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Primer in functional analysis

DEFINITION 0.0.1 (DUALITY AND SEPARABILITY)
Let (X, | -|) be a normed space. We call

X*:={f:X > R: f linear and bounded}

the dual space of X and equip it with the dual norm

[-la: X* =R, fr» sup (LDx0xx]
zeX (el
z#0

Then (X*,| - |«) is a BANACH-Space, where f(z) = (f,z)x*xx denotes the dual
pairing.

X is separable if it contains a dense at most countable subset.

Example 0.0.2 The space LP(I) is separable only for p € [1,0).

Proof. In the appendix. O

DEFINITION 0.0.3 (BIDUAL SPACE, CANONICAL EMBEDDING)
We call X** = (X*)* the bidual space of X and i : X — X** defined by
(@), fHxwswx = {f,x)x*xx. the canonical embedding, where x € X and f e X**.

Corollary 0.0.4 (of the HAHN-BANACH theorem)

The canonical embedding is linear, isometric and injective.

DEFINITION 0.0.5 (REFLEXIVE SPACE)
(X, | - ]) is called reflexive if the canonical embedding is surjective.

Example 0.0.6 Every finite dimensional BANACH space is reflexive, and by the FRECHET-RIESZ

representation theorem so is every HILBERT space. A space which is not separable is £*°,

which contains the uncountable subset {0, 1}.

In the following, let I < R be an open interval.

Lemma 0.0.7 (Dual space of LP)

We have (LP(I))* = LI(I), where q is the HOLDER-conjugate to p € [1,0), but

(L=()* = LY(1).
Corollary 0.0.8
For pe (1,00) the space LP(I) is reflexive.

Lemma 0.0.9 (Continuity in the p-mean)
Let p € [1,0) and u € LP(I) be a function. Then we have

8=

b
Ve>036>0:|h|<d = (J |u(x+h)—u(x)|i’> <e

dual space

dual pairing

separable

bidual space
canonical

embedding

reflexive
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| where, outside of I, u is continued with 0.

Proof. In the appendix. I

We will now introduce two function spaces which, to some extent, lie on opposite sides of the

regularity spectrum.

DEFINITION 0.0.10 (LOCALLY INTEGRABLE FUNCTIONS)
The space LY (I) defined by

loc

{u:I— R measurable : u|g € LP(K) VK < I compact}

is not a normed space.

Example 0.0.11 (locally but not globally integrable function)
Consider I := (0,1) and u(z) := < or alternatively I := (0,7/2) and u(x) := tan(z). Since

the compact domain is bounded away from the critically point, we have u e L (I)\L*(I).

DEFINITION 0.0.12 (COMPACTLY SUPPORTED FUNCTIONS)
We define C(I) := {u € C*(I) : supp(u) < I compact}.

Example 0.0.13 (C ¢ Cy)
The function ¢ : (0,7), x — sin(x) is in C*((0,7); R) but not even in Co((0,7); R) and thus
not in C((0, w); R), either .

P

7
o =

A

Example 0.0.14 Consider the function

exp (ﬁ) , for |z| <1,

0, otherwise

J:R>R,  z~

Figure 1: The test func-
Then, supp(J) = [~1,1]. For ¢ > 0 define J.(z) := J(%) for z € R. tion J € C.



Generalised Derivatives and Regularisation in

One Dimension

1.1 The weak derivative

Example 1.1.1 (Why do we need weak solutions in real life?)

To understand why we would want to allow non-continuous coefficient functions ¢(x) and
d(x), we revisit the first example of a stationary partial differential equation from the very
first chapter in DGL | and allow the bean to consist of different material.

Alternatively, consider the elliptical POISSON’s equation

—Au=f on{,
u=20 on 0.

Its solutions are hard to find, therefore we want to find a generalised definition of solutions.

If we want to u € C?(), we have to require f € C(£2), which might be unrealistic.

Example 1.1.2 (V, Not at all classically differentiable function)
Consider
x+1, ifze(-1,0),
() = g, if z =0,
1—z ifze(0,1),
0, else.

Then, f is neither continuous in zero nor differentiable in —1,0 or 1 but still has a weak
derivative
-1, ifzxe(-1,0),
v(z) =11 if z € (0,1),

0, else.

which is in WHP(—1,1) (see section 2).

From now on, let I := (a,b) be an open real interval with a < b, but we will later see that
most of the following theory holds true for any open subset of R%.

Example 1.1.3 (Weak formulation for a BVP)
Consider the following boundary value problem with homogeneous NEUMANN boundary

conditions

{ —u'(z) = f(z), xel, (1)
u(a) = u(b) = 0. (2)

@ Multiply (1) with a suitable test function v satisfying (2).

@ Integrating over the domain yields

- Lb o' (z)v(z)dz = Lb f(z)v(x)da.

09.04.2019
25 ) g
eS8 =

Figure 2: The bending
of a beam.

Figure 3: The men-
tioned functions v and v.

Figure 4: A test func-
tion v € Co® ().

test function



1.1 THE WEAK DERIVATIVE

@ Integration by parts yields

Instead of (1) we can consider it’s variational formulation

Lb o ()0’ (z)dz = Lb f(x)v(z)dx. (3)

for suitable v with v(a) = v(b) = 0, where fv,u/v' € L'(I) (alternative: u,u’,v € L?(I;R))

and v’ and v’ are weak derivatives.

DEFINITION 1.1.4 (WEAK DERIVATIVE (SOBOLEV, SCHWARTZ))
Let u,v € L{ (I). If the equation

bU(I)w’(ﬂf) dr = — bU(I)@(I) dz, (4)
J J

holds for all ¢ € C°(I;R), we call u weakly differentiable with the weak derivative v.
The above integrals are well defined as for ¢ € C{°(I;R) we have

b
f v(@)p(z) dz = f v(@e(e)dr < max |p(@)] - 1ol uppie) < -

zesupp(yp)
supp(¢)

Remark 1.1.5 Notice that this is not a pointwise definition. The weak derivative is unique
(up to null sets), which will be proven later. The weak derivative is linear, that is, the
weak derivative of a linear combination of functions is the linear combinations of its weak

derivatives.

Lemma 1.1.6 (Fundamental Lemma for continuous functions)
Let u € C([a,b]; R) be chosen such that SZ u(z)p(z)dx =0 for all p € CF((a,b);R). Then
u|[a7b] = 0.

Proof. Assume that there exists a z¢ € (a,b) so that u(xg) # 0, without loss of generality
u(zg) > 0. Because u is continuous there exists an interval («, 8) < (a,b) containing xg so
that ul(,,) > 0. Now, define

exp (m) , z€(a,pB),

0, elsewhere.

p: R->R, z—
Then, we have ¢ € C{((a,b); R), supp(p) = [, 8] and

b B
0= J- u(x)p(zr) de = J u(z)e(x)dx > 0,
>0

which is a contradiction. O

variational

formulation

weak derivative



1.1 THE WEAK DERIVATIVE

Lemma 1.1.7 (Classical and weak derivatives)
@ Let u € Cl([a, bl;R). Then the weak derivative of u coincides with its classic

derivative.

@ Let ' be the weak derivative of u on (a,b). Then for all intervals (o, B) < (a,b) it
holds that u'| () is also the weak derivative of ul(4,z) on (a, ).

Proof. @ Follows directly from the formula for integration and supp(y) < (a,b). The

uniqueness of the weak derivative will be proven later.

@) Let (a, B) < (a,b) and ¢ € CP(a, B) and define the trivial extension of ¢ by ¢ € CF(a, b).
Then, we conclude

B b b B
J wp’dxzf u@’dxz—f u’@dxz—f W pdr,
[ a a [

which implies the proposition. O

Example 1.1.8 For i € {1,2} define the two functions

xz, ifxe(0,1],
ui(x) =
i, ifxe(1,2)
From Lemma 1.1.7 we know that their weak derivative coincide almost everywhere with the
function
1, ifze(0,1],
v (z) = (0.1]
0, ifze(1,2)

Using the Definition of weak differentiability, for all ¢ € C3°(0,2) we obtain

JQ u(z)¢' (z) dz = fl ' (x)dz + LQ ¢'(z)dz

- ot~ [ pte)aumgtty = - [ w@rote)

Now we choose an ¢ € C§°(0,2) so that ¢(1) # 0, then we obtain

2 1
|| @@ s = 1) - [ o) ds - 200
0 0

--| pla)de — (1) % - | v@et@

0 0

Therefore, uy is weakly differentiable with weak derivative u’ but us is not.

Counterexample 1.1.9

The function
x? sin (%) , x#0,
0, xz =0,

f:(=1,1) - R, x —

is continuous as
0= lim —2? < lim f(x) < lim 2% = 0
z—0 z—0 z—0

and differentiable everywhere except in the origin: for z # 0 we have

—z“sin| — | =2xsin| — | —cos| —|.
dx T T T



1.1 THE WEAK DERIVATIVE

The function
Zzsm(l)fcos(l), z # 0,
0, z =0,

v: (=1,1) > R, T

is not continuous in zero, but integrable over (—1,1).
Thus the weak derivative of f TODO

The following corollary shows that weak derivatives generalise classical derivatives.
Corollary 1.1.10 (Link to classical derivatives)
Letu: I — R be absolutely continuous. Then (shown in DGL I) w is classically differentiable
almost everywhere and u' € L*(I). Therefore, u is also weakly differentiable with weak

derivative u’, which exists almost everywhere.

Corollary 1.1.11 (V)

f continuous and weakly differentiable <= f absolutely continuous.

Corollary 1.1.12 (V)
If g is the weak derivative of f, then the Fundamental Theorem of Calculus holds:

TODOund die Produktregel gilt auch!
Example 1.1.13 (Weak derivative of the absolute value)

Consider some open interval (—a,a) for a € (0,0] and the functions u(z) = |z| and

v(x) := sgn(x). Then v is the weak derivative of u: For all test functions ¢ € C((—a,a)) we

J-_aa (@) () do = JO‘I z¢/(z) dw — f_oa 2o (z) dz

0
= [—zp@)],__+ f o(z) do
—_— —a

have

_ Jaav(x)cp(:z:) de.

Example 1.1.14 (Heaviside function has no weak derivative)
Consider the Heaviside function

1 ifxz>0

H:(-1,1) > R, x -
0 ifz<0

Assume it had a weak derivative v € L'((—1,1);R), then this implies

»(0) = — 1 H(z)¢'(z)dx = 1 v(x)p(x)dx
Jyeaz=-], I

for all ¢ € C&°((—1,1); R). Now, choose ®(x) := J.(z) := J (£) for £ € (0,1). Then we have
®eCP(—1,1) for all € € (0,1) and thus

1
A
"l

Figure 5: The function

x — x? sin (%)

J\l
e
v 1 ’

Figure 6: The test
function J. for £ €

a1



1.1 THE WEAK DERIVATIVE

1 €
< - J. |v(x)| dz =0
—&

e veL((—1,1);R)

holds by the Dominated Convergence Theorem, which is a contradiction.

Lemma 1.1.15 (Completeness of WP (HW 1.3))
Let (un)nen < LY((a,b);R) be a sequence of functions that converges to some u €
L'((a,b);R) with regard to the L'((a,b);R)-norm. Furthermore the weak derivative
u!, of u, exists for each n € N as a function in L'((a,b);R) and the sequence (u,)nen
also converges to some v € L'((a,b);R) with regard to the L*((a,b); R)-norm. Then the
weak derivative of u exists and coincides with v.

0 . k—o0
Proof. Asu, ——2> u, there exists a subsequence (tny, ) ken < (U )nen such that uy,, (r) ——>

u(z) for almost all z € (a,b). Asu;, E2%0, 1, there exists a subsequence (up, )jen < (U, ke
"]

such that uy, (z) EmicN v(z) for almost all x € (a,b).
For ¢ € CP((a,b);R) we have by the weak differentiability of the u,, and Dominated

Convergence Theorem (the functions u,, and ugnkj’ are in L' and both ¢ and ¢’ are
bounded functions)

b b b
f uw(x)y' (z)dr = J lim up, (2)¢' (z)dz = lim | wuy, (2)¢'(z)dz

a aq k—© k—o J,

b b
= lim — | u, (2)p(xr)dr = —J lim u,, (z)¢(x)dx

n
k—o0 k

. fb lim o, (2)p(z)de = — j ’ o(@)o() da,

a Jj—0 J

so v is the weak derivative of u. O



1.2 THE FUNDAMENTAL THEOREM & MOLLIFIERS

1.2 The Fundamental Theorem & mollifiers

To prove the uniqueness of the weak derivative (up to null sets), we first show the following

Theorem.

THEOREM 1.2.1: FUNDAMENTAL THEOREM OF THE CALCULUS OF VARI-

ATIONS

Let w e L{ (I) be a function such that

b
[[u@e@ =0 wecr. (5)

a

Then, u|; = 0 almost everywhere.

-\@'-Proof idea
If o(z) == sign(u(x)) were in C5°(I), we could test with it:

b b

0= J u(z)p(z)dr = f |lu(z)|dz = |u|; = uw=0 a.e.
a a

But ¢ is neither smooth nor compactly supported. We can modify ¢ so that it is

compactly supported: consider ¢ = ¢ - 1. 4] for a < ¢ < d < b. To "make 1) smooth"

we will convolve it with a C{® function, a so called mollifier.

To prove this theorem, we need to smoothen the sign function with mollifiers (dt.: Gldt-
tungskern, also called smoothing operators / kernels). Set J.(z) = ¢, - Je(z), where ¢. > 0 is
a constant chosen such that § %.(z) dz = 1, that is, = = {; J.(z) dz. By the substitution

705

u =2, we have c. = ¢, where 2 = {_ J(z)dz. Then, §. € C{°(R) is a nonnegative function

with supp(¥%.) < [—€,¢] and J.(z) = 1% (£). This is sometimes called "FRIEDRICHSsche

e

Glattungsfunktion".

DEFINITION 1.2.1 (MOLLIFIER)
A function J. € CP(R) is called mollifier if

w1 e g@e ol <o saa

DEFINITION 1.2.2 (REGULARISATION / MOLLIFICATION)

Let u: I — R be a function extended by zero outside of I. For € > 0 its regularisation
is u:(z) == (F. * u)(x) = SR F-(y)u(z —y)dy.

The value of u.(z) is a weighted mean over the interval [z — €,z + €]: we have

w@) = [ g -yt dy

Tr—eE

We will now see that the mollification of u inherits the differentiability of J. and can be as

similar to u as we want it to be:

mollifiers

A

Figure 7: The mollifier
J- foree {%, %,1}.
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1.2 THE FUNDAMENTAL THEOREM & MOLLIFIERS

THEOREM 1.2.2: PROPERTIES OF THE MOLLIFIER

Let uw € LP(I;R) and p € [1,00). Then u, is well defined and
@ we have u. € C*(R) and for all k € N we have

uW@wakg“w—wwm@.

@ If supp(u) < I and e < dist (supp(u), 6I), then supp(u.) = I and therefore,
ue € CP(I).

@ lu —uell, =% 0.

@ |uclp < |u], (also holds for p = o).

® u.(x) SALR u(x) for almost all z € I.

® |u. — ulek) =% 0 for compact subsets K < I if ue C(I).

Proof. Since ¥. € CF(R) we have J. € LI(I;R), where ¢ € (1, 0] is the HOLDER conjugate
of p. Since u € LP(I;R), it follows from HOLDER’s inequality that %. = u € L'(I;R) hence
the convolution is well defined.

@ We show the classical differentiability of u.. The claim then follows iteratively. For
z € R and h # 0 we have

B — —) — _
ue(z + f)L ue () :f F(x+h yf)z Fe(x—y) auly) dy
. ) R
rﬂ%u;(m) rj%]s(zfy)ecgc

¥- continuous

—tiaﬁxw—wwww.

LEBESGUE

Detailed argument on why we can exchange integral and limit: We want to use the Mean Value Theorem.
The function §. is also bounded and compactly supported, therefore, |[#.]o exists. We now find an integrable
majorant g by building a "box" around ¥. and multiplying with u: g := u - [#.] - Iz—h—c,at+hte]- Note
that u - |#.]e doesn’t have to be in L' since u is only in LP. With the Dominated Convergence Theorem we
obtain for an £ € [0, h]

J (75(91+h—7/)—35(w—y)
R

lim
h—0

. u(y)dy = Jim [ 7@~y + €)uly) dy

= fR“(y) lim Fl (2 —y + &) dy = fRf;(m — ) u(y)dy.
@ We have uc(z) = Sis F(y)u(z — y)dy. Thus if supp(u) < [e,d] < (a,b), then

supp(ue) < [¢ — ¢,d + €], which is precisely the case if ¢ > 0 is chosen like in the
Theorem.

