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Let u P L1
locpIq be a function such that

şb

a
upxqϕpxq “ 0 for all

ϕ P C80 pIq. Then, u|I ” 0 almost everywhere.

If ϕpxq :“ signpupxqq were in C80 pIq, we could test with it:

0 “

ż b

a

upxqϕpxq dx “

ż b

a

|upxq| dx “ }u}1 ùñ u ” 0 a.e.

We modify can ϕ so that it is compactly supported: consider ψ :“

ϕ ¨ 1rc,ds for a ă c ă d ă b.

Let u, v P L1
locpIq and n P N. If the equation

ż b

a

upxqϕpnq dx “ p´1qn
ż b

a

vpxqϕpxqdx

holds for all ϕ P C80 pIq, we call u n times weakly differentiable

with the weak n-th derivative v.

The weak derivative of the absolute value is the sign function.

The Heaviside function is not weakly differentiable.

x ÞÑ x2 sin
`

1
x

˘

is continuous but not weakly differentiable.

Let rc, ds Ă pa, bq, w :“ signpuq1rc,ds P L
1
locpa, bq, supppwq Ă rc, ds. Let

wε :“ Jε ˚ w. Then wεpxq Ñ wpxq and supppwεq Ă rc ´ ε, d ` εs, hence

wε P C80 pa, bq for small enough ε. With ϕ “ wε P C80 pa, bq, obtaining

0 “

ż b

a
upxqwεpxq
looooomooooon

a.e.
ÝÝÑupxqwpxq

dx “

ż d`ε

c´ε
upxqwεpxq dx.

For ε0 ă minpc´ a, b´ dq and all ε ă ε0 we get

|upxqwεpxq| ď |upxq|1rc´ε0,d`ε0spxq,

which is an integrable majorant. Lebesgue’s Theorem shows

0 “

ż b

a
upxqwpxqdx “

ż d

c
|upxq|dx.

Let u P Lp
pI;Rq and p P r1,8q. Then uε :“ u ˚ Jε is well defined

and

1. uε P C8pRq and u
pkq
ε pxq “

ş

R J
pkq
ε px´ yqupyq dy @k P N.

2. If supppuq Ă I and ε ă dist psupppuq, δIq, then supppuεq Ă I

and therefore, uε P C80 pIq.

3. }u´ uε}p
εŒ0
ÝÝÝÑ 0.

4. }uε}LppRq ď }u}p (also holds for p “ 8).

5. uε
εŒ0
ÝÝÝÑ u almost everywhere on I.

6. }uε ´ u}CpKq
εŒ0
ÝÝÝÑ 0 for compact subsets K Ă I if u P CpIq.

1. X is embedded into Y if and only if there exists an a injective

linear function ι : X Ñ Y and X can identified with a subspace

of Y .

2. X is continuously / compactly embedded into Y and we write

X ãÑ Y / X
c

ãÑ Y if ι is continuous / compact. Then Dc ą 0

such that }ιpxq}Y ď c}x}X for all x P X / then a bounded

sequence in X has a convergent subsequence with respect to

} ¨ }Y .

3. X is densely embedded into Y and we write X
d

ãÑ Y if ιpXq is

dense in Y with respect to } ¨ }Y .

Let u P W 1,1ppa, bq;Rq. Then u coincides almost everywhere

with a function, which is absolutely continuous on pa, bq and

which can then be extended (as absolutely continuous func-

tions are Lipschitz continuous) to an absolutely continuous

function on ra, bs (”u is absolutely continuous”). (Alternatively:

there exists an absolutely continuous function on ra, bs whose restriction to

pa, bq is in the equivalence class of u.) We have

}u}Cpra,bs;Rq ď
maxp1, b´ aq

b´ a
}u}1,1

For u PW 1,p
0 ppa, bq;Rq we have

}u}0,p ď pb´ aq|u|1,p

This is not true for W 1,ppa, bq, but on
 

u P H1ppa, bq;Rq :
ş

Ω
upxqdx “ 0

(

Thus on W 1,p
0 , the norms

} ¨ }1,p and | ¨ |1,p are equivalent and pW 1,p
0 ppa, bq;Rq, | ¨ |1,pq is

a closed and therefore complete subspace of W 1,pppa, bq;Rq.
For p “ 2 we even have }u}0,2 ď

b´a?
2
|u|1,2, as

şb

a
|x´ a|

2
2 dx “

1
2 pb´ aq

2 and we can even instead have b´a
π .

