remark 4.1.4 (Notation) As in practice the Vn arise from some discretisation process
with a parameter h Œ 0, we will write Vh instead of Vn.

Example 4.1.5 (Discretising bilinear form problems)
We consider an abstract problem

$

&

%

for f P V ˚ find u P V such that

apu, vq “ x f, v y @v P V
(p)

The restriction f |Vh
“: fVh

: Vh Ñ R is also linear and bounded since the norm on Vh is the
norm on V . Therefore fVn P V ˚

h . Hence we may consider the discretized problem
$

&

%

find uh P Vh such that

a|VhˆVh
puh, vhq “ x fVh

, vh y @vh P Vh.
(pD)
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4.1 Galerkin schemes and Galerkin bases

Example 4.1.6 (Discretising operator problems)
Consider the operator problem

$

&

%

for f P V ˚ find u P V such that

Au “ f in V ˚.
(p̃)

We have Vh Ă V and thus V ˚ Ă V ˚
h . Then, Ph : Vh Ñ V defined by Phvh “ vh is called

prolongation operator prolongation
operator

. Its dual operator, the reconstruction operator, P˚
h : V ˚ Ñ V ˚

h is
defined by

xP˚
h g, vh y :“ x g, Phvh y, g P V ˚, vh P Vh.

This means that P˚
h g is the restriction of g to Vh. Then,

αpuh, vhq “ xAPhuhPh, vh y “ xP˚
hAPhuh, vh y

holds. Here the discretized problem reads
$

&

%

find uh P Vh such that

P˚
hAPhuh “ P˚

h f, in V
˚
h

(p̃D)

Theorem 4.1.2: Lemma of Céa (1964)

Let V be a real Hilbert space and Vh Ă V a closed subspace (e.g. a finite dimensional

subspace). If a : V ˆ V Ñ R is bilinear, strongly positive and bounded, then the
restriction a|VhˆVh

: Vh ˆ Vh Ñ R is, too. Let f P V ˚ and u P V be the solution of

apu, vq “ x f, v y @v P V. (17)

Then there exists a solution uh P Vh of

apuh, vhq “ x f, vh y @vh P Vh. (18)

Then we have
}u´ uh} ď

β

µ
inf
vhPVh

}u´ vh} “
β

µ
distpu, Vhq,

where β and µ come from Definition 3.2.1.

Figure 17: The sub-
space solution uh is the
projection of u onto
the subspace Vh in re-
spect to the inner prod-
uct ap¨, ¨q. [Source:
Wiki/Céa’s lemma]

Proof. By the Theorem of Lax-Milgram both problems have unique solutions u P V and
uh P Vh, respectively. For any vh P Vh we have

apuh, vhq “ x f, vh y “ apu, vhq.

Hence apu´ uh, vhq “ 0 for all vh P Vh, i.e u´ uh Ka Vh with respect to the inner product
ap¨, ¨q (cf. diagram). This relation is called Galerkin orthogonality.

Hence for all vh P Vh we have

µ}u´ uh}2 ď apu´ uh, u´ uhq “ apu´ uh, uq ´ apu´ uh, uhq

“ apu´ uh, uq ´ 0 “ apu´ uh, uq ´ apu´ uh, vhq

“ apu´ uh, u´ vhq ď β}u´ uh}}u´ vh}. l
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4.1 Galerkin schemes and Galerkin bases

Lemma 4.1.7 (Better constant if a is symmetric)
If a is symmetric, then we can use

b

β
µ instead of β

µ in the above inequality.

This constant is better, as we always have β ě µ.

Proof. As a is bilinear, bounded, symmetric and strongly positive, it is an inner product
on V and } ¨ }2a :“ ap¨, ¨q is a norm on V equivalent to } ¨ } (cf. (13)) satisfying the Cauchy-
Schwarz inequality apv, wq ď }v}a}w}a for all v, w P V . By the Galerkin orthogonality
(G) we thus have

}u´ uh}2 “ apu´ uh, u´ uhq
(G)
“ apu´ uh, u´ vhq

CS
ď }u´ uh}a}u´ vh}a

and hence }u ´ uh}a ď }u ´ vh}a for all vh P Vh. Hence we can modify the proof of the
Lemma:

µ}u´ uh}2 ď apu´ uh, u´ uhq “ }u´ uh}2a ď }u´ vh}2a ď β}u´ vh}2

and thus }u´ uh} ď

b

β
µ}u´ vh} for all vh P Vh. l

Remark 4.1.8 (Discrete solutions approximate solution)
Let pVnqnPN be a Galerkin-scheme. Then we have distpv, Vhq

hÑ0
ÝÝÝÑ 0 for all v P V . Cea’s

Lemma implies that }u´ uh}
hŒ0

ÝÝÝÑ 0. But how fast is the convergence?
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4.2 The Finite Elements Method

4.2 The Finite Elements Method
Consider

$

&

%

´u2 “ f on p0, 1q,

up0q “ up1q “ 0.
(19)

Then V :“ H1
0 p0, 1q, a : V ˆ V Ñ R, pu, vq ÞÑ pu, vq1,2 and x f, v y :“

ş1

0
fv dx for v P V is its

variational formulation.

We now apply the finite elements method finite elements
method

(FEM) to find a Galerkin scheme. For m P N
we set the step size h :“ 1

m`1 and xi :“ i ¨ h as the partition of the interval r0, 1s for
i P t0, . . . ,m` 1u.

For i P t1, . . . ,mu define

Φipxqphq :“

$

’

’

&

’

’

%

1
h px´ xi´1q, if x P rxi´1, xiq,

1
h pxi`1 ´ xq, if x P rxi, xi`1s,

0, else,

which fulfill Φjpxiq “ δi,j and

Φ
phq

0 pxq :“
x1 ´ x

h
1r0,x1spxq, Φ

phq

m`1pxq :“
x´ xm
h

1rxm,1spxq.

Figure 18: The hat
function Φi with height
1 in blue. [Source:
Wiki/Céa’s lemma]

We set Vh :“ span ppΦkqmk“1q Ă H1
0 p0, 1q (we discard Φ

phq

0 and Φ
phq

m`1 because of the homoge-
neous Dirichlet boundary conditions) and show that they form a Galerkin basis.

The discretised problem reads: find a uh P Vh such that

apuh, vhq “ x f, vh y @vh P Vh.

As tΦ
phq

1 , . . . ,Φ
phq
m u form a basis of Vh and by linearity of apun, ¨q and x f, ¨ y the discretised

problem is equivalent to

apuh,Φ
phq

i q “ x f,Φ
phq

i y @i P t1, . . . ,mu.

As tΦ
phq

1 , . . . ,Φ
phq
m u form a basis of Vh, we can write the discretised solution uh P Vh we are

searching for as

uh “

m
ÿ

j“1

u
phq

i Φ
phq

i , ū
phq

i P R @i P t1, . . . ,mu.

In order to find uh, we only need to find the coefficients pū
phq

i qmi“1. The problem is thus
equivalent to: find ūphq :“ pū

phq

i qmi“1 P Rm such that

m
ÿ

j“1

u
phq

j apΦ
phq

j ,Φ
phq

i q “ x f,Φ
phq

i y @i P t1, . . . ,mu

by the linearity of ap¨,Φiq.

With Ah :“ papΦ
phq

j ,Φ
phq

i qqmi,j“1 P Rmˆm, fh :“ px f,Φ
phq

i yqmi“1 P Rm. We therefore have to
solve the linear problem

Ahu
phq “ fh

in Rm
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4.2 The Finite Elements Method

The matrix Ah has a particularly nice structure: for i, j P t1, . . . ,mu we have

pAhqi,j “ apΦ
phq

j ,Φ
phq

i q “

ż 1

0

Φ
phq

j
1pxqΦ

phq

i
1pxqdx “ 0

for i ă j ´ 1 or i ą j ` 1 since supppΦ
phq

j
1q “ rxj´1, xj`1s and supppΦ

phq

i
1q “ rxi´1, xi`1s.