@) For p = 1 the claim is trivial. Let p € (1,00). Using that SE_E J-(y)dy = 1, the
HOLDER-inequality () (as detailed in (@) and FUBINDs theorem (1), we have

b
fue —ulf = |
a

<fb(5<%@nwx—y>—uunm0pdx

a —€

€

) Fe(u(z —y) —u(z) dy

p
dz

(*)bs
<f__%@W@—@—M@P@¢E

a

€ b
V[ 20| lule =) - @) dody

b £
0
< sup | Ju(z —y) —u(z)P dz ¥-(y)dy %) 0
lyl<e Ja e 0.0.9
=1



1.2 THE FUNDAMENTAL THEOREM & MOLLIFIERS

@ Additionally using the the translational invariance of the LEBESGUE integral (), we

have
fucly = | @) dr < | b ( fRzgu—y)é*ém(y)dy)pdx
¥ j (ij(x—y)ﬁu(y)wdy)g (fRzgwc_— y)idy)gdx
@ Lb UR Je(x —y)|u(y)|? dy) da
O utwr | e —g)dy = [t ay
W T
, =1
- |t ay = puly.
® We have

e — ul < J T ()lu(z — ) - u(z)| dy

= | FWlu(z—y)—u(x)dy

—€

——

c

9.0 [ tute =) = @)l ay

o=

2¢c 1 (°

T g | ey @)y

which converges to 0 almost everywhere as u € LP and hence almost all points are
LEBESGUE points (cf. DGL I).

@ Let K c (a,b) be compact. Then w is uniformly continuous on a compact interval
[¢,d] < (a,b) chosen such that z — y € [¢,d] for all x € K and for all |y| < € for some
small enough ¢ > 0. Then, for some 7 > 0 we have |u(z —y) — (x)| < n and, therefore,

€

sup [ue () —u(z)] < sup | F(y) [u(z —y) —u(z)|dy <n. O
zeK zeK J—¢ —_—
<n

Proof. (Fundamental theorem) Let u € LL ((a,b);R) and [c,d] < (a,b). Define w =

loc

sgn(u) L. 4. Then we have w € L,

loc

Then, w. — w almost everywhere on (a,b) and supp(we) < [¢c — &,d + €], hence w, €
C&((a,b); R) if € is small enough by Theorem 1.2.2.

We test (5) with ¢ = w. € CP((a,b); R), obtaining

b d+e
0= J u(z)we(z) dz = j u(z)we (z) da
a ST c—e

We have

10

((a,b);R) and supp(w) < [¢,d]. We define w, := ¥ = w.

Figure 8: The support
of a function.

23.04.19



1.2 THE FUNDAMENTAL THEOREM & MOLLIFIERS

For €g < min(c — a,b — d) and all € < g we get

|u(@)we (2)| < [u(@)| Le-cq,d+e01 (%)

This function is integrable on (a,b). LEBESGUE’s Theorem shows

0= Jbu(m)u)(x) dz = Ld |u(z)| d,

a

hence u = 0 almost everywhere on [¢,d]. As [¢,d] < (a,b) was chosen arbitrarily, this yields
the claim. 0

Corollary 1.2.3 (HW 1.5)
Let ue L ((a,b);R) be a function such that

loc
b
f u(@)g(2)dz =0 VpeCP((a,b):R). (6)

Then there exists an ¢ € R so that u = ¢ almost everywhere on (a,b).

Proof. Let ¢ € C{((a,b);R), take oo € C((a,b); R) with SZ 00(y)dy = 1 and define
b

b(x) = p(z) — 0o(x) j o(y) dy (7)

a

for any z € (a,b). In particular ¢ € C{°((a,b); R) and SZ ¥(y) dy = 0. We can now define

) o= [ wiway

for any z € (a,b). By the fundamental theorem of calculus k' = 1), thus & is smooth. In fact,
k is also compactly supported. This follows from ¢ integrating to 0 and v having support

contained in [a, 8] as now for x < « there follows k(z) = 0 and for > § we have

) = [ vy - f P(y)dy = 0.

Using (7) we now know

[ etz = [ v (6601 + @) [ ) ay) ae

and using 1) = k' we have

b b

u(z)oo() J o(y) dy dz.

a

Jbu(x)go(x) dz = Jbu(x)/i’(x) dz +J

a a a

Because k € Ci°((a,b); R) the first summand equates to 0 by assumption. Using FUBINI’S
THEOREM on the second summand yields

Lb u(x)p(x)dr = Lb Lb u(y)o(y) dy p(x) da. -

As ¢ was chosen arbitrarily, defining ¢ = SZ u(y)o(y) dy concludes the proof, because the

fundamental lemma of calculus of variations implies 4 = ¢ holds almost everywhere.

Corollary 1.2.4 (Uniqueness)
If the weak derivative exists, it is unique.

11



1.2 THE FUNDAMENTAL THEOREM & MOLLIFIERS

Proof. Assume v,w € L{ ((a,b); R) were weak derivatives of u € L}

e ((a,b); R). This implies
that for all ¢ € C{((a,b); R)

b b

v(x)p(x)de — f w(z)p(z) de

a

| (0~ w) () () da = |

a a

_ f’u(x)(p/(x) dz + Jbu(x)w/(x) dz = 0.

a a

The Fundamental Theorem implies v — w = 0 almost everywhere on (a.b). O

Example 1.2.5 Let
My = {u: [a,b] > R:3f: [a,b] > R continuous: f =u a. e.}

and

My = {u: [a,b] — R : u is continuous almost everywhere}

Then we have My ¢ M and My ¢ M;y: Consider f; = Ir\q € M; but f; ¢ M, and
2(6) = L[aqep—c) € M2 but 2(5) ¢ M, or the heaviside function.

12



1.3 WEAK DIFFERENTIABILITY AND ABSOLUTE CONTINUITY

1.3 Weak differentiability and absolute continuity

The following shows W11((a,b); R) < C([a,b]; R) (cf. Chapter 2).

THEOREM 1.3.1: Wbi((a,b);R)—C([a,b]; R)

Let u € L'((a,b); R) be weakly differentiable with u’ € L'((a,b); R). Then u coincides
almost everywhere with a function, which is absolutely continuous on (a,b) and which
can then be extended to an absolutely continuous function on [a, b] ("u is absolutely
continuous"). We have

max(1,b— a)
[ulleo := [[uleasm) < e (lully + u']1)

\. .

This is generalises the fact that continuously differentiable functions are absolutely continuous.

Proof. Set v(z) := {_ u'(y)dy. As v’ € L*((a,b); R), v is absolutely continuous and v’ = v’
almost everywhere on (a,b). Therefore, we obtain

b b b b
f uw’dx:—J u’gpdx:—J v’gpdx:f vy’ dx

for all ¢ € C°((a,b);R) and hence by Corollary 1.2.3 u = v + ¢ for some ¢ € R almost
everywhere on (a,b), so u is almost everywhere equal to an absolutely continuous function,
which we will call u, too (o).

By the Integral Mean Value Theorem (x) there exists a xg € [a,b] so that Szu(x) dz =
u(zp)(b — a). This implies

()

) 1
lu(z)| < [u(zo)| +
N2

. b b
!/
§¢ b—aL |u(x)|dx—|—L |’ (x)] de. ]

Jz o' (x) dz

Zo

Remark 1.3.1 This doesn’t hold in higher dimensions, u must not even by continuous. (cf.
SoBoLEV Embedding Theorem. We only have W1(Q) — L9(Q) for ¢ < 7% € (1,2], where
Q < R? is a bounded L1PSCHITZ domain) TODOexample needed!

DEFINITION 1.3.2 (HIGHER WEAK DERIVATIVES)
Let u,v € L ((a,b);R). Then v is the n-th weak derivative of u if

loc

b

Jbu(a:)go(”) dz = (—1)”J v(z)p(z) dz

a a

holds for all ¢ € C°((a,b); R).

Remark 1.3.3 (Higher order derivatives) We could also define the n-th weak derivative
iteratively. In one dimension, this yields the definition as above, in multiple dimensions it
does not. More precisely: If w € L'(I) and v € L{, (I;R) is the n-th weak derivative of u, we

have v € L'(I;R) the k-th weak derivatives of u exist for all k € {1,...,n — 1}.

13
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1.3 WEAK DIFFERENTIABILITY AND ABSOLUTE CONTINUITY

THEOREM 1.3.2: IN BETWEEN WEAK DERIVATIVES

Let u € L'((a,b); R) so that the n-th weak derivative u(™ e L'((a,b); R) exists. Then,
k)

for all k < n — 1 the weak derivative u(¥) exists and is absolutely continuous.

Proof. It suffices to consider n = 2. Let u” € L'((a,b);R). Then vi(x) = § u”(y)dy is
absolutely continuous with vj = u” almost everywhere in (a, b).

We set vo(z) == § v1(y) dy. Then vy is absolutely continuous with v, = v1. Then, we have

b b

W (@)(@)de = | vf(@)pl) da

a

(12 " ()" () dr = |

a a

Hence SZ(u —vg)(z)¢"(x) dx = 0. Similar to the Fundamental Theorem this implies that
u = vy + p, where p is a polynomial of degree one. Hence, u’ exists and coincides with v;

plus an polynomial of degree zero (and w” coincides with vy). O

Remark 1.3.4 This is not true for d > 1. TODO(TODO:example needed!).

14



SOBOLEV spaces

2.1 First definitions and properties

We now aim to combine the notion of weak derivatives and LEBESGUE norms.

Later, we will see that the SOBOLEV spaces have "nice geometry" because they are uniformly
convex and thus reflexive, which in turn gives concrete representation of linear functionals,
enabling reformulation of problems using duality and weak compactness of bounded sets,
leading the way to calculus of variations.

Also, the smooth functions are dense, therefore one can prove statements for them first and

then extend to the whole space by density, see Lemma 1.1.15, which is used in Lemma 2.1.5.

DEFINITION 2.1.1 (SOBOLEV SPACE W*P (SoBoLEw))
Let k € Nog and p € [1, 0]. We call

WEP((a,b);R) := {u € LP((a,b); R) : weak derivative u¥) € LP((a,b); R) V¢ < k}

a SOBOLEV space and equip it with the SOBOLEV norm

1
k P
k
lullsp = (Z IIU“)IIZ> and [ullg,o0 = max [u®]oo.
£=0

A seminorm on WP is |ulk,p == Hu(k) lp-

The SOBOLEV norm measures both regularity and size of a function.

DEFINITION 2.1.2 (SOBOLEV INNER PRODUCT SPACE)
We set H*((a,b);R) := W¥2((a,b);R) and equip it with the inner product

k
<uu U>k:,2 = Z<u(€)7 ’U(e)>2a
£=0

where (-, ), is the L?((a,b); R) inner product.

We have WOoP = [P and H? = .2,

Remark 2.1.3 (Wiki, todo proofs)

e The norm | f||, + [ f*)|, is equivalent to the norm above.
o Wh®(a,b) is the space of the LIPSCHITZ continuous functions.

o W2 (a,b) ¢ L*(a,b) is dense. proof. TODO

THEOREM 2.1.1: PROPERTIES OF SOBOLEV SPACES

@ W*P((a,b);R) is a BANACH space.

@ W*P((a,b);R) is separable for p € [1,0).
@ Wkr((a,b);R) is reflexive for p € (1,0).
@ H*((a,b);R) is a HILBERT space.

\. J

We have WFP((a,b); R) — W*4((a,b); R) for ¢ < p and WP ((a,b); R) — WP ((a,b); R) for

15
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https://math.stackexchange.com/questions/1538837/density-in-sobolev-spaces

2.1 FIRST DEFINITIONS AND PROPERTIES

j < k. The embedding W((a,b); R) < C([a, b]; R) (cf. Theorem 1.3.1) is not compact. We
have W1P((a,b); R) — Wh1((a,b); R) < C([a, b]; R) continuously, and thus W ((a, b); R) < C([a, b]; R)
Proof. (k =1) (@) Let (tn)ney © WP be a CAUCHY sequence. Then the sequences

(tn)nen and (u),)nen are CAUCHY sequences in LP(a,b). Hence there exists functions

u,v € LP(a,b) with u,, — v and u), — v.

As p > 1 we can use Lemma 1.1.15 to show that v’ = v.

@ Define

T: W' (a,b) — LP(a,b)?, u— {(u,u).

Then, T is well defined. Further, we have

1
Tl ooy = (ol iy + 101 oy ) = il

Hence W1P(a,b) isometrically coincides with a subspace of (LP(a,b))?. This subspace
is closed as WP (a,b) is complete. As LP(a,b) is separable, so is (L?(a,b))? and hence
the closed subspace, and hence WP (a,b).

For k > 1, show that
T W*P((a,b);R) — (LP((@, b RDM,  wes (u,u,..,u®) 0

is an isomorphism.
@ TODO
@ TODO

Counterexample 2.1.4 (W% (a,b) is not reflexive)

Wh®(a,b) is isomorphic to R x L®(a, b) via v — (v(a),v’) but L®(a,b) is not reflexive.

Lemma 2.1.5 (Classical rules for H')
Let u,v € H(a,b). Then the product rule (uv)’ = uv’ + v'v holds and the mean value

theorem )

u(x) - o(z) = (z — y) f Wy + (e — y))dt

0
holds, where pointwise evaluation of u is defined via its absolutely continuous representative.

Proof. Product rule. Since C*([a,b]) <, H(a,b) SN C([a,b]), we can find sequences

(tUn ) nen, (Vn)nen © C*([a,b]) so that u, — w and v, — v in H'(a,b). (BUT WE
HAVEN’T DEFINED EMBEDDINGS YET!!) TODOBecause of the dense em-
beddings we have

luvlo.2 < ullelvlc < o0, [u'vlos < [wllozlvle, [v'uloz2 < [ulcfvfo-

Therefore, we have uv,u'v + uv’ € L? and

n#

UpUn — UV|0,1 & ||[Un\Un — V)]0,1 Up — U)V|0,1
[ log < Jlun( Mo, 1+ I( )
(H)
< Junllo2 [vn —vlo2 + |un — ulo,2[v]o,2 -
— ~
<C n— 00 0 n— 00 0
and
lupvn — u'v]on < Juy,flo2llvn — vlo,2 <777

16



2.1 FIRST DEFINITIONS AND PROPERTIES

and, analogously, [u,v/, — uwv’| =25 0.

Putting this together, we have

1 _ / / n—ao0 / ! n—ao0
n %n n n n ¥n .
(unvy)" = upvy, + u, v, —— uwv’ +u'v and UV, —— wv
L' (a,b) L1 (a,b)
With Lemma 1.1.15 the proposition follows.

Mean value theorem. Analogously to the above, we can choose a sequence (Up)pen

C%([a,b]) so that u, %{jb)» U

Because of W11((a,b); R) < C([a, b]; R) we know that ||u, —u[c — 0 hence also u, () — u(x)
for all z € [a, b].

We conclude

f up(y + t(z —y))dt — f

0 0

1

[[un-wieae

x

u(y +t(z—vy)) dt' =

b
< [ i) - w(e)]ag

T, ' un—>W1’1(a’b) u
= ||ul, ’ .
luy, — w0 ————0

Using the mean value theorem for C*, we have

u(z) —u(y) = lim up(z) — up(y) = lim (x — y) J. u, (y +t(x —y))dt. O

Lemma 2.1.6 (Chain rule in H' (HW 2.2))

Let f € C'(R,R) with f(0) = 0 be such that there exists a M > 0 with |f'(z)| < M for
all z € R. Then for u e H((a,b); R) we have foue H'((a,b);R) and

(fou) = (f o up.
Proof. Let (uy,)neny © H'((a,b);R) converge to u € H'((a,b);R). For n € N we have
b
[(f" 0 un)ur, = (f o5, = f |f (un(@))up, () = f (u(2))0 () da
b

= | 1 (un(@))u (@) = £ (un (@)’ (2) + f'(un(@)u' (@) = f (u(@)) (@)]* d

= | 1 (un(@))uy, (@) = ' (un (@) (2)]* dz

+ |1 (@) (2) = f/(u())u (2)] do
*) b
< 12 s, — w15 5 + J | (un () = f'(u(@))]* (2)* dz
b
+ J | (un ()P, (2) — ' (@) P + | (un () = f' (u(@)) |/ (2)|* da

b
<2f 2 — 5+ 2 | 1f () = 7 (ale) Pl @)

using 2cd < ¢ + d? in (x). Up to a subsequence, which we will again call (uy)nen, We

have u,, — u pointwise almost everywhere and by the continuity of f we have f(u,(x)) —

17



2.1 FIRST DEFINITIONS AND PROPERTIES

f(u(z)) almost everywhere. Hence the second integral converges to zero by the Dominated

Convergence Theorem. Hence we have

I(f o un) = (f cwu'fo2 = [ (f" o un)uy, = (f" 0 u)t/]o2 — 0. O

Lemma 2.1.7
Let f,g € L'((a,b);R) such that

_ Jb ¢ (x)g(z) dz < rcp(x)f(x) dz

a

for all p € C((a,b); Rxp). Then for almost all s,t € (a,b) we have
¢
s) < f flx)dx

Proof. Let s,t € (a,b) and w = 1,4 with s <t with s, € (a,b) and w. := J. *w. We have

welo) = [ 2w ar= [ re-va= [ rwa= [ wwaw-

s x—1

for all z with [—e,e] < [x — s,z — t]. We have w. € C{((a,b); R) by Theorem ... and for all
€ (a,b)

wé(x) = % -rc_s Js(y) dy = Ja(x - S) - Je(x - t)

x—1

and thus for most x

Example 2.1.8 (Sign and HEAVISIDE function in fractional SOBOLEV spaces)
For o € (0,1) we define the fractional order SOBOLEV space

H(a,b) == {ue L*(a,b) : |u|, < 0}

with the SLOBODECKIJ seminorm

b b 2 %
: |u(z) — u(y)]
[ulo = (L g )

For which choice of ¢ are the HEAVISIDE function and sign function an element of H?(—1,1)?

