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Introduction

Introduction
12.04.2021This course differs from the previous courses as we consider differential equations which also

incorporate time derivatives. In the first chapter we introduce the Bochner integral for
functions from a time interval into a Banach space. We can then, in the second chapter,
explore time derivatives and the space W p0, T q, the correct space for considering linear
first order evolution equations where we prove existence and uniqueness results. We show
existence results for nonlinear first order evolution equations with numerical schemes. While
we focused on the stationary Navier-Stokes equation in the course Differential Equations
II B, we will now consider the instationary case including the famous Millennium problem.
Lastly, we consider systems of nonlinear evolution equations. Depending on the different
couplings of different PDEs this can mean a whole different world for the solvability of these
systems.

There are different approaches to evolution equations. Insights into the linear semigroup
approach, which we will not study here, can be found in [Paz12] or [Lun12], the idea being
the generalisation of e´tA from matrices A to general linear operators A. This works well for
linear, but not so well for nonlinear PDEs. For the nonlinear case, one can consult [Bar76]
or [Bré73], which only covers Hilbert spaces.

We will take the variational approach shown in [Emm13] and [RR06]. A great further
resources is [Rou13]. The variational approach follows the modelling of PDEs and is not
restricted to local existence results in the nonlinear case by using generalised solvability
notions.
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0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

0 Introductory Examples and Preliminaries

0.1 Introductory examples

We first give an overview of the kinds of problems we will tackle in this course. Let T ą 0.
Example. (Nonlinear heat equation) Consider

$

’

’

&

’

’

%

CpθqBtθ ´∇ ¨ pκpθq∇θq ` gpθq “ f, on Ωˆ p0, T q,

n ¨ κpθq∇θ ` b1θ ` b2|θ|3θ “ 0, on BΩˆ p0, T q,

θp0q “ θ0 on Ω

where θ is the temperature, C is the heat capacity, κ is the heat conductivity, g represents
heat sources or sinks (e.g. from a chemical reaction) and is a nonlinear function, f is
an external heat source and b1 and b2 are constants of the convective and radiative heat
conduction. The first line is the differential equation, the second is the boundary condition
and the third line is the initial value condition. ˛

The previous problem is difficult to solve, but the following one is even harder.
Example. (Navier-Stokes equation) Consider

$

’

’

’

’

’

&

’

’

’

’

’

%

Btv ` pv ¨∇qv `∇p´ ν∆v “ f, on Ωˆ p0, T q,

∇v “ 0, on Ωˆ p0, T q,

vp0q “ v0, on Ω,

v “ 0, on BΩˆ p0, T q.

where v is the velocity field, p is the pressure and f is an external force, e.g gravity, and ν
is the viscosity. This models flow in incompressible fluids. ˛

Example. (Complex fluids - Liquid Crystals) Liquid crystals can be found in displays
of phones. They can be modelled by the Ericksen-Leslie equation

Fig. 1: Molecules in
a container aligning
along a magnetic field.

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btv ` pv ¨∇qv `∇p´ ν∆v `∇ ¨ p∇dT∇dq “ f on Ωˆ p0, T q,

Btd` pv ¨∇qd` pI ´ db dqp´∆dq “ 0, on Ωˆ p0, T q,

|d| “ 1, ∇v “ 0, on Ωˆ p0, T q,

d “ d1, v “ 0, on BΩˆ p0, T q,

dp0q “ d0, vp0q “ v0 on Ω,

where the director d (a vector) models the averaged direction of the molecules.

We will see that we will have to follow the modelling and the physics (energetic principles
of the system) to show some kind of general solvability of this system. ˛

0.2 Notation and functional analytic preliminaries

Let pX, } ¨ }q be a real Banach space, and x ¨, ¨ y denote the dual pairing of X˚ and X. Weak
convergence of pxnqnPN Ă X to x P X is denoted by xn á x and weak˚ convergence of
pfnqnPN Ă X˚ to f P X˚ is denoted by fn

˚
á f .

We equip
Cpr0, T s;Xq :“ tf : r0, T s Ñ X : f continuousu

with the norm }u}Cpr0,T s;Xq :“ suptPr0,T s }uptq}X , which makes it a Banach space.

2



0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

Theorem: Weierstraß Density Theorem

The space spanned by all polynomials

r0, T s Q t ÞÑ
N
ÿ

k“0

ckt
k, ck P X, N P N

is dense in Cpr0, T s;Xq.

Corollary. If X is separable, then so is Cpr0, T s;Xq. ˛

For X we can choose `p, LppΩq for p P r1,8q or Cpra, bs;Rq for a ă b P R.

Lemma 0.2.2 (Exercise 2.3)
Let Ω Ă Rd be a bounded domain and punqnPN Ă LrpΩq with 1 ď p ă r ď 8. If punqnPN Ă
LrpΩq is bounded and convergent in LppΩq, then it is also convergent in LqpΩq with p ď q ă

r.

Lemma 0.2.3 ((Exercise 4.2))
Let pX, } ¨ }Xq and pY, } ¨ }Y q be Banach spaces, which are subspaces of a vector space V .
Prove that the space

X ` Y :“ tx` y : x P X, y P Y u Ă V

equipped with the norm

}z}X`Y :“ inf
xPX,yPY
z“x`y

maxp}x}X , }y}Y q

is a Banach space.

Lemma 0.2.4 (Differenzielles Lemma von Gronwall)
Seien a : rt0, ts Ñ R eine absolut stetige Funktionen und λ, g P L1pt0, T q integrierbar. Gilt
für fast alle t P pt0, T q

a1ptq ď gptq ` λptqaptq, (1)

so folgt für fast alle t P pt0, T q

aptq ď eΛptqapt0q `

ż t

t0

eΛptq´Λpsqgpsqds

Theorem 0.2.1: Discrete Gronwall’s Lemma

Let panqnPN, pbnqnPN, pcnqnPN Ă R, where pbnqnPN Ă Rě0 and cn ď cn`1 for all n P N.
Let λ, τ ą 0 with λτ ă 1. Then

an ` bn ď τλ
n
ÿ

j“1

aj ` cn

implies
an ` bn ď cnp1´ λτq

´n.
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0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

Abstract functions

Bei vielen Prozessen unterscheiden sich raumliches und zeitliches Verhalten und insbesondere
die Zeit nimmt eine besondere Stellung ein. Soll die zeitliche Entwicklung, die Evolution,
beschrieben werden, so macht es Sinn, so genannte abstrakte Funktionen einzuführen: Unter
einer abstrakten Funktion verstehen wir dabei eine Funktion u “ uptq : r0, T s Ñ X, die für
jeden Zeitpunkt t P r0, T s Element eines linearen Raumes X ist.

Der Bildraum X kann auch selbst wieder aus Funktionen in x bestehen und etwa der uns
schon bekannte Sobolev-Raum H1

0 pa, bq sein. Für jedes t P r0, T s ist uptq dann noch eine
Funktion in x. Über

ruptqspxq “ upx, tq (2)

stellen wir den Zusammenhang zu den reellwertigen Funktionen u “ upx, tq : ra, bsˆr0, T s Ñ

R her. Wollen wir die Funktion u charakterisieren, so werden wir auf Funktionenräume
zurückgreifen, die über ra, bs ˆ r0, T s erklärt sind, zum Beispiel könnte u P Cpra, bs ˆ r0, T sq
gelten. Dagegen werden wir u : r0, T s Ñ X bezüglich t charakterisieren und es konnte zum
Beispiel u P Cpr0, T s;Xq gelten. Geht die abstrakte Funktion via (2) aus einer reellwertigen
Funktion hervor, so werden wir künftig in der Bezeichnung zwischen beiden nicht mehr
unterscheiden, so dass uptq “ up¨, tq [Emm13, p. 147- 148].

Lemma 0.2.5 (Exercise 1.1)
Let Q :“ Ωˆp0, T q the space-time cylinder for the bounded domain Ω Ă Rd and X a normed
space. Then

Cpr0, T s; CpΩ;Xqq – CpQ;Xq

In particular we have Cpr0, T s; Cpra, bs;Rqq – Cpra, bs ˆ r0, T s;Rq.

Proof. Let

Φ: Cpr0, T s; CpΩ;Xqq Ñ CpΩˆ r0, T s;Xq, pΦuqpt, xq :“ ruptqspxq.

Let u P Cpr0, T s; CpΩ;Xqq. To show that Φ is well defined, we show that Φu P CpΩˆr0, T s;Xq
for u P Cpr0, T s; CpΩ;Xqq. For all x P Ω we have

}pΦuqptn, xq ´ pΦuqpt, xq}X “ }ruptnq ´ uptqspxq}X ď max
xPΩ

}ruptnq ´ uptqspxq}X

“ }uptnq ´ uptq}CpΩ;Xq
nÑ8

ÝÝÝÝÝÝÝÝÝÝÝÝÑ
uPCpr0,T s;CpΩ;Xqq

0.

Furthermore, Φ is isometric and hence injective as for all u P Cpr0, T s; CpΩ;Xqq we have

}Φu}CpΩˆr0,T s;Xq “ max
pt,xqPr0,T sˆΩ

|ruptqspxq| “ max
tPr0,T s

max
xPΩ

|ruptqspxq|

“ max
tPr0,T s

}uptq}CpΩ;Xq “ }u}Cpr0,T s;CpΩ;Xqq.

Further, Φ is surjective: let ũ P CpΩˆ r0, T s;Xq. Now define the function u by ruptqspxq “
ũpt, xq, which fulfills Φu “ ũ. It remains to show that u P Cpr0, T s; CpΩ;Xqq. Let ptnqnPN Ă
r0, T s converge to t P r0, T s. Then for all x P Ω we have

}uptnq ´ uptq}CpΩ;Xq “ max
xPΩ

}ruptnq ´ uptqspxq}X “ max
xPΩ

}ũptn, xq ´ ũpt, xq}X
nÑ8
ÝÝÝÑ 0

by the uniform continuity of ũ (as Ωˆ r0, T s Ă Rd`1 is compact). l
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0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

Lemma 0.2.6 (Partial derivatives of abstract functions (Exercise 1.2))
Let u P CpΩˆr0, T s;Rq and ũ P Cpr0, T s; CpΩ;Rqq such that ũptq “ upt, ¨q. Then the function
u has a partial derivative Bu

Bt P CpΩ ˆ r0, T s;Rq if and only if ũ P C1
pr0, T s; CpΩ;Rqq. Then

we have Bu
Bt pt, ¨q “ ũ1ptq.

Proof. TODO l
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1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

1 The Bochner integral and the Bochner spaces

1.1 Bochner measurability

We will discuss Bochnermeasurability for functions taking values in Banach spaces, which
is similar to Lebesgue measurability.

Definition 1.1.1 (Bochner integral of a simple function)
A function u : r0, T s Ñ X is a simple function simple functionif there exist finitely many pairwise disjoint
Lebesgue measurable sets pEi Ă r0, T sqmi“1 such that u takes constant values ui P X on
each of these sets, that is u “

řm
i“1 ui 1Ei . The (Bochner) integral of u is

ż T

0

uptqdt :“
m
ÿ

i“1

ui|Ei| P X.

Definition 1.1.2 (Bochner measurability)
A function u : r0, T s Ñ X is Bochner measurable Bochner

measurable
(or strongly measurable) if there exists

a sequence of simple functions pun : r0, T s Ñ XqnPN such that for almost all t P p0, T q

lim
nÑ8

}unptq ´ uptq} “ 0. (3)

The following, non-reversible (Exercise!) implication holds.

Lemma 1.1.3 (Lebesgue-measurability of }u})
Let u : r0, T s Ñ X be Bochner measurable. Then }u} is Lebesgue measurable on r0, T s.

Proof. As u isBochnermeasurable, there exists a sequence of simple functions pun : r0, T s Ñ

XqnPN such that (3) holds for almost all t P r0, T s. For those t P r0, T s we thus have

ˇ

ˇ}unptq} ´ }uptq}
ˇ

ˇ

4´1

ď }unptq ´ uptq}
nÑ8
ÝÝÝÑ
(3)

0.