W 1,p
0 ppa, bq;Rq :“ C80 pa, bq

}¨}1,p
ĂW 1,pppa, bq;Rq

is a closed subspace. We have

W 1,p
0 ppa, bq;Rq “

 

u PW 1,pppa, bq;Rq : upaq “ upbq “ 0
(

.

As W 1,pppa, bq;Rq ãÑ Cpra, bs;Rq, this makes sense. This not

true in Rd for d ą 1.

Let pV, p¨, ¨q, } ¨ }q be a (real) Hilbert space and A : V Ñ

V ˚ Lipschitz continuous and strongly monotone. Then A is

bijective.

We have upaq “ 0 and by the Integral Mean Value Theorem

}u}pp “

ż b

a

|upxq|p dx ď

ż b

a

ˆ
ż x

a

1 ¨ |u1pyq| dy

˙p

dx

(H)

ď

ż b

a

˜

ˆ
ż x

a

1q dy

˙ 1
q
ˆ
ż x

a

|u1pyq|p dy

˙ 1
p

¸p

dx

“

ż b

a

ż x

a

|u1pyq|p dy
looooooomooooooon

ď}u1}
p
p

|x´ a|
p
q dx ď |b´ a|

1` p
q |u|p1,p.

and
´

|b´ a|
1` p

q

¯ 1
p
“ |b´ a|

1
p
` 1
q “ b´ a.
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Let pV, p¨, ¨q, }¨}q be a (real) Hilbert space and A : V Ñ V ˚ a

linear, strongly positive, bounded operator. ThenA is bijective.

Let ι : V ˚ Ñ V be the Riesz isomorphism and define Φ: V Ñ

V, v ÞÑ v` τιpf ´Avq. where τ ą 0 is chosen such that 1´ 2τµ`

τ2β2
ă 1. For u, v P V we have

}Φpuq ´ Φpvq}2 “ }u´ v ` τιpAv ´Auq}2

“ }u´ v}2 ` 2τ pιpAv ´Auq, u´ vq

` τ2}ιpAu´Avq}2

“ }u´ v}2 ´ 2τ xAu´Av, u´ v y`τ2}Au´Av}2˚

ď p1´ 2τµ` τ2β2
q

loooooooooomoooooooooon

ă1

}u´ v}2.

Let a : V ˆ V Ñ R be a bilinear form. We call a

• symmetric if apu, vq “ apv, uq holds for all u, v P V .

• strongly positive Dµ ą 0 such that apu, uq ě µ}u}2 for all

u P V .

• positive if apu, uq ě 0 for all u P V .

• bounded if Dβ ą 0 such that apu, vq ď β}u}}v} holds for all

u, v P V .

Let ι : V ˚ Ñ V be the isometric isomorphism (Riesz map), such that

x f, v y “ pιpfq, vq and }f}˚ “ }ιpfq} for all f P V ˚ and all v P V . Fix

f P V ˚, choose τ ą 0 such that 1´2µτ`τ2β2 ă 1 and define Φ: V Ñ V ,

v ÞÑ v ` τιpf ´ Avq. Then f “ Au if and only if Φpuq “ u. To use the

Banach fixed point theorem it remains to show that Φ is a contraction:

for u, v P V we have

}Φpuq ´ Φpvq}2 “ }u´ v ` τιpf ´Au´ f `Avq}2

“ }u´ v}2 ` 2τpu´ v, ιpApv ´ uqqq ` τ2}ιpApu´ vqq}2

“ }u´ v}2 ´ 2τpιpApu´ vqq, u´ vq ` τ2}ιpApu´ vqq}2

“ }u´ v}2 ´ 2τ xApu´ vq, u´ v y`τ2}Apu´ vq}2˚

ď p1´ 2µτ ` τ2β2q}u´ v}2.

Under the above conditions the bijectivity of A implies the existence of

a unique solution u P V to the problem Au “ f for all f P V ˚ as well

as the existence of the solution operator A´1 : V ˚ Ñ V , which is linear,

bounded and strongly positive (hence we have continuous dependence on

the right side f).
By the Theorem of Lax-Milgram A is bijective, implying the existence of the

linear A´1. Its boundedness i.e follows from the inverse mapping theorem but

can be show with much more elementary means: For all f P V ˚ we have

µ}A
´1
pfq}

2
V ď xAA

´1
f,A

´1
f y “ x f,A

´1
f y ď }f}V˚}A

´1
f}V .

Finally, the strict positivity follows from

}f}
2
V˚

“ }AA
´1
f}

2
V˚

ď β
2
}A
´1
f}

2
V ď

β2

µ
xAA

´1
f,A

´1
f y “

β2

µ
x f,A

´1
f y .