Let u(z) = sign(z). We have

‘ |2 )|2d d
u |x— |1+2a Yy
0 ‘ ‘2 1 ‘1
|x—y|1+2 aivs [ [} s

1-1 -1
f fl|$_ 1+2Udacdy—kf Jo o= |1+2adxdy

18



2.1 FIRST DEFINITIONS AND PROPERTIES

—1-1p
J J |x— |1+2<7d dy—l—JJ |z — |1+20d zdy
f J-1|x— B dxdy—8j f (z +y)i+2e dz dy

21 20’_ 220_1
T2 20-1 o20—1)

where the evaluation of the integral of is only valid 20 + 1 < 2, i.e. for 0 < %, otherwise the
integral diverges TODO

Now let h be the HEAVISIDE function. Then we have

K2 = )|2d d o 1 dz d
-9 - -
7o J f \x— yires 40 JJ [ —yree T

=2 7d d
[ e

as before so we have h € H?(—1,1) only for ¢ < 3.
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2.2 EMBEDDING THEOREMS

2.2 Embedding theorems

DEFINITION 2.2.1 (EMBEDDINGS)
Let X and Y be normed spaces.

@ X is embedded into Y if and only if there exists an a injective linear function
t: X = Y and X can identified with a subspace of Y.

@ X is continuously / compactly embedded into ¥ and we write X Y / X <Y if
¢ is continuous / compact.

@ X is densely embedded into Y and we write X Ly if t(X) is dense in Y with
respect to | - ||y

Remark 2.2.2 (Embeddings) In the case of (2), there exists an ¢ > 0 such that |¢(z)]y <
c|z|x for all z € X. Mostly, ¢ = id and therefore, |z|y < c|z|x for all z € X. If X <5V,
then any bounded sequence in X admits a subsequence converging with respect to the Y

norm.

Lemma 2.2.3 (Continuous noncompact L? — LP for p < q)
For a bounded interval (a,b) c R and 1 < p < g < 0 we have L((a,b); R) — LP((a,b); R)

but the embedding is not compact.

Proof. Set i: L%(a,b) — L?(a,b), u+— u. For ¢ < oo we have

b @ [t e i 4=p
feulg = [ tupde'S ([ as) ([ pulrde) = -0l

where for the HOLDER inequality (H) uses r = ;l) and s = qqu as conjugated exponents. For

1
b P
lul, = (J |uf? dﬂ?) < (b= a)7 |[ulloo-

The sequence (fy,(z) = sin(nz))pneny < L2((a,b); R) is bounded, as for all n € N we have

q = o0 we have

b
Il = [ singule s <b—a
a %/_/

<1

But the sequence (f,,)nen does not contain any LP-convergent subsequences, as it doesn’t
even contain LP CAUCHY subsequences: suppose there is a subsequence (fp, )ren 0f (fn)nen

such that
k—o0
”fnk+1 - fnka — 0.

By HOLDER’s inequality we have

(H)
ank+1 - fnk H% < ank+1 - fnk Hprnk+1 - fnk Hq

< H-fnk+l - fnk ”p(”anlHq + ank Hq)

k—o0

1
< 2<b - a’)q ank+1 - f’ﬂk ”P - 07

but the left hand side is constant and equal to b — a > 0, which is a contradiction. O

TODOWEe have C([a, b]; R) — LP((a,b); R) but the embedding is not compact (sin(nx)) With
ARZELA-AscoLl we get C'([a,b]; R) <5 C([a, b]; R).

In the following Theorem we "spend" one degree of differentiability and "gain compactness".

20
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2.2 EMBEDDING THEOREMS

THEOREM 2.2.1: W?((a,b); R) <% C([a, b])

If p > 1 then WP ((a,b); R) <> C([a, b]).

Proof. As LP((a,b);R) < L'((a,b);R) (as p > 1) we have
WP ((a,0);R) =W ((a, b); R) = C([a, b]; R).

Let A < WP((a,b);R) be bounded. Then there exists an M > 0 such that |u];, < M for
allue A. As WP((a,b); R) — C([a, b]), there exists a ¢ > 0 such that |u] < c|uli, < M
for all u € A.

We now show that A is equicontinuous. For v € A and 1, x2 € [a, b] we get

To A;ﬁ r1 VI
f u'(t) dt‘ < f |u/(¢)] dt

] 1 AT

lu(zr) —u(z2)| =

(H) [ [rive: 1 aivaes a
([ wwra) ([ ow)
T ATo 1 AT
1 1
< lufipler — ze]d < M|z — x2| 9,
where g € [1,00) is the HOLDER conjugate to p. The Theorem of ARZELA-AScOLI yields

the claim since the identity maps bounded set to relatively compact sets and therefore is
compact. ]

Corollary 2.2.4
We have H'((a,b); R) <> L%((a,b); R).
Proof. By Theorem 2.2.1 we have
H'((a,b);R) = W?((a,b);R) <> C([a, b]; R) > L*((a, b); R)

and the composition of a continuous and a compact map is compact. O

Counterexample 2.2.5 (R)

Wht(a,b) is continuously (cf. theorem 1.3.1) but not compactly embedded in C([a,b]):
consider f,: [0,1] - R,  — 2n(1 — nz) for n € N. The sequence (fy)nen < C([0,1]) is
bounded in W1(0,1)

1 1

falis = [Fnlo + £ fox = QnL 1 - nrde +L (—2n?)dz = 1—2n < 1.

But there exists no convergent subsequence of (fy,)nen in C([0,1]).

We will now see that u € WP can be approximated by smooth functions. This fact often
allows us to translate properties of smooth functions to SOBOLEV functions.

THEOREM 2.2.2: MEYER-SERRIN

The space C*([a,b]; R) = WP ((a,b); R) is dense for p € [1, ).

Geht auch fiir alle anderen k und alle offenen Teilmenge 2 « R"! TODOsame
proof but with induction?

Remark 2.2.6
e C*([a,b]) = {u e C®((a,b)) : u*) are uniformly continuous on (a,b) for all k€ N }.
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2.2 EMBEDDING THEOREMS

e Then, C*([a,b]) is a subset of WP (a,b), but C*(a,b) is not.
e Something similar holds for LipscHITZ domain in R%.

Lemma 2.2.7 (Auxiliary lemma: local approximation)
For we WYP(a,b) and gg € (0, b_T“), e = wllwip(aseq,b—co) Oy

Alternative formulation u € H'(a,b), then for any compact subinterval K < (a,b) we have

O
||U—UEHH1 K) E—> 0.

Proof. Let x € K. For £ > 0 small enough (¢ < dist(K,d(a,b))) we have J.(x —-) €
CE ((a,b);R). Then
0= [ 2 )dy=—f—z<x— yyuly) dy
L = —J u(y) dy
= L) = () (@)

Proof. We know v, — u in L”(a,b)7 hence LP(a + €g,b — &g) (v')e — ' in LP(a,b) hence
Lp(a + €0,b — 60). (?7)

For x € [a + £9,b — €0] we have (u')e(2) = (ue)'(z). For sufficiently small & < g the function
y — J(xr —y) is in C{ (a, b). Hence,

= Lb Je(x —y)u'

b d ,
=L T 7= (@ —yuly) dy = ug(2).

b
(y)dy = — f %%(w —y)u(y) dy

a

Altogether we have u, — u in LP(a + £9,b — €9) and (u.
This yields ue. — u in WP (a + 9, b — &¢). O

Proof. (of the theorem) Let u € WP (a,b) and Z1,Z2,Z3 = R be open intervals such
that
3
a€ely, beIs, Iyc(a,b) and [a,b]c U

Let (\Ifk)%zl be a corresponding partition of unity, i.e.

3
Uy € CP(R), supp(Py) = Iy Yk e {1,2,3} and Z Uiliap) = 1.
k=1
We set uy, == u- Uy € WHP(a,b) with uj, = o/ Uy, + u¥}.
(2) As ug € WHP(a,b) and dist(Zs, d(a, b)) > 0 the lemma shows (uz). — ug in WHP(Zs).

(1) For a sufficiently small § > 0 we set vy(x) = uj(z + §), as n ¢ supp(v1) then vy €
WhP(a — 6,b+ §). The lemma shows (v1). — vy in WHP(?7).

As the L? continuity of w; yields that ||us — v1llo,, — 0 and |u; — vio,p — 0 for 6 > 0

7N 7N
e (=l e (=l
= =
=~ =
—~ —~
oS oS
| |
< I
=~ =
S 8
+ +
= N
= )
N~ ~~—
) x|
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2.2 EMBEDDING THEOREMS

for § \, 0 and hence |u; — vi]o,p 250, 0 we get for 7 > 0 fix 0 so that |[u; —v1]1, < 7 and
€ so that [v1 — (v1)e|1p < 3.
Hence, |u; — (v1)c]1,p < 0. Recall that (vi). € C*(R).
(3) The same for ug.
(4) We know (us). € C*(R) and (u2). — ug in WP (a,b).
We define w = (v1)e + (u2)e + (v3)e € C*(R). Hence, wl(4) € C*([a,b]) and
lu—wl1p < fur = (01)elip + luz = (u2)ell1p + lus = (V3)el1p < 30- O

Remark 2.2.8 C{°(a,b) is a subset of WP (a,b) but in general it is not dense. TODOwhy

Remark 2.2.9 (V, Defining SOBOLEV space as topological closure)
Let C*P(a,b) be the space of C* functions f so that f©) € L for all ¢ < k. Then, we have

CkP(a,b) ¢ WH*P(a,b) c LP(a,b).

The space C*P(a,b) isn’t complete with respect to the norm on W¥P?; its completion is
WFP(Q) (SERRIN-MEYER). The derivatives up to order k, being continuous operators can

be uniquely continued. These continuations are precisely the weak derivatives.

DEFINITION 2.2.10 (SOBOLEV SPACE W/ COMPACT SUPPORT)
We define the closed subspace

WP ((a,b); R) = C2((a, B R) " < W((a, b); R).

THEOREM 2.2.3: CHARACTERISATION OF W, ”((a,b);R)

We have W, P ((a,b); R) = {ue WP((a,b);R) : u(a) = u(b) = 0}.

Remark 2.2.11
o As W1P((a,b); R) < C([a,b]; R), this makes sense.

e This not true in R? for d > 1 (further reading: trace operators)

Proof. "c": Let u € Wy?((a,b);R) and (un)nen < CP((a,b);R) so that u, — u in

W1t?((a,b); R) —C([a,b]). Hence, > '
sl[lpb] [un () — u(@)| = |t — ulo < c|un —ull1,p — 0
z€[a,

in part 0 = up(a) — u(a), 0 = uy,(b) — u(b).

N T
"' Let u € WHP((a,b);R) such that u(a) = u(b) = 0. Let n > 0. We construct \ b
wy € C((a,b); R) so that |u— uy| < 2n. _ [&Cake | |
The “cut-off function” w = 1_; 17 is in C5°((a, b); R). First, we cut off u in a neighbourhood —C‘%ﬁﬁf—
of a. For € > 0 we define S*-a}ﬂlmd'
x—a 0, for|z—a|<e,
We (-75) =W/ ) = Figure 14: The mollifier
€ 1, for |x —a] = 2e.

uy with compact sup-
port.
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0, for z € [a,a + €],
and  ue == u-we(x) =
u(z), else.

Then we have u. € WP ((a,b); R) with v’ = v/w. + uw’. € L since u,u’ € LP and w. < 1

and w! is also bounded (see (8

)-
We now show that |u — u.|1,, <7 for sufficiently small e:
b
o= el = [ u(o) = @)+ 1 @) = @) do

b
< J (@) 7|1 — we ()| + [ (2) 7|1 + we (2)[”
+ ()P |wl ()" dz

a+2e a-+¢e a+2e
<J |u(m)|pdx+f |u'(x)|pdac+2j (@) de

a a a+e

a+2e
" f () Pl ()P

a+e
a+2e a+2e
<2 PPt [ ju@p [u@P .
a a —
eN0
N
As wl(z) = 1w’ (£=2) (chain rule) there exists an C' > 0 so that
1 C
/! < - / < =, 8
@) < Ll < S ®
As u(a) = 0 we have u(z) = §" v/(y) dy. Hence,
f\u 1 (8 dt d§<ff| P dE- |€— a? de. )
Hence,
a+2e a+2¢e
| m@pi@ras < [ e @p s
ate b aioe ) Figure 15: The integra-
cP a+2e pra+2e »
~S [ wr - off aga
a t
cp a+2e ra+2e »
<SS [ wore-afacar
a a

F?) cP a+2¢e a+2e »
il |u'<t>|pdtj €—alide
[

Ep a a
<2e
(*) » a+2e
2 orat J (1)) dt
/.
=G
where in () we use —p + % +1=p (—1 + % + %) = 0. We conclude
a+2¢e o eLP
lu = uel1p < C5Y) f lu(@)[? + [u'(z)|P dv ————0
a e suff. small

Proceeding analogously with the right endpoint, b, we get a function @, € W*((a,b); R)
with |u — @y|1,p < 2n and supp(a,) < (a,b).

Hence ¥s * i, € C3°((a,b); R) for 0 small enough and | $s * t, —

|1,p <. ]
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2.2 EMBEDDING THEOREMS

Corollary 2.2.12
WP ((a,b);R) = LP((a,b);R) is dense for p € [1,0).

Proof. Exercise. Use that test functions are dense in LP. ]

The Characterisation of Wol’2 is also true for higher dimensions: If (a, b) is bounded the injection Wol’2 ((a,b);R) — L?

is compact. (See the PoincarE inequality.)

THEOREM 2.2.4: POINCARE-FRIEDRICHS-INEQUALITY

For u € Wy?((a,b); R) we have

[ullop < (b= a)lulip.

Remark 2.2.13 This is not true for W1?((a,b); R).

Corollary 2.2.14
On Wy, the norms | - |1, and |- |1, are equivalent. Thus, (Wy"*((a,b);R),|-|1,p) is a
closed and therefore complete subspace of W1P((a,b);R).

Proof. By Theorem 2.2.3 we have u(a) = 0 and thus as in (9)

e e ([ a2 ([ ) ([ wora)) o

b rx
P P
~ [ Wwwlrdyle - off do < p- o Eult,
a a

<[w3

1

and (|b—a|1+§); = |b—a|%+é =b—a. O

_ b 2
Remark 2.2.15 For p = 2 we even have |ulo2 < bT;|u|172, as §, |z — al? dz = i1(b—a)?

and we can even instead have b_T“. TODO

Remark 2.2.16 This is not true for unbound domains but for open subsets Q of R? we

1
have |ufo,2 < (%) ‘ |ul1 2, where wq is the measure of the unit ball.

Remark 2.2.17 (POINCARE-FRIEDRICHS-Inequality on a cone)

The POINCARE-FRIEDRICHS-Inequality also holds for all u € {u € H'((a,b);R) : SZ u(z) =
0} = Hh((a,b);R) = H'((a,b); R). Suppose not, then there exists a sequence (u)neny <
H}((a,b); R) with [up o2 = nlul]o2. Let v, = Tt © H},((a,b);R). Then |v,]12 =
W”h’;ﬂ% <1+ 21 <2 50 (vn)new © H'((a,b);R) is bounded. Thus there exists a
weakly convergent subsequence (vp, )ken With v, — v with {;, v(2) = 0. We have |v,[o2 =1
and [Voy,[o,2 — 0, so Vo = 0 and thus v is constant and thus v = 0 (as {v(z) dz = 0), which

contradicts vy, o2 = 1.

Dual Spaces
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DEFINITION 2.2.18 (DUAL SPACE OF Wy'P(a, b))
We set W—14(a,b) = (Wol’p(a,b)) , where p and ¢ are HOLDER conjugates. It is
equipped with the norm

(fru)
[fl-1q = sup =
wewpr [Ulip
u#0

Attention: W~14(a,b) # (W'P(a,b))*. (but <??)
Reminder (LP)* ~ L9 via { f, u>(Lp)*XLp = {vpudxz, where vy € L7 is unique and u € LP.

Lemma 2.2.19
o [4—Wha,

o for all f e W19 there exists a not necessarily unique us € Li(a,b) so that
f
<f,v>W,1,qu01,p = Jufv' dzx,
where v e WP (a,b).

Proof. Exercise. O

Remark 2.2.20 We could identify the HILBERT space H ! with H} by the H} inner product
(RiESZ). But we won’t do that and rather identify H} < L? ~ (L?)* < H~! and therefore
regard H{ as a subspace of H~! via the L? inner product.

If f € L?((a,b); R), then f, defined by

b
(fu)y = J f(@)u(z) da,

where u € Hg((a,b);R) is an element of H~1((a,b); R) such that there exists a constant
C > 0 with | f|-12 < O fllo,2- thus

L*((a,b);R) =~ H ™ *((a,b); R)

Counterexample 2.2.21 (LP convergence —> WP convergence)
sin(nz)

The function family f,(z) := == converges in any LP[a, b] to zero but does not converge

in any W+?,

For p € [1,00) the subspace C*(a,b) n W*P? = W*P(qa,b) is dense.

CE((a,b);R) = LP((a,b);R) is dense for p < 0. But C¥((a,b); R) = WHP((a,b);R) is not
dense. C*([a,b];R) is dense in W*P((a,b); R). Formally, C*([a,b];R) & W¥P((a,b); R) but
we show that

C*([a,b];R) = {u e C®((a,b);R) : u'? is uniformly continuous V¢ € N}
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Further Reading

Generalizations of SOBOLEV spaces include BEsov and SOBOLEV-SLOBODECKIJ spaces.