The functions p}un} : r0, T s Ñ RqnPN are simple functions (and hence measurable), because
the functions un “

řmn
i“1 u

pnq
i 1

E
pnq
i

are simple:

}unptq} “

›

›

›

›

›

mn
ÿ

i“1

u
pnq
i 1

E
pnq
i
ptq

›

›

›

›

›

p‹q
“

mn
ÿ

i“1

}u
pnq
i }1

E
pnq
i
ptq,

where in p‹q we use that the pEpnqi q
mn
i“1 are disjoint. Hence }u} is measurable as the limit of

the measurable functions }un}. l

Counterexample. 1.1.4 (Bochner measurability)
The function

Fig. 2: The function u

from (4).

u : r0, 1s ˆ r0, 1s Ñ R, px, tq ÞÑ

$

&

%

1, if x ă t,

0, else
(4)

considered as an abstract function

ũ : r0, 1s Ñ L8pr0, 1s;Rq, t ÞÑ up¨, tq “ 1r0,tq (5)

6



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

is measurable but not Bochner measurable but continuous if X is equipped with the weak˚

topology (Homework 1.4). ˛

Definition 1.1.5 (Weak Bochner measurability)
A function u : r0, T s Ñ X is weakly Bochner measurable weakly Bochner

measurable
if for all f P X˚ the map

t ÞÑ x f, uptq y is Lebesgue measurable.

Remark. 1.1.6 Since strong convergence implies weak convergence, Bochner measura-
bility implies weak Bochner measurability: if unptq Ñ uptq for almost all t P r0, T s,
then x f, uptq y is Lebesgue-measurable as the limit of the Lebesgue-measurable functions
x f, unptq y.

For the converse of the above implication to hold, an additional property is needed.

Definition 1.1.7 (Essentially separable valued)
A function u : r0, T s Ñ X is (essentially) separable valued (essentially)

separable valued
if it (up to a null set N Ă r0, T s)

only takes values in a separable subset of X.

Theorem 1.1.1: Pettis’ Measurability Theorem [DUJ78]

A function u : r0, T s Ñ X is Bochnermeasurable if and only if u is weakly Bochner
measurable and essentially separable valued.

Corollary 1.1.8 (Weak and strong Bochner measurability in separable spaces)
If X is separable, weak and strong Bochner measurability coincide.

Proof. Subsets of separable spaces are separable. l
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1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

1.2 The Bochner integral

19.04.2021We want to integrate functions mapping into Banach spaces X, in our case X often is a
Sobolev spaces. This allows us to consider evolution PDEs, where the space derivative is
in the Sobolev space X and the time derivative is considered in the abstract Bochner
setting. Our approach will be similar to the construction of the Lebesgue integral.

Definition 1.2.1 (Bochner integral)
Let u : r0, T s Ñ X be Bochner measurable and punqnPN a sequence of simple functions
with unptq Ñ uptq in X for almost all t P r0, T s. Then u is Bochner integrable if
şT

0
}unptq ´ uptq}dtÑ 0, that is, for all ε ą 0 there exists a Mε P N such that

ż T

0

}unptq ´ uptq}dt ă ε @n ěMε. This is a Lebesgue
integral, which is
well-defined by
lemma 1.1.3.

(6)

We set
ż T

0

uptqdt :“ lim
nÑ8

ż T

0

unptqdt P X. (7)

For a measurable subset B Ă r0, T s, we set

ż

B

uptqdt :“

ż T

0

uptq1Bptqdt.

Remark. 1.2.2 The limit in (7) is well defined as each un and u are Bochner measurable
and hence the function }un ´ u} is Lebesgue measurable by lemma 1.1.3.

For n,m ě Mε we have, as un ´ um is again a simple function and the triangle equality is
an equality for simple functions,

›

›

›

›

›

ż T

0

unptqdt´

ż T

0

umptqdt

›

›

›

›

›

X

“

ż T

0

}unptq ´ umptq}dt

4‰
ď

ż T

0

}unptq ´ uptq} ` }uptq ´ umptq}dt
(6)
ď 2ε.

Hence
´

şT

0
unptqdt

¯

nPN
is a Cauchy sequence in X and thus converges for nÑ 8 as X is

a Banach space.
Remark. 1.2.3 (Independence of approximating sequence) The integral (7) is well
defined, that is, independent of the approximating sequence of simple functions, as (6) holds
for all such sequences and thus the procedure in the previous remark can be done with any
such sequence.
Remark. 1.2.4 The Bochner integral is linear, which directly follows from the limit def-
inition (7) and the fact that the integral of simple functions is linear.

Lemma 1.2.5
Every continuous function Cpr0, T s;Xq is Bochner integrable.

Proof. Homework 1.1. l
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1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

Theorem 1.2.1: Properties of the Bochner integral

Let u : r0, T s Ñ X be a function.
1 Let u be Bochner measurable. Then u is Bochner integrable if and only if

t ÞÑ }uptq} is Lebesgue integrable.
2 Let u be Bochner integrable. For all measurable subsets B Ă r0, T s and for

all f P X˚ we have
›

›

›

›

ż

B

uptqdt

›

›

›

›

ď

ż

B

}uptq}dt and
B

f,

ż

B

uptqdt

F

“

ż

B

xf, uptqydt.

3 Let pY, } ¨ }Y q be a Banach space, A P LpX,Y q a linear bounded operator and
u Bochner integrable. Then Au : r0, T s Ñ Y is Bochner integrable with

ż T

0

pAuqptqdt “ A

˜

ż T

0

uptqdt

¸

. (8)

Proof. 1 As u is Bochner measurable, there exists a sequence of simple function
pun : r0, T s Ñ XqnPN such that }unptq ´ uptq} Ñ 0 for almost all t P r0, T s and by
lemma 1.1.3, }u} is Lebesgue measurable and }unptq} Ñ }uptq} almost everywhere in
r0, T s.

" ùñ ": We want to show that
´

şT

0
}unptq}dt

¯

nPN
is a Cauchy sequence: for n P N

we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

}unptq} ´ }uptq}dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż T

0

ˇ

ˇ}unptq} ´ }uptq}
ˇ

ˇdt ď

ż T

0

}unptq ´ uptq}dt
nÑ8
ÝÝÝÑ 0.

By Fatou’s Lemma Fa-
tou’s Lemma states that
şT
0

lim infnÑ8 fnptq dt ď

lim infnÑ8
şT
0
fnptq dt if

fn ě 0.

(FL) we conclude that

ż T

0

}uptq}dt “

ż T

0

lim
nÑ8

}unptq}dt
FL
ď lim

nÑ8

ż T

0

}unptq}dt ă 8.

"ðù ": Define the cut-off function

vnptq :“

$

&

%

unptq, if }unptq} ď 2}uptq},

0, else.

First observe that vnptq Ñ uptq almost everywhere: let M :“ tt P r0, T s : unptq Ñ

uptqu. If uptq “ 0, then the statement is obvious. If t P M is such that uptq ‰ 0, then
there exists a ε ą 0 such that }uptq} ą ε. For ε choose n0 P N such that

ˇ

ˇ}unptq} ´ }uptq}
ˇ

ˇ ď |unptq ´ uptq| ă ε

for all n ě n0. Then we have

}unptq} ď ε` }uptq} ă 2}uptq}

and hence vnptq “ unptq Ñ uptq.

We have }vnptq ´ uptq} ď 3}uptq}, so we have found a dominating function and can
apply Lebesgue’s dominated convergence theorem:

lim
nÑ8

ż T

0

}vnptq ´ uptq}dt “ 0.

9



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

3 Let punqnPN be a sequence of simple functions with unptq Ñ uptq in X for almost
all t P r0, T s. Consider the sequence of simple (due to the linearity of A) functions
pAun : r0, T s Ñ Y qnPN. We have

ż T

0

}Aunptq ´Auptq}Y dt ď }A}LpX,Y q

ż T

0

}unptq ´ uptq}X dt
nÑ8
ÝÝÝÑ
(6)

0

due to the Bochner measurability of u.

The assertion (8) is true for step functions. Due to the linearity of A, the continuity
of A grants the property for all functions.

2 For the second assertion take Y “ R and A “ x f, ¨ yX˚ˆX . The first assertion is true
for steps functions due to the linearity of the integral. By Fatou’s Lemma, we can
then take the limit. l

Absolutely continuous functions

We will see that absolutely continuous function are the weakest class of functions for which
the weak derivative, which we define afterwards, makes sense. Sobolev already noticed in
the forties that for absolutely continuous functions the almost everywhere derivative coincide
with the weak derivative but if you weaken the function class, this is not true anymore.

The properties stated in the following theorem motivate the definition after it.

Theorem 1.2.2: Lebesgue points

Let u : r0, T s Ñ X be Bochner integrable. Then almost everywhere in r0, T s we
have

1 lim
hÑ0

1

h

ż t`h

t

upsqds “ uptq, that is, almost all points are Lebesgue points,

2 lim
hÑ0

1

h

ż t`h

t

}upsq ´ uptq}ds “ 0,

where outside of r0, T s, u is continued by zero.

Proof. 1 follows from 2 : by the triangle inequality we have
›

›

›

›

›

1

h

ż t`h

t

upsqds´ uptq

›

›

›

›

›

“

›

›

›

›

›

1

h

ż t`h

t

upsq ´ uptqds

›

›

›

›

›

ď
1

h

ż t`h

t

}upsq ´ uptq}ds.

2 We can’t guarantee the measurability of }up¨q ´ uptq}, so we have to use an approxi-
mation step. By Pettis’ theorem, u is essentially separable valued. Hence for almost
all t P r0, T s there exists a sequence pxptqn qnPN Ă X converging to uptq.

By the triangle inequality, we have

1

h

ż t`h

t

}upsq ´ uptq}ds ď
1

h

ż t`h

t

}upsq ´ xptqn } ds` }uptq ´ xptqn }.

Taking nÑ8 and then hÑ 0 guarantees the measurability s ÞÑ }upsq ´ x
ptq
n }. l

Definition 1.2.6 (Absolute continuity)
A function u : r0, T s Ñ X is absolutely continuous absolutely

continuous
if for all ε ą 0 there exists a δ ą 0 such

that for all N P N and pairwise disjoint intervals ppai, biq Ă r0, T sqNi“1,
řN
i“1 |bi ´ ai| ă δ

implies that
řn
i“1 }upbiq ´ upaiq} ă ε.

10



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

Remark. 1.2.7 (Relationship to other kinds of continuity)
Absolute continuous functions are uniformly continuous and continuous differentiable func-
tions are absolutely continuous.

The following fundamental theorem is analogous to the theorem for functions u : r0, T s Ñ R.

Theorem 1.2.3: Fundamental theorem

Let u : r0, T s Ñ X be a Bochner integrable function. Then U : r0, T s Ñ X, t ÞÑ
şt

0
upsqds is absolutely continuous and almost everywhere differentiable with U 1ptq “

uptq, in particular at all points of continuity.

Proof. (Idea) We show first differentiability. For t P r0, T s we have

›

›

›

›

Upt` hq ´ Uptq

h
´ uptq

›

›

›

›

“

›

›

›

›

›

1

h

˜

ż t`h

0

upsqds´

ż t

0

upsqds

¸

´ uptq

›

›

›

›

›

“

›

›

›

›

›

1

h

ż t`h

t

upsqds´ uptq

›

›

›

›

›

hÑ0
ÝÝÝÑ 0

by Theorem 1.2.2 1 .

We now show absolute continuity. For pai, biq Ă r0, T s as in the definition of absolute
continuity, we have

N
ÿ

i“1

}Upbiq ´ Upaiq} “
N
ÿ

i“1

›

›

›

›

›

ż bi

ai

upsqds

›

›

›

›

›

ď

N
ÿ

i“1

ż bi

ai

}upsq}ds

and the statement follows from the integrability of }u} (cf. Theorem 1.2.1 1 ) as that implies
the absolute continuity of t ÞÑ

şt

0
}upsq}ds. l

Theorem 1.2.4: Komura [DUJ78] [Bré73]

Let X be reflexive and u : r0, T s Ñ X be absolutely continuous. Then u is classically
differentiable in p0, T q, u1 is Bochner integrable and

uptq “ upt0q `

ż t

t0

u1psqds

for all t, t0 P r0, T s.

