Weak n-th Derivative (1D)

Fundamental Theorem of the Calculus of Variations (1D)

Proof

Fundamental Theorem of the Calculus of
Variations (1D)

Theorem statement

Properties of the mollifier

DGL II A

Definition

Embeddings

$$
W^{1,1}((a, b) ; \mathbb{R}) \hookrightarrow \mathcal{C}([a, b] ; \mathbb{R})
$$

Poincaré-Friedrichs-Inequality (onedimensional)

Zarantonello

Let $u \in L_{\mathrm{loc}}^{1}(I)$ be a function such that $\int_{a}^{b} u(x) \varphi(x)=0$ for all $\varphi \in \mathcal{C}_{0}^{\infty}(I)$. Then, $\left.u\right|_{I} \equiv 0$ almost everywhere.

If $\varphi(x):=\operatorname{sign}(u(x))$ were in $\mathcal{C}_{0}^{\infty}(I)$, we could test with it:

$$
0=\int_{a}^{b} u(x) \varphi(x) \mathrm{d} x=\int_{a}^{b}|u(x)| \mathrm{d} x=\|u\|_{1} \Longrightarrow u \equiv 0 \text { a.e. }
$$

We modify can φ so that it is compactly supported: consider $\psi:=$ $\varphi \cdot \mathbb{1}_{[c, d]}$ for $a<c<d<b$.

Let $u, v \in L_{\mathrm{loc}}^{1}(I)$ and $n \in \mathbb{N}$. If the equation

$$
\int_{a}^{b} u(x) \varphi^{(n)} \mathrm{d} x=(-1)^{n} \int_{a}^{b} v(x) \varphi(x) \mathrm{d} x
$$

holds for all $\varphi \in \mathcal{C}_{0}^{\infty}(I)$, we call $u n$ times weakly differentiable with the weak n-th derivative v.
The weak derivative of the absolute value is the sign function.
The Heaviside function is not weakly differentiable. $x \mapsto x^{2} \sin \left(\frac{1}{x}\right)$ is continuous but not weakly differentiable.

Let $u \in L^{p}(I ; \mathbb{R})$ and $p \in[1, \infty)$. Then $u_{\varepsilon}:=u * \mathscr{F}_{\varepsilon}$ is well defined and

1. $u_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R})$ and $u_{\varepsilon}^{(k)}(x)=\int_{\mathbb{R}} \mathcal{F}_{\varepsilon}^{(k)}(x-y) u(y) \mathrm{d} y \forall k \in \mathbb{N}$.
2. If $\operatorname{supp}(u) \subset I$ and $\varepsilon<\operatorname{dist}(\operatorname{supp}(u), \delta I)$, then $\operatorname{supp}\left(u_{\varepsilon}\right) \subset I$ and therefore, $u_{\varepsilon} \in \mathcal{C}_{0}^{\infty}(I)$.
3. $\left\|u-u_{\varepsilon}\right\|_{p} \xrightarrow{\varepsilon \backslash 0} 0$.
4. $\left\|u_{\varepsilon}\right\|_{L^{p}(\mathbb{R})} \leqslant\|u\|_{p}$ (also holds for $p=\infty$).
5. $u_{\varepsilon} \xrightarrow{\varepsilon \backslash 0} u$ almost everywhere on I.
6. $\left\|u_{\varepsilon}-u\right\|_{\mathcal{C}(K)} \xrightarrow{\varepsilon \backslash 0} 0$ for compact subsets $K \subset I$ if $u \in \mathcal{C}(I)$.

Let $u \in W^{1,1}((a, b) ; \mathbb{R})$. Then u coincides almost everywhere with a function, which is absolutely continuous on (a, b) and which can then be extended (as absolutely continuous functions are LIPSCHITZ continuous) to an absolutely continuous function on $[a, b]$ (" u is absolutely continuous"). (Alternatively:
there exists an absolutely continuous function on $[a, b]$ whose restriction to (a, b) is in the equivalence class of u.) We have

$$
\|u\|_{\mathcal{C}([a, b] ; \mathbb{R})} \leqslant \frac{\max (1, b-a)}{b-a}\|u\|_{1,1}
$$