Lemma 2.2.22 (Important inequalities. Tut, needs to be somewhere else)
For p e [1,0) and (ar)}_, = 0 we have

n n p n
Sac(Sa) w3
k=1

k=1 k=1

For pe (0,1) the inequalities are reversed.

Proof. For p > 1 the function f(z) := «? is convex. With JENSENs inequality (J) we have

p P
n n a @ n ai . n
— P _n < p Kk _ P p
(Ba) - (B%) Bt S
k=1 k=1 k=1 k=1
Now, let a; # 0 for one j € {1,...,n}. Then we have

n -1 n n
Tp = ag - ag <1=>Zx§<2xk=1,
k=1

k=1 k=1

which shows the claim. ]

The following is a LP-Generalization of the theorem of ARZELA-ASCOLI:

THEOREM 2.2.6: FRECHET-KOLMOGOROV-RIESZ

Let (a,b) € R and (up)neny @ bounded sequence in LP((a,b); R) where p € [1,00). If
for all € > 0 and all intervals [«, 3] < (a,b) there is an ¢ € (0, min(a — a,b — §)) such
that for all h € R with |h| < ¢ and all n € N it holds that

B
J [un(z 4+ h) — up(x)Pde < e

and if there exists an interval [¢/, 8'] < (a,b) such that for all n € N it holds that

’

o b
J |t (2)|P da + J |tn ()P do < e
/BI

a

then there is subsequence of (uy,)nen that converges in LP((a,b); R).

Lemma 2.2.23 (Wikipedia formulation of the above)
A bounded set F < LP(R™), with p € [1,00) is relatively compact if and only if

S\z|>r |fP 2%,0 and I7af — fllzr@n a—_)0>, both uniformly on F.

THEOREM 2.2.7: RELLICH

Hl((a7b);R) ;C)LQ([avaR)'

Proof. The embedding H'((a,b); R) < L?([a,b]) is clear since

[uld s < Jullg o + I3 2 = ul ».
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2.2 EMBEDDING THEOREMS

Let (un)nen © H'((a,b); R) a bounded sequence so that ||u]2 < M for all n € N, & > 0 and
[a, 5] given. Choose

§ = min{]\/l(;_a),min{aa,bﬂ}}.

For x € (a,b) and h € R such that |h| < 0. Then we have

d vyt [P ’
un(x + h) — up(z)|>de = dx
[t (

(e

x+h
f bl () de

€T

(H) B z+h , )
< j | j i (6) 2 dé e
A¢ « xT

<|hIB = al|v[§, <e.

Let 6 € (O, min (b —a, W)), where z is the embedding constant of H'((a, b); R) < C([a, b]).
Set [/, 8] := [a + 6,b— §]. Then we have

’

oY b
f |un<x>|2dx+j i ()2 it < 26 |2 < 266225 < .
ﬁ/

a

With the Theorem of FRECHET-KOLMOGOROV-RIESZ we get the existence of a convergent

subsequence. O

DEFINITION 2.2.24 (HOLDER CONTINUITY / SPACE)
For a € (0,1) a function u: [a,b] — R is a-HOLDER continuous if

e =0 |u(z) —u(y)| < clz —y|* Yo,y € [a,b].

The space of HOLDER continuous functions

Cc%*([a,b]) == {v e C([a,b]) : |u|o == Supw < oo}

oty T —yl®

equipped with the norm |[u]go.a = ||ulle + |u|q is complete.

Lemma 2.2.25 (HOLDER embeddings)
@ For 0 < a < f <1 we have C*([a,b]) <> C*([a, b]).

@ We have H'((a,b);R) <>C%*([a,b]) for a € (0,1)

Proof. @ Continuity. Since
u\r) —uly

u(z) — u(y)|
U|q = SUpP <sup|r — - sup
e = ey e — g < AT
< |b - a|ﬁia|u|ﬁv

the claim follows.

Compactness. Let (uy )nen © C°?([a, b]) a bounded sequence, i.e. there exists a M > 0
such that |u,|g < M. Particularly (up)nen is uniformly bounded. We have

[tn (@) = un(y)| < unlslz —y|” < M|z —y|°.

Therefore (u,)ney is equicontinuous. By the theorem of ARZELA-ASCOLI there exists
an convergent subsequence (u,,)nen < C([a,b]) converging to u € C([a, b]).
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29

We now show |lu], — ulloo =,

1
Let € > 0 and § < min ((GLM) fra ,1) and j < n so that

€ €
— il < =6F < =.
lu — ;oo 6 3

and let © # y, |x — y| < 4. Then,

|(u = u) (@) = (u—u;)(y)|

|(unr = uj) (@) = (Un — ;)

— 1
[z =yl W 2=l
< 0f — asup |uy — ujlg
n’eN
<37 sup Juw s -2 < <.
n’eN 3
For |z — y| = § we have
|(U — ’LLJ)(I') - (u _ u]) < 6—04Hu _ uij < E
|z —y|* 3
Therefore, we have
e € ¢
lu —ujla <sup|u—ujlle + |u— ujla < 3 + 3 + 3=¢

-yl



Reformulation using variational formulations and

operator equations

3.1 Reformulation using variational formulations

Example 3.1.1 (Obtaining variational formulation from BVP)
Consider the linear second order boundary value problem with homogeneous DIRICHLET
boundary conditions

{ —u"(x) + c(z)u(z) + d(x)u(x) = f(x), =x€ (a,b), (10)

u(a) = u(b) =0,
where ¢, d € C([a,b];R). A classical solution to (10) is a function u € C?((a, b); R) nC([a, b]; R).

(@) Multiply (10) with a (yet to be specified) test function v and

() integrate over the domain:

b b
J u’(z)v(z) + c(2)u (z)v(x) + d(z)u(z)v(z) dz = f f(x)v(z)dz

a

@ Integrate by parts in the highest order derivative.

b b

c(z)u (x)v(z) +d(z)u(z)vdz = J f(z)v(z)dx

a

[ wer@auep @l

a a

If v(a) = v(b) = 0 we obtain

b b
J- o (2)v'(x) + c(x)u (x)v(z) + d(z)u(z)v(z) de = J f(z)v(x)de. (11)

a

The equation (11) is well defined for e.g. wu,v € H}((a,b);R), ¢,d € L*((a,b);R),
feL?*((a,b);R) (or LY).

Instead of finding a classical solution to (10) we now search a function u € V :=
H}((a,b);R) so that (11) holds for all v e V.

For sake of brevity we define the bilinear form

b
a:VxV->R, (uv)— J o (2)v(x) + c(x)u (x)v(z) + d(z)u(x)v(z) da.

and
b
(foo)= J f(z)v(z)dx

Then, f is linear in v and bounded: With the CAUCHY-SCHWARTZ inequality (CS) and the
POINCARE-FRIEDRICHS-inequality (PF) we obtain

_ (CS) (PF)
[CFopl < | flzllvle < Cffl2lvli,e.
for a constant C' = b_Ta > 0.

Similarly, for u,v € Hg((a,b); R), « fulfills

(CS)
lau, )] < C(1+ |cfoe +[d

l0,00) [ul1,2]v]1,2- (12)

for a constant C' > 0, hence it is bounded.
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3.1 REFORMULATION USING VARIATIONAL FORMULATIONS

-\@'-Current Formulation of BVP (I)
Find u € V := H}((a,b); R) such that

a(u,v) ={f,v) YveV.

Remark 3.1.2
(D) We want to consider the same space V for solution and test function e.g to "test with

the solution" (see below).

(@) We will write f € H~'((a,b); R) instead of f.

@ As we started out with a linear equation the bilinear form « is linear in u, too (it is
always linear in v by construction).

(@) For homogeneous DIRICHLET boundary conditions (DBCs) we always (need to) choose
a "zero-space".

(5) When finding a solution to the variational formulation we have to be aware that this

might not make any sense in the classical sense.

Example 3.1.3 (Transforming inhomogeneous DIRICHLET BCs)

Consider the boundary value problem

x € (a,b)
u(a) = a, u(b) = B.

To obtain the variational formulation we write

b b b
—J o' (z)v(z)de = J o ()0 (z) dz — o/ (z)v(z) )
We could choose

V={ue H'((a,b);R) : u(a) = a, u(b) = B},

but this is not a linear space since it does not contain the zero function.

Therefore we choose g € H'((a,b); R) such that g(a) = o and g(b) = 3 and set @4 = u — g.

Because we are in one dimension, this g always exists and can be a line and is therefore
regular enough. If u € H((a,b); R) with u(a) = « and u(b) = 3 consider @ € H}((a,b);R)

and vice versa.

We set au,v) == Sz o (z)v'(x)dz and { f,v) = SZ f(@)v(x)da.

Then, a(t,v) = a(u,v) —a(g,v). Hence if a(u,v) = { f,v) then a(a,v) = {f,v)—a(g,v) =

{f,v) and vice versa.

Our problem now reads

-\@'-Current Formulation of BVP (II)
Find @ € V := H}((a,b); R) such that

o, v) ={f,v) YveV.
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conditions u(z) = 0 if

z < 0 on éU and
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require h € 03 (6U) in
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3.1 REFORMULATION USING VARIATIONAL FORMULATIONS

Example 3.1.4 (Transforming NEUMANN boundary condition)

Consider the boundary value problem

—u(z) = f(), x € (a,b)
u'(a) = a, u'(b) = 5.

Analogously to above we write
b b b
J o (z)v(x) de + o' (z)v(x) = J f(x)v(x)dx.
a r=a a
_
=pv(b)—av(a)

Thus we want to find u € H*((a,b); R) (not H}!) such that

b b
alu,v) = J o (x)v' (x) de = J f(@)v(z)dz + av(a) — Bu(b)

for all v € H'((a,b); R). We observe that the variational formulation of this problem differs
from the last example by the fact that we consider V := H'((a,b); R) instead of H}((a,b);R).

For homogeneous NEUMANN boundary conditions we just search a u € H'((a,b);R) such
that {u'v' = ( f,v) for all v € H'((a,b); R), while for homogeneous DIRICHLET boundary
conditions we search a u € Hj((a,b); R) such that {u'v' = ( f,v) for all v € Hj((a,b);R);
only the space differs. We will later see that if f is the HEAVISIDE function, the NEUMANN
problem is not uniquely solvable, while the DIRICHLET problem is.

Example 3.1.5 (Variational formulation of RoBIN BCs)

The weak formulation of the boundary value problem

—u"(z) + c(x)u (z) + d(x)u(z) = f(x), on (a,b),

(
u'(a) + cou(a) = a,

u'(b) + chu(b) =5,
where ¢,d € L®((a,b);R), f € L?((a,b);R) and c,, cp, a, 3 € R can be obtained as follows:
Multiply by v € H!((a,b); R) and integrate (by parts):
b

b
LHS = J —u"(z)v(z) dz +J c(z)u (z)v(z) + d(x)u(z)v(z) d,

a a

where

The variational formulation then is:

For f e L?((a,b);R) find uw e V := H'((a,b); R) such that for all v € V* we have
SZ uv' + cu'v + duv’ dz + cpu(b)v(b) — cqu(a)v(b) = Sz fvdz + Bu(b) — av(a).
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Example 3.1.6 (Variational formulation of periodic BCs)

The weak formulation of the boundary value problem

—u"(2) + c(x)u (x) + d(z)u(z) = f(z), on (a,b),
u'(a) = u'(b),
u(a) — u(d),

where ¢, d € L*((a,b);R) and f € L?((a,b); R) can be obtained as follows:
Let V := {v e H'((a,b);R) : v(a) = v(b)} the space of periodic H!((a,b); R) functions.

Taking the same steps as with ROBIN boundary conditions, this time we obtain
[/ (2)v(2)]5—q = @/ (B)0(b) — u'(a)v(a) = (u'(b) — u'(a))v(a) = 0.

Therefore, our variational formulation reads
For f € L?((a,b);R) find ue V := H'((a,b); R) such that
b b
J w'v' + cu'v + duv' do = f fodz.

for all v e V*.

Remark 3.1.7 In both of the former examples we could have also chosen f € H~1((a,b);R),

weakening the requirement f e L2.

Example 3.1.8 Let H be the HEAVISIDE function. Consider the boundary value problem

—u"(z) = 2H(z) + do(z), on (—1,1)
u(—1) =u(l) =0.

We find the variational formulation
1
V= Hj(—1,1), alu,v) = J o' ()0 (x) dz,
-1
1 1
(fyv)y = 2J H(z)v(z)dx + {do,v) = 2J v(z)dz + v(0).
—1 0
Then, f € H 1((a,b);R) is linear and we have

(PF)
0’30 < C"U

[(frv)] <2l

0.1+ [0(0)] < 2

0,2+ |lv 1,25

because v is absolutely continuous.

We can see that our solution is

x+1, ifze[-1,0), Figure 16: The solution
u(z) = 5 . u for z € [—1,1].
1—2%, ifzel0,1],

Then for v e H}(—1,1) we have

J_ll o (z)v' (x) do = J_Ol V' (z) dx + (—2) Ll 20 (z) da
=v(0) —v(=1) + 2Ll v(z) dz — 2zv()
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The solution is unique by the superposition principle. But we can also show it like this:
Let u, @ be solutions and define w := u — @ € H}((a,b);R). Then for v = w (this is the

aforementioned testing with the solution). Then, we have

a(w,v) = a(u,w) — a(a,w) = fywy—_f,w)=0.

From this we obtain
b b
0=a(w,v) = J w'(z)w' (x) doe = J- | (2)|* do = |w|%2
a
hence w = 0 in H}((a,b); R).
For v € V we define the integral operator
AV > V*, (Au,v) = a(u,v) or Au:= alu,-).
As we have seen in (12) we have
[ (Au,v) | = |a(u,v)| < Cluli2|v]12 = Clullv[v]v.

Thus we have Au € V* with

Au,v
|l = sup 4L < Oy
vev  [ollv
v#0
Since « is linear in its first argument, A is linear.

Our problem now reads

*¢*Final Formulation of BVP (IIT)
For f e V* find u € V such that

Au = f (in V*).

Lemma 3.1.9 (Emmerich Lemma 3.4.5)
Let V' be a real reflexive BANACH space and a: V x V — R defined by A: V — V*. Then

e A is linear if and only if a is bilinear.
o A is symmetric if and only if a is symmetric.
e if a is bilinear, A is bounded if and only if a is bounded.

o A is strongly positive if and only if a is strongly positive.

Remark 3.1.10 (Emmerich, remark 3.4.7) The restriction onto real spaces is not nec-
essary. If V' is a complex HILBERT space, we replace bilinearity by sesquilinearity and instead
of strong positivity we require R(a(v,v)) = ulv|? for all ve V.

Example 3.1.11 (Tut, Weak solutions can be strong)
Let u e C*((a,b); R) N C[a, b] be a weak solution of
—u"(x) + c(z)u (z) + d(z)u(z) = f(z) in (a,b)

equipped with homogeneous DIRICHLET boundary conditions, where ¢, d, f € C[a,b]. Then u
is already a classical solution of the boundary value problem:
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Since u € C*((a,b);R) N C[a, b], the point evaluation of u,u’,u” is well defined. Since u is

weak solution,

b
J u'v' + (cu' + du)vdz = {f,v)

holds for all v e H((a,b);R) o CF((a,b); R). Since u is regular enough, we can integrate by

parts to obtain

b
0= J (—u" + cu’ + du — flvdz + [u’v]l;:a Vv e CP((a,b); R)
‘ %

The Fundamental theorem of the Calculus of Variations implies that
" !/ —
—u' +cu +du—f=0

for almost all x € (a,b). But since all functions involved are continuous, the identity holds

everywhere.
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3.2 Linear variational problems with strongly positive
bilinear form

DEFINITION 3.2.1 (OPERATOR PROPERTIES)
Let a: V x V — R be a bilinear form. We call «

e symmetric if a(u,v) = a(v,u) holds for all u,v € V. symmetric
e strongly positive there exists a u > 0 such that a(u,u) > pfu|? for all u e V. strongly positive
e positive if a(u,u) =0 for all u e V. positive

e bounded if there exists a 8 > 0 such that a(u,v) < S|u||v| holds for all u,v € V.  bounded

Let A: V — V* be a linear operator. We call A

o symmetric if (Au,v) = {( Av,u ) holds for all u,v e V. symmetric

e strongly positive if there exists a p > 0 such that {( Au,u) > p|ul? for all ue V. strongly positive
e positive if (Au,uy >0 for all ue V. positive

e bounded if it maps bounded sets to bounded sets. Since A is linear, this is  bounded

equivalent to requiring that there exists a 8 > 0 such that |Au|s < B|lu| holds for
allueV.

Remark In the literature, strong positive is also called (strong) coercivity or strong ellipticity.

Lemma 3.2.2 (Boundedness of symmetric bilinear forms)
Let V be a BANACH space and a: V x V. — R a symmetric bilinear form. Then « is
bounded if and only if |oa(u,u)| < M|u|? holds for some M = 0.

Proof. " = " is trivial.

" <= ": Because « is symmetric we have

1 1
la(u,v)| = ia(u,u) + 50[(1},1}) - §a(u —v,u — )
r#E M 3M
< 50 Ju=ol? )+ oI?) < == lul® + [o]?).
g Vv 2

<2(Jul?+[v]?)
For |u| =1 = |jv| it follows that |a(u,v)| < 3M for all w,v € V implying

‘a<|z|7z>‘ <3M = |o(u,v)| < 3M]ul|u]. 0

Example 3.2.3 (from Physics: Minimising Energy Functional) Let a: V xV — R
be a symmetric bilinear form. We define the corresponding energy functional

a(v,v
J: V>R, U'—>%—<f,v>,
where V' is comprised of all the states v of a certain system and J(v) gives its energy in that
state. Our goal is find minimisers of J.

