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Let ue L (I) be a function such that SZ u(z
w € CF(I). Then, u|; = 0 almost everywhere.

@(x) = 0 for all

If p(z) = sign(u(z)) were in C§ (I), we could test with it:
b b
0= J u(x)p(x)de = J |lu(x)|dz = ||Jui = u=0 a.e.
a a
We modify can ¢ so that it is compactly supported: consider ¢ :=
@ Leq fora<c<d<b.

Let u,v € L (I) and n € N. If the equation

Jb u(z)e™ dz = (-1)" J v(x)p(x) dz

a a

holds for all ¢ € C3°(I), we call u n times weakly differentiable
with the weak n-th derivative v.

The weak derivative of the absolute value is the sign function.
The HEAVISIDE function is not weakly differentiable.

x +— x2sin (%) is continuous but not weakly differentiable.

Let [c,d] © (a,b), w := sign(u) 1 q) € L (a,b), supp(w) < [c,d]. Let
we = J. * w. Then we(z) — w(z) and supp(we) < [¢c — €,d + €], hence
we € C(a,b) for small enough . With ¢ = we € C3°(a,b), obtaining

0= J:) u(z)we (z) do = ins u(z)we () dz.

i>u(av)w(:c)

For g9 < min(c — a,b — d) and all € < g9 we get

|’U,(IL‘)’LU5($)| < ‘U(LE” ﬂ[cfao,dwtso](x)v

which is an integrable majorant. LEBESGUE’s Theorem shows

0= Lb u(@)w(z) dz = Jd lu(z)| d.

Let w € LP(I;R) and p € [1,00). Then uc := u * ¥ is well defined

and

1. uc € C*(R) and ul™ (z SRj(k) (z — y)u(y) dy Vk € N.

2. If supp(u) < I and e < dist (supp(u), 1), then supp(u.) < I
and therefore, u. € C3°(I).

3 u— e, =5 0.
4. |uelLr@) < |ulp (also holds for p = ).

0
5. Ue LN u almost everywhere on 1.

(=)

- ue — ufek) =290 for compact subsets K < T if u e Cc(I).

1. X is embedded into Y if and only if there exists an a injective
linear function ¢: X — Y and X can identified with a subspace
of Y.

2. X is continuously / compactly embedded into Y and we write
X <Y / X <5 Y if ¢ is continuous / compact. Then 3¢ > 0
such that [c(2)|y < c|z|x for all x € X / then a bounded
sequence in X has a convergent subsequence with respect to
Iy

3. X is densely embedded into Y and we write X <5 Y if (X)) is

dense in Y with respect to | - |y

Let u € Wh1((a,b);R). Then u coincides almost everywhere
with a function, which is absolutely continuous on (a,b) and
which can then be extended (as absolutely continuous func-
tions are LIPSCHITZ continuous) to an absolutely continuous
function on [a,b] ("u is absolutely continuous”). (Alternatively:
there exists an absolutely continuous function on [a, b] whose restriction to

(a,b) is in the equivalence class of u.) We have

N

max(1,b — a)
b—a

[ule(fa,0:)

For u € Wy ((a,b); R) we have

p S (b— a)|u|1,p

WhtP(a,b), but on
2)dz = 0} Thus on Wy'*, the norms

1p and |- |1,p are equwalent and (W, ?((a,b);R), |- |1,p) is

This is not true for
{u € H'((a,b);R) : §, u(
I 1l

a closed and therefore complete subspace of W1P((a,b);R).

< Z’_T;|U|1,2, as SZ | —a|? dz =
b—a
<

For p = 2 we even have |ul|o.2

1(b—a)? and we can even instead have

WP ((a,b); R) == CP(@,0) "7 < W ((a, b); R)

is a closed subspace. We have
Wy ((a,b); R ) ={ueW"((a,b);R) : u

As WbP((a,b);R) — C([a,b];R), this makes sense. This not
true in R? for d > 1.

Let (V,(-,-),| - |) be a (real) HILBERT space and A: V —
V* LIPSCHITZ continuous and strongly monotone. Then A is
bijective.

We have u(a) = 0 and by the Integral Mean Value Theorem

Jull - f|ux|ﬂdx<jb<f e )dy)”ix
21 (o) (o)) o

b T
:f f W/ (y)|” dy & — als dz < |b—a| T |uf? .

S

1
and (|b—a|1+%)p = |b—a|%+% =b—a.
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Let (V,(-,-),|-]) be a (real) HILBERT space and A: V — V* a
linear, strongly positive, bounded operator. Then A is bijective.