Hence Ah is a tridiagonal matrix:

Ah “
1

h

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 . . . 0

´1 2 ´1
. . .

...

0 ´1
. . . . . . 0

...
. . . . . . 2 ´1

0 . . . 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

which is even strictly diagonally dominant.

The functions ppΦ
phq

i qmi“1qhą0 are not a Galerkin basis, but one can instead consider
pV2mqmPN. How fast does puhqhą0 converge? By Cea’s lemma, we have the following bound
on the approximation error

|u´ uh|1,2 ď distpu, Vhq,

as β “ µ “ 1. We will now bound that approximation error by a interpolation error.
11.06.19

definition 4.2.1 (Interpolation operator)
We call

Ih : V Ñ Vh, u ÞÑ

m
ÿ

j“1

upxiqΦi

the interpolation operator.
v

Ihv

x1 x2 x3 x4 x5x0

Figure 19: The interpo-
lation operatorRemark 4.2.2 Ih is well-defined since v P H1

0 pa, bq
c

ãÑ Cpra, bsq and also linear.

As Ihu P Vh, we have
|u´ uh|1,2 ď distpu, Vhq ď |u´ Ihu|1,2

looooomooooon

Interpolation
error

.

Theorem 4.2.1: Interpolation Error: Linear FEM is complete in
the limit

The sequence of (linear) FEM spaces pVhqhPp0,1q with an equidistant grid is a Galerkin

scheme in V , that is, |u ´ Ihu|1,2
hŒ0

ÝÝÝÑ 0. For each m P N, h :“ b´a
m`1 and v P

H1
0 pa, bq XH2pa, bq we have

}v ´ Ihv}1,2 ď ch}v}2,2 (linear convergence rate)

}v ´ Ihv}0,2 ď ch2}v}2,2. (quadratic convergence rate)

Remark 4.2.3 The hat functions are not a Galerkin basis since they are not included in
each other.

Proof. 1 We show that Ih is bounded. We see that for x P rxi´1, xis and h P p0, 1q we
have due to the support of the hat functions

pIhvqpxq “ vpxi´1q `
x´ xi´1

2

`

vpxiq ´ vxi´1

˘
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4.2 The Finite Elements Method

and
pIhvq1pxq “

1

h

`

vpxiq ´ vxi´1

˘

hold. For fixed h “ b´a
m`1 we have

|Ihpvq|
2
1,2 “

ż b

a

|pIhpvqq1pxq|2 dx

“

m`1
ÿ

i“1

ż xi

xi´1

1

h2
`

pvpxiq ´ vpxi´1q
˘2

dx

FTOC
“

m`1
ÿ

i“1

1

h2

ż xi

xi´1

˜

ż xi

xi´1

v1pξqdξ

¸2

dx

(H)
ď

�
��1

h2

m`1
ÿ

i“1

��h
2

ż xi

xi´1

pv1pξqq2 dξ “ |v|21,2.

Hence }Ih}LpV,Vhq ď 1 holds.

2 We show the first inequality. Let v P H1
0 XH2. Then

|v ´ Ihv|
2
1,2 “

m`1
ÿ

i“1

ż xi

xi´1

`

v1pxq ´
1

h

`

vpxi´1q ´ vpxiq
˘˘2

dx

“

m`1
ÿ

i“1

ż xi

xi´1

˜

1

h

ż xi

xi´1

v1pxq ´ v1pξqdξ

¸2

dx

“
1

h2

m`1
ÿ

i“1

ż xi

xi´1

˜

ż xi

xi´1

ż x

ξ

v2pφqdφdξ

¸2

dx

(H?)
ď

h

h2

m`1
ÿ

i“1

ż xi

xi´1

ż xi

xi´1

˜

ż ξ_x

ξ^x

v2pφqdφ

¸2

dξ dx

ď
�
��h
2

h2

ż xi

xi´1

ż xi

xi´1

ż xi

xi´1

|v2pφq|2 dφdξ dx “ h2|v2|20,2

holds.

3 We show that pVhqhPp0,1q is a Garlerkin scheme. Let v P H1
0 pa, bq “ C8

0 pa, bq
|¨|1,2 and

ε ą 0. Then there exists a ψ P C8
0 pa, bq such that

|v ´ ψ|1,2 ă
ε

3

and

|v ´ Ihv|1,2
(L)
ď |v ´ ψ|1,2 ` |ψ ´ Ihψ|1,2 ` |Ihpψ ´ vq|1,2

ď
ε

3
` h}ψ}2,2 ` |ψ ´ v|1,2

ex.
ď

2ε

3
` h}ψ}2,2 ă ε.

for h sufficiently small (h P

´

0, ε
3}ψ}2,2

¯

). Hence for all ε ą 0 there exists a m P N such

that h “ b´a
m`1 and distpV, Vhq ď |v ´ Ihv|1,2 ă ε for all m ě m0.

Since by Céa’s lemma we have

}u´ un}V
loooomoooon

discretization
error

ď
β

µ
distpu, Vnq

loooooomoooooon

approximation
error

ď
β

µ
}v ´ Ihv}V
looooomooooon

interpolation
error

,

we get uh
hÑ0

ÝÝÝÑ u in V . l

52



4.2 The Finite Elements Method

Corollary 4.2.4 (todo)
Let pVhqhPp0,1q be defined as above and u P H1

0 pa, bq as the weak solution to (19). Then
the sequence puhqh of FEM solutions converges to u with respect to } ¨ }V . If furthermore
u P H1

0 pa, bq XH2pa, bq, then
}u´ uh} ď ch}u}2,2

holds for all h P p0, 1q.

Remark 4.2.5 The regularity assumption v P H1
0 pa, bq XH2pa, bq will be fulfilled in d “ 1

or suitable assumptions in the domain (Ñ later). For f P L2pa, bq we have

}u}2,2 ď c}f}0,2

How does the error behave in the L2-norm? By the Poincaré-Friedrichs-inequality we
have

}u´ uh}0,2
PF
ď c|u´ uh|1,2 ď ch}u}2,2.

Hence the error converges at with the same rates as in H1
0 .

Can we get a better rate?

Theorem 4.2.2: Quadratic convergence in L2

Under the above assumptions if u P H1
0 pa, bq XH2pa, bq then

}u´ uh}0,2 ď ch2}u}2,2

holds for all h P p0, 1q.

Proof. (Aubin-Nitsche Trick) Let u P V , uh P Vh as above. Consider the "dual
problem"

$

&

%

Find w P H1
0 pa, bq such that

αpu, vq “ xu´ uh, v y @v P V
(V 1)

Using the theorem of Lax-Milgram we obtain a unique solution w P H1
0 pa, bq to (V 1) and

by the estimate from above
}w}2,2 ď C}u´ uh}0,2

We test with v “ e :“ u´ uh and obtain

}u´ uh}20,2 “ }e}20,2 “ pe, eq0,2 “ x e, e yV ˚ˆV “ αpe, wq

“ αpe, wq ´ αpe, vnq
looomooon

“0 p‹q

“ αpe, w ´ vhq ď β|e|1,2|w ´ vh|1,2

ď βch}u}1,2|w ´ vh|1,2,

where p‹q refers to Galerkin orthogonality, i.e. αpu´ uh, vhq “ 0 for all vh P Vh by choice
of uh.

Taking the infimum over all vh P Vh yields

}u´ uh}0,2 ď cβh}u}2,2 distpw, Vhq ď cβh}u}2,2}w ´ Ih}1,2

ď cβh}u}2,2}ch}w}2,2 ď cβh2}u}2,2}u´ uh}0,2.