Let pV, } ¨ }q be a real Banach space. We call a linear operator A : V Ñ V ˚

• symmetric if xAu, v y “ xAv, u y holds for all u, v P V .

• strongly positive if Dµ ą 0 such that xAu, u y ě µ}u}2 for all u P V .

• positive if xAu, u y ě 0 for all u P V .

• bounded if it maps bounded sets to bounded sets. Since A is linear, this is

equivalent to requiring that Dβ ą 0 such that }Au}˚ ď β}u} holds for all

u P V .

• Lipschitz continuous if Dβ ą 0 such that }Au´Av}˚ ď β}u´v} @u, v P V.

• monotone if xAu´ Av, u´ v y ě 0 for all u, v P V .

• strongly monotone if Dµ ą 0 if xAu´ Av, u´ v y ě µ}u´ v}2 @u, v P V.

By the Theorem of Lax-Milgram both problems have unique so-

lutions u P V and uh P Vh, respectively. For any vh P Vh we have

αpuh, vhq “ x f, vh y “ αpu, vhq.

Hence αpu´uh, vhq “ 0 for all vh P Vh, i.e u´uh K Vh with respect

to the inner product αp¨, ¨q (s. diagram). Hence for all vh P Vh we

have

µ}u´ uh}
2
ď αpu´ uh, u´ uhq “ αpu´ uh, uq ´ αpu´ uh, uhq

“ αpu´ uh, uq ´ 0 “ αpu´ uh, uq ´ αpu´ uh, vhq

“ αpu´ uh, u´ vhq ď β}u´ uh}}u´ vh}.

Let V be a real Hilbert space and Vh a closed subspace

(e.g. a finite dimensional subspace). Let α : V ˆ V Ñ R be bi-

linear, strongly positive and bounded. Then, α : Vh ˆ Vh Ñ R
is, too. Let f P V ˚ and u P V be the solution of αpu, vq “

x f, v y @v P V . Then there exists a solution uh P Vh of

αpuh, vhq “ x f, vh y @vh P Vh. Then we have

}u´ uh} ď
β

µ
inf

uhPVh
}u´ uh} “

β

µ
distpu, Vhq,

The sequence of (linear) FEM spaces pVhqhPp0,1q with an equi-

distant grid is a Galerkin scheme in V . For each m P N,

h “ b´a
m`1 and v P H1

0 XH
2pa, bq we have

}v ´ Ihv}1,2 ď ch}v}2,2 (linear convergence rate)

}v ´ Ihv}0,2 ď ch2}v}2,2 (quadratic convergence rate)

The family pVn Ă V qnPN of finite-dimensional subspaces is a

Galerkin scheme if it is complete in the limit, that is, the

approximation error vanishes:

lim
nÑ8

distpVn, vq “ 0 @v P V.

A pairwisely linearly independent sequence pΦkqkPN Ă V

is called Galerkin basis if
Ť

nPN Vn “ V , where Vn :“

spanppΦkq
n
k“1.
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W k,ppΩq :“ tu P LppΩq : Dαu P LppΩq @|α| ď ku

}u}pk,p :“
ÿ

|α|ďk

}Dαu}p0,p.

The space W k,ppΩq is a Banach space, which is separable for

p P r1,8q and reflexive for p P p1,8q. We define Hk :“W k,2,

which is a Hilbert space with the inner product

pu, vqk,2 :“
ÿ

|α|ďk

pDαu,Dαvq0,2.

Let Ω Ă Rd be a bounded Lipschitz domain. If kp

1. ă d and ` ď k we have W k,ppΩq ãÑW `,qpΩq if 1
q ě

1
p´

k´`
d .

2. ą d, then W k,ppΩq ãÑ Cβ,αpΩq, where β :“ k´
Y

d
p

]

´1 and

α P p0, 1q if d
p P N and α P

´

0,
Y

d
p

]

` 1´ d
p

ı

else.

3. “ d, then W k,ppΩq ãÑ LqpΩq for all q P r1,8q.

Also holds for fractional Sobolev spaces. Rellich: Those

embeddings are compact if we are not in the boundary case.

We set W´1,qpa, bq :“
´

W 1,p
0 pa, bq

¯˚

, where p and q are

Hölder conjugates. It is equipped with the norm

}f}´1,q :“ sup
uPW 1,p

0
u‰0

x f, u y

|u|1,p

W´1,qpa, bq )
`

W 1,ppa, bq
˘˚

. We have Lq ãÑW´1,q.