Let ¢: V¥ — V be the RIESz isomorphism and define ®: V —
V, v— v+ 7u(f — Av). where 7 > 0 is chosen such that 1 — 27u +

7282 < 1. For u,v € V we have

[@(u) — @()|* = |u— v+ Te(Av — Au)|?
= |u—v|? + 27 (L(Av — Au),u — v)
+ 72| o(Au — Av)|?
= |u—v|]* =27 {Au — Av,u — v ) +7°| Au — Av|3
< (1 —=2rp+7°8%) |u— o>
NS ——

<1

Let a: V x V — R be a bilinear form. We call a
o symmetric if a(u,v) = a(v,u) holds for all u,v e V.

e strongly positive 3u > 0 such that a(u,u) > plul? for all
ueV.

o positive if a(u,u) = 0 for all u e V.

o bounded if 38 > 0 such that a(u,v) < B|uf|v] holds for all
u,veV.

Let ¢: V* — V be the isometric isomorphism (RIESZ map), such that
CFv)y = ((f),v) and |l = |e(f)| for all f € V* and all v € V. Fix
f € V* choose 7 > 0 such that 1 —2u7+7232 < 1 and define ®: V — V,
v — v+ 7(f — Av). Then f = Au if and only if ®(u) = u. To use the
BANAcH fixed point theorem it remains to show that ® is a contraction:
for u,v € V we have
[®(u) = @()|* = |u—v+7u(f — Au = f + Av)|?
= llu = v + 27(u — v, «(A(v = w))) + 72 [o(A(u = v)) |
= Jlu =] = 27 ((A(u = v)),u = v) + T2[e(Alu = v))[?
= lu—v|* = 27 (A(u —v),u —v) +7°|A(u — v)|%
< (1 —2ur + 728%)|u — 2.

Under the above conditions the bijectivity of A implies the existence of
a unique solution u € V to the problem Au = f for all f € V* as well
as the existence of the solution operator A=1: V¥ — V which is linear,
bounded and strongly positive (hence we have continuous dependence on
the right side f).

By the Theorem of LAX-MILGRAM A is bijective, implying the existence of the
linear A~'. Its boundedness i.e follows from the inverse mapping theorem but

can be show with much more elementary means: For all f € V¥ we have

AT S CAAT AT Y =R ATV < A f v AT v

Finally, the strict positivity follows from
2 22

FIs = [AAT fIT% < BZ1ATFIY <

3 AA" AT Y = B =1
CAAT AT Py = S AT
L n

Let (V,| - |) be a real BANACH space. We call a linear operator A: V — V¥

o symmetric if (Au,v) = { Av,u) holds for all u,v e V.

o strongly positive if Iu > 0 such that { Au,u) = plul? for all u e V.

e positive if (Au,u) >0 forallue V.

e bounded if it maps bounded sets to bounded sets. Since A is linear, this is
equivalent to requiring that 38 > 0 such that |Au|y < B|u| holds for all
ueV.

e LIPSCHITZ continuous if 38 > 0 such that |Au— Av|g < Blu—v| Yu,v e V.

e monotone if (Au— Av,u—v) =0 for all u,v e V.

e strongly monotone if Iu > 0 if (Au — Av,u —v) = plu — v|? Yu,v e V.

By the Theorem of LAX-MILGRAM both problems have unique so-
lutions u € V' and uy, € Vj, respectively. For any v, € Vi, we have

a(uhvvh) = <f7 'Uh> = Oé(u,’l}h).

Hence a(u—wup,vn) = 0 for all v, € Vi, i.e u—wup L V3 with respect
to the inner product a(-,-) (s. diagram). Hence for all v, € V3, we

have
ple —un|?® < a(u—un,u—up) = a(u — up,w) — a(u — up, up)
= a(u —un,u) — 0 = a(u—up,u) — a(u— un,vy)

— au—un,u—vs) < Blu —unu— vall-

Let V be a real HILBERT space and Vj, a closed subspace
(e.g. a finite dimensional subspace). Let a: V x V' — R be bi-
linear, strongly positive and bounded. Then, a: Vj, x V — R
is, too. Let f € V* and w € V be the solution of a(u,v) =
{f,v) Yv € V. Then there exists a solution u, € V} of
a(up,vn) = {f,on) Yoy € V. Then we have