If w is a minimiser, then "J’(u) = 0" should hold. We aim to give meaning to that expression.
Let v e V. Then,

(J' (u),v) = lim % (J(u+ hv) — J(u))

h—0
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:}llii%% (a(u+h1)2,u+hv) —<f,u+hv>—a(u2’v) +<f,u>>
i 1 (hatu o) + ratoee) k(100 ) = atun) (o) Lo

Hence the necessary condition J'(u) = 0 is fulfilled if u is a variational solution of our

boundary value problem (— DGL Il B).

THEOREM 3.2.1: LAX-MILGRAM (1954)

Let (V, (-, -),]|-]) be a (real) HILBERT space and A: V' — V* a linear, strongly positive,
bounded operator. Then A is bijective.

Proof. As V is a HILBERT space, there is an isometric isomorphism ¢: V* — V', the Rirsz
map, such that { f,v) = (i(f),v) and | f|+ = |i(f)| for all f e V* and allve V.

Since A is strongly positive and bounded, there exist u, 5 > 0 such that
(Au,u) > plul® and - (Au,v) < Bluf|v]  Vu,veV.
Fix f € V*, choose 7 > 0 such that 7 < %%, ie. 1 —2ur + 7262 < 1 and define
.V -V, v v+ Ti(f — Av).

Then f = Aw if and only if ®(u) = u. To use BANACH's Fixed Point Theorem it remains to

verify that ® is a contraction: for u,v € V we have

[@(u) — @()|* = |u— v+ 7i(f — Au— f + Av)|?
= [lu—v[* +27(u — v, i(A(v — w))) + 7 i(A(u — )|
= [lu—v[* = 27 (i(A(u — v)),u = v) + 72 i(A(u — )|
= [lu—v[* = 27 (A(u = v),u —v) +7%|Au — )5

< Ju— o = 2rpllu — v|* + 725w — o|*

= (1—2u7+7252) Hu—v||2. O
—_—
<1

Corollary 3.2.4 (Solution operator)
Under the above conditions the bijectivity of A implies the existence of a unique solution
u € V to the problem Au = f for all f € V* as well as the existence of the solution
operator A™1: V* — V, which is linear, bounded and strongly positive.

Proof. (Left as an exercise) By the Theorem of LAX-MILGRAM A is bijective, implying
the existence of the linear A~!. Its boundedness i.e follows from the inverse mapping theorem
but can be show with much more elementary means: For all f € V* we have

P ATH NI < CAATH AT = R AT < flve A7 f v

Finally, the strict positivity follows from
[ = [AAT fI < B2|ATHFI

<Zanrpayy - Eopagy 0
x [ s = ? s .
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Corollary 3.2.5 (Continuous dependence)
There exists a ¢ > 0 such that [A~'f| < ¢|fll« for all f € V*, proving stability /
continuous dependence (because A is linear even LIPSCHITZ dependence) on the right
hand side.

TODO: prove Lax-Milgram with GALERKIN scheme

Proof. Let u,@ € V be solutions to the right hand sides f, f. Then, there exists a ¢ > 0
such that
- _ 1wy (L) . 5 5
Ju—al = [ATH(f) = AT = AT = DI < CIf -~ fl« O

Remark 3.2.6 (Energy Norm) Let (V.| - |) be a real BANACH space and A: V — V*

linear, strongly positive and bounded operator.

e If A is symmetric, we define
(,)a: VxV >R, (u,v) — (Au,v),

which is a inner product on V. The induced norm is given by ||[ul|% = (u,u) 4 == ( Au,u),

called the energy norm. Both norms are equivalent:
plul® < (Auyuy = [ulh < Bllul®. (13)
e If A is not symmetric we consider its symmetric part:
(,)a:VxV >R, (u,v) — % ((Au,v)+(Av,u)).

Proof. (My idea of how to simplify proof of LAX-MILGRAM if A is symmetric)

As (V, (-, ) a) is a HILBERT space (due to the equivalence of the induced norms), there is an iso-
metric isomorphism ¢: V* — V| the Rirsz map, such that { f,v) = (i(f),v)a = CAi(f),v)
forall fe V* and allve V,ie. Al =1A =id. Hence A is invertible. O

Lemma 3.2.7 (LAPLACIAN fulfills LAX-MILGRAM conditions on Hy)
Let V = H}((a,b);R). Then

b
a:VxV >R, (u,v)— J o' ()0 (x) dz
a
defines a symmeltric, strongly positive bounded bilinear form on V.

Proof. The symmetry and bilinearity is clear.

Strong positivity: For u € V we have

b b
a(u,u) = J () (z) do = J W/ () da = |ul{ 5. (14)

a
Boundedness: For u,v € V we have

b cs
/| dz S ot

a(uv) < | |

a

0.2[vlo2 = lul12[v]12 (15)

so « is bounded with g = 1. O
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Consider

—u"(z) = H(z), z€e(-1,1),

u(=1) = 0 = u(l),
where H is the HEAVISIDE function. We consider V := HJ((—1,1);R) as above and de-
fine ( f,v) = Sé v(z)dx. Then f e V* = H ((—1,1);R); the linearity is clear and the

boundedness follows from
1 PF
(fiv)= J v(z)dz < [vfoq < cfvfo2 < Clvfie
0

for allv e H}((—1,1); R), where ¢ > 0 exists by the continuous embedding L7 ((—1,1); R) <> L' ((—1,1); R),
so the problem is uniquely solvable by the Theorem of LAX-MILGRAM.

Example 3.2.8 (Nonuniqueness because of NEUMANN boundary conditions)
Now consider the same boundary value problem with homogeneous NEUMANN boundary
conditions

7U”(l‘) = H(SC), T e (717 1)7

w'(—=1) =0=1d/(1).

We choose V = H=((—1,1); R) and define a and { f, - ) exactly as above. The only difference
to the DIRICHLET problem above is the different norm. The bilinear form a is again bounded:
for all u,v € V we have

-

[s}
a(u,v) < |ulizlv

12 < |luf12]v

1,2-
But a is not strongly positive as the POINCARE-FRIEDRICHS-Inequality does not hold on
H!((a,b);R): we have

(14)

a(u7u) = |u|%,27

which we can’t bound below by C'|u|1,2. The bilinear form « is only positive: foru =1¢€
H'(a,b)\H}(a,b) we have

b

a(u,) = [ @) =0

and |luf12 = b—a+0> 0, so the inequality a(u,u) = pulu|? ; is only fulfilled for 4 = 0. But
the problem is not uniquely solvable, as TODO

Thus the Theorem of LAX-MILGRAM can not be applied, as the seminorm | - |12 is not
a norm on H'((—1,1);R). Instead of H'((a,b); R) we can consider H := H'((a,b);R)/ ~,
where u ~ 0 if and only if u is constant almost everywhere. Then (H, |- | 2) is a normed

space, as then | - |12 is definite.

Another approach is to add a u to the left side, that is, we consider

—u"(z) + u(z) =0, z¢€ (a,b),
u'(a) =u'(b) =0

because then a(u,v) = SZ u'(2)v'(x) + u(z)v(x) dz and thus |a(u,u)] = [u]3,.

Example 3.2.9 (Applications of the LAX-MILGRAM Theorem) @ Consider the bound-
ary value problem
—u"(x) = do(x) on (—1,1),
u(=1) = u(l) = 0.
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Its variational formulation is given by V := H}, {f,v) = (dp,v) = v(0). As
HY((—-1,1);R) —C([—1,1]; R), the point evaluation and hence f € V* is well defined,
bounded and linear:

[{fs0)] = [0(0)] < [v]leo < Clola 2,

where C' is the embedding constant.

Now, let A: V — V* be defined by

(Au,v) = JA o ()0 (x) dz = alu,v)

for a: V x V — R, which is bilinear since A is linear. Furthermore, « is bounded: for
u,ve Hy'(—1,1)

alu,v) = JA o' ()0 (x) dr < |

This implies A is well defined and bounded:

(Au,v) <

|Auls < vl = B =1

Furthermore, a and A are strongly positive:

1
alu,u) = (Au,u) = J (x)dx —J |u/(x)]* do = |u|fg
—1
This implies ¢ = 1, meaning that the energy norm is equivalent to the | - ||1,2 norm! By
the Theorem of LAX-MILGRAM there exists a unique solution, which is u(z) := 1 (1—|z).

For f € L?(0,m) consider the linear second order imhomogeneous boundary value

problem with homogeneous DIRICHLET boundary conditions
—u"(z) —u(x) = f(x) we(0,m),
u(0) = u(r) = 0.

The variational formulation is V := H}(0,7), { f,v) == So 2 (here we are
abusing notation, again: the f on the left hand side of the equatlon is the functional f
and the f on the right hand side a function!). Then f € H~'(0, ). For u,v € V define

a(u,v) = JW o' ()0 (x) — u(z)v(x) dz,

0

which is bilinear, well-defined and bounded:

J [u'(2)v"(x)] + [u(z)v(z )|d517 < |U\12|U|12+\U|02|’U\02

PF =0\
< <1+( . ))|u|1,z|v|1,2=2u|1,2|v1,2.

Due to the POINCARE-FRIEDRICHS inequality, a is positive: for v € V we have

PF T—0
a(v,v) = |U|i2 - HUHg,z = M%Q - TM%2 =0.

But a is not strongly positive, as for v := sin € V' we have

a(v,v) = Lﬂ cos?(x) — sin®(x) dz = 0.

Indeed the problem is not uniquely solvable for f = 0: the family (u(x) := csin(z))cer

solves the boundary value problem. For f = 1, there is no solution.
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Lemma 3.2.10 (Linear second order inhomogeneous boundary value problem)
Consider the linear second order inhomogeneous boundary value problem with homogeneous

DIRICHLET boundary conditions

—u"(z) + c(x)u/(z) + d(x)u(z) = f(x), xe€ (a,b),
u(a) =0 = u(b)

with f € H*((a,b);R), ¢,c/,d e L*((a,b); R) such that there is a D € R with

7T.2

d(z) — %c’(m) =D > “h—ar

for almost all x € (a,b). Then the problem has a unique solution.

Proof. We have already shown that with V := H}(a,b) that

b
(Au,v) = a(u,v) = J o' ()0 (z) + c(x)u’ (x)v(x) + d(z)u(x)v(z) de

a
for u,v € V is linear and bounded. It remains to show the strong positivity of a. For ue V'
we have (with partial integration)

b
a(u,u) = |uff 5 + J c(x)u (z)u(z) + d(@)|u(x)|* dz

a

—uﬁg+-fb(d@»——;d@w>|umgﬁdx

a

> ulf , if D >0,

PF b—a)?
> Juh 2+ Dlulf,{ = (1 + pt 2“) ) lul2,, ifD<0

T :
>0
. (b a)?
= min (1,1+D - |uﬁ2 O
=0

Example 3.2.11 (Tut, STURM—LIOUVILLE Problem)
Let p,q € C([a,b]). Furthermore let there be some p > 0 such that p(z) = p for all z € [a, b]

. 7T2
and mingefq 5 4(2) > — =45z

(D Then for each f € H='(a,b) there exists a unique weak solution u € H{(a,b) of the
STURM—LIOUVILLE problem

—(p(@)d (2)) + q(z)u(z) = f(x)
equipped with homogeneous DIRICHLET boundary conditions:
The weak formulation is
Find u € H}(a,b) such that
SZ p(z)u (2)v'(z) + q(x)u(z)v(z)de = {f,v) Yve H}(a,b).
Now define A: Hi(a,b) — H'(a,b) by {Au,v) = SZ pu'v' + quv, which is linear.

To see that A is bounded consider

(H)
[ (Au,v) | < ploluliafvlie + lglelulozvloe <
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71_2
< max([p[ oo, m“quoo)\uh,ﬂ“ 1,2
which implies
Au,v V1,2
JAulr—s = sup KA (ol lallo) s 212
020 V)12 |v]

) )
R

< C-max(||plloos [|g]loo) |2l

1,2

Furthermore, A is strongly positive:

b
(Auyuy = j (W)?p+ qu? dz > pluf2, + min_ g()uld
a

z€[a,b]

(PF) (b—a)* . ;
= (0= U5 i o)) iz > clul?

2 z€[a,b]

=:1c>0

@) If pe C'[a,b] and f € C[a, b] then u € C*[a,b]: We have

b b
J pu'v' dx = J fv—quudx

a

- f: (f 1) — a(€)u(e) df) o(2) da.

The corollary from the Fundamental Theorem of the Calculus of Variations implies
that

pan(@) = | ") — alepule)de + ©

almost every for some C. Diving by p() > 0 gives that u’ is continuously differentiable
since p € C'. Hence u € C? [a,b] and analogously to the example 3.1.11 we have show
its a classical solution.
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3.3 Variational problems with a strongly monotone op-

erator

DEFINITION 3.3.1 ((STRONGLY) MONOTONE OPERATOR)
Let (V| - |) be a real BANACH space. An operator A: V — V* is

e [IPsCHITZ continuous if there exists a # > 0 such that

[Au — Av|s < Bllu — v| Yu,v e V.

e monotone if (Au — Av,u —v) >0 for all u,v e V.

e strongly monotone if there exists a p > 0 if

(Au— Av,u —v) = plu —v|? Yu,ve V.

Remark 3.3.2 Let V :=R = R* and A: R — R be monotone in the above sense. For all
u,v € R we have
0<{Au—Av,u—v) = (A(u) — AW))(u —v).

Then u > v implies A(u) — A(v) = 0, i.e. A(u) > A(v) and u < v implies A(u) — A(v) <0,
i.e. A(u) < A(v). Thus, in operators terms, (strongly) monotone is analogous to (strictly)

monotonically increasing.

Remark 3.3.3 Let A be linear. Then (cf. DGL I)
(1) A LipscHITZ continuous <= A bounded and
@ A strongly monotone <= A strongly positive

hold.

THEOREM 3.3.1: ZARANTONELLO (1960)

Let (V,(-,-),| - |) be a (real) HILBERT space and A: V — V* LIPSCHITZ continuous
and strongly monotone. Then A is bijective.

Remark 3.3.4 Let V := R and f be LIPSCHITZ continuous and strongly monotone as in
the Theorem above. Then f: V — V* is (LIPSCHITZ-)continuous and strongly monotonically
increasing and thus injective. Additionally, the strong monotonicity implies (by setting
v =0)

pu? < (f(u) = £(0) -u

for some p > 0. A case distinction reveals

= pu+ f(0), ifu>0,
fw) ,
<pu+ f(0), fu<O

implying f(u) 270, o and f(u) MO, —oo, implying the surjectivity and therefore the
bijectivity of f.
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Proof. Let i: V* — V be the RiEsz isomorphism and define
V>V, v v+ 7i(f — Av),

where 7 > 0 is chosen such that 1 — 27 + 7282 < 1.

Analogously to the proof of the Theorem of LAX-MILGRAM we only need to show that ® is

a contraction: for u,v € V we have
[@(u) = @(0)[* = u— v + Ti(Av — Au)|?

= |u —v|* + 27 (i(Av — Au),u — v) + 72| i(Au — Av)|?
= |lu —v|* - 27 { Au — Av,u —v) +7%| Au — Av|?

< (1 =27+ 728%) |u — v|* ]
—_—
<1

Example 3.3.5 (Boundary value problem in divergence form with DBCs)

Consider the divergence form of a boundary value problem divergence form

(U (' (2))e (2))" + c(x)u'(z) + d(z)u(z) = f(z) on (a,b),

u(a) = u(b) = 0. (16)

We assume f € L?(a,b), ¢,c’,d € L®(a,b) and that W: [0,00) — R is continuous and that
there exists m, M > 0 such that

@ m < |®(t)| < M for all t € [0, 0),
@ |W(t)-t—U(s) s| < M|t —s| for all s, >0 and
@) U(t)-t—U(s)-s=m(t—s)forallt=s>0.

Then, the function ¢ — ¥(¢) - ¢ is LIPSCHITZ-continuous, strictly monotonically increasing
and the function ¥ is bounded from above by M and from below by m (take s = 0 in (3)).

To obtain a variational formulation we choose V := H}(a,b) to get
b

b
J V(| )u'v" + cu'v + duv dz = J fvdz

a a

forveV.

THEOREM 3.3.2: TODO

Under the above condition if the weak derivative ¢’ exists, ¢ € L% (a,b) holds and

there exists a d € [—ﬁ, d(z) — C/(;)] for almost all « € [a, b], the the problem (16)

is unique solvable in H(a,b).

Proof. We set
b
AV > V*E (Au,v)y = f U (o (z)])u (2)v' (z) + c(@)u (z)v(z) + d(z)u(z)v(z) dz.
a
Then, A is LIPSCHITZ continuous since for v,w € V

b
[(Au — Aw,v)| < f [T (u')u — Tl )w'| [v'| + le|[u'lJv] + |d]|ullv] da
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2

b
< (f rwu'(xmu’(m—w<|w'<w>|>w’<m>|2dm> %

0,2

+ [ello.ooflv” = w'lo.2]vlo2 + [dlo.wlu = wloz2[v]o2-

holds. We now estimate the remaining integral term.