Dividing by }u´ uh}0,2 yields the statement. l
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5 Boundary value problems in multiple space
dimensions

5.1 Multidimensional Sobolev spaces and weak deriva-
tives

18.06.19We replace the interval pa, bq with a open (and thus measurable) connected set Ω Ă Rd.
Analogously to the first section we define

LppΩq :“

"

u : Ω Ñ R : u measurable }u}
p
0,p :“

ż

Ω

|upxq|p dx ă 8

*

,

which is a Banach space for p P r1,8s, separable for p P r1,8q and reflexive for p P p1,8q.
If e.g. Ω is bounded, then LqpΩq ãÑLppΩq for q ě p and thus W k,qpΩq ãÑW k,ppΩq for k P N
(cf. Definition later). Analogously we define If Ω is bounded, we can

equivalently write
u|K P L1

pKq for all
K Ă Ω such that
K Ă Ω.

L1
locpΩq :“ tu : Ω Ñ R measurable : u|K P L1pKq @K Ă Ω compactu

and If Ω is bounded, supppuq

is always compact.C8
0 pΩq :“ tu P C8

pΩq : supppuq Ă Ω compactu.

We also write K ĂĂ Ω for a compact subset of Ω.

Notation (Multiindices). Let α :“ pα1, . . . , αdq P Nd and β :“ pβ1, . . . , βdq P Nd, where
N includes 0. Then α ` β :“ pαk ` βkqdk“1 and |α| :“

řd
k“1 αk and α! :“

śd
k“1pαk!q. For

h “ ph1, . . . , hdq P Rd we set hα :“
śd
k“1 h

αk

k .
Furthermore, we define α ď β : ðñ αk ď βk @k P t1, . . . , du and Dα :“ Bα :“

śd
k“1 Bαk

xk

and Bαk
xk

:“ B
αk

Bx
αk
k

:“ B
αk

B
αk
k

.

Example 5.1.1 (Multiindices)
Consider d “ 3. Then Dp1,0,0q “ Bx1

, Dp1,1,0q “ Bx1
Bx2

and Dp2,0,0q “ B2
x1

.

We use gradpuq “ ∇u “ pBx1
u, . . . , Bxd

uqT for the gradient of u and divpuq :“ ∇ ¨ u “

Bx1
u ` . . . ` Bxd

u for the divergence of u. Then divpgradpuqq “: ∆u “ B2
x1
u ` . . . ` B2

xd
u is

the Laplace operator applied to u.

definition 5.1.2 (multidimensional weak derivative)
Let α P Nd and u, v P L1

locpΩq. If
ż

Ω

upxqDαφpxqdx “ p´1q|α|

ż

Ω

vpxqφpxqdx

holds for all φ P C8
0 pΩq, then v is called the α-th weak derivative of u and we write

Dαu “ v.

The α-th weak derivative is uniquely defined because the
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5.1 Multidimensional Sobolev spaces and weak derivatives

Theorem 5.1.1: Fundamental Lemma of the Calculus of Varia-
tions

Let v P L1
locpΩq. If

ż

Ω

vpxqφpxqdx “ 0

for all φ P C8
0 pΩq, then v “ 0 almost everywhere.

Proof. Let u P L1
locpΩq and K ĂĂ Ω. Define w “ sgnpuq1K P L1

locpΩq, then we have
supppwq Ă K. We define wε :“ Jε ˚ w. Then, wε Ñ w almost everywhere on Ω and
supppwεq Ă K ` Bεp0q, hence wε P C8

0 pΩq if ε is small enough by a modification of
Theorem 1.2.2.

We test (5) with φ “ wε P C8
0 pΩq, obtaining

0 “

ż b

a

upxqwεpxq
loooomoooon

a.e.
ÝÝÑupxqwpxq

dx “

ż

K`Bεp0q

upxqwεpxqdx “

ż b

a

upxq1K`Bεp0qpxqwεpxqdx.

We have

|wεpxq| ď

ż b

a

Jεpx´ yq |wpyq|
loomoon

ď1

dy ď 1.

For ε0 ă minpc´ a, b´ dq and all ε ă ε0 we get

|upxqwεpxq| ď |upxq|1K`Bε0 p0qpxq

This function is integrable on Ω. Lebesgue’s Theorem shows

0 “

ż b

a

upxqwpxqdx “

ż d

c

|upxq| dx,

hence u ” 0 almost everywhere on K. As K ĂĂ Ω was chosen arbitrarily, this yields the
claim. l

Lemma 5.1.3
Let u P L1

locpΩq such that
ż

Ω

upxqBkxi
φpxqdx “ 0

for some k P N and all i P t1, . . . , nu and all φ P C8
0 pΩq. Then u is equal to a polynomial

of degree of at most k almost everywhere.

Proof. TODO l

One can show classical and weak derivative coincide for classically differentiable functions
and that the other properties hold similarly to the one dimensional case.

definition 5.1.4 (Multidimensional Sobolev space)
For k P N and p P r1,8s we define

W k,ppΩq :“ tu P LppΩq : Dαu P LppΩq @α P Nd with |α| ď ku

with the norm

}u}k,p :“

¨

˝

ÿ

|α|ďk

}Dαu}
p
0,p

˛

‚

1
p

.
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5.1 Multidimensional Sobolev spaces and weak derivatives

and the seminorm

|u|k,p :“

¨

˝

ÿ

|α|“k

}Dαu}
p
0,p

˛

‚

1
p

.

for 1 ď p ă 8 and the obvious modifications for p “ 8.

The space W k,ppΩq is a Banach space, which is separable for p P r1,8q and reflexive for
p P p1,8q.

Furthermore, we define HkpΩq :“ W k,2pΩq, which is a Hilbert space with the inner product

pu, vqk,2 :“
ÿ

|α|ďk

pDαu,Dαvq0,2.

In particular

}u}21,2 “ }u}20,2 ` }Bx1u}20,2 ` . . .` }Bxd
u}20,2 “ }u}20,2 ` }∇u}20,2

and |u|1,2 “ }∇u}0,2. We again define

W k,p
0 pΩq :“ C8

0 pΩq
}¨}k,p ⊊W k,ppΩq,

H1
0 pΩq :“ W 1,2

0 pΩq and
H´1pΩq :“ pH1

0 pΩqq˚.

Ω

Ω111

r ą 0

Figure 20: Domain and
compact subdomain

Lemma 5.1.5 (local approximation)
Let u P W k,ppΩq. Then uε

Wk,p
pΩ1

q
ÝÝÝÝÝÝÑ

εÑ0
u holds, where Ω1 is an arbitrary compact subdomain

of Ω, i.e. Ω1 Ă Ω (sometimes written Ω1
ĂĂ Ω) and uε :“ u ˚ Jε, where Jε is the

multidimensional smoothing kernel.

Theorem 5.1.2: Meyers-Serrin: "H = W"

For any Ω Ă Rd and p ă 8 we have

W k,ppΩq “ C8
pΩq XW k,ppΩq

}¨}k,p

But this Theorem is not helpful for us if we want to evaluate the solution on the boundary,
see Theorem 5.2.1
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5.2 Domains
A domain is an open and connected subset.

Rd´1

xd

Ω

Bpx, rqx

Figure 21: Illustration
of the definition of a
Lipschitz domain.

definition 5.2.1 (Lipschitz domain)
A domain Ω Ă Rd is a Lipschitz domain and we write BΩ P C0,1, if for every x0 P BΩ

there exists a r ą 0 and a Lipschitz continuous function g : Rd´1
Ñ R such that (up

to a rotation of the coordinate system)

Bpx0, rq X Ω “ tpx1, . . . , xdq P Bpx0, rq : xd ą gpx1, . . . , xd´1qu

Remark 5.2.2 Then we also have Bpx0, rq X BΩ “ tx P Bpx0, rq : xd “ gpx1, . . . , xd´1qu.
As Ω is bounded, BΩ is, too and thus is compact, and thus we only need finitely many g to
“describe” the boundary.

Remark 5.2.3 We want to use these Lipschitz continuous functions to parametrise the
boundary, we know that they are weakly differentiable and their derivative is in L8.