Counterexample. 1.2.8 (Komura: reflexivity of X is essential)
Consider again (5), which is absolutely continuous but not differentiable: let ppai, biq Ă
r0, T sqNi“1, then

}ũpbiq ´ ũpaiq}L1pr0,T s,Xq “ }1r0,biq´1r0,aiq }L1pr0,T s,Xq “ }1rai,biq }L1pr0,T s,Xq “ bi ´ ai,

(9)
and hence

N
ÿ

i“1

}ũpbiq ´ ũpaiq}L1pr0,T s,Xq “

N
ÿ

i“1

bi ´ ai ă δ “: ε,

so ũ is absolutely continuous. (By (9) it is even Lipschitz continuous.)

11



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

But ũ is not differentiable: for h ‰ 0 we have by the previous calculations
›

›

›

›

ũpt` hq ´ ũptq

h

›

›

›

›

L1pr0,T s,Xq

“
h

h
“ 1

hence if v should be a derivative of ũ, we must have
ˇ

ˇ

ˇ

ˇ

ˇ

}v}L1pr0,T s,Xq ´

›

›

›

›

ũpt` hq ´ ũptq

h

›

›

›

›

L1pr0,T s,Xq

ˇ

ˇ

ˇ

ˇ

ˇ

4‰´1

ď

›

›

›

›

ũpt` hq ´ ũptq

h
´ v

›

›

›

›

L1pr0,T s,Xq

Ñ 0

and hence }v}L1pr0,T s,Xq “ 1. But
›

›

›

›

ũpt` hq ´ ũ

h
´ v

›

›

›

›

L1pr0,T s,Xq

“

ż t

0

|vpsq|ds`

ż t`h

t

ˇ

ˇ

ˇ

ˇ

vpsq ´
1

h

ˇ

ˇ

ˇ

ˇ

ds`

ż 1

t`h

|vpsq| ds

has to vanish for h Ñ 0, so v is zero on p0, tq Y pt ` h, 1q for h Ñ 0, we thus have v “ 0

almost everywhere in p0, T q, which is a contradiction to }v}L1pr0,T s,Xq “ 1. ˛

Example. 1.2.9 (Revisiting counterexample. 1.1.4 in L2)
Consider the function

u : r0, 1s2 Ñ R, pt, xq ÞÑ 1r0,tspxq “

$

&

%

1, if 0 ď x ď t,

0, if t ă x ď 1.

and the corresponding abstract function ũ : r0, 1s Ñ L2pr0, 1s;Rq, t ÞÑ upt, ¨q.

Then ũ is Bochner measurable, nowhere differentiable (and hence not absolutely continu-
ous by Theorem 1.2.4) but continuous if L2pr0, 1s;Rq is equipped with the weak topology.
(Exercise 1.3, TODO) ˛

The Bochner spaces

A compact subset K Ă p0, T q is denoted by KĂĂp0, T q.

Definition 1.2.10 (Bochner space Lpp0, T ;Xq)
For p P r1,8q, Lpp0, T ;Xq is the linear space of equivalence classes (of functions only
differing on a null set) of Bochner measurable functions u : r0, T s Ñ X with

}u}Lpp0,T ;Xq :“

˜

ż T

0

}uptq}p dt

¸
1
p

ă 8

and L8p0, T ;Xq is the linear space of equivalence classes of bounded Bochner measurable
functions u : r0, T s Ñ X with

}u}L8p0,T ;Xq :“ ess sup
tPp0,T q

}uptq} ă 8.

The space L1
locp0, T ;Xq can be used to model blow ups, for example at the endpoints of the

interval.

Definition 1.2.11 (Bochner space L1
locp0, T ;Xq)

The space L1
locp0, T ;Xq is the space of locally integrable functions

L1
locp0, T ;Xq :“

 

u : r0, T s Ñ X such that u1K P L1p0, T ;Xq @K ĂĂ p0, T q
(

.

12



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

The Bochner spaces exhibit the usual properties we know from the Lebesgue spaces.

Theorem 1.2.5: Properties of the Bochner spaces

1 For p P r1,8s, Lpp0, T ;Xq is a Banach space.
2 For p P r1,8q, the simple functions are dense in Lpp0, T ;Xq. As L8 is not separable,

the simple functions
cannot be dense in L8.

3 For p P r1,8q, Cpr0, T s;Xq is dense in Lpp0, T ;Xq.
4 For p P r1,8q, Lpp0, T ;Xq is separable if X is, too.
5 Let u P Lpp0, T ;Xq and v P Lqp0, T ;X˚q where p, q P r1,8s are Hölder

conjugates. Then x vp¨q, up¨q y P L1p0, T ;Rq and the Hölder inequality holds:
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

x vptq, uptq ydt

ˇ

ˇ

ˇ

ˇ

ˇ

ď }v}Lqp0,T ;X˚q}u}Lpp0,T ;Xq.

6 For p P p1,8q, Lpp0, T ;Xq is reflexive if X is, too. If X is reflexive or X˚ is
separable, then pLpp0, T ;Xqq˚ – Lqp0, T ;X˚q via the dual pairing

x v, u ypLpp0,T ;Xqq˚ˆLpp0,T ;Xq :“

ż T

0

x vptq, uptq yX˚ˆX dt.

Furthermore, pL1p0, T ;Xqq˚ – L8p0, T ;X˚q.
7 If X “ H is a Hilbert space, then L2p0, T ;Hq is Hilbert space with the

inner product

xu, v yL2p0,T ;Hq :“

ż T

0

xuptq, vptq yH dt.

8 If X ãÑ Y are Banach spaces, then Lpp0, T ;Xq ãÑ Lqp0, T ;Y q for all 1 ď q ď

p ď 8. This only holds for
bounded intervals.

Proof. Analogous to the standard case.

5 Homework 2.3

8 Homework 2.2. l

Remark. 1.2.12 (Not all properties can can be taken for granted)
A weakly continuous (that is, continuous with respect to the weak topology on X) function
u P Cwpr0, T s;Xq must not be Bochner integrable.

Lemma 1.2.13 (Abstract functions)
Let ũ : r0, T s Ñ Lpppa, bq;Rq with p P r1,8s be Bochner measurable. Then u : ra, bs ˆ

r0, T s Ñ R, px, tq ÞÑ rũptqspxq is Lebesgue measurable.

Proof. Homework 1.2. l

Lemma 1.2.14 (The case X “ Lpppa, bq;Rq, p ă 8)
For p P r1,8q and a ă b P R we have

Lpp0, T ;Lpppa, bq;Rqq – Lppra, bs ˆ p0, T q;Rq

but
L8p0, T ;Lpppa, bq;Rqq ( L8pra, bs ˆ p0, T q;Rq

13



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

Proof. Homework 1.3.

The latter inclusion follows from lemma 1.2.13 and the standard example for nonequality is
(5). l

Lemma 1.2.15 (Dominated convergence for abstract functions (Exercise 2.4))
Let punqnPN Ă L1p0, T ;Xq, u P L1p0, T ;Xq and g P L1pp0, T q;Rq. If unptq Ñ uptq in X and
}unptq}X ď gptq for almost every t P r0, T s, then punqnPN converges to u in L1p0, T ;Xq.

Proof. TODO l
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2 GENERALISED TIME DERIVATIVES AND THE SPACE W p0, T q

2 Generalised time derivatives and the space
W p0, T q

26.04.2021In this section we will introduce the weak time derivative for abstract functions and obtain
weak formulations for evolution equations, as before, by multiplying with test functions.

2.1 The generalised time derivative

Let X be a reflexive Banach space.

Definition 2.1.1 (Weak time derivative)
Let u, v P L1

locp0, T ;Xq. Then v is the weak time derivative weak time
derivative

of u if

ż T

0

uptqϕ1ptqdt “ ´

ż T

0

vptqϕptqdt @ϕ P C80 pr0, T s;Rq. (10)

Remark. 2.1.2 (Dual characterisation of weak derivatives)
The function v is the weak time derivative of u if for all f P X˚

B

f,
upt` hq ´ uptq

h
´ v

F

hÑ0
ÝÝÝÑ 0.

Theorem 2.1.1: Fundamental theorem of the calculus of vari-
ations

Let u P L1
locp0, T ;Xq with

ż T

0

uptqϕptqdt “ 0 (11)

for all ϕ P C80 p0, T q. Then u vanishes almost everywhere.

Proof. Let ε ą 0. We may define ϕ P C80 p0, T q such that ϕ|pε,t´εq “ 1, ϕ|pt,T q “ 0 for some
t P p0, T q. Then

›

›

›

›

ż t

0

upsqds

›

›

›

›

(11)
“

›

›

›

›

ż t

0

upsq ´ ϕpsqupsqds

›

›

›

›

ď

ż t

0

p1´ ϕpsqq}upsq}ds

“

ż ε

0

p1´ ϕpsqq
loooomoooon

ď1

}upsq}ds`

ż t

t´ε

p1´ ϕpsqq
loooomoooon

ď1

}upsq}ds
εÑ0
ÝÝÝÑ 0.

Hence
›

›

›

şt

0
upsqds

›

›

›
“ 0 for all t P p0, T q implies u ” 0 almost everywhere.

This proof only works for u P L1p0, T q ( L1
locp0, T q?? This is a proof for the general

case: for f P X˚ we have

ż T

0

x f, uptqϕptq ydt “

C

f,

ż T

0

uptqϕptqdt

G

“ 0

and thus the Fundamental Theorem of the Calculus of Variations from DGL IIA implies that
x f, uptq y “ 0 almost everywhere and hence u ” 0 almost everywhere. l
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Corollary 2.1.3 (Testing with the derivative of the test function)
Let u P L1

locp0, T ;Xq such that
ż T

0

uptqϕ1ptqdt “ 0

for all ϕ P C80 p0, T ;Rq. Then there is a constant u0 P X such that u ” u0 almost everywhere
in p0, T q.

Theorem 2.1.2: Characterisation of weak derivatives

Let u, v P L1
locp0, T ;Xq. Then the following are equivalent

1 v is a weak derivative of u
2 there exists a u0 P X such that

uptq “ u0 `

ż t

0

vpsqds

almost everywhere in p0, T q.
3 for all f P X˚ the function t ÞÑ x f, uptq y has the weak derivative t ÞÑ x f, vptq y.

Proof. 1 ðñ 3 : If v is the weak time derivative of u, then
ż T

0

uptqϕ1ptqdt “ ´

ż T

0

vptqϕptqdt

for all ϕ P C80 p0, T q. By a corollary of the Hahn-Banach theorem, the above equations are
equivalent to

C

f,

ż T

0

uptqϕ1ptqdt

G

“

C

f,´

ż T

0

vptqϕptqdt

G

for all f P X˚. By linearity and continuity of f , this is equivalent to
ż T

0

x f, uptq yϕ1ptqdt “ ´

ż T

0

x f, vptq yϕptqdt

for all f P X˚ due to Theorem 1.2.1 3 by choosing A “ x f, ¨ yX˚ˆX P LpX,Rq.

1 ùñ 2 : By Fubini’s theorem we have

We can continue
ϕ P C80 p0, T q onto r0, T s
by zero due to ϕ being
compactly supported, so
ϕpT q makes sense.

ż T

0

ż t

0

vpsqdsϕ1ptqdt “

ż T

0

vpsq

ż T

s

ϕ1ptqdtds

“

ż T

0

vpsqp ϕpT q
loomoon

“0

´ϕpsqqds “ ´

ż T

0

vpsqϕpsqds
(10)
“

ż T

0

uptqϕ1ptq,

using the fundamental theorem of calculus. Then
ż T

0

ˆ

uptq ´

ż t

0

vpsqds

˙

ϕ1ptqdt “ 0.

By corollary 2.1.3 we have, up to a constant, uptq “
şt

0
vpsqds.

2 ùñ 1 : Assume there exists a u0 P X such that uptq “ u0 `
şt

0
vpsqds. Then

0 “

ż T

0

u0ϕ
1ptqdt “

ż T

0

ˆ

uptq ´

ż t

0

vpsqds

˙

ϕ1ptqdt.

With the calculation from before we see that v is the weak derivative of u. l
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2 GENERALISED TIME DERIVATIVES AND THE SPACE W p0, T q

Definition 2.1.4 (The space W 1,1p0, T ;Xq)
Let

W 1,1p0, T ;Xq :“ tu P L1p0, T ;Xq : u has a weak derivative u1 P L1p0, T ;Xqu

be equipped with
}u}1,1 :“ }u}1 ` }u

1}1.