Case 1: v/(x),w'(x) = 0.

@
[T (u'u’ = (' w'| < Ml (z) — ' ()|

Case 2: W.lo.g v/(z) =0 = w'(z).

A

<
@
<

(' = T (jw'w'| < [ (][] = [T (D] ]

Mu' () — Mw'(z) = M|u/'(z) — w'(z)].

Therefore,
[{Au — Aw, vl < M[u" —w'flo2]v"]lo,2 + llcllo,o0fu” — w'llo,2]v]0,2
+ [ dllo,c0 [ — wllo,2]v]o,2
(PF)
< C(M +efo,m + [do,e0) [u—vl1,2[v]1,2.
Thus
Aw— A
[du— Av|_1p= sup AU A
veHg (a,b) |’U|172

v#0
< COM + el + [dllo) [ — wly 2,

implying that A is LIPSCHITZ continuous.

It remains to show the strong monotonicity of A. For v,w € V we have

b
(Au— Aw,u—v) = f (U (@) (z) = ¥(|w' ()’ (2)) (o (z) — w'(2)) dz
b

b
+ j c(z)(u(z) — w(@)) (u(z) — w(r))ds + f d(z)(u(z) — w(zx))? dz.

a a

_ (w=w)®)

The chain rules gives (u — w)’(u — w) 5 . Partial integration yields

Jb c(u—w) (u—w)dr = —% Jb d(u—w)?dz.

a a

Therefore, with z := SZ (T(Ju')u" — ¥(Jw'|)w’) (v — w') dz we obtain

<Au—Aw,u—v>=z+Jb <d—62/) (u —w)*dx

a

>z +d|u— w|\%72. dz.

Now, we estimate (¥ (|u'|)v’ — U(|w'|)w') (v — w').

Case 1: v/(x) = w'(z) = 0. We have

y(x) = (P (@) )u' () = U(|w' (@) )w' (@) (' (2) = w'(2)) = mlu'(z) —w'(@)]*.
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The cases w'(z) = u/(z) = 0, v/(z) < w'(z) <0 and w'(z) < v/ (x) < 0 are analogous to case
1.

Case 2: w.l.o.g v/(z) <0 < w(z). Since ¥(t) = m for all t = 0 we have

y="V(u])) v _ W —w)-F(u]) v _ W -w)
—— - ——
pe N _;,O_ — e T

/

> mu' (v —w') —w (W —w') =m —w)?.

In conclusion we notice that if d can be chosen non negatively, we have
(Au — Aw,u—w) = m|u —w|? 4 + du —w|2 5 = m|u —w|?
) = 1,2 0,2 = 1,2
=0

If not, we have

)

- (PF) N 2
(Au — Aw,u —w) = m|u — w|%2 +dflu — ngg > (m + d(bira)2) lu—w2,. O

)

>0
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GALERKIN-Schemes and Finite Elements

4.1 GALERKIN schemes and GALERKIN bases

In the following, let (V.| - |) be a BANACH space.

DEFINITION 4.1.1 (GALERKIN SCHEME AND GALERKIN BASIS)
The sequence (V,, € V),en of finite-dimensional subspaces is a GALERKIN scheme if it
is "complete in the limit", that is, the approximation error vanishes:

lim dist(V,,,v) =0 YoeV.

n—00

A pairwisely linearly independent sequence (®x)reny < V is called GALERKIN basis if
(Vi) nen is @ GALERKIN scheme, where V;, := span((®x)}_;.

Remark 4.1.2 We have V' = | J,,.y V. The V,, must not be nested.

Example 4.1.3 (GALERKIN scheme and GALERKIN basis)

The real polynomials of degree less than or equal to n € N are a GALERKIN-Base of C(R, R).

The same is true for the trigonometric polynomials in L?, where the trigonometric monomials
form a GALERKIN-Base.

THEOREM 4.1.1: EXISTENCE OF GALERKIN BASIS

Every separable space has a GALERKIN basis.

Proof. Let V be a separable space. Then there exists a countable dense subset (¥;);en.

We set ®; := ¥; and V; := span(®;). We iteratively define ®y; = Uy with & = min{l €
N: wp ¢ V,} and V11 == span(V,, U {®,,41). For v € V and ¢ > 0 there exists a ¥; with
[v— ;| <e. For large enough m we thus have ¥; € V,,, and hence dist(v, V,,,) < e.

Remark 4.1.4 (Notation) As in practice the V,, arise from some discretisation process

with a parameter h \, 0, we will write V}, instead of V,.

Example 4.1.5 (Discretising bilinear form problems)

We consider an abstract problem

for f € V* find u € V such that

a(u,v) ={ fv) YoeV (p)

The restriction f|y, =: fv, : Vi — R is also linear and bounded since the norm on V;, is the

norm on V. Therefore fy;, € V;*. Hence we may consider the discretized problem

find uy, € V}, such that
(PD)
alv, xv;, (un, vn) = { fvi,, vn ) Yop € V.
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4.1 GALERKIN SCHEMES AND GALERKIN BASES

Example 4.1.6 (Discretising operator problems)

Consider the operator problem

for f € V* find u € V such that

Au = fin V*, #)

We have Vj, < V and thus V* < V}*. Then, Py: V}, — V defined by P,v;, = vy, is called
prolongation operator. Its dual operator, the reconstruction operator, Pf: V* — V/* is
defined by

(PFg,vpy ={g,Prvp), geV* v, €V

This means that P;*g is the restriction of g to V3. Then,
a(uh, ’Uh> = <APhuhPh, Vh > = <P:APhuh, Vh >
holds. Here the discretized problem reads

find uy, € Vj, such that
P;L"APhuh = P;ff, in Vh*

THEOREM 4.1.2: LEMMA OF CEA (1964)

Let V' be a real HILBERT space and V}, < V' a closed subspace (e.g. a finite dimensional

(Pp)

subspace). If a: V x V — R is bilinear, strongly positive and bounded, then the
restriction aly, xv;, : Vi X Vi, = R is, too. Let f € V* and u € V be the solution of

a(u,v) = f,v) YveV. (17)
Then there exists a solution uy, € V}, of
a(uh,'vh) = <f, ’Uh> V’Uh € Vh. (18)

Then we have

U—upl| < — mf |u—wop| = —dist(u, Vz),
B . -
[LU}LEV}, /,l,

where 8 and p come from Definition 3.2.1.

Proof. By the Theorem of LAX-MILGRAM both problems have unique solutions v € V' and
up, € Vi, respectively. For any vy € Vj, we have

a(up,vp) = f,vn ) = a(u,vp).

Hence a(u — up,vy) = 0 for all v, € V,, i.e u —up, L, V3 with respect to the inner product
a(-,-) (cf. diagram). This relation is called GALERKIN orthogonality.

Hence for all v, € V}, we have

pllu —un|? < a(u —up,u —up) = a(u — up,u) — alu — up, up)

a(u —up,u) — 0 = alu — up,u) — a(u — up, vy)

a(u = un,u—wp) < Bllu—unf|u—ovn. O
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the subspace V3 in re-
spect to the inner prod-
uct af(-,-). [Source:
Wiki/CEA’s lemma]



4.1 GALERKIN SCHEMES AND GALERKIN BASES

Lemma 4.1.7 (Better constant if a is symmetric)

If a is symmetric, then we can use \/g instead ofg in the above inequality.

This constant is better, as we always have 5 > pu.

Proof. As a is bilinear, bounded, symmetric and strongly positive, it is an inner product
on V and || - |? := a(-,-) is a norm on V equivalent to | - || (cf. (13)) satisfying the CAUCHY-
SCHWARZ inequality a(v,w) < |v]q|w|, for all v,w € V. By the GALERKIN orthogonality
(G) we thus have

G cs
u —un||* = a(u — up, u —up) © a(u—up,u—vp) < |u—uplo|u—vila

and hence |u — up|q < ||u — vp|q for all vy € Vi, Hence we can modify the proof of the
Lemma:

plu = unl® < alu = un,u = up) = Ju—unl} < Ju—val7 < Bllu—val?

and thus |u — up| < \/gHu — vy for all vy, € Vj,. [

Remark 4.1.8 (Discrete solutions approximate solution)
Let (V,,)nen be a GALERKIN-scheme. Then we have dist(v, V3,) 1200 for all we V. CEA’s

Lemma implies that ||u — wup|| 250, 0. But how fast is the convergence?
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4.2 The Finite Elements Method

Consider

—u" = f on (0,1),

u(0) = u(1) = 0. (19

Then V := H}(0,1),a: V xV > R, (u,v) — (u,v)12 and { f,v) := S(l) fvde for v eV is its

variational formulation.

We now apply the finite dcmcntg method (FEM) to find a GALERKIN scheme. For m € N

we set the step size h := m—H and x; = i - h as the partition of the interval [0, 1] for
ief{0,...,m+1}.
For i € {1,...,m} define
%(x — xi—l); ifze [xi_l,xi),
D (z) M = F(@ip1 — ), ifze [z, i41],
0, else,
which fulfill ®;(x;) = §; ; and
h Ty —T h T —Tm
(@) = T (@), (@) = I, ().

We set V}, == span ((®4),) = H3(0,1) (we discard (I>( ) and <I>m+1 because of the homoge-
neous DIRICHLET boundary conditions) and show that they form a GALERKIN basis.

The discretised problem reads: find a up € Vj, such that
a(un,vy) = { f,on) You € Vi,

As {@gh), cey @%)} form a basis of V3, and by linearity of a(uy,-) and { f,-) the discretised

problem is equivalent to

a(up, @My = (£, vie {1,...,m}.

As {@gh)7 ceey <I>5,}ll)} form a basis of V},, we can write the discretised solution wuy € V}, we are

searching for as
m

Z a"e™ M eR vie{l,...,m}.

(@™ym

In order to find up, we only need to find the coefficients (@, )i~;. The problem is thus
equivalent to: find a(" = (agh))?;l € R™ such that

S aa@™ oy = (foly  vief{l,... m}
j=1
by the linearity of a(-, ®;).
With A, = (a(@!", @)™ _ € R ™, f = ((f, ")), € R™. We therefore have to

solve the linear problem
Apa™ = fy

in R™
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4.2 THE FINITE ELEMENTS METHOD

The matrix Ap, has a particularly nice structure: for ¢,5 € {1,...,m} we have

1
h h h h
(An)i; = a(@) M) = f &1 ()0 (z) dz = 0

fori <j—1or¢>j+1 since supp(¢>§h)’) = [xj_1,%j+1] and supp((bl(.h)’) = [@i—1, Tit1]-

Hence Ay, is a tridiagonal matrix:

2 -1 0 0
1 2 -1
Ah=1 0 -1 0 |
h
2 -1
0 0 -1 2

which is even strictly diagonally dominant.

The functions ((‘I’gh))?il)h>0 are not a GALERKIN basis, but one can instead consider
(Vam )men. How fast does (up)p=o converge? By CEA’s lemma, we have the following bound
on the approximation error

|u — uply,2 < dist(u, V4),

as f = p = 1. We will now bound that approximation error by a interpolation error.

DEFINITION 4.2.1 (INTERPOLATION OPERATOR)
We call

m
Ih: V—’Vh, u — Zu(:rz)‘bz
j=1

the interpolation operator.

Remark 4.2.2 [}, is well-defined since v € H} (a,b) <> C([a, b]) and also linear.
As Iyu € Vj,, we have
lu — upl1,2 < dist(u, Vi) < Ju— Thuliz.
|

Interpolation
error

THEOREM 4.2.1: INTERPOLATION ERROR: LINEAR FEM IS COMPLETE IN

THE LIMIT
The sequence of (linear) FEM spaces (V) re(o,1) With an equidistant grid is a GALERKIN
scheme in V, that is, |u — Thuli 2 0, 0. For each m e N, h = :;“1 and v €
Hl(a,b) n H?(a,b) we have
[v—Thv|1,2 < ch|v|2z2 (linear convergence rate)
lv — Tnvlo2 < ch?|v||z,2- (quadratic convergence rate)

Remark 4.2.3 The hat functions are not a GALERKIN basis since they are not included in
each other.

Proof. @ We show that I, is bounded. We see that for = € [z;_1, ;] and h € (0,1) we
have due to the support of the hat functions

(1) (@) = (i) + = (o) — v,,)

o1
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¢
N J;Lo wy  wy w3 ra &5

Figure 19: The interpo-

lation operator



4.2 THE FINITE ELEMENTS METHOD

and

(Inv)' (x) ) — Vzi_y)
hold. For fixed h = 7?;“1 we have

In()[7 5 =

|
%
'5‘
4[\3
o,
5

mﬂf i) — v(x— 1))2dx

FTOC Z hZJ (J )d§>2
YA wora-is

Hence |Ip| 1(v,v;) < 1 holds.

(@ We show the first inequality. Let ve H} n H?. Then
m+1 9
Zf (v(xl 1) —v(z;))) dw
m+1 2
f ( f V(@) /() d£> o
m+1 2
w ), (L J, eras dﬁ)

2
H?) | m+1 ~x; §v93
<L ZJ p)dg | deda
i=1 YTi—1 YZTi—1 §/\z
h o e " 2 20,2
< 73 [v" ()" dpd€dz = h7[v"[5
Ti—1 Jxi—1 JTi

@ We show that (V},)ne(0,1) is @ GARLERKIN scheme. Let v € Hi(a,b) = WH“ and
€ > 0. Then there exists a 1) € C{(a,b) such that

v — Ihv|i2 =

holds.

€
v —1l12 < 3
and

(L)
[v—Ipvlie < |v—=tlig+ [ — Inlig + [In(y — )

ex. 2¢
< 3 +h[Yfe2 + [ — vl <

for h sufficiently small (h € (0, m)) Hence for all € > 0 there exists a m € N such
that h = *"1 and dist(V,V4) <

|v — Ipv|y2 < € for all m = myg
Since by CEA’s lemma we have

[u—un|v < é dist(u, V3,) < = |lv = Ipv|v,
—_— 7] —_—

discretization v - interpolation
error approximation error
error

h—0 .
we get up —— uin V
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Corollary 4.2.4 (todo)
Let (Vi)ne(o,1) be defined as above and u € Hg(a,b) as the weak solution to (19). Then
the sequence (up)n of FEM solutions converges to u with respect to || - |v. If furthermore
u € Hi(a,b) n H*(a,b), then

|u —un| < chlull2,2

holds for all h € (0,1).

Remark 4.2.5 The regularity assumption v € H}(a,b) n H?(a,b) will be fulfilled in d = 1

or suitable assumptions in the domain (— later). For f € L?(a,b) we have

[ull2,2 < ¢l flo2

How does the error behave in the L?-norm? By the POINCARE-FRIEDRICHS-inequality we

have
F

P
0,2 < C|U — Uh|1,2 < Ch“u”?,?‘

= ]
Hence the error converges at with the same rates as in H}.

Can we get a better rate?

THEOREM 4.2.2: QUADRATIC CONVERGENCE IN L2

Under the above assumptions if u € H}(a,b) n H?(a,b) then
lu = unllo2 < ch?|lulz,2

holds for all h € (0,1).

. J

Proof. (AUBIN-NITSCHE Trick) Let uw € V, up € V,, as above. Consider the "dual

problem"

Find w € H{(a,b) such that v
afu,v) ={u—up,v)y YveV
Using the theorem of [.AX-MILGRAM we obtain a unique solution w € H}(a,b) to (V') and

by the estimate from above

|wll2,2 < Cllu — unlo,2

We test with v = e := u — uy, and obtain

lu—wnlZs = lelZ 5 = (es€do2 = (esedyury = ale,w)
= a(e,w) — ale,v,) = ale,w —vp) < 5|6|1,2|'LU — Up|1,2
——
=0 ()
< Beh|uf2|lw — vpl12,

where () refers to GALERKIN orthogonality, i.e. a(u — up,vy) = 0 for all v, € V}, by choice
of Up, -

Taking the infimum over all v, € V}, yields

|u—unlo2 < cBh|ullze dist(w, Vi) < cBh|ullz2|w — In]1,2

< eBhlulzzlch|w]2z < cBh?|u

2,2|U - uh||0,2~

Dividing by |u — up]o,2 yields the statement. O
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Boundary value problems in multiple space

dimensions

5.1 Multidimensional SOBOLEV spaces and weak deriva-

tives

We replace the interval (a,b) with a open (and thus measurable) connected set Q < R%

Analogously to the first section we define

LP(Q) = {u: Q2 — R : u measurable |l , = J |u(z)|P dz < oc} )
Q

which is a BANACH space for p € [1, 0], separable for p € [1,0) and reflexive for p € (1, 00).

If e.g. Q is bounded, then L(Q2) < LP(Q) for ¢ > p and thus W*(Q) — W*»(Q) for ke N
(cf. Definition later). Analogously we define

L (9) := {u: Q@ - R measurable : u|x € L'(K) VK < Q compact}
and
C(Q) = {ueC®(Q) : supp(u) < Q compact}.
We also write K << () for a compact subset of €.

Notation (Multiindices). Let o == (a,...,aq) € N? and 8 := (B1,...,84) € N?, where
N includes 0. Then a + (8 := (a) + Bx)¢_, and |a| = 22:1 oy and a! = Hizl(ak!). For
h=(hy,... hq) € R? we set h* = Hi:l hi*.

. . d .

Furthermore, we define a < 8 : <= ap < B Yk e {1,...,d} and D* := 0% == [[,,_, 05F
ap . 0%k . 0%k
and Og* : 22T = o

Example 5.1.1 (Multiindices)
Consider d = 3. Then D09 =, DALY =5 9, and D200 = 2.