Corollary 5.2.4 (To the Theorem of Gauss, "Partial Integration")
Let F : Rd Ñ Rd be a vector field and φ : Rd Ñ R a scalar valued function and Ω Ă Rd a
Lipschitz domain. Then

ż

Ω

p∇ ¨ F qpxq
loooomoooon

“divpF q

φpxqdx “ ´

ż

Ω

F pxq ¨ ∇φpxqdx`

ż

BΩ

φF ¨ ν dσ
looooooomooooooon

boundary term

,

where ν is the outer normal and ¨ is the scalar product on Rd.

Theorem 5.2.1: Density

For a Lipschitz domain Ω, C8
pΩq is dense in W 1,ppΩq for p P r1,8q.

We define C8
pΩq :“ tu P C8

pΩq : Dαu is uniformly continuous @α P Ndu. Hence u P C8
pΩq

can be continuously extended (as its derivatives) to Ω.
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5.3 The Sobolev Embedding Theorem

Theorem 5.3.1: Sobolev embedding

Let Ω Ă Rd be a bounded Lipschitz domain, k P N and p P r1,8q. If kp
1 ă d, then (for m ď k) W k,ppΩq ãÑWm,qpΩq if 1

q ´ m
d ě 1

p ´ k
d and thus in

particular W k,ppΩq ãÑLqpΩq if 1
q ě 1

p ´ k
d and W 1,ppΩq ãÑLqpΩq if 1

q ě 1
p ´ 1

d .
2 “ d, then W k,ppΩq ãÑLqpΩq for all q P r1,8q.
3 ą d, then W k,ppΩq ãÑ CpΩq, in particular W k,ppΩq ãÑ Cβ,αpΩq, where β :“ k ´

Y

d
p

]

´ 1 and

α P

$

&

%

p0, 1q, d
p P N,

´

0,
Y

d
p

]

` 1 ´ d
p

¯

, else.

Figure 22: Here we
are “trading” differentia-
bility for integrability:
we lose one differentiabil-
ity but gain 1

d integrabil-
ity. [Source: Wiki]

Remark 5.3.1 Theorem 5.3.1 also holds for fractional Sobolev spaces.

Theorem 5.3.2: Rellich-kondrachov

If kp ă d, then W k,ppΩq
c

ãÑWm,qpΩq, if 1
q ´ m

d ą 1
p ´ k

d .

Example 5.3.2 (Embedding of H1 into Lq with Theorem 5.3.1)
• If d “ 1, we have Ω “ pa, bq. For k “ 1 and p “ 2 we have kp ą d and thus
W k,ppa, bq “ H1pa, bq ãÑ Cpra, bsq ãÑL8pa, bq by the Theorems we have shown before.

• For d “ 2, we have kp “ d and thus H1pΩq ãÑLqpΩq for q P r1,8q.

• For d “ 3, we have kp ă d and thus H1pΩq ãÑL6pΩq, as 1
6 “ 1

2 ´ 1
3 .

• For d “ 4, we still have kp ă d and thus H1pΩq ãÑL4pΩq, as 1
4 “ 1

2 ´ 1
4 .

Corollary 5.3.3 (Prüfungsprotokoll)
For p P r1,8q and a bounded Lipschitz domain Ω Ă Rd we have

W 1,ppΩq “ tu P L1pΩq : Bju P LppΩq @j P t1, . . . , duu.

Proof. "Ă": We have Lppa, bq ãÑL1pa, bq, so if u P Lppa, bq, then we have u P L1pa, bq.

"Ą": Let u P L1pa, bq with Bju P Lppa, bq ãÑL1pa, bq for all j P t1, . . . , du. Then u P W 1,1pΩq.

• If d “ 1, we have kp “ 1 “ d and hence W 1,1pΩq ãÑLppΩq by Theorem 5.3.1 2 .

• If d ą 1, we have kp “ 1 ă d and hence W 1,1pΩq ãÑLqpΩq for all q P r1, q0s, where
q0 :“ d

d´1 P p1, 2s.

– If q0 ě p, we are finished.

– If q0 ă p, we have u1 P LppΩq ãÑLq0pΩq and hence u P W 1,q0pΩq.

∗ If d “ 2, then kp “ q0 “ 2 “ d and thus u P W 1,q0pΩq ãÑLppΩq by Theo-
rem 5.3.1 2 .

∗ If d ě 3, we have q0 ă d and thus W 1,q0pΩq ãÑLqpΩq for all q ď d
d´2 “: q1 P

p1, 3s.

· If q1 ě p, we are finished.

· If q1 ă p, we have u P W 1,q1pΩq. If d “ 3, kp “ q1 “ d and hence
W 1,q1pΩq ãÑLppΩq by Theorem 5.3.1 2 .
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5.3 The Sobolev Embedding Theorem

If d ą 3, then q1 ă d and thus W 1,q1pΩq ãÑLqpΩq for all q ď d
d´3 “: q2 P

p1, 4s by Theorem 5.3.1 1 .

This can be inductively continued until qk ě p. l

Theorem 5.3.3: Poincaré-Friedrichs inequality

Let Ω Ă Rd be a bounded (Lipschitz) domain. For u P W k,p
0 pΩq and α P Nd with

|α| ď k we have
}Dαu}k,p ď CΩ|u|k,p,

so | ¨ |k,p is an equivalent norm on W k,p
0 pΩq.

Remark 5.3.4 (Excursion: Singularities) With polar coordinates one can see that | ¨

|´γ P LppB1p0qq if and only if p ă d
γ . Hence the same singularities become less severe in

higher dimensions. As an exercise, check for which p P r1,8s the weak derivatives of the
above function are in LppB1p0qq.
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5.4 Trace Operators
25.06.17Motivation. How can we give meaning to "u|BΩ" if we only have u P W k,ppΩq?

• If kp ą d, then W k,ppΩq ãÑ CpΩq by Theorem 5.3.1, hence u|BΩ is well defined. In
particular, if k “ 1, then u|BΩ is well defined, if p is large enough, that is, p ą d. We
mostly act in H1, that is, p “ 2, so even d “ 2 is a problem!

• For kp ď d we need trace operators. By Theorem 5.2.1, C8
pΩq Ă W 1,ppΩq is dense,

so for u P C8
pΩq, u|BΩ P CpBΩq makes sense. We want to extend this notion from the

dense subset to the whole space W 1,ppΩq.

definition 5.4.1 (Trace Operator)
Let Ω Ă Rd be a Lipschitz domain. Then

tr : C8
pΩq Ñ LppBΩq, u ÞÑ u|BΩ

is the trace operator trace operatorof u.

Lemma 5.4.2 (Properties of the trace operator)
The trace operator is linear, bounded and uniquely extendable to an operator tr : W 1,ppΩq Ñ

LppBΩq.

For u P C8pΩq there exists a c ą 0 such that

} trpuq}LppBΩq “ }u|BΩ}LppBΩq ď c}u}W 1,ppΩq.

Remark 5.4.3 (What is LppBΩq?) The boundary BΩ Ă Rd is a pd´ 1q-dimensional man-
ifold and thus there is an induced pd´ 1q-dimensional (surface) measure on BΩ, and hence
LppBΩq is well defined.

Remark 5.4.4 For u R C8
pΩq, the quantity trpuq cannot be explicitly computed.

Theorem 5.4.1: Characterisation of W 1,p
0 pΩq

Under the above conditions we have

W 1,p
0 pΩq “ tu P W 1,ppΩq : trpuq “ 0u “ kerptrq

Thus tr is not injective. Is it surjective? For intuition consider a function being 1 on one
part of the boundary and 0 on the other, which is an integrable, but not continuous function.
As on the interior of Ω, the function has to be continuous, also satisfying this boundary
condition makes the derivative to steep such that the function is not integrable anymore.

We set
LppBΩq Ą W 1´ 1

p ,ppBΩq :“ trpW 1,ppΩqq,

where W 1´ 1
p ,ppBΩq is fractional Sobolev space. Thus these functions are exactly the

functions we can prescribe on the boundary when dealing with non homogeneous Dirichlet
boundary conditions.