For all f P W´1,q there exists a not necessarily unique

uf P Lqpa, bq so that x f, v yW´1,qˆW 1,p
0

“
ş

ufv
1 dx, where

v PW 1,p
0 pa, bq.

For any Ω Ă Rd and 1 ď p ă 8 we have

W k,ppΩq “ C8pΩq XW k,ppΩq
}¨}k,p

For α P p0, 1q, u : ra, bs Ñ R is α-Hölder continuous if

Dc ě 0 : |upxq ´ upyq| ď c|x´ y|α @x, y P ra, bs.

C0,α
pra, bsq :“

"

v P Cpra, bsq : |u|α :“ sup
x‰y

|upxq ´ upyq|

|x´ y|α
ă 8

*

equipped with the norm }u}C0,α :“ }u}8 ` |u|α is complete.

• For 0 ă α ă β ă 1 we have C0,β
pra, bsq

c
ãÑ C0,α

pra, bsq.

• We have H1ppa, bq;Rq c
ãÑ C0,α

pra, bsq for α P
`

0, 1
2

˘

H1ppa, bq;Rq c
ãÑ L2pra, bs;Rq.

}u}20,2 ď }u}
2
0,2 ` }u

1}20,2 “ }u}
2
1,2.

For compactness show prove requirements of Fréchet-

Kolmogorov-Riesz Theorem.

For p ą 1 we have W 1,pppa, bq;Rq ãÑ W 1,1ppa, bq;Rq ãÑ Cpra, bs;Rq.
Let A Ă W 1,pppa, bq;Rq be bounded by M ą 0. As W 1,pppa, bq;Rq ãÑ

Cpra, bsq, there exists a c ą 0 such that }u}8 ď c}u}1,p ď cM for all u P

A. We now show that A is equicontinuous. For u P A and x1, x2 P ra, bs

|upx1q ´ upx2q| “

ˇ

ˇ

ˇ

ˇ

ż x2

x1

u1ptq dt

ˇ

ˇ

ˇ

ˇ

H
ď

ˆ
ż x1_x2

x1^x2

|u1ptq|p dt

˙ 1
p
ˆ
ż x1_x2

x1^x2

1q dt

˙

1
q

ď }u}1,p|x1 ´ x2|
1
q ďM |x1 ´ x2|

1
q .

The Theorem of Arzelá-Ascoli yields the claim since the identity maps

bounded set to relatively compact sets and therefore is compact.

Set vpxq :“
şx
a u

1pyq dy. As u1 P L1ppa, bq;Rq, v is absolutely continuous

and v1 “ u1 almost everywhere on pa, bq. Therefore, we obtain

ż b

a
uϕ1 dx “ ´

ż b

a
u1ϕ dx “ ´

ż b

a
v1ϕ dx “

ż b

a
vϕ1 dx

for all ϕ P C80 ppa, bq;Rq and hence u ” v ` c for some c P R almost

everywhere on pa, bq, so u is almost everywhere equal to an absolutely

continuous function, which we will call u, too.

By the Integral Mean Value Theorem there exists a x0 P ra, bs so that
şb
a upxq dx “ upx0qpb´ aq. This implies

|upxq| ď |upx0q| `

ˇ

ˇ

ˇ

ˇ

ż x

x0

u1pxq dx

ˇ

ˇ

ˇ

ˇ

ď
1

b´ a

ż b

a
|upxq| dx`

ż b

a
|u1pxq|dx.

This doesn’t hold in higher dimensions, u must not even by continuous.

A domain Ω Ă Rd is a Lipschitz domain and we write BΩ P

C0,1, if for every x0 P BΩ there exists a r ą 0 and a Lipschitz

continuous function g : Rd´1 Ñ R such that (up to a rotation

of the coordinate system)

Bpx0, rqXΩ “ tpx1, . . . , xdq P Bpx0, rq : xd ą gpx1, . . . , xd´1qu

Then we also have Bpx0, rq X BΩ “ tx P Bpx0, rq : xd “

gpx1, . . . , xd´1qu. As Ω is bounded, BΩ is compact, and thus

we only need finitely many g to “describe” the boundary.

Define T : W 1,ppa, bq Ñ Lppa, bq2, u ÞÑ pu, u1qT. Then, T is

well defined. Further, we have

}Tu}Lppa,bq2 “
´

}u}pLpppa,bq;Rq ` }u
1}
p
Lpppa,bq;Rq

¯
1
p

“ }u}1,p.