For $u \in W_{0}^{1, p}((a, b) ; \mathbb{R})$ we have

$$
\|u\|_{0, p} \leqslant(b-a)|u|_{1, p}
$$

This is not true for $W^{1, p}(a, b)$, but on $\left\{u \in H^{1}((a, b) ; \mathbb{R}): \int_{\Omega} u(x) \mathrm{d} x=0\right\}$ Thus on $W_{0}^{1, p}$, the norms $\|\cdot\|_{1, p}$ and $|\cdot|_{1, p}$ are equivalent and $\left(W_{0}^{1, p}((a, b) ; \mathbb{R}),|\cdot|_{1, p}\right)$ is a closed and therefore complete subspace of $W^{1, p}((a, b) ; \mathbb{R})$.
For $p=2$ we even have $\|u\|_{0,2} \leqslant \frac{b-a}{\sqrt{2}}|u|_{1,2}$, as $\int_{a}^{b}|x-a|^{\frac{2}{2}} \mathrm{~d} x=$ $\frac{1}{2}(b-a)^{2}$ and we can even instead have $\frac{b-a}{\pi}$.

Let $(V,(\cdot, \cdot),\|\cdot\|)$ be a (real) Hilbert space and $A: V \rightarrow$ V^{*} Lipschitz continuous and strongly monotone. Then A is bijective.

We have $u(a)=0$ and by the Integral Mean Value Theorem

$$
\begin{aligned}
\|u\|_{p}^{p} & =\int_{a}^{b}|u(x)|^{p} \mathrm{~d} x \leqslant \int_{a}^{b}\left(\int_{a}^{x} 1 \cdot\left|u^{\prime}(y)\right| \mathrm{d} y\right)^{p} \mathrm{~d} x \\
& \stackrel{(\mathrm{H})}{\leqslant} \int_{a}^{b}\left(\left(\int_{a}^{x} 1^{q} \mathrm{~d} y\right)^{\frac{1}{q}}\left(\int_{a}^{x}\left|u^{\prime}(y)\right|^{p} \mathrm{~d} y\right)^{\frac{1}{p}}\right)^{p} \mathrm{~d} x \\
& =\int_{a}^{b} \underbrace{\int_{a}^{x}\left|u^{\prime}(y)\right|^{p} \mathrm{~d} y}_{\leqslant\left\|u^{\prime}\right\|_{p}^{p}}|x-a|^{\frac{p}{q}} \mathrm{~d} x \leqslant|b-a|^{1+\frac{p}{q}}|u|_{1, p}^{p} .
\end{aligned}
$$

and $\left(|b-a|^{1+\frac{p}{q}}\right)^{\frac{1}{p}}=|b-a|^{\frac{1}{p}+\frac{1}{q}}=b-a$.

Zarantonello

LAX-Milgram

Proof of the Theorem

Lax-Milgram

Properties of (non)linear operator

Lemma of CÉa
DGL II A

Definition

DGL II A

Properties of a bilinear form

Definition

Theorem \& Proof

Corollary of the Theorem of Lax-Milgram

Proof of the Theorem

Lemma of CÉA

DGL II A

Statement of Theorem

Convergence of linear FEM: Interpolation error

Let $(V,(\cdot, \cdot),\|\cdot\|)$ be a (real) Hilbert space and $A: V \rightarrow V^{*}$ a linear, strongly positive, bounded operator. Then A is bijective.

Let $\iota: V^{*} \rightarrow V$ be the Riesz isomorphism and define $\Phi: V \rightarrow$ $V, v \mapsto v+\tau \iota(f-A v)$. where $\tau>0$ is chosen such that $1-2 \tau \mu+$ $\tau^{2} \beta^{2}<1$. For $u, v \in V$ we have

$$
\begin{aligned}
\|\Phi(u)-\Phi(v)\|^{2}= & \|u-v+\tau \iota(A v-A u)\|^{2} \\
= & \|u-v\|^{2}+2 \tau(\iota(A v-A u), u-v) \\
& \quad+\tau^{2}\|\iota(A u-A v)\|^{2} \\
= & \|u-v\|^{2}-2 \tau\langle A u-A v, u-v\rangle+\tau^{2}\|A u-A v\|_{*}^{2} \\
\leqslant & \underbrace{\left(1-2 \tau \mu+\tau^{2} \beta^{2}\right)}_{<1}\|u-v\|^{2} .
\end{aligned}
$$