Hence tr : H1pΩq Ñ H
1
2 pBΩq is surjective.
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5.5 Variational formulation in multiple dimensions

For a Lipschitz domain Ω, f, d : Ω Ñ R, c : Ω Ñ Rd, A : Ω Ñ Rdˆd consider the second
order linear boundary value problem with homogeneous Dirichlet boundary conditions in
divergence form

$

&

%

´∇ ¨ pApxq∇upxqq ` cpxq ¨ ∇upxq ` dpxqupxq “ fpxq, x P Ω,

u|BΩ “ 0
(20)

We are searching a solution u : Ω Ñ R.

For the variational formulation set V :“ H1
0 pΩq. For e.g. f P L2pΩq, x f, v y :“

ş

Ω
fpxqvpxq dx

defines an element inH´1pΩq, where v P V . We can find p P r1, 2q such that f P LppΩq induces
f P H´1pΩq with Theorem 5.3.1: like in Example 5.3.2 we find that H1

0 pΩq Ă H1pΩq ãÑLq

with q “ 2d
d´2 for d ě 2 (for d “ 1 we have H1 c

ãÑL2). Thus

| x f, v y | ď }f}p}v}0,q,

where 1
p ` 1

q “ 1, that is, p “ 2d
d`2 P r1, 2q.

We multiply with v P V and integrate over Ω to obtain

´

ż

Ω

∇pApxq∇upxqqvpxqdx`

ż

Ω

cpxq ¨ ∇upxqvpxq ` dpxqupxqvpxqdx “ x f, v y .

By "partial integration" we obtain

´

ż

Ω

∇pApxq∇upxqqvpxqdx “

ż

Ω

Apxq∇upxq∇vpxqdx`

ż

BΩ

vpxq
loomoon

“0 as vPH1
0 pΩq

hence trpvq“0

pApxq∇upxqqν dσ

“

ż

Ω

Apxq∇upxq∇vpxqdx,

where ν is the outer normal of BΩ.

Define the bilinear form

a : V ˆV Ñ R, pu, vq ÞÑ

ż

Ω

Apxq∇upxq∇vpxqdx`

ż

Ω

cpxq ¨∇upxqvpxq`dpxqupxqvpxqdx

Let d P L8pΩq, c P L8pΩqd and A P L8pΩqdˆd all be essentially bounded, then a is well
defined and bounded. Define A : V Ñ V ˚ by xAu, v y :“ apu, vq, which is well defined. The
weak formulation of (20) is

!

For f P H´1pΩq find u P H1
0 pΩq : Au “ f in V ˚

Remark 5.5.1 The Theorem of Lax-Milgram can be applied exactly as in the one-
dimensional setting.

Remark 5.5.2 Often, A is symmetric.

Remark 5.5.3 If A ” id, then ∇ ¨ pApxq∇upxqq becomes ∇ ¨ ∇upxq “ ∆upxq.

Remark 5.5.4 (Different boundary conditions) If we are given inhomogeneous Dirich-
let conditions u|BΩ “ g, where g P H

1
2 pΩq is a function on BΩ, or trpuq “ g, then there

can be a ũ P H1pΩq with trpũq “ g and so the condition is well defined. In this case
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û :“ u´ ũ P H1
0 pΩq if and only if γpuq “ g and the problem Au “ f is solved by u if and only

if Apû` ũq “ Aũ`Aũ “ f holds, so we can instead solve the problem Aû “ f ´Aũ for ũ.

Neumann boundary conditions look like this: Bu
Bn⃗ “ ∇u ¨ n⃗ “ g on BΩ, where n⃗ is the outer

normal.

Mixed boundary conditions can look like this: let Γ1,Γ2 Ă BΩ be a partition of BΩ, that is,
Γ1 Y Γ2 “ BΩ and Γ1 X Γ2 “ H. Then the boundary conditions are u|Γ1 “ 0 and ∇u ¨ n⃗ “ 0

on Γ2. We then consider the closed subspace V :“ tu P H1pΩq : trpuq “ 0 on Γ1u Ă H1pΩq.

Example 5.5.5 (A quasilinear problem)
Consider the quasilinear problem

$

&

%

´∇ ¨ papuq∇uq “ f, on Ω,

u|BΩ “ 0,

where a : R Ñ R is a continuous function such that there exists m,M ą 0 such that
m ď apyq ď M for all y P R. Let ũ :“

şupxq

0
apsqds. Then ∇ũpxq “ ∇upxqapupxqq. If u is a

solution of (5.5.5), then ũ solves
$

&

%

´∆ũ “ f on Ω,

ũ|BΩ “ 0,

as u|BΩ “ 0 implies ũ|BΩ “ 0. By the Theorem of Lax-Milgram, the problem (5.5.5) has a
unique solution. Let

A : R Ñ R, z ÞÑ

ż z

0

apsqds,

which is monotonically increasing. Because of 0 ă m ď apzq ď M , A is invertible. Thus A´1

exists and from ũ, we obtain upxq “ A´1pũpxqq.
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6 Additional Topics

6.1 Inner regularity theory for the Laplacian
02.07.19Motivation. For f P L2 consider

$

&

%

´u2pxq “ fpxq, x P pa, bq,

upaq “ upbq “ 0,

which has a solution u P H1
0 pa, bq, that is, it is one weakly differentiable. One can ask if u is

twice weakly differentiable with u2 “ f P L2. If f is even one classically differentiable, then
we can differentiate the relation ´u2pxq “ fpxq, to obtain that u2 has to be differentiable as
well, that is, u has a third derivative.

In the following Theorem, we see that if the right side f is "better", that is, more regular or
integrable, than just defining a functional on H1 (which guarantees existence), we can expect
the solution to be "better" as well. This can only happen in the interior of the domain, as
in multiple dimensions, the boundary can be very "bad". But, on a compact subdomain
bounded away from the boundary, we can state the following result.

Theorem 6.1.1: `2 Inner regularity on any domain

Let Ω Ă Rd be a bounded domain. We consider
$

&

%

´∆u “ f on Ω,

u|BΩ “ 0
(21)

If f P HkpΩq for k P N, then the unique variational solution u P H1
0 pΩq to (21)

satisfies u P Hk`2pΩ1q for any Ω1 ĂĂ Ω (that is, u P Hk`2
loc pΩq) and there exists an

cΩ1 ą 0 such that we have

}u}Hk`2pΩ1q ď cΩ1

´

}f}HkpΩq ` }u}H1
0 pΩq

¯

.

Remark 6.1.1 This is local and can’t be generalised to the whole of Ω without further
regularity assumptions on the boundary. If the domain is convex, we are fine.

Figure 23: Left: good,
right: badTo show that a function has more regularity, we have to consider its difference quotient.

Lemma 6.1.2 (Boundedness of the difference quotient)
Let p P p1,8q, u P LppΩq and Ω Ă Rd a bounded domain and pτhuqpxq :“ upx` hq be the
shift operator

1 Let u P W 1,ppΩq. For all Ω1 ĂĂ Ω we then have

}τhu´ u}LppΩ1q ď |u|W 1,ppΩq|h|

for all h P Rd such that x` h P Ω for x P Ω1, that is |h| ă distpBΩ1, BΩq.

2 If there exists a c ą 0 such that for all Ω1 ĂĂ Ω and for all sufficiently small |h|

(|h| ă distpBΩ1, BΩq)
}τhu´ u}0,p,Ω1 ď c|h|

holds, then u P W 1,p and |u|W 1,ppΩq ď c.
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Proof. 1 Let Ω1 ĂĂ Ω and |h| be sufficiently small. As C8
pΩq XW 1,ppΩq Ă W 1,ppΩq is

dense there exists a sequence punqnPN Ă C8
pΩq XW 1,ppΩq such that

}un ´ u}1,p,Ω
nÑ8

ÝÝÝÑ 0.