Theorem 2.1.3: W 1,1 functions are absolutely continuous

The space W 1,1p0, T ;Xq is a Banach space. For every function u P W 1,1p0, T ;Xq

we can find an absolutely continuous function, which is almost equal to u, that is,
W 1,1p0, T ;Xq ãÑ ACpr0, T s;Xq ãÑ Cpr0, T s;Xq.

Proof. 1 Completeness (sketch): Let punqnPN converge to u in W 1,1p0, T ;Xq. Then
there exists a v such that un Ñ v in L1p0, T ;Xq. We have

ż T

0

uptqϕ1ptqdt “ lim
nÑ8

ż T

0

unptqϕ
1ptqdt “ ´ lim

nÑ8

ż T

0

u1nptqϕptqdt “ ´

ż T

0

vptqϕptqdt,

so v is the generalised derivative of u.

2 For an absolutely continuous function u we have the representation uptq “ u0 `
şt

0
u1psqds by Theorem 1.2.4. By the integral mean value theorem there exists a

t0 P r0, T s such that }upt0q} “ 1
T

şT

0
}uptq}dt and hence

}uptq} “

›

›

›

›

}upt0q} `

ż t

t0

u1psqds

›

›

›

›

ď
1

T

ż T

0

}uptq}dt`

ż T

0

}u1ptq}dt ď
maxp1, T q

T
}u}1,1.

l
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2 GENERALISED TIME DERIVATIVES AND THE SPACE W p0, T q

2.2 The space W p0, T q

We want to introduce the space W p0, T q, which is the standard space for handling evolu-
tion equations. The overall idea is that time derivative is a different space than the space
derivative, so they have to be handled differently; the time derivative "lives in" another
space than the function itself. The function can have spatial regularity, which is lost when
differentiating in time.

Definition 2.2.1 (Gelfand triple, evolutionary triple)
Let pV, } ¨ }q be a real reflexive separable Banach space, pH, | ¨ |q a real Hilbert space

and V
d

ãÑ H. We identify H – H˚. Since V is reflexive, we get H˚ d
ãÑ V ˚. We call

V Ă H Ă V ˚ a Gelfand or evolutionary triple evolutionary triple.

The space H is called pivot space.

Remark. 2.2.2 (Notation of norms, dual pairing and scalar products)
The norm on V will be denoted by } ¨ }, the norm on H will be | ¨ | and the norm on V ˚ will
be } ¨ }˚. The dual pairing will be x ¨, ¨ yV ˚ˆV and the scalar product on H is p¨, ¨q such that
we have x g, v y “ pg, vq for all g P H and v P V .

Proof. (Exercise 2.1) We show that H d
ãÑ V implies H˚ d

ãÑ V ˚.

Let j : V Ñ jpV q
d
Ă H be the linear injective operator of the embedding V

d
ãÑ H and

I : H Ñ H˚ the isometric Riesz isomorphism satisfying x Ipwq, v yH˚ˆH “ pw, vqHˆH for
all v, w P H. Consider the Banach adjoint of j

j˚ : H˚ Ñ V ˚, x j˚pwq, v yV ˚ˆV “ xw, jpvq yH˚ˆH .

We want to show that j˚pH˚q Ă V ˚ is dense.

TODO l

Remark. 2.2.3 (Notation of embeddings) We have shown that we can understand the
Gelfand triple V d

ãÑ H – H˚
d

ãÑ V ˚ as inclusions of sets: V Ă H Ă V ˚. Therefore,
it is common not to write the embedding operators and simply identify the elements. For
example, for f P H and v P V

x j˚pIpfqq, v yV ˚ˆV “ x Ipfq, jpvq yH˚ˆH “ pf, jpvqq,

but we write simply
x f, v yV ˚ˆV “ pf, vqH .

Example. 2.2.4 (Gelfand triple)
• V :“W 1,p

0 pΩq, H :“ L2pΩq, V ˚ :“W´1,qpΩq.

• V :“ LppΩq, H :“ H´1pΩq – H1
0 pΩq, V ˚ “ LqpΩq if 1

p `
1
q “ 1.

In order for H1
0 pΩq ãÑ LqpΩq, the Sobolev embedding theorem says that we need

1
q ď

1
2 ´

1
d , and together with the above condition this becomes 1 ´ 1

p ď
1
2 ´

1
d , that

is, 1
p ě

1
2 `

1
d , that is, p ď

2d
d`2 where Ω Ă Rd. ˛

18



2 GENERALISED TIME DERIVATIVES AND THE SPACE W p0, T q

Definition 2.2.5 (The spaces W p0, T q and Wpp0, T q)
Let V Ă H Ă V ˚ be a Gelfand triple. We define

W(0, T) W(0, T):“ tu P L2p0, T ;V q : Du1 P L2p0, T ;V ˚qu

and endow it with the norm

}u}W p0,T q :“
´

}u}2L2p0,T ;V q ` }u
1}2L2p0,T ;V ˚q

¯
1
2

.

Theorem 2.2.1: Properties of W p0, T q

1 The space pW p0, T q, } ¨ }W p0,T qq is a Banach space.
2 C8pr0, T s;V q ĂW p0, T q is dense.
3 We have W p0, T q ãÑ Cpr0, T s;Hq.
4 The integration-by-parts formula holds: for u, v PW p0, T q and 0 ď s ď t ď T

ż t

s

xu1pτq, vpτq y` x v1pτq, upτq ydτ “ puptq, vptqq ´ pupsq, vpsqq.

Proof. 1 We only show completeness. Let punqnPN Ă W p0, T q be a Cauchy sequence.
Then punqnPN is a Cauchy sequence in L2pp0, T q, V q and pu1nqnPN is a Cauchy se-
quence in L2pp0, T q, V ˚q. By Theorem 1.2.5 1 , both of these spaces are complete, so
there exist limits u, v with un Ñ u and u1n Ñ v. We want to show that u1 “ v. For all
ϕ P C80 p0, T q we have
ż T

0

uptqϕ1ptqdt “ lim
nÑ8

ż T

0

unptqϕ
1ptqdt “ ´ lim

nÑ8

ż T

0

u1nptqϕptqdt “ ´

ż T

0

vptqϕptqdt,

where the (strong) convergence holds in V ˚. Hence v is the weak derivative of u.
The space W p0, T q is well defined as L2p0, T ;V q Ă L1p0, T ;V q ãÑ L1p0, T ;V ˚q and
u1 P L2p0, T ;V ˚q Ă L1p0, T ;V ˚q, so W p0, T q Ă W 1,1p0, T ;V ˚q is a Banach space as
a closed subset of a Banach space.

2 This is proven, as usual, by mollifying (convolution with smoothing kernels ρε P
C8pr0, T s;V q). Define the approximating sequence puε :“ ρε ˚ uqεą0 Ă C8pr0, T s;V q
with uε Ñ u in L2ppε, T ´ εq;V q. We have puεq1 “ u1ε and hence puεq1 Ñ u1 in
L2ppε, T ´ εq;V q. Since ε ą 0 was arbitrary, we deduce convergence.

3 Let v P C1
pr0, T s;V q, ϕ P C8pr0, T s; r0, 1sq with ϕp0q “ 0, ϕpT q “ 1. Let v1 :“ v ¨ϕ and

v2 :“ v ¨ p1´ϕq. Then v1`v2 “ v, v1p0q “ v2pT q “ 0, v1pT q “ vpT q, and v2p0q “ vp0q.
By partial integration we have

pv1ptq, vptqq “ pv1p0q, vp0qq `

ż t

0

x v11psq, vpsq y` x v
1psq, v1psq yds

“ pv1p0q, vp0qq
loooooomoooooon

“0

`

ż t

0

ϕ1psq|vpsq|2 ` 2ϕpsq x v1psq, vpsq yds

and analogously

pv2ptq, vptqq “ pv1pT q, v2pT qq
looooooomooooooon

“0

´

ż T

t

p´ϕ1psq|vpsq|2q ` 2p1´ ϕpsqq x v1psq, vpsq yds.
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Hence
|vptq|2 “ pv1ptq, vptqq ` pv2ptq, vptqq

“

ż T

0

ϕ1psq|vpsq|2 ` 2ϕpsq x v1psq, vpsq yds

´

ż T

t

p´ϕ1psq|vpsq|2q ` 2p1´ ϕpsqq x v1psq, vpsq yds

“

ż T

0

ϕ1psq
loomoon

ď}ϕ1}8

|vpsq|2
loomoon

ďα2}vpsq}2

ds` 2

ż t

0

ϕpsq
loomoon

ď1

x v1psq, vpsq y
loooooomoooooon

ď}v1psq}˚}vpsq}

ds

´ 2

ż T

t

p1´ ϕpsqq
loooomoooon

ď1

x v1psq, vpsq y
loooooomoooooon

ď}v1psq}˚}vpsq}

ds.

As V ãÑ H, there exists a α ą 0 such that | ¨ | ď α} ¨ }. Thus by using the Cauchy-
Schwartz inequality and Youngs’s inequality, we obtain

|vptq|2 ď α2}ϕ1}8}v}
2
L2pp0,T q:V q ` 4 ¨

1

2

´

}v1}2L2p0,T ;V ˚q ` }v}
2
L2p0,T ;V q

¯

ď pα2}ϕ1}8 ` 2q}v}2W p0,T q “ const}v}2W p0,T q

and thus }v}8 ď const}v}W p0,T q. For every u P W p0, T q, there exists a sequence
punqnPN Ă C8pr0, T s;V q such that un Ñ u in W p0, T q. By the above, punqnPN is
bounded in Cpr0, T s;Hq, so there exists a ũ such that un Ñ ũ in Cpr0, T s;Hq. We may
identify the limit: we have

}ũ}Cpr0,T s;Hq ď }ũ´ un}Cpr0,T s;Hq ` }un}Cpr0,T s;Hq

ď }ũ´ un}Cpr0,T s;Hq ` }un ´ u}W p0,T q ` }u}W p0,T q.

Passing to the limit with nÑ8, we obtain that the first two summands vanish.

4 The integration by parts rule holds for C1 functions (Exercise 2.2, TODO) and by
density arguments it follows for functions in W p0, T q. l

Corollary 2.2.6 (Integration by parts: derivative of the squared norm)
For u PW p0, T q we have 1

2
d
dt |uptq|

2 “ xu1ptq, uptq y almost everywhere in p0, T q.

Proof. Let ϕ P C80 p0, T q. Then

1

2

ż T

0

|uptq|2ϕ1ptqdt “

ż T

0

xu1ptq, uptq yϕptqdt

by choosing u “ u and v “ ϕu in Theorem 2.2.1 3 . Since L2p0, T ;V q ãÑ L2p0, T ;Hq by
Theorem 1.2.5 8 , we observe that |up¨q|2 P L1p0, T q and xu1p¨q, up¨q y P L1p0, T ;Rq. We
observe that t ÞÑ |uptq|2 is absolutely continuous and almost everywhere differentiable. l
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3 LINEAR FIRST ORDER EVOLUTION EQUATIONS

3 Linear first order evolution equations

3.1 Introduction to Linear Operator-valued ODEs -
Assumptions and weak formulation

04.05.2021We will first look at linear first order PDEs. We want to prove well-posedness of certain
evolutionary equations in the form of the Theorem of Lions (1962).

Let V Ă H Ă V ˚ be a Gelfand triple and a : r0, T s ˆ V ˆ V Ñ R be such that

A1 ap¨, v, wq is Lebesgue measurable on r0, T s for all v, w P V ,

A2 apt, ¨, ¨q is bilinear for all t P r0, T s,

A3 the form a is uniformly bounded with respect to the first input variable, that is, there
exists a β ą 0 such that

|apt, v, wq| ď β}v}}w} (12)

for all t P r0, T s and all v, w P V .

A4 the form a fulfills the Gårding inequality, that is, there exists a µ ą 0 and a κ ě 0

such that
apt, v, vq ě µ}v}2 ´ κ|v|2 (13)

for all t P r0, T s and all v P V . For κ P r0, µα2 q, apt, ¨, ¨q is uniformly strongly positive
(that is, for all t P r0, T s), where α ą 0 is the embedding constant: | ¨ | ď α} ¨ }

(Homework 3.2(a)).
Remark. 3.1.1 (Equivalent norm on V (Homework 3.2(b))) For any t0 P r0, T s the
form

ppu, vqq :“
1

2

`

apt0, u, vq ` apt0, v, uq
˘

` κpu, vq

defines an inner product on V which induces a norm equivalent to } ¨ } on V .