Let $a: V \times V \rightarrow \mathbb{R}$ be a bilinear form. We call a

- symmetric if $a(u, v)=a(v, u)$ holds for all $u, v \in V$.
- strongly positive $\exists \mu>0$ such that $a(u, u) \geqslant \mu\|u\|^{2}$ for all $u \in V$.
- positive if $a(u, u) \geqslant 0$ for all $u \in V$.
- bounded if $\exists \beta>0$ such that $a(u, v) \leqslant \beta\|u\|\|v\|$ holds for all $u, v \in V$.

Under the above conditions the bijectivity of A implies the existence of a unique solution $u \in V$ to the problem $A u=f$ for all $f \in V^{*}$ as well as the existence of the solution operator $A^{-1}: V^{*} \rightarrow V$, which is linear, bounded and strongly positive (hence we have continuous dependence on the right side f).
By the Theorem of Lax-Milgram A is bijective, implying the existence of the linear A^{-1}. Its boundedness i.e follows from the inverse mapping theorem but can be show with much more elementary means: For all $f \in V^{*}$ we have
$\mu\left\|A^{-1}(f)\right\|_{V}^{2} \leqslant\left\langle A A^{-1} f, A^{-1} f\right\rangle=\left\langle f, A^{-1} f\right\rangle \leqslant\|f\|_{V} *\left\|A^{-1} f\right\|_{V}$.
Finally, the strict positivity follows from
$\|f\|_{V^{*}}^{2}=\left\|A A^{-1} f\right\|_{V *}^{2} \leqslant \beta^{2}\left\|A^{-1} f\right\|_{V}^{2} \leqslant \frac{\beta^{2}}{\mu}\left\langle A A^{-1} f, A^{-1} f\right\rangle=\frac{\beta^{2}}{\mu}\left\langle f, A^{-1} f\right\rangle$.

By the Theorem of Lax-Milgram both problems have unique solutions $u \in V$ and $u_{h} \in V_{h}$, respectively. For any $v_{h} \in V_{h}$ we have

$$
\alpha\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle=\alpha\left(u, v_{h}\right) .
$$

Hence $\alpha\left(u-u_{h}, v_{h}\right)=0$ for all $v_{h} \in V_{h}$, i.e $u-u_{h} \perp V_{h}$ with respect to the inner product $\alpha(\cdot, \cdot)$ (s. diagram). Hence for all $v_{h} \in V_{h}$ we have

$$
\begin{aligned}
\mu\left\|u-u_{h}\right\|^{2} & \leqslant \alpha\left(u-u_{h}, u-u_{h}\right)=\alpha\left(u-u_{h}, u\right)-\alpha\left(u-u_{h}, u_{h}\right) \\
& =\alpha\left(u-u_{h}, u\right)-0=\alpha\left(u-u_{h}, u\right)-\alpha\left(u-u_{h}, v_{h}\right) \\
& =\alpha\left(u-u_{h}, u-v_{h}\right) \leqslant \beta\left\|u-u_{h}\right\|\left\|u-v_{h}\right\| .
\end{aligned}
$$

The sequence of (linear) FEM spaces $\left(V_{h}\right)_{h \in(0,1)}$ with an equidistant grid is a Galerkin scheme in V. For each $m \in \mathbb{N}$, $h=\frac{b-a}{m+1}$ and $v \in H_{0}^{1} \cap H^{2}(a, b)$ we have

$$
\begin{array}{lr}
\left\|v-I_{h} v\right\|_{1,2} \leqslant c h\|v\|_{2,2} & \text { (linear convergence rate) } \\
\left\|v-I_{h} v\right\|_{0,2} \leqslant c h^{2}\|v\|_{2,2} & \text { (quadratic convergence rate) }
\end{array}
$$