In particular, by the inverse △ ‰

}∇un}0,p,Ω
nÑ8

ÝÝÝÑ }∇u}0,p,Ω, }un ´ u}0,p,Ω1
nÑ8

ÝÝÝÑ 0.

and since } ¨ }0,p ď } ¨ }1,p

}τhun ´ τhu}0,p,Ω1

because of translational symmetry.

Then by the Mean Value Theorem and the Fundamental Theorem of Calculus we
obtain

τhunpxq ´ unpxq “ unpx` hq ´ unpxq “

ż 1

0

xh,∇unpx` θhq ydθ. (22)

Furthermore,

}τhun ´ un}
p
0,p,Ω1

Def.
“

ż

Ω1

|τhunpxq ´ unpxq|p dx

(22)
“

ż

Ω1

ˇ

ˇ

ˇ

ˇ

ż 1

0

xh,∇unpx` θhq ydθ

ˇ

ˇ

ˇ

ˇ

p

△‰

ď |h|p
ż

Ω1

ˆ
ż 1

0

|∇unpx` θhq| dθ

˙p

dx

(H)
ď |h|p

ż

Ω1

ż 1

0

|∇unpx` θhq|
p
dθ dx

(F)
ď |h|p

ż 1

0

ż

Ω1

|∇unpx` θhq|
p
dxdθ

ď |h|p
ż 1

0

ż

Ω

|∇unpyq|
p
dy dθ “ |h|p|un|

p
1,p,Ω.

Hence,

}τhu´ u}
△‰

ď }τhu´ τhun}
loooooomoooooon

nÑ8
ÝÝÝÑ0

` }τhun ´ un}0,p,Ω1
looooooooomooooooooon

ď|h||un|1,p,Ω

` }un ´ u}
looomooon

nÑ8
ÝÝÝÑ0

nÑ8
ÝÝÝÑ|h||u|1,p,Ω,

where } ¨ } “ } ¨ }0,p,Ω1 .

2 Let φ P C8
0 pΩq, Ω1 ĂĂ Ω and |h| small. We assume supppφq Ă Ω1.

We have
ż

Ω

rupx` hq ´ upxqsφpxqdx “

ż

Ω1

rupx` hq ´ upxqsφpxqdx

(H)
ď }τhu´ u}0,q,Ω1 }φ}0,q,Ω

ď c|h|}φ}0,q,Ω

and with the transformation theorem p‹q

ż

Ω

rτhupxq ´ upxqsφpxqdx “

ż

Rd

rτhupxq ´ upxqsφpxqdx

“

ż

Rd

τhupxqφpxqdx´

ż

Rd

upxqφpxqdx
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p‹q
“

ż

Rd

upyqτ´hφpyqdy ´

ż

Rd

upyqφpyqdy

“

ż

Rd

rτ´hφ´ φs pyqupyqdy

“

ż

Ω

rτ´hφ´ φs pyqupyqdy. (23)

Fix one direction i P t1, . . . , du. We consider t :“ hei. Then }h} “ }t}. For t ą 0 we
have

ż

Ω

upyq
φpy ´ teiq ´ φpyq

t
loooooooooomoooooooooon

tŒ0
ÝÝÝÑ´

Bφpyq

Bxi

dy ď c}φ}0,q,Ω

By Lebesgues theorem we have

´

ż

Ω

upyq
Bφpyq

Bxi
dy ď c}φ}0,q,Ω (24)

We define
g : C8

0 pΩq Ñ R, x g, φ y :“ ´

ż

Ω

upyq
Bφpyq

Bxi
dy.

As g is linear (in φ) the Hahn-Banach theorem implies existence of a unique (C8
0 Ă Lp

dense) extension to a linear bounded function

g : LqpΩq Ñ R with x g, φ y ď c}φ}0,q @φ P LqpΩq

This shows g P pLqpΩqq˚ – Lp. Hence there exists a vi P LppΩq such that

x g, φ y “

ż

Ω

viφdx @φ P LqpΩq.

Hence for φ P C8
0 pΩq we have

´

ż

Ω

upyq
Bφpyq

Bxi
dy “ x g, φ y “

ż

Ω

viφdx.

Hence Bui

Bxi
“ vi, ui has the weak derivative vi. l

Corollary 6.1.3 (Auxiliary lemma, "partial integration")
Let h P Rd zt0u, u, v P H1pRdq. We set Dhu :“ τhu´u

h . Then ∇Dhu “ Dhp∇uq and
ż

Rd

upD´hvqdx “

ż

Rd

Dhv.

Proof. The first statement is an exercise and the other one is proven analogously to (23).l

Proof. (of theorem 6.1.1) Let u P H1
0 pΩq be the weak solution of (21) and assume

f P HkpΩq.

Let k “ 0, i.e. f P L2pΩq. Fix Ω1 ĂĂ Ω. Consider φ P C8
0 pΩq such that φ|Ω1 ” 1 and

φpxq P r0, 1s, which can be obtained by a smoothing of 1Ω1 . We set v :“ u ¨ φ P H1pΩq and
even P H1pRdq, which is compactly supported in Ω. (Exercise: check this)

With g :“ fφ´ 2∇u ¨ ∇φ´ u∆φ P L2pΩq (Exercise: check this), v is the variational solution
to

$

&

%

´∆v “ g, on Ω,

v|BΩ “ 0.
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For any w P H1
0 pΩq we then have
ż

∇v ¨ ∇w dx
looooooomooooooon

var. formulation
of the Laplacian

“

ż

p∇uqφp∇wqdx`

ż

up∇φqp∇wqdx

“

ż

∇up∇φw ´ w∇φqdx´

ż

∇pup∇φqqw dx

“ ´

ż

∇u∇φw dx`

ż

∇u ¨ ∇φw dx

´

ż

p∇u ¨ ∇φ` u∆φqw dx

“

ż

p´u∆φ´ 2∇u∇φqw dx`

ż

∇u ¨ ∇pφwqdx
looooooooomooooooooon

“
ş

gw dx“
ş

fφw dx

,

as u is a solution to the RHS. In the second last equality we used that the divergence of the
gradient is the Laplacian.

We test
ş

Ω
p∇vqpxq ¨ p∇wqpxqdx “

ş

Ω
gpxqwpxqdx with w “ D´hDhv P H1

0 pΩq (or even
H1pRdq) for h small enough:

ż

∇v ¨ ∇w dx “

ż

gw dx
(CS)
ď }g}0,2,Ω}w}0,2,Ω.

As, by Lemma 6.1.2 1

}w}0,2 “ }D´h Dhv
loomoon

PH1

}0,2 ď }∇Dhv}0,2 “ }Dh∇v}0,2,

where the inequality is due to

}τhpDhpvqq ´Dhv}0,2 ď |Djv|1,2|h|.

Furthermore, we have

}g}0,2 “ }fφ´ 2∇u ¨ ∇φ´ u∆f}0,2 ď cp}f}0,2 ` }u}1,2q.

On the other hand
ż

p∇vqpxqp∇wqpxqdx “

ż

p∇vqpxq ¨ p∇pD´hDhvqqpxqdx

6.1.3
“

ż

∇vpxqpD´hp∇Dhvqqpxqdx

6.1.3
“

ż

pDhp∇vqpxq ¨ pDhp∇vqqpxqdx “

ż

|pDhp∇vqqpxq|2 dx

“ }Dh∇v}20,2.

Together we obtain
}Dhp∇vq}0,2 ď }g}0,2,

i.e }τhp∇vq ´ ∇v}0,2 ď }g}|h| for all small |h|.

Lemma 6.1.2 2 (applied component-wise) implies that ∇v P H1pΩ1qd, i.e. v P H2pΩ1q and

}v}2,2 “ }∇v}1,2 ` }v}0,2 ď }g}0,2 ` }v}0,2.