[ —up| < ﬁ inf |lu—wup| = édist(u, Vi),
M un€Vy v

The sequence of (linear) FEM spaces (Vi)ne(0,1) With an equi-
distant grid is a GALERKIN scheme in V. For each m € N,

h = ﬁ;al and v e HE n H?(a,b) we have

[v—Thv|1,2 < ch|v|az (linear convergence rate)

v — Invfo2 < ch?|v]2,2 (quadratic convergence rate)

The family (V;, © V)nen of finite-dimensional subspaces is a
GALERKIN scheme if it is complete in the limit, that is, the
approximation error vanishes:

lim dist(V,,v) =0 YveV.

n—oo
A pairwisely linearly independent sequence (Pp)reny < V
is called GALERKIN basis if |J,oyVn = V, where V,, =
span((®x)}_;-
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WEP(Q) := {ue LP(Q) : Du € LP(Q) Y|a| < k}
lulh, == D) IDulf,.

|| <k

The space W*P(€2) is a BANACH space, which is separable for
p € [1,00) and reflexive for p € (1,00). We define H* := W*2
which is a HILBERT space with the inner product

(u,’l})k,g = Z (Dau,DaU)oyg.

la|<k

Let Q < R? be a bounded LipscHITZ domain. If kp

Q=

2. > d, then W*?(Q) — C?*(Q), where 3 := k — l%J —1 and
ae(0,1)if 2eNand a e (O, [%J +1-— %] else.
3. =d, then W*P(Q) — L(Q) for all g € [1, ).

Also holds for fractional SOBOLEV spaces. RELLICH: Those
embeddings are compact if we are not in the boundary case.

*
We set W—14(a,b) = (W(}’p(a,b)) , where p and ¢ are
HOLDER conjugates. It is equipped with the norm

Cfru)

1,p

I fll=1,q == sup
! uEW()l’p |u
u#0

W=4(a,b) 2 (W'?(a,b))". We have LI < W14,

For all f € W~ there exists a not necessarily unique
uy € Li(a,b) so that <f,v>W_1,qXW01,p = fusv’dz, where
ve W, P (a,b).

For any Q < R? and 1 < p < o0 we have

WhP(Q) = CP(Q) A Whe(Q) 7

For ac € (0,1), u: [a,b] — R is a-HOLDER continuous if
ez 0: u(z) — u(y)| < clz —y|* Yo,y € [a,b].

o 81 o= Lo ella b« . g 1)~ D)
¢ last]) 1= {u e Cllant]  alo = sup "D =H < o

equipped with the norm |u/co,e = ||t + |u|q is complete.

e For 0 < a < f <1 we have C®([a,b]) <> C**([a, b]).

e We have H'((a,b);R) <> C%“([a,b]) for a € (0,3)

H'((a,b);R) <> L*([a, b R).

u éz < lu ‘(212 + ‘“/‘52 = ||u ‘fz

For compactness show prove requirements of FRECHET-

KOLMOGOROV-RIESZ Theorem.

For p > 1 we have WYP((a,b);R) — Wl1((a,b);R) — C([a,b];R).
Let A < WbHP((a,b);R) be bounded by M > 0. As W1P((a,b);R) —
C([a,b]), there exists a ¢ > 0 such that |u|xn < c|uli,p < cM for all u €

A. We now show that A is equicontinuous. For v € A and z1,z2 € [a, b]

To
f u/(l)dl,‘
xq
1
v 1 ) . q
H T VI > T1vTo
< (J [/ ()P (M) <f 19 d/)
T1 AT 1 AT

1 1
< lull1,plzr —a2|e < M|z — z2]9.

lu(z1) —u(z2)| =

The Theorem of ARZELA-ASCOLI yields the claim since the identity maps

bounded set to relatively compact sets and therefore is compact.

Set v(x) = S{; v/ (y)dy. As v’ € L'((a,b);R), v is absolutely continuous

and v/ = v’ almost everywhere on (a,b). Therefore, we obtain

b rb b rb
[ up' de = — I updr = — [ vipdr = [ vy’ da
Ja a

Ja Ja
for all ¢ € C3°((a,b);R) and hence u = v + ¢ for some ¢ € R almost
everywhere on (a,b), so u is almost everywhere equal to an absolutely
continuous function, which we will call u, too.
By the Integral Mean Value Theorem there exists a zg € [a,b] so that
S([: u(z)dz = u(zo)(b — a). This implies

~b

|u(z)|dz + J v (x)| da.

a

1 b

b—a J,

<

lu(x)] < |u(zo)| + f u'(z) da
x0

This doesn’t hold in higher dimensions, u must not even by continuous.