We use grad(u) = Vu = (04,4, ...,0:,u)" for the gradient of u and div(u) = V -u =
Oz U+ ... + 0y u for the divergence of u. Then div(grad(u)) = Au = 02 u+ ...+ 02 u is
the LAPLACE operator applied to .

DEFINITION 5.1.2 (MULTIDIMENSIONAL WEAK DERIVATIVE)
d 1
Let « € N® and w,v € L} .(Q). If

J u(z)D%p(z)dz = (—1)‘“‘] v(z)p(z) dx
Q

Q

holds for all ¢ € C°(€2), then v is called the a-th weak derivative of u and we write

D% = wv.

The a-th weak derivative is uniquely defined because the
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If Q is bounded, we can
equivalently write

u|g € L*(K) for all

K < Q such that
KcQ.

If Q is bounded, supp(u)
is always compact.



5.1 MULTIDIMENSIONAL SOBOLEV SPACES AND WEAK DERIVATIVES

THEOREM 5.1.1: FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIA-

TIONS

Let ve L}

loc

(Q). If
J v(x)p(zr)de =0
Q

for all p € C(?), then v = 0 almost everywhere.

Proof. Let u € L}

loc

() and K c= Q. Define w = sgn(u) 1x € LL (), then we have

loc

supp(w) € K. We define we = ¥ * w. Then, w. — w almost everywhere on Q and
supp(we) < K + B:(0), hence w. € CF () if € is small enough by a modification of
Theorem 1.2.2.

We test (5) with ¢ = w. € CP (), obtaining
b b
0= J u(z)we (z) de = f u(x)we(z) de = J u(w) 1y B_ (o) (7)we () da.
a ST~ K+B:(0)
22 () w(x)
We have

b
e (@) <j Tz — ) [uwly)| dy < L.
a ‘ﬂ/—’<1

For g < min(c — a,b—d) and all £ < gy we get

u(z)we (2)| < u(@)| Lk ., (0) (%)

This function is integrable on €). LEBESGUE’s Theorem shows

0= Jb u(z)w(z)dr = J;d |u(z)| d,

a

hence u = 0 almost everywhere on K. As K cc ) was chosen arbitrarily, this yields the

claim. ]

Lemma 5.1.3
Let u e Li (Q) such that

j u(x)aﬁigo(x) dz =0
Q

for some ke N and all i € {1,...,n} and all p € CL (). Then u is equal to a polynomial

of degree of at most k almost everywhere.

Proof. TODO O

One can show classical and weak derivative coincide for classically differentiable functions

and that the other properties hold similarly to the one dimensional case.

DEFINITION 5.1.4 (MULTIDIMENSIONAL SOBOLEV SPACE)
For k € N and p € [1,00] we define

WEP(Q) := {ue LP(Q) : D € LP(Q) Ya € N with |a| < k}

with the norm

p
P
0,p :

>, Dl

|| <k

el :
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5.1 MULTIDIMENSIONAL SOBOLEV SPACES AND WEAK DERIVATIVES

and the seminorm
ulep = | D, 1Dl
|a|=k

for 1 < p < o0 and the obvious modifications for p = oo.

The space W*P(Q) is a BANACH space, which is separable for p € [1,00) and reflexive for
p € (1,00).

Furthermore, we define H*(Q) := W*2(Q), which is a HILBERT space with the inner product

(u, U)k)g = Z (Dau7Da’U)0,2.

la|<k

In particular

G2t -+ | 0,ul

Jul? 5 = g s + 0z ul 0.2 = Il 2 + [Vul§ 2

and |ul1 2 = |Vu|o,2. We again define
W) = G c W),

H(Q) == Wy*(Q) and
H(Q) = (HY(Q)"

Lemma 5.1.5 (local approxirgation)
sP /
Let u e WFP(Q). Then u. W—ij”»

of Q, i.e. ¥ < Q (sometimes written ' cc Q) and u. = u * J., where J. is the

u holds, where Q' is an arbitrary compact subdomain  Figure 20: Domain and
compact subdomain

multidimensional smoothing kernel.

THEOREM 5.1.2: MEYERS-SERRIN: "H = W"

For any Q c R? and p < o0 we have

W*P(Q) = CP(Q) A Whe(Q) 7

But this Theorem is not helpful for us if we want to evaluate the solution on the boundary,

see Theorem 5.2.1
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5.2 Domains

A domain is an open and connected subset.

DEFINITION 5.2.1 (LIPSCHITZ DOMAIN)
A domain Q ¢ R? is a LIPSCHITZ domain and we write 0Q € C%1, if for every zq € 09

there exists a 7 > 0 and a LIPSCHITZ continuous function g: R%™* — R such that (up  Figure 21: Illustration
of the definition of a

to a rotation of the coordinate system) Lipscirrs domain

B(l‘o,’f‘) NQ = {(1:17"'71'(1) € B(l’o,’l”) $Zd >g($1,...,1’d_1)}

Remark 5.2.2 Then we also have B(zg,r) n 02 = {x € B(xo,r) : 4 = g(x1,...,24-1)}.
As Q is bounded, 02 is, too and thus is compact, and thus we only need finitely many g to
“describe” the boundary.

Remark 5.2.3 We want to use these LIPSCHITZ continuous functions to parametrise the
boundary, we know that they are weakly differentiable and their derivative is in L®.
Corollary 5.2.4 (To the Theorem of GAuUss, "Partial Integration")
Let F: R - R be a vector field and @: R? > R a scalar valued function and Q R?
LipscHITZ domain. Then
J (V- F)(x)p(x)dr = —J F(z)-Vo(x)dz + f oF -vdo,
Q——— Q o0

=div(F)
boundary term

where v is the outer normal and - is the scalar product on R

THEOREM 5.2.1: DENSITY

For a LIPSCHITZ domain Q, C*(f2) is dense in WP(Q) for p € [1,0).

We define C*(Q) := {u € C*(Q) : D*u is uniformly continuous Yo € N*}. Hence u € C* ()
can be continuously extended (as its derivatives) to Q.
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5.3 The SOBOLEV Embedding Theorem

THEOREM 5.3.1: SOBOLEV EMBEDDING

Let Q < R? be a bounded LipscHITZ domain, k € N and p € [1,0). If kp
@ < d, then (for m < k) WEP(Q)>W™(Q) if 1 — 2% >
particular W*P(Q) — L9(Q) if £ > L — & and W'P(Q) —
@) = d, then W5P(Q) < L9(Q) for all g € [1,0).
@) > d, then WkP(Q) < C(Q), in particular W5?(Q) < C?*(Q), where 8 = k —
L%J — 1 and

1 — % and thus in
P

ore 1l 1

1
p

(0,1), deN,

*e (0, l%J +1-— ;—Dl) , else.

Remark 5.3.1 Theorem 5.3.1 also holds for fractional SOBOLEV spaces.

THEOREM 5.3.2: RELLICH-KONDRACHOV

If kp < d, then W*P(Q) S Wm™a(Q), if L —m >

Example 5.3.2 (Embedding of H! into LY with Theorem 5.3.1)
o If d = 1, we have Q = (a,b). For k = 1 and p = 2 we have kp > d and thus
WkP(a,b) = H(a,b) —C([a,b]) = L®(a,b) by the Theorems we have shown before.

e For d = 2, we have kp = d and thus H'(Q) — L9(Q) for g € [1, ).

e For d = 3, we have kp < d and thus H'(2) — L5(Q), as } =

= N
M= W=

e For d = 4, we still have kp < d and thus H(Q) — L*(), as

PN

Corollary 5.3.3 (Priifungsprotokoll)
Forpe [1,0) and a bounded Lipscurrz domain Q < R? we have

WP(Q) = {ue LY(Q) : 0jue LP(Q) Vje {1,...,d}}.
Proof. "c": We have LP(a,b) < L'(a,b), so if u € LP(a,b), then we have u € L'(a,b).
"S": Let u € L'(a,b) with dju € LP(a,b) <> L'(a,b) for all j € {1,...,d}. Then ue W1(Q).
e If d = 1, we have kp = 1 = d and hence W1(Q) < L?(Q) by Theorem 5.3.1 ().

e If d > 1, we have kp = 1 < d and hence W11(Q) < L4(Q) for all ¢ € [1,qo], where
_ d
Qo= g1 € (1,2].

— If go = p, we are finished.
— If go < p, we have u’ € LP(Q) — L% () and hence u € W% (Q).
x If d = 2, then kp = qo = 2 = d and thus u € W% (Q) — LP(Q) by Theo-
rem 5.3.1 @).
* If d > 3, we have gy < d and thus W% (Q) — L9(Q) for all ¢ < ;4 = ¢y €
(1,3].
- If g1 = p, we are finished.

- If ¢1 < p, we have u € WH1(Q). If d = 3, kp = ¢ = d and hence
Wha(Q) < LP(Q) by Theorem 5.3.1 @).

o8

Figure 22: Here we
are “trading” differentia-
bility for integrability:
we lose one differentiabil-
ity but gain é integrabil-
ity. [Source: Wiki]
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If d > 3, then ¢; < d and thus W% (Q) — L9(Q) for all ¢ < 7% =i o €
(1,4] by Theorem 5.3.1 (D).

This can be inductively continued until ¢ > p. O

THEOREM 5.3.3: POINCARE-FRIEDRICHS INEQUALITY

Let Q ¢ R? be a bounded (L1pscHITZ) domain. For u € Wéc’p(Q) and o € N? with
|a] < k we have
ID%ullkp < Calulk,p,

50 | - |rp is an equivalent norm on Wy (Q).

\. J

Remark 5.3.4 (Excursion: Singularities) With polar coordinates one can see that | -
|77 € LP(B1(0)) if and only if p < %. Hence the same singularities become less severe in
higher dimensions. As an exercise, check for which p € [1,00] the weak derivatives of the
above function are in LP(B1(0)).
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5.4 TRACE OPERATORS

5.4 Trace Operators

Motivation. How can we give meaning to "u|sq" if we only have u € W*?(2)?

e If kp > d, then W*P?(Q)—C(Q) by Theorem 5.3.1, hence u|sq is well defined. In
particular, if k = 1, then u|sq is well defined, if p is large enough, that is, p > d. We

mostly act in H', that is, p = 2, so even d = 2 is a problem!

e For kp < d we need trace operators. By Theorem 5.2.1, C*(Q2) € WP(Q) is dense,
so for u e C*(Q), ulaq € C(0S2) makes sense. We want to extend this notion from the
dense subset to the whole space WP ().

DEFINITION 5.4.1 (TRACE OPERATOR)
Let © < R? be a LipscHITZ domain. Then

tr: C*(Q) — LP(09), u — ulon

is the trace operator of w.

Lemma 5.4.2 (Properties of the trace operator)
The trace operator is linear, bounded and uniquely extendable to an operator tr: WHP(Q) —

LP(0Q)).
For u € C®(Q) there exists a ¢ > 0 such that
Itr(w)] e a0) = lulaallLe o) < clulwrr@)-

Remark 5.4.3 (What is LP(9Q)?) The boundary Q c R? is a (d — 1)-dimensional man-
ifold and thus there is an induced (d — 1)-dimensional (surface) measure on 52, and hence
LP(09) is well defined.

Remark 5.4.4 For u ¢ C*(Q), the quantity tr(u) cannot be explicitly computed.

THEOREM 5.4.1: CHARACTERISATION OF IVI/"(}J"(Q)

Under the above conditions we have

WoP(Q) = {ue WHP(Q) : tr(u) = 0} = ker(tr)

Thus tr is not injective. Is it surjective? For intuition consider a function being 1 on one
part of the boundary and 0 on the other, which is an integrable, but not continuous function.
As on the interior of 2, the function has to be continuous, also satisfying this boundary

condition makes the derivative to steep such that the function is not integrable anymore.
We set
LP(0Q) > W'™57(0Q) == tr(WP(Q)),

where W'~ 57 (0Q) is fractional SOBOLEV space. Thus these functions are exactly the
functions we can prescribe on the boundary when dealing with non homogeneous DIRICHLET

boundary conditions.

Hence tr: H'(Q) — Hz(09) is surjective.
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5.5  VARIATIONAL FORMULATION IN MULTIPLE DIMENSIONS

5.5 Variational formulation in multiple dimensions

For a LIPSCHITZ domain (2, f,d: Q > R, ¢: Q@ > R?, 4: QO — R¥9 consider the second
order linear boundary value problem with homogeneous DIRICHLET boundary conditions in

divergence form

=V (A(x)Vu(z)) + c(x) - Vu(z) + d(z)u(z) = f(z), ze€Q,

u|aQ = 0

We are searching a solution u: Q@ — R.

For the variational formulation set V := Hg(2). For e.g. f e L*(Q), {f,v) =, f(z)v(z)dz
defines an element in H~1(Q), where v € V. We can find p € [1,2) such that f € LP(£2) induces
f e H71(Q) with Theorem 5.3.1: like in Example 5.3.2 we find that H}(Q) ¢ H(Q) < L4
with ¢ = 24 for d > 2 (for d = 1 we have H' <% L?). Thus

[ Lol < [ flplvllo.g,

1,01 _ . _ 2d
where sty =1 that is, p = 755 € [1,2).

We multiply with v € V' and integrate over 2 to obtain

—J V(A(z)Vu(z))v(z)dz + f c(x) - Vu(z)v(z) + d(x)u(z)v(x)de = ( f,v).
Q Q
By "partial integration" we obtain

~ L V(A(2)Vu())o(z) dz = f

. A(z)Vu(z)Vo(z) dz + J v(z)  (A(z)Vu(x))vdo

o0 ~——
=0 as veH ()
hence tr(v)=0

:J A(x)Vu(z)Vo(z) dz,
Q

where v is the outer normal of 0f2.

Define the bilinear form
a: VxV >R, (u,v) — JQ A(z)Vu(z)Vo(z)dz + JQ c(x) - Vu(z)v(z) +d(x)u(z)v(x) dz

Let d e L®(Q2), ce L®(Q)? and A € L*(Q)?*? all be essentially bounded, then a is well
defined and bounded. Define A: V — V* by { Au,v ) := a(u,v), which is well defined. The
weak formulation of (20) is

{ForfeH_l(Q) findue H}(Q): Au= fin V*

Remark 5.5.1 The Theorem of LAX-MILGRAM can be applied exactly as in the one-

dimensional setting.

Remark 5.5.2 Often, A is symmetric.

Remark 5.5.3 If A =id, then V- (A(x)Vu(z)) becomes V - Vu(z) = Au(z).

Remark 5.5.4 (Different boundary conditions) If we are given inhomogeneous DIRICH-
LET conditions u|sn = g, where g € H%(Q) is a function on 09, or tr(u) = g, then there

can be a 4 € H(Q) with tr(@) = g and so the condition is well defined. In this case
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5.5  VARIATIONAL FORMULATION IN MULTIPLE DIMENSIONS

i == u—1u e H}(Q) if and only if y(u) = g and the problem Au = f is solved by u if and only
if A(d+ 1) = At + At = f holds, so we can instead solve the problem Ad = f — Aa for 4.

NEUMANN boundary conditions look like this: g—g = Vu -7 = g on 02, where 7 is the outer

normal.

Mixed boundary conditions can look like this: let I'1, 'y < 02 be a partition of 0€2, that is,
' uTe =0dQ and 'y " Ty = . Then the boundary conditions are u|r, = 0 and Vu -7 =0
on I'y. We then consider the closed subspace V := {u e H*(Q) : tr(u) = 0 on I'1} = HY(Q).

Example 5.5.5 (A quasilinear problem)

Consider the quasilinear problem

where a: R — R is a continuous function such that there exists m, M > 0 such that

m < a(y) < M for all y e R. Let @ := g(m) a(s)ds. Then Vu(z) = Vu(z)a(u(z)). If uis a

solution of (5.5.5), then @ solves

as ulpg = 0 implies |sq = 0. By the Theorem of LAX-MILGRAM, the problem (5.5.5) has a

unique solution. Let

A: R-> R, z»—»J a(s) ds,
0

which is monotonically increasing. Because of 0 < m < a(z) < M, A is invertible. Thus A~!

exists and from i, we obtain u(z) = A~ (a(x)).
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Additional Topics

6.1 Inner regularity theory for the LAPLACIAN

Motivation. For f € L? consider

u(a) = u(b) =0,

which has a solution u € H}(a,b), that is, it is one weakly differentiable. One can ask if u is
twice weakly differentiable with v” = f € L2. If f is even one classically differentiable, then
we can differentiate the relation —u”(z) = f(x), to obtain that u” has to be differentiable as

well, that is, u has a third derivative.

In the following Theorem, we see that if the right side f is "better", that is, more regular or
integrable, than just defining a functional on H' (which guarantees existence), we can expect
the solution to be "better" as well. This can only happen in the interior of the domain, as
in multiple dimensions, the boundary can be very "bad". But, on a compact subdomain

bounded away from the boundary, we can state the following result.

THEOREM 6.1.1: +2 INNER REGULARITY ON ANY DOMAIN

Let Q = R? be a bounded domain. We consider

—Au=f onQ, (21)

ulon =0

If f e H*(Q) for k € N, then the unique variational solution u € H}(Q2) to (21)
satisfies u € HF+2(Q') for any ' <= Q (that is, u € HFT?(Q)) and there exists an

loc

cqy > 0 such that we have

lull ez < cor (HfHHk(Q) + ||U||H5(Q)) .