We get the following implications.

1 for all t P r0, T s and all v P V , the map apt, v, ¨q : V Ñ R is linear and bounded. We
define Aptqv :“ apt, v, ¨q P V ˚ which fulfils }Aptqv}˚ ď β}v}.

2 for all t P r0, T s, Aptq P LpV, V ˚q with }Aptq}LpV,V ˚q ď β.

Finally, define A : r0, T s Ñ LpV, V ˚q, t ÞÑ Aptq.

3 the Gårding inequality now becomes

xpAptq ` κIqv, v yV ˚ˆV ě µ}v}2, (14)

where I : V Ñ V ˚ is the embedding via p¨, ¨q: x Iv, v yV ˚ˆV “ pv, vq “ |v|
2. Hence A

with a nonnegative shift is strongly positive.

Definition 3.1.2 (Nemitzkij operator)
The Nemitzkij operator of u : r0, T s Ñ V is

Au : r0, T s Ñ V ˚, pAuqptq :“ rAptqspuptqq “ Aptquptq.
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Lemma 3.1.3 (Properties of the Nemitzkij operator)
Let the assumptions A1 - A3 be fulfilled. Then A maps

1 Bochner measurable functions to Bochner measurable functions and

2 L2p0, T ;V q into L2p0, T ;V ˚q.

Proof. 1 As u is Bochner measurable, there exists a sequence
˜

un :“
mn
ÿ

i“1

u
pnq
i 1

E
pnq
i

: r0, T s Ñ V

¸

nPN

of simple functions such that }uptq ´ unptq}V Ñ 0 for almost all t P r0, T s. For w P V
we have

xAunptq, w yV ˚ˆV “
mn
ÿ

i“1

xAptqu
pnq
i , w y1

E
pnq
i
ptq “

mn
ÿ

i“1

apt, u
pnq
i , wq1

E
pnq
i
ptq.

By assumption A1 , t ÞÑ xAunptq, w yV ˚ˆV is Lebesgue measurable for all n P N.
Since Aptq P LpV, V ˚q, we observe

xpAunqptq, w y Ñ xpAuqptq, w y

for all w P V and almost all t P r0, T s. Hence xpAuqptq, w y is the pointwise limit of
Lebesgue measurable functions pxpAunqptq, w yqnPN and hence also Lebesgue mea-
surable. Since V ˚ is separable, the statement follows by Theorem 1.1.1.

2 Let u P L2p0, T ;V q, then Au is Bochner measurable in V ˚ by 1 . By assumption
A3 we have

}pAuqptq}˚ “ }Aptquptq}˚ ď β}uptq}.

Integration yields

}Au}2L2p0,T ;V ˚q “

ż T

0

}pAuqptq}2˚ dt “

ż T

0

}Aptquptq}2˚ dt ď β2

ż T

0

}uptq}2 dt “ β2}u}2L2p0,T ;V q.

l

Remark. 3.1.4 (A P LpL2p0, T ;V q, L2pp0, T q;V ˚q) The proof of lemma 3.1.3 implies
that A P L

`

L2p0, T ;V q, L2p0, T ;V ˚q
˘

with norm bound β.

Later on we want to prove the existence of weak solutions to this linear problem by a time
discretisation. Due to the discretisation of the time derivative, we have to deal with a shift
of the operator A.

Lemma 3.1.5 (Strong positivity of A ` κI)
Additionally assuming the Gårding inequality A4 , the shifted operator

A`κI : L2p0, T ;V q Ñ L2p0, T ;V ˚q

is strongly positive:

xpA`κIqu, u y ě µ}u}2L2p0,T ;V q @u P L2p0, T ;V q.

Proof. We have

xpA`κIqu, u y “
ż T

0

xpAptq ` κIquptq, uptq yV ˚ˆV dt
(14)
ě µ

ż T

0

}uptq}2 dt “ µ}u}2L2p0,T ;V q.

l
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3 LINEAR FIRST ORDER EVOLUTION EQUATIONS

In the following, we consider the problem

$

’

’

&

’

’

%

To u0 P H and f P L2p0, T ;V ˚q find u PW p0, T q with

u1 `Au “ f in L2p0, T ;V ˚q, p‹q

up0q “ u0.

(P)

Remark. 3.1.6 (Well-definedness of the initial condition)
Since u P W p0, T q ãÑ Cpr0, T s;Hq by Theorem 2.2.1 3 , the initial condition has to be
understood to be attained in H.

Remark. 3.1.7 For u P W p0, T q we find u1 “ f ´ Au P L2p0, T ;V ˚q ãÑ L1p0, T ;V ˚q

by Theorem 1.2.5 8 . Theorem 2.1.3 implies that u is an absolutely continuous function
u : r0, T s Ñ V ˚. Since V ˚ is reflexive, by Theorem 1.2.4 u is classically differentiable almost
everywhere. Hence p‹q is equivalent to u1ptq ` pAuqptq “ fptq in V ˚ almost everywhere in
p0, T q.
Remark. 3.1.8 (Weak formulation) As L2p0, T ;V ˚q “ pL2p0, T ;V qq˚, p‹q is equivalent
to

ż T

0

xu1ptq, vptq y` xpAuqptq, vptq ydt “

ż T

0

x fptq, vptq ydt @v P L2p0, T ;V q. (15)

Since C8c p0, T q b V is dense in C8c p0, T ;V q
d

ãÑ L2p0, T ;V q (Exercise!), we can restrict the
test functions to vptq “ ϕptqw with ϕ P C8c p0, T q and w P V . Hence (15) is equivalent to

ż T

0

`

xu1ptq, w y` xpAuqptq, w y
˘

ϕptqdt “

ż T

0

x fptq, w yϕptqdt @ϕ P C8c p0, T q, w P V.

Theorem 2.1.1 now implies

xu1ptq, w y`apt, uptq, wq “ x fptq, w y @w P V almost everywhere in p0, T q.

Remark. 3.1.9 The function v being the generalised derivative of u is equivalent to the
mapping t ÞÑ xuptq, w y having the weak derivative t ÞÑ x vptq, w y for every t P p0, T q, where
the derivative has to be interpreted in the weak sense.

Remark. 3.1.10 (Wlog a is uniformly bd., strongly pos. (Homework 3.2 (c)))
Using the transformation

ûptq :“ e´κtuptq, f̂ptq :“ e´κtfptq, âpt, v, wq :“ apt, v, wq ` κpv, wq

the equation
d

dt
puptq, vq ` apt, uptq, vq “ x fptq, v y, v P V,

where a fulfills the standard assumptions, is equivalent to

d

dt
pûptq, vq ` âpt, ûptq, vq “ x f̂ptq, v y, v P V,

where âpt, ¨, ¨q is a uniformly bounded, strongly positive bilinear form.

3.2 Existence and uniqueness of solutions
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3 LINEAR FIRST ORDER EVOLUTION EQUATIONS

Theorem 3.2.1: Jacques-Louis Lions (1962)

Under the assumptions A1 - A4 , the problem (P) is well-posed in the sense of
Hadamard, that is, a unique solution exists and we have continuous dependence on
the initial value and the right side.

Remark. 3.2.1 (Generalisation by Tartar/Temam)
In Theorem 3.2.1 we can allow f P L2p0, T ;V ˚q ‘ L1p0, T ;Hq, i.e. f “ f1 ` f2 with
f1 P L

1p0, T ;Hq and f2 P L
2p0, T ;V ˚q.

Lemma 3.2.2 (A priori estimates: uniqueness and stability)
Under the assumptions A1 - A4 the a priori estimate

|uptq|2 ` µ

ż t

0

}upsq}2 ds ď c
`

|u0|
2 ` }f}L2p0,T ;V ˚q

˘

(16)

holds for every solution u PW p0, T q of (P).

As usual, this is proven by testing the equation in an appropriate sense.

Proof. 1 We first show the estimate. Since w PW p0, T q, we can test (P) by w:

xw1ptq, wptq y
loooooomoooooon

“ 1
2

d
dt |wptq|

2

` xAwptq, wptq y
looooooomooooooon

ěµ}wptq}2´κ|wptq|2

“ x gptq, wptq y ď }gptq}˚}wptq}.

For the first term we use Corollary 2.2.6 and for the second one we use Gårding’s
inequality as indicated above to obtain

1

2

d

dt
|wptq|2 ` µ}wptq}2 ´ κ|wptq|2 ď }gptq}˚}wptq}

(Y)
ď

1

2µ
}gptq}2˚ `

µ

2
}wptq}2,

where (Y) is Young’s inequality ab ď a2

2ε `
εb2

2 for ε ą 0. Combining alike terms yields

1

2

d

dt
|wptq|2 `

µ

2
}wptq}2 ´ κ|wptq|2 ď

1

2µ
}gptq}2˚.

and this can be rewritten as

d

dt

`

e´2κt|wptq|2
˘

` e´2κtµ}wptq}2 ď
1

µ
e´2κt}gptq}2˚

by multiplying by 2e´2κt and absorbing the κ-term into the derivative in the first term.

Integrating with respect to time and multiplying with e2κt we get

|wptq|2 `

ż t

0

e2κpt´sq
looomooon

ě1

µ}wpsq}2 ds ď e2κt|w0|
2 `

ż t

0

e2κpt´sq}gpsq}2˚ ds

ď C

ˆ

|w0|
2 `

ż t

0

e´2κs
loomoon

ď1

}gpsq}2˚ ds

˙

,

which proves the estimate, as we can upper bound the integral over r0, ts on the RHS
by the integral over r0, T s and take C :“ e2κT .

2 Assume that there exist two solutions of
$

&

%

u1 `Au “ fu,

up0q “ u0.
and

$

&

%

v1 `Av “ fv,

vp0q “ v0.
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Then u´ v solves (P) with w :“ u´ v, f :“ fu ´ fv and wp0q “ u0 ´ v0. Via (16) we
infer for almost every t P p0, T q

|uptq ´ vptq|2 ` µ

ż t

0

}upsq ´ vpsq}2 ds ď C
´

|u0 ´ v0|
2 ` }fu ´ fv}

2
L2p0,T ;V ˚q

¯

,

so the solution depends continuously on the initial values and the right hand side.

Thus if the initial conditions and the right hand sides coincide, then the solution is
unique. l

Remark. 3.2.3 (Generalisation of the a-priori estimate (Exercise 3.1))
If instead f P L2p0, T ;V ˚q ‘ L1p0, T ;Hq, then

|uptq|2 `
µ

2

ż t

0

}upsq}ds ďMpu0, fq

holds for every solution u PW p0, T q of (P).

Proof. Testing the differential equation in (P) with the solution u P W p0, T q yields, as in
the previous proof

1

2

d

dt
|uptq|2 ` µ}uptq}2 ´ κ|uptq|2 ď }f1ptq}˚}uptq} ` |f2ptq||uptq|

(Y)
ď

1

2µ
}f1ptq}

2
˚ `

µ

2
}uptq}2 ` |f2ptq|p1` |uptq|

2q

and thus by multiplying by 2 and combining like terms

d

dt
|uptq|2 ` µ}uptq}2 ´ 2κ|uptq|2 ď

1

µ
}f1ptq}

2
˚ ` 2|f2ptq|p1` |uptq|

2q

Integration in time provides

|uptq|2 ` µ

ż t

0

}upsq}2 ds ď |up0q|2 `
1

µ

ż t

0

}f1psq}
2
˚ ` |f2psq|ds` 2

ż t

0

p|f2psq| ` κq|upsq|
2 ds.

By Gronwall’s Lemma we have

|uptq|2 ´ µ

ż t

0

}upsq}2 ds ď

ˆ

|up0q|2 `
1

µ

´

}f1}
2
L2p0,T ;V ˚q ` }f2}L1p0,T ;Hq

¯

˙

e2}f2}L1p0,T ;Hq`2Tκ.

l

We will now prove the existence part of Theorem 3.2.1 via time discretisation.

Proof. 1 Let N P N, τ :“ T
N be the step size and tn :“ nτ be equidistant time step for

n P t1, . . . , Nu. Then we consider the implicit Euler scheme: for n P t1, . . . , Nu let

un :“ uptnq, u1ptnq «
un ´ un´1

τ

and for the right hand side use

fn :“
1

τ

ż tn

tn´1

fptqdt P V ˚.