In particular: v P H2pΩ1q, but on Ω1 we have v “ u, hence u P H2pΩ1q. l
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6.2 Existence for a nonlinear problem

6.2 Existence for a nonlinear problem
07.09.2019This subsection follows [Chi12, Chapter 5.1].

Consider the nonlinear problem in divergence form
$

&

%

´∇ ¨ pαpx, upxqq∇upxqq “ fpxq, x P Ω,

u|BΩ “ 0,

where Ω is a bounded domain and α : ΩˆR Ñ R is a Carathéodory function. Furthermore
there exists constants m,M ą 0 such that m ď αpx, yq ď M holds for almost all x P Ω and
all y P R. The variational formulation of (6.2) is

$

&

%

For f P H´1pΩq find u P H1
0 pΩq such that

apu, vq :“
ş

Ω
αpx, upxqq∇upxq ¨ ∇vpxqdx “ x f, v y for all v P H1

0 pΩq.
(25)

Theorem 6.2.1: Unique solvability of (25) [Chi12, Thm. 5.1]

The problem (25) has a variational solution.

In the proof we will use a Galerkin scheme and consider the sequence of solutions to the
discretised problems and hope that they converge, in a certain sense, to the solution of (25).

Proof. 1 As V :“ H1
0 pΩq is separable, by Theorem 4.1.1 there exists a Galerkin scheme

pVhqhą0 Ă V , that is for all v P V there exists a sequence pvh P Vhqhą0 such that
}v ´ vh}V

hŒ0
ÝÝÝÑ 0. We consider the discretized problem

$

&

%

Find uh P Vh such that

apuh, vhq “ x f, vh y for all vh P Vh.
(26)

Recall that Vh is a finite dimensional subspace of V “ H1
0 pΩq equipped with | ¨ |1,2 or

} ¨ }1,2. As apuh, vhq “ x f, vh y is a nonlinear equation, we cannot use the Theorem of
Lax-Milgram, but instead have to use a fixed-point Theorem.

2 For fixed wh P Vh we consider the bounded strongly positive bilinear form

awh
: Vh ˆ Vh Ñ R, puh, vhq ÞÑ

ż

Ω

αpx,whpxqq∇uhpxq∇vhpxqdx.

We have |awh
puh, vhq| ď M |uh|1,2|vh|1,2 and awh

puh, uhq ě m|uh|21,2 for all uh, vh P Vh.
Thus the equation

awh
puh, vhq “ x f, vh y @vh P Vh (27)

has a unique solution upwq

h P Vh by the Theorem of Lax-Milgram. We define

Th : Vh Ñ Vh, wh ÞÑ u
pwq

h

as the operator whose fixed point we want to find.

3 A-priori estimate. We test with vh “ u
pwhq

h in (27) and obtain

m|u
pwhq

h |21,2 ď awh
pu

pwhq

h , u
pwhq

h q “ x f, u
pwhq

h y ď }f}´1,2|u
pwhq

h |1,2.

Hence |Thpwhq|1,2 “ |u
pwhq

h |1,2 ď 1
m}f}´1,2 for any wh P Vh and thus

Th : B

ˆ

0,
1

m
}f}´1,2

˙

Ñ B

ˆ

0,
1

m
}f}´1,2

˙

, w ÞÑ u
pwq

h
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6.2 Existence for a nonlinear problem

is well defined and maps the nonempty closed convex bounded set B
`

0, 1
m}f}´1,2

˘

to
itself.

4 The operator Th is continuous: let pwnqnPN Ă B
`

0, 1
m}f}´1,2

˘

be a sequence converging
to w P B

`

0, 1
m}f}´1,2

˘

in H1
0 pΩq. We know that |Thpwnq|1,2 ď 1

m}f}´1,2 for all n P N,
hence the sequence pThpwnqqnPN is bounded in Vh. As Vh is finite dimensional, by the
Theorem of Bolzano-Weierstrass there exists a subsequence pwn1 qn1PN of pwnqnPN

such that pThpwn1 qqn1PN converges with respect to | ¨ |1,2, that is, there exists a uh P Vh

such that |Thpwn1 q ´ uh|1,2
n1

Ñ8
ÝÝÝÝÑ 0. We have to show uh “ Thpwq.

As wn1 Ñ w with respect to | ¨ |1,2 and thus in particular with respect to } ¨ }1,2, there
exists a further subsequence pwn2 qn2PN such that wn2 pxq Ñ wpxq almost everywhere in
Ω. This implies

αpx,wn2 pxqq∇vhpxq
n2

Ñ8
ÝÝÝÝÑ αpx,wpxqq∇vhpxq

almost everywhere in Ω. As |αpx,wn2 pxqq| ď M for almost all x P Ω and vh P L2pΩq

for vh P Vh Ă H1
0 pΩq, the Theorem of Lebesgue shows

ż

Ω

|αpx,wn2 pxqq∇vhpxq ´ αpx,wpxqq∇vhpxqq|2 dx
n2

Ñ8
ÝÝÝÝÑ 0.

As ∇uwn2 “ T pwn2 q Ñ uh with respect to | ¨ |1,2 thus ∇uwn2 Ñ ∇uh in L2 we get
ż

Ω

αpx,wn2 pxqq∇uwn2 pxq ¨ ∇vhpxqdx
n2

Ñ8
ÝÝÝÝÑ

ż

Ω

αpx,wpxqq∇uhpxq ¨ ∇vhpxqdx

Hence for all n2 P N we have

x f, vh y “

ż

Ω

αpx,wn2 pxqq∇uwn2 pxq¨∇vhpxqdx
n2

Ñ8
ÝÝÝÝÑ

ż

Ω

αpx,wpxqq∇uhpxq¨∇vhpxqdx

Hence uh “ T pwq

As Thpwq does not depend on the subsequence, the subsequence principle shows that
Thpwnq Ñ Thpwq and thus Th is continuous.

5 Brouwer’s Fixed Point Theorem shows that Th has a fixed point uh P B
`

0, 1
m}f}´1,2

˘

Ă

Vh, i.e. αuh
puh, vhq “ αpuh, vhq “ x f, vh y for all vh P Vh and hence uh is a solution to

(26).

6 We consider the sequence puhqhą0 Ă V of solutions to (26). As uh “ Thpuhq, we get
|uh|1,2 ď 1

m}f}´1,2 irregardless of h ą 0, hence puhqhą0 is a bounded sequence in V .
We want to show that puhqhą0 converges to some u P H1

0 pΩq (in some sense) and that
u is a solution to (25), i.e.

ż

αpx, upxqq∇upxq∇vpxqdx “ x f, v y

for all v P H1
0 pΩq. We know that for each h ą 0 we have

ż

αpx, uhpxqq∇uhpxq∇vhpxqdx “ x f, vh y

for all vh P Vh.

Fix v P H1
0 pΩq then there exists a sequence pvhqh such that vh Ñ v in H1

0 pΩq by the
completeness in the limit of a Galerkin scheme. This implies x f, vh y Ñ x f, v y by
the continuity of x f, ¨ y P H´1pΩq.
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6.2 Existence for a nonlinear problem

We remark that puhqhą0 is bounded in H1
0 pΩq

c
ãÑL2pΩq, hence there is a subsequence

puh1 qh1 of puhqhą0 which converges to some u P L2 and thus - up to a subsequence -
pointwise almost everywhere, showing

αpx, uh2 pxqq Ñ αpx, upxqq h2 Œ 0

almost everywhere in Ω by the continuity of α in its second argument. We now have to
show that ∇u P L2 exists and want to go to the limit in the equation

ż

Ω

αpx, uh2 q∇uh2∇vh2 dx “

ż

Ω

pαpx, uh2 q∇vh2 ´ αpx, uq∇vq ¨ ∇uh2 dx
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:(I)

`

ż

Ω

αpx, uq∇v ¨ ∇uh2 dx
loooooooooooooomoooooooooooooon

“:(II)

.

We have
(I)

CS
ď }αp¨, uh2 q∇vh2 ´ αp¨, uq∇v}0,2

looooooooooooooooooomooooooooooooooooooon

Ñ0

}∇uh2 }0,2
loooomoooon

bounded

Ñ 0.