\.

Remark 6.1.1 This is local and can’t be generalised to the whole of € without further

regularity assumptions on the boundary. If the domain is convex, we are fine.

To show that a function has more regularity, we have to consider its difference quotient.

Lemma 6.1.2 (Boundedness of the difference quotient)
Let pe (1,0), u e LP(Q) and Q c R? a bounded domain and (rpu)(z) == u(z + h) be the

shift operator
@ Let ue W'2(Q). For all ' c= Q we then have
IThu = ul Lo o) < lulweo) bl

for all h e R? such that x4+ h € Q for x € ', that is |h| < dist(2€, ).

@ If there exists a ¢ > 0 such that for all ' <= Q and for all sufficiently small |h|
(|h] < dist(2€Y, 0Q))

|Thu — ullop.or < clh

holds, then ue W1P and [ulwipQ) < c.
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6.1 INNER REGULARITY THEORY FOR THE LAPLACIAN

Proof. (@) Let & cc Q and |h| be sufficiently small. As C*(Q) n WhP(Q) « WhP(Q) is
dense there exists a sequence (uy)nen < C*(Q) N W1HP(Q) such that

ln = ufl1p.0 == 0.

In particular, by the inverse A\ #

n—o0

IVtn o p.0 === [Vulo e

0,p,2> |wr, — ullo p — 0.

and since || - lop < |- [l1p

IThtin = Thulo p,or
because of translational symmetry.

Then by the Mean Value Theorem and the Fundamental Theorem of Calculus we

obtain
1
ntin () — n (@) = n (2 + h) — un (x) = f ChyVun(z+0h) 0. (22)
0
Furthermore,
Ihttn = unlf, o = J [Thttn (2) — up (2)|P dz
Q7
(22) 1 p
= f f Chy Vi (2 + 0h) Hdf
Q" [Jo
N 1 p
< |h|pf (J |Vun,(z + 0h)] dﬁ) dz
Q 0
(1) 1
< |h|pf J IV (2 + 61)[7 46 da
Q' Jo
(F) 1 ,
< |h|”J f IV ( + O1)[7 da 6
b [ [ 19l s =
Hence,
A
[mnu —ul < |mhw = htn | + |7Thun = un o p.or + |un = ul
~ )
o, <Ihlfunlr o0 PR
25 bl Julp.0,
where |- || = [ - [op,0

@) Let p e CP(Q), & cc Q and || small. We assume supp(p) < .
We have

J [u(z + h) —u(z)] p(z)dz = f [u(z + h) —u(z)] ¢(z) dz
Q y

< [ rhu — ulo,g,0 [#lo

< dhl|ello

12582

12582

and with the transformation theorem (*)

J [Thu(z) — u(z)] ¢ (z) dx:f [Thu(z) — u(z)] (z) de
Q

Rd
= Thu z)dx — u(x
Rd

64


https://en.wikipedia.org/wiki/Mean_value_theorem#Mean_value_theorem_for_vector-valued_functions

6.1 INNER REGULARITY THEORY FOR THE LAPLACIAN

® JRd u(y)T—np(y) dy — JRd u(y)e(y) dy
- [ e A @ ay
Rd
= L [T—ne — @] (W)u(y) dy. (23)

Fix one direction i € {1,...,d}. We consider ¢ := he;. Then |h| = |¢|. For t > 0 we

have

y—tei)) — oy
[ ) 2= 4y < gl

-

By LEBESGUEs theorem we have

0
- uw 20) 4y < clploge (24)
Q L

We define

5: CFO) ~ R (0.0 =~ [ utn) 52 ay.

As g is linear (in o) the HAHN-BANACH theorem implies existence of a unique (C3° < L?

dense) extension to a linear bounded function
g: L) = R with (g,¢) < clploq Yo e LU(Q)
This shows g € (L9(€2))* = LP. Hence there exists a v; € L () such that
(9,¢) = f vipdr Vo e LU(Q).
Q

Hence for ¢ € C(2) we have

doly) . | vods
*LU(y)T%dy—@,@—JQde :

Us

Hence ‘;mi = v;, u; has the weak derivative v;. |

Corollary 6.1.3 (Auxiliary lemma, "partial integration")
Let he R\{0}, u,v e H'(R?). We set Dju := %= Then VDyu = Dy,(Vu) and

J u(D_pv)dz = Dyv.
Rd R4

Proof. The first statement is an exercise and the other one is proven analogously to (23).0]

Proof. (of theorem 6.1.1) Let u € Hg(2) be the weak solution of (21) and assume
fe HE(Q).

Let k = 0, i.e. fe L*(Q). Fix @ c= Q. Consider ¢ € CF(Q2) such that ¢|or = 1 and
¢(z) € [0,1], which can be obtained by a smoothing of 1g,. We set v :=u-¢ e H!(Q) and
even € H'(R?), which is compactly supported in Q. (Exercise: check this)

With g := fo —2Vu- Ve —ulAp e L?(Q) (Exercise: check this), v is the variational solution
to
—Av =g, on{,

’U|5Q =0.
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6.1 INNER REGULARITY THEORY FOR THE LAPLACIAN

For any w € H}(Q2) we then have

JV?} -Vwdzr = J(Vu)cp(Vw) dz + Ju(Vgo)(Vw) dz
<

var. formulation
of the LAPLACIAN

= JVu(Vgow —wVep)de — JV(u(Vg@))w dx

— JVUVgow dx + fVu -Vpwdx

- J(Vu -V + ulAp)wdz

J(—uAgo —2VuVy)wdx + JVu -V (pw) de,

-

=f{gwdz={ fowdx
as u is a solution to the RHS. In the second last equality we used that the divergence of the
gradient is the LAPLACIAN.

We test {,(Vo)(z) - (Vw)(z)dz = §, g(z)w(z)dz with w = D_pDyv € Hg(Q) (or even
H'(R%)) for h small enough:

l0.2,0-

(C8)
JV’U -Vwdzx = ngdx < gloz.elw

As, by Lemma 6.1.2 @

lw lo,2 < [VDpv

02 = [D-n Dnv lo,2 = [DnVvlo,2,
——

eH?!

where the inequality is due to
|70 (Dn(v)) = Drollo,2 < [Djv[1,2|hl.

Furthermore, we have

lgllo2 = |fe —2Vu- Ve —ulAf

o2 < ([ fllo2 + [[ul.2)-

On the other hand
@@ ds = [(F0)@) - (T(D-1Dy)) ) ds
L Vo) (D-a(T D) ) da
"L (V@) (Dn(Te) (@) de = [ [(Dn(Te)) (@) do
~ |IDyVol2,.

Together we obtain
1D (V)02 < llglo.2:

ie | (Vv) — Vo

0,2 < ||g||h| for all small |A|.

Lemma 6.1.2 @) (applied component-wise) implies that Vv € H* ()%, i.e. ve H*(Q') and

[vll22 = IVollz +[[vlo2 < lgloz + [v]o,2-

In particular: v € H?(€2'), but on Q' we have v = u, hence u € H?(£). O

66



6.2 EXISTENCE FOR A NONLINEAR PROBLEM

6.2 Existence for a nonlinear problem

This subsection follows [Chil2, Chapter 5.1].

Consider the nonlinear problem in divergence form
=V (a(z, u(x))Vu(z)) = f(zx), xe,
ulan = 0,

where (2 is a bounded domain and a: Q@ x R — R is a CARATHEODORY function. Furthermore
there exists constants m, M > 0 such that m < a(z,y) < M holds for almost all z € Q and
all y € R. The variational formulation of (6.2) is

For fe H~Y(Q) find v € H} () such that

(25)
a(u,v) == §;, a(z,u(z))Vu(z) - Vo(z)dz = { f,v) for all ve Hg().

THEOREM 6.2.1: UNIQUE SOLVABILITY OF (20) | , THM. 5.1]

The problem (25) has a variational solution.

In the proof we will use a GALERKIN scheme and consider the sequence of solutions to the

discretised problems and hope that they converge, in a certain sense, to the solution of (25).

Proof. (@) AsV := H}(Q) is separable, by Theorem 4.1.1 there exists a GALERKIN scheme
(Vi)nso < V, that is for all v € V there exists a sequence (vp € Vj)p=0 such that
v —op|v 250, 0. We consider the discretized problem

Find uj, € V}, such that (26)
a(up,vp) = fyon) for all vy, € V.

Recall that V, is a finite dimensional subspace of V = H}(Q2) equipped with |- |1 2 or
|- l1,2.- As a(up,vr) = {f,vn ) is a nonlinear equation, we cannot use the Theorem of
Lax-MILGRrRAM, but instead have to use a fixed-point Theorem.

@ For fixed wy, € V}, we consider the bounded strongly positive bilinear form

Gy, 2 Vi X Vi, > R, (up,vp) — JQ oz, wp () Vup () Vo (x) da.

We have |, (un, vn)| < Mlup|12|vnl2 and ay, (us, un) = mlug|? 5 for all up, vp € Vi,

Thus the equation
uy, (UnyvR) = { fyvn ) Vop € Vi (27)

has a unique solution uglw) € Vi, by the Theorem of LAX-MILGRAM. We define
Th: Vh i Vh, Wh — ugw)

as the operator whose fixed point we want to find.

@) A-priori estimate. We test with v;, = uéwh) in (27) and obtain
mfug ™ [} o < aw, (™ ™) = o™ < g™

Hence |T}, (wp)|1,2 = |U§1Wh)

12 < 2| f[-1,2 for any wy, € V}, and thus

)

_ 1 — 1 w
JwB(aU|m)~B(mv|m) w o ul®
m m
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68

is well defined and maps the nonempty closed convex bounded set B (0, L | f[-1,2) to
itself.

The operator T, is continuous: let (wy,)ney < B (07 %H f ||,1,2) be a sequence converging
towe B (0, = f|-12) in Hi(2). We know that [T} (wy)]12 < = | f]-1,2 for all n € N,
hence the sequence (T}, (wy))nen is bounded in Vj,. As Vj, is finite dimensional, by the
Theorem of BOLZANO-WEIERSTRASS there exists a subsequence (wp)nen Of (Wp)neN

such that (Th(wp/))nen converges with respect to | -

such that |Th (wp) — upl1,2 o, 0. We have to show uj = Ty (w).

1,2, that is, there exists a up € Vj,

As w,s — w with respect to | - |12 and thus in particular with respect to | - ||1 2, there
exists a further subsequence (wy,)p7en such that wy,»(x) — w(z) almost everywhere in

Q). This implies
oz, wpr (x)) Vg (x) oo, a(z, w(z))Vop(z)

almost everywhere in Q. As |a(z, w,»(x))| < M for almost all z € Q and vy, € L?(2)
for vy, € Vi, € HY(Q), the Theorem of LEBESGUE shows

L o, wor (2))Vou () — alz, w(z)) Vo (z)) 2 de 22 0.

As Vu,, , = T(wyr) — up, with respect to | - |12 thus Vu,, , — Vuy in L? we get
J a(z, wyr () Vi, () - Vog(z) de nom, oz, w(z))Vup(x) - Vo (x) de
Q Q

Hence for all n” € N we have

ooy = fQ a(z, wnr () Vi, , (2)-Vop(x) do nom, . a(z, w(z))Vu(x) Vo (z) dz

Hence up, = T'(w)

As Ty (w) does not depend on the subsequence, the subsequence principle shows that
Th(wy) — Th(w) and thus T}, is continuous.

BROUWER’s Fixed Point Theorem shows that T}, has a fixed point uj, € B (0, 2| f[-12) =
Vi, i.e. au, (up,vn) = a(up,vy) = f,vp ) for all v, € Vj, and hence wy, is a solution to

(26).

We consider the sequence (up)p~0 < V of solutions to (26). As up = Ty (un), we get

lupl,2 < %”f“,l’g irregardless of h > 0, hence (up)p>0 is a bounded sequence in V.

We want to show that (up)n=o converges to some u € H}(Q) (in some sense) and that

u is a solution to (25), i.e.
Ja(x, w(z))Vu(z)Vo(z)de = { f,v)
for all v e H}(2). We know that for each h > 0 we have

Ja(m,uh(x))Vuh(x)Vvh(x) de ={f,op)

for all vy, € V},.

Fix v € H} () then there exists a sequence (vp,); such that v, — v in Hg () by the
completeness in the limit of a GALERKIN scheme. This implies { f,v, » — { f,v) by
the continuity of ( f,-)e H1(Q).
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We remark that (u)n=0 is bounded in H{(Q) <% L?(Q), hence there is a subsequence
(up)p of (up)n=o which converges to some u € L? and thus - up to a subsequence -
pointwise almost everywhere, showing

a(z,up () — oz, u(x)) RN\ 0

almost everywhere in § by the continuity of « in its second argument. We now have to
show that Vu € L? exists and want to go to the limit in the equation

f a(z, upr )Vups Vopr de = f (a(z, up )Vopr — a(x, u)Vo) - Vups dz
Q Q

=(D)
+ J a(z,u)Vu - Vupr dx .
Q

)

=:(II)
We have s
(I) < Ha(-,uhu)Vvhu - O[(yU)V’UHO’Q HVuhu HO,Q — 0.
—_——

—0 bounded

We want to show that
(II) = J- oz, u)Vo - Vupr dz — J a(z,u)Vuv - Vude.
Q Q

We can write

(1) =: (g, un )
Then upr — <g,uhu> is in Hil(Q)
We want to find a subsequence such that {g,up~ y converges. This is called weak

convergence. Indeed, as V is reflexive and (up)p» < V is bounded, there exists a
subsequence (up» )pnso € V and a uw € V such that

{g,upr )y = {g,uy  VgeV* O

Example 6.2.1 (Priifungsprotokoll)
Consider

—Au = f(a:,u(ac)), T e,

u|aQ =0.
The Theorem of ZARANTONELLO can’t be applied. Wie im obigen Problem die Nichtlinearitét
entschirfen, in dem man ein w fest wihlt und an die Stelle von u in f einsetzen. Nach Zeigen
der Losbarkeit T': w — wu,, betrachten und einen Fixpunkt sucht. Ist f,,:  — f(z,w(z)) ein
Funktion auf H} (), kénnen wir LAX-MILGRAM anwenden. Das Korollar aus dem Satz von

Lax-MILGRAM (stetige Abhéngigkeit der Losung von der rechten Seite) zeigt die Stetigkeit
von T', also

Huw - uw’” < Cwa - fw’”

und wenn f,, stetig in w ist, ist T stetig.

Example 6.2.2

Consider the stationary scalar convection-diffusion equation
—div(A(z) grad u(z)) + c(z) grad(u(z)) + d(x)u(z) = f(x), z €,
where Q c R? is a sufficiently smooth, bounded domain. Furthermore assume homogeneous

DIRICHLET boundary conditions, i.e. u|sq = 0 and that
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@ The matrix-valued function A € L*(Q)4*? is symmetric and uniformly positive definite
(uniformly elliptic), i.e. there exists a constant g > 0 such that for all z € R? and

almost all z € Q we have 2" A(z)z > pz[2..
@) The vector valued function ¢ is in L*(Q)? and the scalar-valued function d is in L*(Q).

Then for all f e H~(f) there exists a unique weak solution, if c € W*(Q)? and another
condition is fulfilled.

TODO
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Appendix

A.1 Elementary Inequalities

YOUNG

Spezialfall ¢(z) = eprP~! ab < ea? + %bq, Ve >0,a,b=0,p,qe (1,0), % + % =1
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A.2 ADDITIONAL PROOFS

A.2 Additional proofs
Separability of L”(I) (Lemma 0.0.2)

Proof. (Brezis, 4.13) Let R = {(ar,bx) < I : ag,br € Q} and £ the Q-vector space
consisting of all finite linear combinations of the functions (1,),eg with rational coefficients.
Note that £ is countable.

Given f € LP(I) and ¢ > 0 there exists some f; € Co(I) such that ||[f — fi, < § and
a R = (a1,b1) € R such that supp(fi1) < R. Given § > 0 one can construct a function
f2 € € such that |[fi — foll < 6 and fo|p g = 0: split R into intervals R; = R and define
S = Ci1g,, where C; € [0,6 — (sup(f|r, — inf(f|g,)] and define fo := 3, f3". Therefore,

we have

If1 = fallp < (f Iflleloo) = f1 = follw - b1 —a1|P <& |by — ag|7.
R

S

A
Therefore, | f — faf, < € provided ¢ > 0 is chosen so that §|by — a1|? < 5. O

Continuity in the LP-mean

Proof. For h € R let Tj,: LP(R) — LP(R) be defined by Thu(z) = u(z + h). Note that
[Thulp, = |ull, for all we LP(R).

Now, let u € LP(R) be fixed and let € > 0 be given. Then we find ¢ € C{°(R) such that
[w— |, < €/3. Hence,

2
1Th = ulp < ITh(u = @)y + [The = @llp + o = ullp < g€+ [The = @l

Since ¢ € C* we can build upon the similar lemma from DGL I to find § > 0 such that

T by = ([ lote + 10— ol ac) "

Wl m

for |h| < 4. Thus, for these |h| < ¢ we have |Thu — ull, <. O

Simple, step and smooth functions dense in L'(R%)

TODO

Standard rules for weak derivatives

SOBOLEV spaces are BANACH spaces

First we show that the SOBOLEV norm is a norm:
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A.2 ADDITIONAL PROOFS
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