We consider the problem
$

&

%

To un´1 find un P V such that
Iun´Iun´1

τ `Aptnqu
n “ fn, n P t1, . . . , Nu.

(17)

In the following we only consider κ “ 0 and assume that A is independent of t (time),
otherwise we would have to set Aptnq “ 1

τ

ştn
tn´1

apt, ¨, ¨qdt.
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2 The approximate system (17) is well defined. For every n P t1, . . . , Nu consider the
problem in V ˚

ˆ

1

τ
I `A

˙

un “ fn `
1

τ
Iun´1 (18)

The operator 1
τ I `A is a linear, bounded and strongly positive operator: for the last

property observe
Bˆ

1

τ
I `A

˙

v, v

F

“
1

τ
|v|2 ` xAv, v y ě

1

τ
|v|2 ` µ}v}2 ě µ}v}2.

For κ ą 0, choose τ small enough, i.e. τ ă 1
κ , then

1
τ I `A is strongly positive.

We have u0 P H and un´1 P V and hence un´1 P V ˚. By the Theorem of Lax-
Milgram, there exists a unique un for every n P t1, . . . , Nu, that is, a solution to
(18).

In the following we identify Iun Ø un and don’t write the I anymore.

3 A-priori estimates. It holds that 1
τ pu

n´un´1q`Aun “ fn. Testing with un implies

1

τ
pun ´ un´1, unq ` xAun, un y “ x fn, un y ď }fn}˚}u

n}.

We use the following calculation rule:

pa´ b, aq “
1

2
|a|2 ´

1

2
|b|2 `

1

2
|a´ b|2.

Applying this to the first term, using that xAun, un y ě µ}un}2 and using Young’s
inequality on the right hand side yields

1

2τ

`

|un|2 ´ |un´1|2 ` |un ´ un´1|2
˘

` µ}un}2
(Y)
ď

1

2µ
}fn}2˚ `

µ

2
}un}2.

Multiplying by 2τ and collecting alike terms yields

|un|2 ´ |un´1|2 ` |un ´ un´1|2 ` τµ}un}2 ď
τ

µ
}fn}2˚. (19)

Summing from i “ 1 to m P t1, . . . , Nu and using a telescoping series in the first two
summands we infer

|um|2 ´ |u0|2 `

m
ÿ

i“1

|ui ´ ui´1|2 ` τµ
m
ÿ

i“1

}ui}2 ď
τ

µ

m
ÿ

i“1

}f i}2˚

By rearranging and estimating away the nonnegative terms this implies

|um|2 ď |u0|2 `
τ

µ

m
ÿ

i“1

}f i}2˚ (20)

for any m P t1, . . . , Nu, which gives us a bound on the solution and also

N
ÿ

i“1

|ui ´ ui´1|2 `

N
ÿ

i“1

τµ}ui}2 ď |u0|2 `
τ

µ

N
ÿ

i“1

}f i}2˚, (21)

which can be used to get a bound on the discrete derivative: additionally, we have
›

›

›

›

un ´ un´1

τ

›

›

›

›

˚

(18)
“ }fn ´Aun}˚ ď }f

n}˚ ` }Au
n}˚ ď }f

n}˚ ` β}u
n}

and hence
›

›

›

›

un ´ un´1

τ

›

›

›

›

2

˚

ď 2}fn}2˚ ` 2β}un}2, (22)
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as pa` bq2 ď 2pa2 ` b2q. Hence

τ
N
ÿ

i“1

›

›

›

›

ui ´ ui´1

τ

›

›

›

›

2

˚

(22)
ď 2τ

N
ÿ

i“1

}f i}2˚ ` 2βτ
N
ÿ

i“1

}ui}2

(21)
ď 2τ

N
ÿ

i“1

}f i}2˚ ` 2β

˜

1

µ
|u0|2 `

τ

µ2

N
ÿ

i“1

}f i}2˚

¸

“
2β

µ
|u0|2 ` 2τ

ˆ

1`
β

µ2

˙ N
ÿ

i“1

}f i}2˚. (23)

10.05.2021

4 Constructing the approximate solutions. In this step we will construct an ap-
proximate solution to the problem (P) using the solutions of the time-discretised prob-
lems. For t P ptn´1, tns define

uτ ptq :“ un

and uτ p0q “ u0. Hence uτ is piecewise constant. Let

ûτ ptq :“ un´1 ` pt´ tn´1q
un ´ un´1

τ
and fτ ptq :“ fn (24)

for t P ptn´1, tns (fτ is only defined almost everywhere, so we can neglect the value for
t “ 0).

Fig. 3: ûτ gives a (con-
tinuous) piecewise lin-
ear prolongation of uτ .

As ûτ is piecewise linear, it is Lipschitz continuous and hence weakly differentiable
almost everywhere with derivative

û1τ ptq “
un ´ un´1

τ
(25)

for t P ptn´1, tns. Hence we can interpret the implicit Euler scheme via these functions
and write

û1τ ptq `Auτ “ fτ .

5 A priori estimate for the approximate solutions. We now have to translate the
estimates from before to the previous functions living inBochner spaces. LetN` Ñ8

for `Ñ8 with N` P N and τ` :“ T
N`

. Additionally, let the sequences puτ`q`PN, pûτ`q`PN
and pfτ`q`PN be constructed as above. For ` P N, we choose a sequence pu0

`q`PN Ă H

such that u0
` Ñ u0 as `Ñ8.

We have u0
τ`
Ñ u0 as ` Ñ 8 in H and uτ`p0q “ u0

` . We want to show that pfτ`q`PN
converges to f in L2p0, T ;V ˚q. We have

}fτ`}
2
L2p0,T ;V ˚q “

ż T

0

}fτ`ptq}
2
˚ dt

(24)
“

N
ÿ̀

i“1

ż ti

ti´1

}f i}2˚ dt

“ τ`

N
ÿ̀

i“1

›

›

›

›

›

1

τ`

ż ti

ti´1

fptqdt

›

›

›

›

›

2

˚

dt ď
N
ÿ̀

i“1

ż ti

ti´1

}fptq}2˚ dt “ }f}2L2p0,T ;V ˚q.

The a priori estimates are independent of ` and we may deduce

}uτ`}
2
L8p0,T ;Hq “

N`
max
i“1

|ui|2
(20)
ď |u0

` |
2 `

τ`
µ

N
ÿ

i“1

}f i}2˚,

}uτ`}
2
L2p0,T ;V q “ τ`

N
ÿ̀

i“1

}uτ`}
2
(20)
ď µ

˜

|u0
` |

2 `
τ`
µ

N
ÿ

i“1

}f i}2˚

¸

,

}xuτ`}
2
L8p0,T ;Hq “

N`
max
i“1

|ui|2
(20)
ď |u0

` |
2 `

τ`
µ

N
ÿ

i“1

}f i}2˚.
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6 Extracting subsequences. As puτ`q`PN is bounded in L8p0, T ;HqXL2p0, T ;V q and
pûτ`q`PN is bounded in L8p0, T ;Hq, there exists a u P L8p0, T ;Hq X L2p0, T ;V q such
that

uτ`
˚
á u in L8p0, T ;Hq X L2p0, T ;V q

and there exists a û P L8p0, T ;Hq such that

ûτ`
˚
á û.

One has to observe that one can do this steps one after the other to infer that this
holds afterwards for one subsequence. Since L2p0, T ;V q is reflexive and L8p0, T ;Hq –

pL1p0, T ;Hqq˚ is the dual of a separable Banach space, this follows from the Theorem
of Banach-Alaoglu.

7 Identify the limits u and û. For t P ptn´1, tns we have

|ûτ`ptq ´ uτ`ptq|
(24)
“

ˇ

ˇ

ˇ

ˇ

un´1 ` pt´ tn´1q
un ´ un´1

τ`
´ un

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇun ´ un´1
ˇ

ˇ`
|t´ tn´1|

τ`
loooomoooon

ď1

|un ´ un´1| ď 2|un ´ un´1|.

Hence

}ûτ` ´ uτ`}
2
L2p0,T ;Hq “

N
ÿ̀

k“1

ż tk

tk´1

|ûτ`ptq ´ uτ`ptq|
2 dt ď 4τ`

N
ÿ̀

i“1

|ui ´ ui´1|2

(21)
ď τ`const

`Ñ8
ÝÝÝÑ 0.

Hence û “ u in L2p0, T ;Hq.

8 Time derivative. For t P ptn´1, tns we have (25) and thus

}û1τ`}
2
L2p0,T ;V ˚q “ τ`

N
ÿ

i“1

›

›

›

›

ui ´ ui´1

τ`

›

›

›

›

2

˚

“
1

τ`

N
ÿ

i“1

}ui ´ ui´1}2˚

(23)
ď const.

We deduce that pûτ`q` is bounded in L2p0, T ;V ˚q such that we may extract another
subsequence such that û1τ` á v in L2p0, T ;V ˚q.

We have to identify that û1 “ v in the weak sense. Let ϕ P C80 p0, T q and w P V such
that ϕw,ϕ1w P L2p0, T ;V q. By the weak convergence and the linearity of the weak
derivative we have

ż T

0

x vptq, w yϕptqdt`

ż T

0

x ûptq, w yϕ1ptqdt “

ż T

0

x vptq ´ û1τ`ptq
loooooomoooooon

`Ñ8
ÝÝÝÑ0

, w yϕptqdt

`

ż T

0

x ûptq ´ ûτ`ptq
loooooomoooooon

`Ñ8
ÝÝÝÑ0

, w yϕ1ptqdt.

Hence t ÞÑ x vptq, w y is the weak derivative of t ÞÑ x û, w y for all w P V . Hence v “ û

in W p0, T q.

9 Passing to the limit. We have fτ` Ñ f in L2p0, T ;V ˚q (Homework 3.1). We observe
that A : L2p0, T ;V q Ñ L2p0, T ;V ˚q is linear and continuous. Hence A is weak-weak-
continuous and thus Auτ` á Au in L2p0, T ;V ˚q. We find in L2p0, T ;V ˚q

û1τ` `Auτ` “ fτ` in L2p0, T ;V ˚q.

The three terms above converge weakly to u1, Au and f in L2p0, T ;V ˚q, respectively.
This implies that u is a solution to the abstract equation.
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10 Identify the initial condition. We have to show that up0q “ u0 in H. We have
ûτ` á u in W p0, T q ãÑ Cpr0, T s;Hq. The embedding is linear and continuous and
hence weak-weak-continuous, so the weak convergence is translated to a pointwise weak
convergence on H. There exists a linear continuous trace operator Γ: W p0, T q Ñ H,
Γpuq :“ Γu :“ up0q in H. Hence ûτ` á u in W p0, T q and so ûτ`p0q á up0q in H. We
had the condition that ûτ`p0q “ u0

` Ñ u0 in H. Hence the weak and strong limits have
to coincide.

One can also show this more directly without the trace operator: we have ûτ`pT q “ uN

and by an a priori estimate |uN | ďconst. Hence we can extract another subsequence
such that ûτ`pT q á VT in H. For any v P V and ϕ P C1pr0, T sq we have (using the
integration by parts rule for W p0, T q functions)

pûτ`pT q, vqϕpT q
loooooooomoooooooon

ápvT ,vqϕpT q

´pûτ`p0q, vqϕp0q
loooooooomoooooooon

ápu0,vqϕp0q

“

ż T

0

x ûτ` , v yϕ` x ûτ` , v yϕ
1 dt

Ñ

ż T

0

xu1, v yϕ` xu, v yϕ1 dt

“ pupT q, vqϕpT q ´ pup0q, vqϕp0q.

As v and ϕ are arbitrary and V d
ãÑ H, we deduce (we choose ϕ such that ϕpT q “ 0)

up0q “ u0 and vT “ upT q. l

3.3 Error estimates

Theorem 3.3.1: Error estimates

Let u P W p0, T q be the solution of (P) with f P L2p0, T ;V ˚q and let additionally
pf ´ u1q1 P L2pp0, T q;V ˚q. Then the error estimate

|uptnq ´ u
n|2 ´ µτ

n
ÿ

j“1

}uptjq ´ u
j}2 ď |u0 ´ u

0|2 `
τ2

3µ
}pf ´ u1q1}2L2p0,T ;V ˚q

for all n P t1, . . . , Nu holds for the implicit Euler time discretisation given in the
previous proof.