A domain Q < R? is a LiPSCcHITZ domain and we write 02 €
CO1, if for every x( € 0f2 there exists a r > 0 and a LIPSCHITZ
continuous function g: R4~ — R such that (up to a rotation

of the coordinate system)

B(zg,r)nQ = {(x1,...,24) € B(xo,7) : xg > g(T1,...,24-1)}
Then we also have B(zg,r) n 0Q = {z € B(xo,r) : 24 =
g(x1,...,24-1)}. As Q is bounded, 0 is compact, and thus
we only need finitely many ¢ to “describe” the boundary.

Define T': WP(a,b) — LP(a,b)?, u — (u,u’)T. Then, T is
well defined. Further, we have

1

ITul oy = (1l oy + 101 iy =

1,p-

Hence W1P(a,b) isometrically coincides with a subspace
(LP(a,b))?. This subspace is closed as W'P(a,b) is comple-
te. As LP(a,b) is separable, so is (LP(a,b))? and hence the
closed subspace, and hence WP (a,b).
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Let Q < R? be a bounded domain. We consider

(1)

Then if f € H*(Q) for k € N, then the unique solution u €
HE () satisfies u € H**2(Q)) for any ' = Q and there exists

an cqs > 0 such that we have

Jul eeacory < o (Iulyy + 1 lieey) -

Let Q « R? be a LipscHITZ-domain. Then
tr: C*(Q) — LP(09Q), u— ulsq

is the trace operator of u. (Makes sense because for LIPSCHITZ
domains C*(Q2) € WP(Q) is dense for 1 < p < 00.) The trace
operator is linear, bounded and hence uniquely extendable to
an operator tr: WHP(Q) — LP(09). It is neither injective nor
surjective.

Wo? = CE@ 7 = fue W) s irw) = 0} C WH(Q).

Consider the nonlinear problem

=V (a(z, u(@))Vu(z)) = f(z), z€Q,
u(z) =0, x € 09,

where Q c R? is a bounded domain and a: 2 x R —> R is a
CARATHEODORY function. Furthermore there exists constants
m, M > 0 such that m < a(z,y) < M holds for almost all

x € 2 and all y € R. The problem has at least one solution.

Let u € C'([a,b];R). Then the weak derivative of u coincides
with its classic derivative.

Let u’ be the weak derivative of u on (a,b). Then for all in-
tervals (a, ) < (a,b) it holds that u'|(,, g) is also the weak

derivative of u|,, gy on (o, 3).

7>": Let u € L'(a,b) with d;u € LP(a,b) — L'(a,b) for all j € {1,...,d}.
Then u € WH1(Q).

e If d = 1, we have kp = 1 = d and hence W1 (Q) — LP(Q)..

e If d > 1, we have kp = 1 < d and hence W' (Q) — L%(Q) for all

q € [1, qo], where go := 721 € (1,2].

— If go = p, we are finished.
— If go < p, we have v/ € LP(Q) — L% (Q) and hence u € W20 (Q).
* If d = 2, then kp = go = 2 = d and thus u € W90 (Q) — LP(Q)
x If d > 3, we have qo < d and thus W0 (Q) — L%(Q) for all ¢ <
755 = q1 € (1,3].

This can be inductively continued until g5 > p.

For p € [1,00] and a LipscHITZ domain ) = R?, there exists
a C = C(Q,p) = 0 such that

lu —uqlop < C[Vullo,p,

for all u e WHP(Q), where ug = ﬁ §o u(z) dz.

For homogeneous DIRICHLET boundary conditions the pro-
blem is uniquely solvable by LAX-MILGRAM.

For the variational formulation set V := H} ().

By SOBOLEV we have HE(Q) = H'(Q) — LI(Q) with ¢ < 24
for d > 3 (for d = 2 we have H! — L9 for all ¢ € [1,0)). With
HOLDER we have | f,v)| < |f]pllv]q, where % + % =1, that
is, p = % €[1,2), so f induces f e H-1(Q).

Let F: RY — R% be a vector field (i.e. the gradient of u: Q —
R) and ¢: RY — R a scalar valued function and Q < R? a
LipscHITZ domain. Then

JQLV'F)(x)@(x)dxz—JQF(@-ch(x)dxﬂ—f ©F -vdo,

—_ o0
div(F
() boundary term

where v is the outer normal and - is the scalar product on R¢.