Hence W 1,ppa, bq isometrically coincides with a subspace

pLppa, bqq2. This subspace is closed as W 1,ppa, bq is comple-

te. As Lppa, bq is separable, so is pLppa, bqq2 and hence the

closed subspace, and hence W 1,ppa, bq.
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Let Ω Ă Rd be a bounded domain. We consider
$

&

%

´∆u “ f on Ω,

u|BΩ “ 0
(1)

Then if f P HkpΩq for k P N, then the unique solution u P

H1
0 pΩq satisfies u P Hk`2pΩ1q for any Ω1 ĂĂ Ω and there exists

an cΩ1 ą 0 such that we have

}u}Hk`2pΩ1q ď cΩ1
´

}u}H1
0 pΩq

` }f}HkpΩq

¯

.

Let Ω Ă Rd be a Lipschitz-domain. Then

tr : C8pΩq Ñ LppBΩq, u ÞÑ u|BΩ

is the trace operator of u. (Makes sense because for Lipschitz

domains C8pΩq ĂW 1,ppΩq is dense for 1 ď p ă 8.) The trace

operator is linear, bounded and hence uniquely extendable to

an operator tr : W 1,ppΩq Ñ LppBΩq. It is neither injective nor

surjective.

W 1,p
0 :“ C80 pΩq

}¨}k,p
“ tu PW 1,0pΩq : trpuq “ 0u (W k,ppΩq.

Consider the nonlinear problem

$

&

%

´∇ ¨ pαpx, upxqq∇upxqq “ fpxq, x P Ω,

upxq “ 0, x P BΩ,

where Ω Ă Rd is a bounded domain and α : Ω ˆ R Ñ R is a

Carathéodory function. Furthermore there exists constants

m,M ą 0 such that m ď αpx, yq ď M holds for almost all

x P Ω and all y P R. The problem has at least one solution.

Let u P C1
pra, bs;Rq. Then the weak derivative of u coincides

with its classic derivative.

Let u1 be the weak derivative of u on pa, bq. Then for all in-

tervals pα, βq Ă pa, bq it holds that u1|pα,βq is also the weak

derivative of u|pα,βq on pα, βq.

”Ą”: Let u P L1
pa, bq with Bju P L

p
pa, bq ãÑ L1

pa, bq for all j P t1, . . . , du.

Then u P W 1,1
pΩq.

• If d “ 1, we have kp “ 1 “ d and hence W 1,1
pΩq ãÑ LppΩq..

• If d ą 1, we have kp “ 1 ă d and hence W 1,1
pΩq ãÑ LqpΩq for all

q P r1, q0s, where q0 :“ d
d´1 P p1, 2s.

– If q0 ě p, we are finished.

– If q0 ă p, we have u1 P LppΩq ãÑ Lq0 pΩq and hence u P W 1,q0 pΩq.

∗ If d “ 2, then kp “ q0 “ 2 “ d and thus u P W 1,q0 pΩq ãÑ LppΩq

∗ If d ě 3, we have q0 ă d and thus W 1,q0 pΩq ãÑ LqpΩq for all q ď
d
d´2 “: q1 P p1, 3s.

This can be inductively continued until qk ě p.

For p P r1,8s and a Lipschitz domain Ω Ă Rd, there exists

a C “ CpΩ, pq ě 0 such that

}u´ uΩ}0,p ď C}∇u}0,p,

for all u PW 1,ppΩq, where uΩ :“ 1
|Ω|

ş

Ω
upxqdx.

For homogeneous Dirichlet boundary conditions the pro-

blem is uniquely solvable by Lax-Milgram.

For the variational formulation set V :“ H1
0 pΩq.

By Sobolev we have H1
0 pΩq Ă H1pΩq ãÑ LqpΩq with q ď 2d

d´2

for d ě 3 (for d “ 2 we have H1 ãÑ Lq for all q P r1,8q). With

Hölder we have | x f, v y | ď }f}p}v}q, where 1
p `

1
q “ 1, that

is, p “ 2d
d`2 P r1, 2q, so f induces f̃ P H´1pΩq.

Let F : Rd Ñ Rd be a vector field (i.e. the gradient of u : Ω Ñ

R) and ϕ : Rd Ñ R a scalar valued function and Ω Ă Rd a

Lipschitz domain. Then
ż

Ω

p∇ ¨ F qpxq
loooomoooon

divpF q

ϕpxqdx “ ´

ż

Ω

F pxq ¨∇ϕpxqdx`

ż

BΩ

ϕF ¨ ν dσ
looooooomooooooon

boundary term

,

where ν is the outer normal and ¨ is the scalar product on Rd.