Remark. 3.3.1 Error estimates provide convergence rates for time discretisation under
additional regularity assumptions.

Proof. From pf ´ u1q1 P L2p0, T ;V ˚q and f ´ u1 P L2p0, T ;V ˚q we conclude that f ´ u1 P

ACpr0, T s;V ˚q by Theorem 2.1.3. Let en :“ uptnq ´ un. From un´un´1

τ ` Aun “ fn we
obtain

en ´ en´1

τ
`Aen “

uptnq ´ uptn´1q

τ
`Auptnq ´ f

n

“
uptnq ´ uptn´1q

τ
´ fn ` fptnq ´ u

1ptnq

“
1

τ

ż tn

tn´1

u1psqds´
1

τ

ż tn

tn´1

fpsqds` pf ´ u1qptnq.

For some Bochner integrable function g we have by the Fundamental Theorem of Calculus
and Fubini’s theorem

ż t

t0

gptq ´ gpsqds “

ż t

t0

ż t

s

g1prqdr ds “

ż t

t0

ż r

t0

g1prqdsdr “

ż t

t0

g1prqpr ´ t0qdr.
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Hence
en ´ en´1

τ
`Aen “

1

τ

ż tn

tn´1

pf ´ u1q1psqps´ tn´1qds “: ρn P V ˚ (26)

We call ρn the consistency error, the error one makes when inserting the real solution in the
discretised scheme. Since en and en´1 are solutions to the discrete scheme, we can deduce
a priori estimates as beforehand:

|en|2 ` µτ
m
ÿ

i“1

}ei}2 ď |e0|2 `
τ

µ

m
ÿ

i“1

}ρi}2˚.

We have, using Hölder’s inequality,

τ
m
ÿ

n“1

}ρn}2˚
(26)
“ τ

m
ÿ

n“1

›

›

›

›

›

1

τ

ż tn

tn´1

pf ´ u1q1psqps´ tn´1qds

›

›

›

›

›

2

˚

4‰
ď τ

m
ÿ

n“1

1

τ2

˜

ż tn

tn´1

}pf ´ u1q1}˚ps´ tn´1qds

¸2

(H)
ď

1

τ

m
ÿ

n“1

˜

ż tn

tn´1

ps´ tn´1q
2 ds

¸

looooooooooooomooooooooooooon

“ 1
3 ptn´tn´1q3“

1
3 τ

3

˜

ż tn

tn´1

}pf ´ u1q1}2˚ ds

¸

“
τ2

3
}pf ´ u1q1}2L2p0,T ;V ˚q. l

Remark. 3.3.2 (Motivation to deduce additional regularity.)
Differentiating u1 “ f ´Au with respect to time yields

u2 “ f ´ pAuq1 “ f 1 ´A1 u´Au1 “ f 1 ´A1 u´A f `A2 u. (27)

With the compatibility condition u1p0q “ fp0q ´ pAuqp0q and

f PW 1,2p0, T ;V ˚q :“ tu P L2p0, T ;V ˚q : Du1 P L2p0, T ;V ˚qu

and A1 : L2p0, T ;V q Ñ L2p0, T ;V ˚q we may rewrite the equation above using u1 “ v: v
solves the linear first order differential equation

v1 `A v “ f 1 ´A1 u P L2p0, T ;V ˚q.

By Theorem 3.2.1, v is the unique solution inW p0, T q of this equation if the initial condition
coincides, which is the case by assumption. The compatibility condition is needed to infer
that u1 “ v in W p0, T q. Without this condition, we deduce only regularity for u away from
0. One can deduce regularity for u multiplied with a function that vanishes in zero and this
is called instant smoothing property.

3.4 Regularity by Rothe’s method

17.05.2021We will show regularity via a time approximation scheme which is called Rothe’s method
(which can also be used to prove existence). In the last section we had the assertion that we
can provide better (that is, higher order) error estimates when assuming additional regularity
of the solution. In a sense, we are trying to get better estimates using the structure of the
PDE (e.g. linearity).
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Lemma 3.4.1 (Additional regularity u PW 1,8p0, T ;Hq XW 1,2p0, T ;V q)
Let u0 P V and f PW 1,2p0, T ;V ˚q and the operator A1ptq : V Ñ V ˚ be continuous and linear
for all t P p0, T q. If the compatibility condition Apu0q ´ fp0q P H holds, then the solution
u P W p0, T q to (P) admits the additional regularity u P W 1,8p0, T ;Hq X W 1,2p0, T ;V q.
Especially, it holds

û1n á u1 in L8p0, T ;Hq,

û1n á u1 in L2p0, T ;V q.

(28)

(29)

Remark. 3.4.2 If the compatibility conditions is not assumed, we only infer regularity for
the function multiplied by a weight exploding at zero (so-called instant smoothing property).

General idea:

By corollary 2.2.6 we have

d

dt

1

2
|u1|2 “ xu2, u1 y

(27)
“ ´xA1u`Au1, u1 y

loooooooooomoooooooooon

ď}A1u}˚}u1}´xAu1,u1 y

` x f 1, u1 y
looomooon

ď}f 1}˚}u1}

and hence by the Cauchy-Schwarz and Goarding’s inequality

d

dt

1

2
|u1|2 ` µ}u1}2

(14)
ď κ|u1|2 ` }A1u}˚

loomoon

ďβ̃}u}

}u1} ` }f 1}˚}u
1}

ď κ|u1|2 ` pβ̃}u} ` }f 1}˚q}u
1}

(Y)
ď κ|u1|2 `

µ

2
}u1}2 `

1

2µ
pβ̃}u} ` }f 1}˚q

2

p‹q

ď κ|u1|2 `
µ

2
}u1}2 `

1

µ

´

β̃2}u}2 ` }f 1}2˚

¯

,

where in the second inequality we use the continuity and linearity of A1 with some constant
β̃ ą 0 which is independent of t:

}A1ptq}LpV ;V ˚q ď β̃

for all t P p0, T q and in the last inequality p‹q we use pa` bq2 ď 2pa2 ` b2q. Collecting alike
terms yields

d

dt

1

2
|u1|2 `

µ

2
}u1}2 ´ κ|u1|2 ď

1

µ

´

β̃2}u}2 ` }f 1}2˚

¯

Lemma 3.4.3
Let u0 P V , f P L2p0, T ;Hq and for all t P r0, T s let the operator Aptq : V Ñ V ˚ be
continuous, linear and self-adjoint, that is, xAptqv, w y “ xAptqw, v y for all v, w P V . Then
u PW 1,2p0, T ;Hq X L8p0, T ;V q and (28) and (29) hold.

Proof. Exercise. l

Proof. (of lemma 3.4.1) Consider the backward (or: implicit) Euler scheme and its
solution tupnquNτn“0 which solves

upnq ´ upn´1q

τ
`Apnqupnq ´

ˆ

upn´1q ´ upn´2q

τ
`Apn´1qupn´1q

˙

“ f pnq ´ f pn´1q.
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Multiplying by the discrete time derivative upnq´upn´1q

τ2 (up to a factor of 1
τ ) yields

1

2τ

ˇ

ˇ

ˇ

ˇ

upnq ´ upn´1q

τ

ˇ

ˇ

ˇ

ˇ

2

´
1

2τ

ˇ

ˇ

ˇ

ˇ

upn´1q ´ upn´2q

τ

ˇ

ˇ

ˇ

ˇ

2

`
1

2τ

ˇ

ˇ

ˇ

ˇ

upnq ´ 2upn´1q ` upn´2q

τ

ˇ

ˇ

ˇ

ˇ

2

`

B

Apnq
upnq ´ upn´1q

τ
,
upnq ´ upn´1q

τ

F

`

B

pApnq ´Apn´1qqupn´1q,
upnq ´ upn´1q

τ2

F

ď
1

µ

›

›

›

›

f pnq ´ f pn´1q

τ

›

›

›

›

2

`
µ

4

›

›

›

›

upnq ´ upn´1q

τ

›

›

›

›

2

Applying Goardings inequality yields (we set up´1q :“ up0q)
ˇ

ˇ

ˇ

ˇ

upnq ´ upn´1q

τ

ˇ

ˇ

ˇ

ˇ

2

`

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

upiq ´ 2upi´1q ` upi´2q

τ

ˇ

ˇ

ˇ

ˇ

2

` µτ
n
ÿ

i“1

›

›

›

›

upiq ´ upi´1q

τ

›

›

›

›

2

´ κτ
n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

upiq ´ upi´1q

τ

ˇ

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

ˇ

up1q ´ up0q

τ

ˇ

ˇ

ˇ

ˇ

2

` τ
n
ÿ

i“1

2

µ

˜

›

›

›

›

f piq ´ f pi´1q

τ

›

›

›

›

2

˚

`

›

›

›

›

f piq ´ f pi´1q

τ

›

›

›

›

2

LpV,V ˚q

}upi´1q}2V

¸

. (30)

Here we already see that this very much looks as beforehand: in the previous proof we didn’t
incorporate the κ term but now we can use the discrete Gronwall lemma. First, observe
(this is given by the scheme, when we define f p0q “ fp0q)

up0q ´ up1q

τ
“ fp0q ´Apu0q P H

We can show as before that the RHS of (30) is bounded. The last term from (30) can be
estimated as follows:

τ
N
ÿ

i“1

2

µ

›

›

›

›

f piq ´ f pi´1q

τ

›

›

›

›

2

˚

`

›

›

›

›

Apiq ´Api´1q

τ

›

›

›

›

LpV,V ˚q

}upi´1q}2V

ď Cµ

˜

}f 1}2L2p0,T ;V ˚q ` sup
tPr0,T s

}A1ptq}LpV,V ˚q}u}L2p0,T ;V q

¸

“: C̃

We get

max
nPt1,...,Nu

›

›

›

›

upnq ´ upn´1q

τ

›

›

›

›

2

ď C1|fp0q ´Apu0q|
2 ` C̃ ` κτ

n
ÿ

i“1

›

›

›

›

upiq ´ upi´1q

τ

›

›

›

›

2

and

τ
N
ÿ

i“1

›

›

›

›

}upiq ´ upi´1q}

τ

›

›

›

›

2

ď C1|fp0q ´Apu0q|
2 ` C̃ ` κτ

n
ÿ

i“1

›

›

›

›

upiq ´ upi´1q

τ

›

›

›

›

2

by a discrete Gronwall argument.

Summary: We only differentiated the equation, which, one this discrete level amounts to
dividing by τ and subtracting the previous step from the current one. We tested the equation
with u1 and deduced the same upper estimates as one would for the continuous equation.
We actually need to show this on the discrete level and then pass to the limit to make this
rigorous, otherwise we don’t know that these calculations are allowed. l

3.5 Examples for linear PDEs

Consider the heat equation heat equation, which models the distribution of heat in a material. The rough
modelling idea is the following: consider a small volume ω P Rd. Let u be the thermal
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energy. Then
d

dt

ż

ω

udx “

ż

ω

Btudx´

ż

Bω

n∇udS “
ż

ω

Btu´∆udx

where n is the outer normal and the second term represents what flows out of ω and in the
second step we use Gauss’ Theorem (Divergence Theorem).

Fig. 4: We look at
how u behaves in ω.
The red arrows visu-
alise

ş

Bω n∇udx.

Integrating yields
$

’

’

&

’

’

%

Btu´∆u “ f, in Ωˆ p0, T q,

up0q “ u0, in Ω,

n ¨∇u “ 0, on BΩˆ p0, T q.

Fig. 5: The solution gives the distribution of a heat profile.

Example. 3.5.1 (Magnetoquasistatic approximation of Maxwell’s equation)
The quasi-magneto-static (QMS) approximation to the macroscopic Maxwell equations is
sensible when we are considering good conductors and slowly varying external magnetic
fields. These lead to induced electric fields, which in turn stir up so-called eddy currents,
inside the conductors. For example, these induced currents might be used to heat up the
material.

In the considered setting the displacement current BtD and the charge density ρ are negligible
and the Maxwell equations in differential/local form become

∇ ¨ D “ 0, ∇ˆ E “ ´BtB,

∇ ¨ B “ 0, ∇ˆH “ J, (31)

where
E “ pelectric fieldq, H “ pmagnetic fieldq,

D “ pelectric flux densityq, B “ pmagnetic flux densityq,

J “ pcurrent densityq

and we assume the linear material relations

D “ εE, B “ µH J “ σE.