Let $\iota: V^{*} \rightarrow V$ be the isometric isomorphism (RiEsz map), such that $\langle f, v\rangle=(\iota(f), v)$ and $\|f\|_{*}=\|\iota(f)\|$ for all $f \in V^{*}$ and all $v \in V$. Fix $f \in V^{*}$, choose $\tau>0$ such that $1-2 \mu \tau+\tau^{2} \beta^{2}<1$ and define $\Phi: V \rightarrow V$, $v \mapsto v+\tau \iota(f-A v)$. Then $f=A u$ if and only if $\Phi(u)=u$. To use the Banach fixed point theorem it remains to show that Φ is a contraction: for $u, v \in V$ we have

$$
\begin{aligned}
\|\Phi(u)-\Phi(v)\|^{2} & =\|u-v+\tau \iota(f-A u-f+A v)\|^{2} \\
& =\|u-v\|^{2}+2 \tau(u-v, \iota(A(v-u)))+\tau^{2}\|\iota(A(u-v))\|^{2} \\
& =\|u-v\|^{2}-2 \tau(\iota(A(u-v)), u-v)+\tau^{2}\|\iota(A(u-v))\|^{2} \\
& =\|u-v\|^{2}-2 \tau\langle A(u-v), u-v\rangle+\tau^{2}\|A(u-v)\|_{*}^{2} \\
& \leqslant\left(1-2 \mu \tau+\tau^{2} \beta^{2}\right)\|u-v\|^{2} .
\end{aligned}
$$

Let $(V,\|\cdot\|)$ be a real BANACH space. We call a linear operator $A: V \rightarrow V^{*}$

- symmetric if $\langle A u, v\rangle=\langle A v, u\rangle$ holds for all $u, v \in V$.
- strongly positive if $\exists \mu>0$ such that $\langle A u, u\rangle \geqslant \mu\|u\|^{2}$ for all $u \in V$.
- positive if $\langle A u, u\rangle \geqslant 0$ for all $u \in V$.
- bounded if it maps bounded sets to bounded sets. Since A is linear, this is equivalent to requiring that $\exists \beta>0$ such that $\|A u\|_{*} \leqslant \beta\|u\|$ holds for all $u \in V$.
- LIPSCHITZ continuous if $\exists \beta>0$ such that $\|A u-A v\|_{*} \leqslant \beta\|u-v\| \forall u, v \in V$.
- monotone if $\langle A u-A v, u-v\rangle \geqslant 0$ for all $u, v \in V$.
- strongly monotone if $\exists \mu>0$ if $\langle A u-A v, u-v\rangle \geqslant \mu\|u-v\|^{2} \forall u, v \in V$.

Let V be a real Hilbert space and V_{h} a closed subspace (e.g. a finite dimensional subspace). Let $\alpha: V \times V \rightarrow \mathbb{R}$ be $b i$ linear, strongly positive and bounded. Then, $\alpha: V_{h} \times V_{h} \rightarrow \mathbb{R}$ is, too. Let $f \in V^{*}$ and $u \in V$ be the solution of $\alpha(u, v)=$ $\langle f, v\rangle \forall v \in V$. Then there exists a solution $u_{h} \in V_{h}$ of $\alpha\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle \forall v_{h} \in V_{h}$. Then we have

$$
\left\|u-u_{h}\right\| \leqslant \frac{\beta}{\mu} \inf _{u_{h} \in V_{h}}\left\|u-u_{h}\right\|=\frac{\beta}{\mu} \operatorname{dist}\left(u, V_{h}\right)
$$

The family $\left(V_{n} \subset V\right)_{n \in \mathbb{N}}$ of finite-dimensional subspaces is a Galerkin scheme if it is complete in the limit, that is, the approximation error vanishes:

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(V_{n}, v\right)=0 \quad \forall v \in V
$$

A pairwisely linearly independent sequence $\left(\Phi_{k}\right)_{k \in \mathbb{N}} \subset V$ is called Galerkin basis if $\overline{\bigcup_{n \in \mathbb{N}} V_{n}}=V$, where $V_{n}:=$ $\operatorname{span}\left(\left(\Phi_{k}\right)_{k=1}^{n}\right.$.