We want to show that

(II) “

ż

Ω

αpx, uq∇v ¨ ∇uh2 dx Ñ

ż

Ω

αpx, uq∇v ¨ ∇udx.

We can write
(II) “: x g, uh2 y

Then uh2 ÞÑ x g, uh2 y is in H´1pΩq.

We want to find a subsequence such that x g, uh2 y converges. This is called weak
convergence. Indeed, as V is reflexive and puh2 qh2 Ă V is bounded, there exists a
subsequence puh3 qh3ą0 Ă V and a u P V such that

x g, uh2 y Ñ x g, u y @g P V ˚. l

Example 6.2.1 (Prüfungsprotokoll)
Consider

$

&

%

´∆u “ fpx, upxqq, x P Ω,

u|BΩ “ 0.

The Theorem of Zarantonello can’t be applied. Wie im obigen Problem die Nichtlinearität
entschärfen, in dem man ein w fest wählt und an die Stelle von u in f einsetzen. Nach Zeigen
der Lösbarkeit T : w ÞÑ uw betrachten und einen Fixpunkt sucht. Ist fw : x ÞÑ fpx,wpxqq ein
Funktion auf H1

0 pΩq, können wir Lax-Milgram anwenden. Das Korollar aus dem Satz von
Lax-Milgram (stetige Abhängigkeit der Lösung von der rechten Seite) zeigt die Stetigkeit
von T , also

}uw ´ uw1 } ď C}fw ´ fw1 }

und wenn fw stetig in w ist, ist T stetig.

Example 6.2.2
Consider the stationary scalar convection-diffusion equation

´ divpApxq gradupxqq ` cpxq gradpupxqq ` dpxqupxq “ fpxq, x P Ω,

where Ω Ă Rd is a sufficiently smooth, bounded domain. Furthermore assume homogeneous
Dirichlet boundary conditions, i.e. u|BΩ “ 0 and that
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6.2 Existence for a nonlinear problem

1 The matrix-valued function A P L8pΩqdˆd is symmetric and uniformly positive definite
(uniformly elliptic), i.e. there exists a constant µ ą 0 such that for all z P Rd and
almost all x P Ω we have zTApxqz ě µ}z}2Rd .

2 The vector valued function c is in L8pΩqd and the scalar-valued function d is in L8pΩq.

Then for all f P H´1pΩq there exists a unique weak solution, if c P W 1,8pΩqd and another
condition is fulfilled.

TODO
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A Appendix

A.1 Elementary Inequalities

Young

Spezialfall φpxq :“ εpxp´1 ab ď εap `
ppεq

1´q

q bq, @ε ą 0, a, b ě 0, p, q P p1,8q, 1
p ` 1

q “ 1
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A.2 Additional proofs

A.2 Additional proofs

Separability of LppIq (Lemma 0.0.2)

Proof. (Brezis, 4.13) Let R :“ tpak, bkq Ă I : ak, bk P Qu and E the Q-vector space
consisting of all finite linear combinations of the functions p1rqrPR with rational coefficients.
Note that E is countable.

Given f P LppIq and ε ą 0 there exists some f1 P C0pIq such that }f ´ f1}p ă ε
2 and

a R :“ pa1, b1q P R such that supppf1q Ă R. Given δ ą 0 one can construct a function
f2 P E such that }f1 ´ f2}8 ă δ and f2|IzR ” 0: split R into intervals Ri Ă R and define
f

piq
2 :“ Ci 1Ri

, where Ci P r0, δ ´ psuppf |Ri
´ infpf |Ri

qs and define f2 :“
ř

i f
piq
2 . Therefore,

we have

}f1 ´ f2}p ď

ˆ
ż

R

}f1 ´ f2}8

˙
1
p

“ }f1 ´ f2}8 ¨ |b1 ´ a1|
1
p ă δ ¨ |b1 ´ a1|

1
p .

Therefore, }f ´ f2}p
△‰
ă ε provided δ ą 0 is chosen so that δ|b1 ´ a1|

1
p ă ε

2 . l

Continuity in the Lp-mean

Proof. For h P R let Th : LppRq Ñ LppRq be defined by Thupxq “ upx ` hq. Note that
}Thu}p “ }u}p for all u P LppRq.

Now, let u P LppRq be fixed and let ϵ ą 0 be given. Then we find φ P C8
0 pRq such that

}u´ φ}p ă ϵ{3. Hence,

}Thu´ u}p ď }Thpu´ φq}p ` }Thφ´ φ}p ` }φ´ u}p ă
2

3
ϵ` }Thφ´ φ}p.

Since φ P C8 we can build upon the similar lemma from DGL I to find δ ą 0 such that

}Thφ´ φ}p “

ˆ
ż

|φpx` hq ´ φpxq|p dx

˙1{p

ă
ϵ

3

for |h| ă δ. Thus, for these |h| ă δ we have }Thu´ u}p ă ϵ. l

Simple, step and smooth functions dense in L1pRd
q

TODO

Standard rules for weak derivatives

Sobolev spaces are Banach spaces

First we show that the Sobolev norm is a norm:
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1

2

3

74



Index

A

Aubin-Nitsche Trick . . . . . . . . . . . . . . . . 53

C

calculus of variations . . . . . . . . . . . . . . . . . . 15
continuous dependence . . . . . . . . . . . . . . . . 38

D

divergence form . . . . . . . . . . . . . . . . . . . . . . . 44
dualism

bidual space . . . . . . . . . . . . . . . . . . . . . . . 1
dual pairing . . . . . . . . . . . . . . . . . . . . . . . 1
dual space . . . . . . . . . . . . . . . . . . . . . . . . . 1
norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

E

embedded. . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
embedding

canonical . . . . . . . . . . . . . . . . . . . . . . . . . . 1
compact . . . . . . . . . . . . . . . . . . . . . . . . . . 20
continuous . . . . . . . . . . . . . . . . . . . . . . . 20
dense. . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

F

finite elements method . . . . . . . . . . . . . . . . 50

G

Galerkin basis . . . . . . . . . . . . . . . . . . . . . . 47
Galerkin scheme . . . . . . . . . . . . . . . . . . . . 47

L

Lipschitz continuous . . . . . . . . . . . . . . . . . 43

M

mollifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
monotone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

P

prolongation operator . . . . . . . . . . . . . . . . . 48

R

reflexive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

S

separable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Sobolev space . . . . . . . . . . . . . . . . . . . . . . . . . 15
solution operator . . . . . . . . . . . . . . . . . . . . . .37
strongly monotone . . . . . . . . . . . . . . . . . . . . 43

T

test function . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
trace operator . . . . . . . . . . . . . . . . . . . . . . . . 60

U

uniformly convex. . . . . . . . . . . . . . . . . . . . . .15

V

variational formulation . . . . . . . . . . . . . . . . . 4

W

weak compactness. . . . . . . . . . . . . . . . . . . . .15
weak derivative . . . . . . . . . . . . . . . . . . . . . . . . 4

75


	List of Figures
	List of Figures
	Generalised Derivatives and Regularisation in One Dimension
	The weak derivative
	The Fundamental Theorem & mollifiers
	Weak differentiability and absolute continuity

	Sobolev spaces
	First definitions and properties
	Embedding theorems

	Reformulation using variational formulations and operator equations
	Reformulation using variational formulations
	Linear variational problems with strongly positive bilinear form
	Variational problems with a strongly monotone operator

	Galerkin-Schemes and Finite Elements
	Galerkin schemes and Galerkin bases
	The Finite Elements Method

	Boundary value problems in multiple space dimensions
	Multidimensional Sobolev spaces and weak derivatives
	Domains
	The Sobolev Embedding Theorem
	Trace Operators
	Variational formulation in multiple dimensions

	Additional Topics
	Inner regularity theory for the Laplacian
	Existence for a nonlinear problem

	References
	Appendix
	Elementary Inequalities
	Additional proofs

	Index