Sobolev Embedding Theorem
Sobolev space

DGL II A
DGL II A

Statement of the Theorem

Meyers-Serrin ("H = W")
Definition \& Remarks

DGL II A
Dual space of $W_{0}^{1, p}(a, b)$

Definition and Lemma

Rellich
HöLDER-Continuity and Embeddings

DGL II A
DGL II A

Proof of the Theorem
Proof of the Theorem

$$
W^{1,1}((a, b) ; \mathbb{R}) \hookrightarrow \mathcal{C}([a, b] ; \mathbb{R})
$$

$$
\begin{aligned}
W^{k, p}(\Omega):= & \left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega) \forall|\alpha| \leqslant k\right\} \\
& \|u\|_{k, p}^{p}:=\sum_{|\alpha| \leqslant k}\left\|D^{\alpha} u\right\|_{0, p}^{p}
\end{aligned}
$$

The space $W^{k, p}(\Omega)$ is a BANACH space, which is separable for $p \in[1, \infty)$ and reflexive for $p \in(1, \infty)$. We define $H^{k}:=W^{k, 2}$, which is a Hilbert space with the inner product

$$
(u, v)_{k, 2}:=\sum_{|\alpha| \leqslant k}\left(D^{\alpha} u, D^{\alpha} v\right)_{0,2}
$$

We set $W^{-1, q}(a, b):=\left(W_{0}^{1, p}(a, b)\right)^{*}$, where p and q are HöLDER conjugates. It is equipped with the norm

$$
\|f\|_{-1, q}:=\sup _{\substack{u \in W^{1, p} \\ u \neq 0}} \frac{\langle f, u\rangle}{|u|_{1, p}}
$$

$W^{-1, q}(a, b) \supsetneq\left(W^{1, p}(a, b)\right)^{*}$. We have $L^{q} \hookrightarrow W^{-1, q}$.
For all $f \in W^{-1, q}$ there exists a not necessarily unique $u_{f} \in L^{q}(a, b)$ so that $\langle f, v\rangle_{W^{-1, q} \times W_{0}^{1, p}}=\int u_{f} v^{\prime} \mathrm{d} x$, where $v \in W_{0}^{1, p}(a, b)$.

For $\alpha \in(0,1), u:[a, b] \rightarrow \mathbb{R}$ is α-HÖLDER continuous if

$$
\exists c \geqslant 0:|u(x)-u(y)| \leqslant c|x-y|^{\alpha} \forall x, y \in[a, b] .
$$

$\mathcal{C}^{0, \alpha}([a, b]):=\left\{v \in \mathcal{C}([a, b]):|u|_{\alpha}:=\sup _{x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}<\infty\right\}$ equipped with the norm $\|u\|_{\mathcal{C}^{0, \alpha}}:=\|u\|_{\infty}+|u|_{\alpha}$ is complete.

- For $0<\alpha<\beta<1$ we have $\mathcal{C}^{0, \beta}([a, b]) \stackrel{\mathrm{c}}{\hookrightarrow} \mathcal{C}^{0, \alpha}([a, b])$.
- We have $H^{1}((a, b) ; \mathbb{R}) \stackrel{\mathrm{c}}{\hookrightarrow} \mathcal{C}^{0, \alpha}([a, b])$ for $\alpha \in\left(0, \frac{1}{2}\right)$

For $p>1$ we have $W^{1, p}((a, b) ; \mathbb{R}) \hookrightarrow W^{1,1}((a, b) ; \mathbb{R}) \hookrightarrow \mathcal{C}([a, b] ; \mathbb{R})$. Let $A \subset W^{1, p}((a, b) ; \mathbb{R})$ be bounded by $M>0$. As $W^{1, p}((a, b) ; \mathbb{R}) \hookrightarrow$ $\mathcal{C}([a, b])$, there exists a $c>0$ such that $\|u\|_{\infty} \leqslant c\|u\|_{1, p} \leqslant c M$ for all $u \in$ A. We now show that A is equicontinuous. For $u \in A$ and $x_{1}, x_{2} \in[a, b]$

$$
\begin{aligned}
\left|u\left(x_{1}\right)-u\left(x_{2}\right)\right| & =\left|\int_{x_{1}}^{x_{2}} u^{\prime}(t) \mathrm{d} t\right| \\
& \stackrel{H}{\leqslant}\left(\int_{x_{1} \wedge x_{2}}^{x_{1} \vee x_{2}}\left|u^{\prime}(t)\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}\left(\int_{x_{1} \wedge x_{2}}^{x_{1} \vee x_{2}} 1^{q} \mathrm{~d} t\right)^{\frac{1}{q}} \\
& \leqslant\|u\|_{1, p}\left|x_{1}-x_{2}\right|^{\frac{1}{q}} \leqslant M\left|x_{1}-x_{2}\right|^{\frac{1}{q}} .
\end{aligned}
$$

The Theorem of Arzelá-Ascoli yields the claim since the identity maps bounded set to relatively compact sets and therefore is compact.

A domain $\Omega \subset \mathbb{R}^{d}$ is a LIPSCHITZ domain and we write $\partial \Omega \in$ $C^{0,1}$, if for every $x_{0} \in \partial \Omega$ there exists a $r>0$ and a LiPSCHITZ continuous function $g: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ such that (up to a rotation of the coordinate system)
$B\left(x_{0}, r\right) \cap \Omega=\left\{\left(x_{1}, \ldots, x_{d}\right) \in B\left(x_{0}, r\right): x_{d}>g\left(x_{1}, \ldots, x_{d-1}\right)\right\}$

Then we also have $B\left(x_{0}, r\right) \cap \partial \Omega=\left\{x \in B\left(x_{0}, r\right): x_{d}=\right.$ $\left.g\left(x_{1}, \ldots, x_{d-1}\right)\right\}$. As Ω is bounded, $\partial \Omega$ is compact, and thus we only need finitely many g to "describe" the boundary.

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded LiPschitZ domain. If $k p$

1. $<d$ and $\ell \leqslant k$ we have $W^{k, p}(\Omega) \hookrightarrow W^{\ell, q}(\Omega)$ if $\frac{1}{q} \geqslant \frac{1}{p}-\frac{k-\ell}{d}$.
2. $>d$, then $W^{k, p}(\Omega) \hookrightarrow \mathcal{C}^{\beta, \alpha}(\bar{\Omega})$, where $\beta:=k-\left\lfloor\frac{d}{p}\right\rfloor-1$ and $\alpha \in(0,1)$ if $\frac{d}{p} \in \mathbb{N}$ and $\alpha \in\left(0,\left\lfloor\frac{d}{p}\right\rfloor+1-\frac{d}{p}\right\rfloor$ else.
3. $=d$, then $W^{k, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $q \in[1, \infty)$.

Also holds for fractional Sobolev spaces. Rellich: Those embeddings are compact if we are not in the boundary case.

For any $\Omega \subset \mathbb{R}^{d}$ and $1 \leqslant p<\infty$ we have

$$
W^{k, p}(\Omega)=\overline{\mathcal{C}}^{\infty}(\Omega) \cap W^{k, p}(\Omega) \quad\|\cdot\|_{k, p}
$$

$H^{1}((a, b) ; \mathbb{R}) \stackrel{c}{\hookrightarrow} L^{2}([a, b] ; \mathbb{R})$.

$$
\|u\|_{0,2}^{2} \leqslant\|u\|_{0,2}^{2}+\left\|u^{\prime}\right\|_{0,2}^{2}=\|u\|_{1,2}^{2} .
$$

For compactness show prove requirements of Fréchet-Kolmogorov-Riesz Theorem.

Set $v(x):=\int_{a}^{x} u^{\prime}(y) \mathrm{d} y$. As $u^{\prime} \in L^{1}((a, b) ; \mathbb{R}), v$ is absolutely continuous and $v^{\prime}=u^{\prime}$ almost everywhere on (a, b). Therefore, we obtain

$$
\int_{a}^{b} u \varphi^{\prime} \mathrm{d} x=-\int_{a}^{b} u^{\prime} \varphi \mathrm{d} x=-\int_{a}^{b} v^{\prime} \varphi \mathrm{d} x=\int_{a}^{b} v \varphi^{\prime} \mathrm{d} x
$$

for all $\varphi \in \mathcal{C}_{0}^{\infty}((a, b) ; \mathbb{R})$ and hence $u \equiv v+c$ for some $c \in \mathbb{R}$ almost everywhere on (a, b), so u is almost everywhere equal to an absolutely continuous function, which we will call u, too.
By the Integral Mean Value Theorem there exists a $x_{0} \in[a, b]$ so that $\int_{a}^{b} u(x) \mathrm{d} x=u\left(x_{0}\right)(b-a)$. This implies

$$
|u(x)| \leqslant\left|u\left(x_{0}\right)\right|+\left|\int_{x_{0}}^{x} u^{\prime}(x) \mathrm{d} x\right| \leqslant \frac{1}{b-a} \int_{a}^{b}|u(x)| \mathrm{d} x+\int_{a}^{b}\left|u^{\prime}(x)\right| \mathrm{d} x
$$

This doesn't hold in higher dimensions, u must not even by continuous.

Define $T: W^{1, p}(a, b) \rightarrow L^{p}(a, b)^{2}, u \mapsto\left(u, u^{\prime}\right)^{\top}$. Then, T is well defined. Further, we have

$$
\|T u\|_{L^{p}(a, b)^{2}}=\left(\|u\|_{L^{p}((a, b) ; \mathbb{R})}^{p}+\left\|u^{\prime}\right\|_{L^{p}((a, b) ; \mathbb{R})}^{p}\right)^{\frac{1}{p}}=\|u\|_{1, p} .
$$

Hence $W^{1, p}(a, b)$ isometrically coincides with a subspace $\left(L^{p}(a, b)\right)^{2}$. This subspace is closed as $W^{1, p}(a, b)$ is complete. As $L^{p}(a, b)$ is separable, so is $\left(L^{p}(a, b)\right)^{2}$ and hence the closed subspace, and hence $W^{1, p}(a, b)$.

Trace operator

+2 Regularity on any bounded domain

Statement of the Theorem

Existence for a nonlinear problem

Proof
Lemma

Let $p \in[1, \infty)$ and $\Omega \subset \mathbb{R}^{d}$ a bounded Lipschitz domain. Then we have

$$
W^{1, p}(\Omega)=\left\{u \in L^{1}(\Omega): \partial_{j} u \in L^{p}(\Omega) \forall j \in\{1, \ldots, j\}\right\} .
$$

Classical and weak derivatives

DGL II A

Statement of the Theorem

Inhomgeneous Poisson equation with homogeneous boundary conditions

To the Theorem of Gauss, "Partial Integration"

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain. We consider

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { on } \Omega \tag{1}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

Then if $f \in H^{k}(\Omega)$ for $k \in \mathbb{N}$, then the unique solution $u \in$ $H_{0}^{1}(\Omega)$ satisfies $u \in H^{k+2}\left(\Omega^{\prime}\right)$ for any $\Omega^{\prime} \subset \subset \Omega$ and there exists an $c_{\Omega^{\prime}}>0$ such that we have

$$
\|u\|_{H^{k+2}\left(\Omega^{\prime}\right)} \leqslant c_{\Omega^{\prime}}\left(\|u\|_{H_{0}^{1}(\Omega)}+\|f\|_{H^{k}(\Omega)}\right) .
$$

Let $\Omega \subset \mathbb{R}^{d}$ be a LIPSChITZ-domain. Then

$$
\operatorname{tr}: \mathcal{C}^{\infty}(\bar{\Omega}) \rightarrow L^{p}(\partial \Omega),\left.u \mapsto u\right|_{\partial \Omega}
$$

is the trace operator of u. (Makes sense because for Lipschitz domains $\mathcal{C}^{\infty}(\bar{\Omega}) \subset W^{1, p}(\Omega)$ is dense for $1 \leqslant p<\infty$.) The trace operator is linear, bounded and hence uniquely extendable to an operator $\operatorname{tr}: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$. It is neither injective nor surjective.

$$
W_{0}^{1, p}:=\overline{\mathcal{C}}_{0}^{\infty}(\Omega) \quad\|\cdot\|_{k, p}=\left\{u \in W^{1,0}(\Omega): \operatorname{tr}(u)=0\right\} \subsetneq W^{k, p}(\Omega) .
$$

Consider the nonlinear problem

$$
\begin{cases}-\nabla \cdot(\alpha(x, u(x)) \nabla u(x))=f(x), & x \in \Omega \\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{d}$ is a bounded domain and $\alpha: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function. Furthermore there exists constants $m, M>0$ such that $m \leqslant \alpha(x, y) \leqslant M$ holds for almost all $x \in \Omega$ and all $y \in \mathbb{R}$. The problem has at least one solution.

Let $u \in \mathcal{C}^{1}([a, b] ; \mathbb{R})$. Then the weak derivative of u coincides with its classic derivative.
Let u^{\prime} be the weak derivative of u on (a, b). Then for all intervals $(\alpha, \beta) \subset(a, b)$ it holds that $\left.u^{\prime}\right|_{(\alpha, \beta)}$ is also the weak derivative of $\left.u\right|_{(\alpha, \beta)}$ on (α, β).
$" \supset ":$ Let $u \in L^{1}(a, b)$ with $\partial_{j} u \in L^{p}(a, b) \hookrightarrow L^{1}(a, b)$ for all $j \in\{1, \ldots, d\}$. Then $u \in W^{1,1}(\Omega)$.

- If $d=1$, we have $k p=1=d$ and hence $W^{1,1}(\Omega) \hookrightarrow L^{p}(\Omega)$..
- If $d>1$, we have $k p=1<d$ and hence $W^{1,1}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $q \in\left[1, q_{0}\right]$, where $q_{0}:=\frac{d}{d-1} \in(1,2]$.
- If $q_{0} \geqslant p$, we are finished.
- If $q_{0}<p$, we have $u^{\prime} \in L^{p}(\Omega) \hookrightarrow L^{q_{0}}(\Omega)$ and hence $u \in W^{1, q_{0}}(\Omega)$.
* If $d=2$, then $k p=q_{0}=2=d$ and thus $u \in W^{1, q_{0}}(\Omega) \hookrightarrow L^{p}(\Omega)$
* If $d \geqslant 3$, we have $q_{0}<d$ and thus $W^{1, q_{0}}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $q \leqslant$ $\frac{d}{d-2}=: q_{1} \in(1,3]$.

This can be inductively continued until $q_{k} \geqslant p$.

For $p \in[1, \infty]$ and a Lipschitz domain $\Omega \subset \mathbb{R}^{d}$, there exists a $C=C(\Omega, p) \geqslant 0$ such that

$$
\left\|u-u_{\Omega}\right\|_{0, p} \leqslant C\|\nabla u\|_{0, p},
$$

for all $u \in W^{1, p}(\Omega)$, where $u_{\Omega}:=\frac{1}{|\Omega|} \int_{\Omega} u(x) \mathrm{d} x$.

For homogeneous Dirichlet boundary conditions the problem is uniquely solvable by Lax-Milgram.
For the variational formulation set $V:=H_{0}^{1}(\Omega)$.
By Sobolev we have $H_{0}^{1}(\Omega) \subset H^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ with $q \leqslant \frac{2 d}{d-2}$ for $d \geqslant 3$ (for $d=2$ we have $H^{1} \hookrightarrow L^{q}$ for all $q \in[1, \infty$)). With HöLDER we have $|\langle f, v\rangle| \leqslant\|f\|_{p}\|v\|_{q}$, where $\frac{1}{p}+\frac{1}{q}=1$, that is, $p=\frac{2 d}{d+2} \in[1,2)$, so f induces $\tilde{f} \in H^{-1}(\Omega)$.

Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a vector field (i.e. the gradient of $u: \Omega \rightarrow$ $\mathbb{R})$ and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a scalar valued function and $\Omega \subset \mathbb{R}^{d}$ a Lipschitz domain. Then

$$
\int_{\Omega} \underbrace{(\nabla \cdot F)(x)}_{\operatorname{div}(F)} \varphi(x) \mathrm{d} x=-\int_{\Omega} F(x) \cdot \nabla \varphi(x) \mathrm{d} x+\underbrace{\int_{\partial \Omega} \varphi F \cdot \nu \mathrm{~d} \sigma}_{\text {boundary term }}
$$

where ν is the outer normal and \cdot is the scalar product on \mathbb{R}^{d}.