To get a better understanding of the physics, we write (31) in integral form. We have
ż

BΩ

D ¨ dS “ 0,

ż

BA

E ¨ d` “ ´

ż

A

BtB dx,

ż

BΩ

B ¨ dS “ 0,

ż

BA

H ¨ d` “

ż

A

J dx

in a considered volume Ω or on a surface A. The interpretations are

pelectric flux out of Ωq “ 0,

pelectric field integral around Aq “ ´pchange of B over time thru Aq,

pmagnetic flux out of Ωq “ 0,

pmagnetic field integral around Aq “ pcurrent thru Aq.
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The QMS approximation breaks the symmetry in the Maxwell equations; in the full equa-
tions we have

∇ˆH “ J ` BtD,

pmagnetic field integral around Aq “ pcurrent thru Aq ` pchange of D over time thru Aq,

hence change of electric field implies change of magnetic field, which implies change of electric
field implying change of magnetic field and so on. In QMS the scheme is that change of the
external magnetic field implies change of the electric field in the material, but this electric
field does not noticeably change the outer magnetic field again.

The relation ∇ ¨ B “ 0 motivates the introduction of the vector potential A with

B “ ∇ˆA and ∇ ¨ A “ 0.

Then
∇ˆ pE ` BtAq “ 0, hence E “ ´∇ϕ´ BtA,

where ϕ is a scalar potential.

In fact, when considering an induction coil creating an outer magnetic field to heat up a
piece of metal as in [ADG`19], we find Jext “ ´σ∇ϕ, where Jext is the induced source
current, which only lives in the induction coil. It can be precomputed and thus serve as a
given right-hand side.

We may then derive a set of equations for A inside the conductor Ω. Assuming sufficient
regularity we find

∇ˆ 1

µ
∇ˆA “ ∇ˆ 1

µ
B “ ∇ˆH “ J “ σE “ ´σp∇ϕ` BtAq in Ωˆ p0, T q,

thus
σBtA`∇ˆ 1

µ
∇ˆA “ Jext and ∇ ¨ A “ 0 in Ωˆ p0, T q.

These equations are then to be supplemented by boundary conditions, e.g.

Aˆ n “ 0 on BΩˆ p0, T q,

as in [ADG`19]. ˛

Example. 3.5.2 (Poisson equation (Exercise 4.1 (i)))
Let Ω Ă R3 be a bounded domain with smooth boundary. The weak formulation of the
Poisson equation with Neumann boundary conditions

$

&

%

´∆u “ f, in Ω,

Bu
Bν “ g, on BΩ

for suitable functions f, g is

xAu, v y “ x f̃ , v y @v P V :“ H1pΩq,

where
A : V Ñ V ˚, xAu, v y :“

ż

Ω

∇upxq ¨∇vpxqdx

f̃ : V Ñ R, x f̃ , v y :“

ż

Ω

fpxqvpxqdx`

ż

BΩ

gpxqvpxqdσ

Then A is bounded as xAu, v y ď }∇u}L2pΩqd}∇v}L2pΩqd ď }u}H1pΩqd}v}H1pΩqd , but A is not
strongly positive (choose u ” C and f “ g “ 0) and hence there is no unique solvability.
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We require that f P H´1pΩq and g P pH
1
2 pBΩqq˚, so that f̃ is well-defined.

However, we can choose the solution space

V :“

"

v P H1pΩq :

ż

Ω

vpxqdx “ 0

*

,

on which A is coercive by the Poincaré-Wirtinger inequality. ˛

Example. 3.5.3 (Heat equation (Exercise 4.1 (ii)))
Let Ω Ă R3 be a bounded domain with smooth boundary. The weak formulation of the
initial value problem of the heat equation with Neumann boundary conditions

$

’

’

&

’

’

%

ut ´∆u “ f, on Ωˆ p0, T q,

Bu
Bν “ g, on BΩˆ p0, T q,

up¨, 0q “ u0, in Ω

for u0 P H, f P L2p0, T ;V ˚q ‘L1p0, T ;Hq and g P L2p0, T ; pH
1
2 pBΩqq˚q is: find u PW p0, T q

such that
ż T

0

xu1ptq, vptq ydt`

ż T

0

xAuptq, vptq ydt “

ż T

0

ż

BΩ

vpx, tqgpx, tqdσpxqdt

`

ż T

0

x fptq, vptq ydt @v P L2p0, T ;V q.

We can define

f̃ : r0, T s Ñ V ˚, x f̃ptq, v y “

ż

BΩ

vpxqgpx, tqdσpxq ` x fptq, v yV ˚ˆV , v P H1pΩq,

then f̃ P L2p0, T ;V ˚q ‘ L1p0, T ;Hq. Lastly, A is continuous and satisfies Garding’s in-
equality since

xAu, u y “

ż

Ω

|∇upxq|2 dx “

ż

Ω

|∇upxq|2 ` u2pxqdx´

ż

Ω

u2pxqdx “ }u}2 ´ |u|2.

By the Theorem of Lions, has a unique solution u PW p0, T q.

We note that thanks to the Goarding inequality, we obtain uniqueness of a solution with
values in H1pΩq which we failed to accomplish in the stationary problem in the previous
example due to the missing coercivity of a. ˛

Example. 3.5.4 (Biharmonic equation (Homework 4.2))
Let Ω Ă Rd be a bounded domain with smooth boundary. We consider the initial-boundary
value problem

$

’

’

’

’

’

&

’

’

’

’

’

%

Btupt, xq “ ´∆2upt, xq, in p0, T q ˆ Ω,

upt, xq “ 0, on p0, T q ˆ BΩ,
B
Bνupt, xq “ 0, on p0, T q ˆ BΩ,

up0, xq “ u0pxq, in Ω,

(32)

where ∆2 “ ∆∆ denotes the bi-Laplace operator. The bi-Laplace
operator appears in
various problems of
linear elasticity, for
example when looking
at small displacements
of a plate (whereas the
Laplacian describes the
behaviour of a
membrane).

We first consider the stationary problem
$

’

’

&

’

’

%

∆2upxq “ 0, in Ω,

upxq “ 0, on BΩ,
B
Bνuptq “ 0, on BΩ.
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We choose the spaces V :“ H2
0 pΩq and H :“ L2pΩq and recall that |v|22,2 :“

ş

Ω
|∆vpxq|2 dx

is an equivalent norm on V , that is, there exists c, C ą 0 such that for all v P V we have
c}v} ď |v| ď C}v}. Next, let

A : V Ñ V ˚, xAu, v y :“

ż

Ω

∆upxq∆vpxqdx,

which is linear and bounded as by Cauchy-Schwarz we have

xAu, v y ď }∆u}2L2pΩq}∆v}
2
L2pΩq “ |u|

2
2,2|v|

2
2,2 ď C4}u}2}v}2

Furthermore, it is coercive:

xAu, u y “

ż

Ω

|∆upxq|2 dx “ |u|22,2 ě c2}u}2.

Hence there exists a weak solution to the stationary problem by the Theorem of Lax-
Milgram, as to obtain the weak formulation we have to integrate by parts twice and use
that the boundary terms vanish.

Now considering the instationary formulation, the definitions don’t change and by the coer-
civeness of A we also get that A fulfills Goarding’s inequality. By Lion’s theorem, we get
wellposedness if u0 P H “ L2pΩq. ˛
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4 Nonlinear first order evolution equations with
monotone operator

4.1 Preliminaries

Nonlinear equations will be the main focus of this course. In the beginning, the nonlinearities
will be monotone and hence not so severe.

Introduction to nonlinear PDEs

Example. 4.1.1 (p-Laplacian)
Consider

$

’

’

&

’

’

%

Btu´∇ ¨
`

|∇u|p´2∇u
˘

“ f, in Ωˆ p0, T q

u “ 0, on BΩˆ p0, T q

up0q “ u0, in Ω,

(33)

with u0 P H :“ L2pΩq, V :“W 1,p
0 pΩq

d
ãÑ H ãÑ V ˚ and right hand side f P pLpp0, T ;V qq˚ –

Lp
1

p0, T ;V ˚q with 1
p1 `

1
p “ 1. Then the problem (33) can be formulated as

find u PWpp0, T q such that

$

&

%

u1 `Apuq “ f, in Lp
1

p0, T ;V ˚q,

up0q “ u0, in H.

with A “TODO. ˛

Remark. 4.1.2 (Assumptions for the nonlinear case) Let p ą 1, 1
p `

1
p1 “ 1 and V Ă

H Ă V ˚ a Gelfand triple.

Let A0, B : V Ñ V ˚ and A :“ A0 ` B with pA0 vqptq :“ A0vptq, pB vqptq :“ Bvptq for
v : r0, T s Ñ V and A :“ A0`B with

A0 : Lpp0, T ;V q Ñ Lp
1

p0, T ;V ˚q being monotone and hemi-continuous

B : Lpp0, T ;V q Ñ Lp
1

p0, T ;V ˚q being strongly (or totally) continuous

A : Lpp0, T ;V q Ñ Lp
1

p0, T ;V ˚q being coercive with µ ą 0 and λ ě 0 such that

xA v, v y “

ż T

0

xA vptq, vptq ydt ě µ}v}pLpp0,T ;V q ´ λ

for all v P Lpp0, T ;V q and bounded with β ě 0 such that

}A v}Lp1 p0,T ;V ˚q ď βp1` }v}p´1
Lpp0,T ;V qq @v P Lpp0, T ;V q.

Lemma 4.1.3 (Properties of Wpp0, T q: completeness, IBP rule, embedding)
Let p P p1,8q. Then

Wpp0, T q :“ tu P Lpp0, T ;V q : D P u1 P Lp
1

p0, T ;V ˚qu

equipped with the norm

}u}Wpp0,T q :“ }u}Lpp0,T ;V q ` }u
1}Lp1 p0,T ;V ˚q

is a Banach space. We have

Wpp0, T q ãÑ Cpr0, T s;Hq
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and the rule of integration by parts:
ż t

s

xu1pτq, vpτq y` x v1pτq, upτq ydτ “ puptq, vptqq ´ pupsq, vpsqq

for all v, w PWpp0, T q and all s, t P r0, T s. Finally, it also holds

C8pr0, T s;V q d
ãÑWpp0, T q.

Proof. Analogous to the proof of Theorem 2.2.1. l

Remark. 4.1.4 Another norm of Wpp0, T q is

}u}Wpp0,T q :“
´

}u}rLpp0,T ;V q ` }u
1}rLqp0,T ;V ˚q

¯
1
r

for any r ě 1, where 1
p `

1
q “ 1. This norm is equivalent since it is the r-norm of the vector

p}u}, }u1}q P R2.

Lemma 4.1.5 (Properties generalise to abstract operators)
Let A0 : V Ñ V ˚ be monotone, hemi-continuous and coercive with µ̃ ą 0, λ̃ ě 0 such that

xA0v, v y ě µ̃}v}p ´ λ̃ @v P V

and bounded with β̃ ě 0 such that }A0u}V ˚ ď β̃p1 ` }u}p´1q for all u P V . Then
A0 : Lpp0, T ;V q Ñ Lp

1

p0, T ;V ˚q is monotone, hemi-continuous and bounded with β ě 0

such that
}A0 u}Lp1 p0,T ;V ˚q ď βp1` }u}p´1

Lpp0,T ;V qq

and coercive with µ ą 0 and λ ě 0 such that

xA0 u, u y ě µ}u}pLpp0,T ;V q ´ Tλ @u P Lpp0, T ;V q.

Proof. 1 First we show that A0 maps Bochner measurable functions to Bochner
measurable functions. Let u be Bochner measurable, then there exists a sequence of
simple functions pun “

řNn
i“1 u

pnq
i 1

E
pnq
i
qnPN such that unptq Ñ uptq pointwise almost

everywhere in p0, T q. Then

pA0 unqptq “ A0

˜

Nn
ÿ

i“1

u
pnq
i 1

E
pnq
i
ptq

¸

“

Nn
ÿ

i“1

A0pu
pnq
i q1

E
pnq
i
ptq `A0p0q1pEpnqi q{

ptq

“

Nn
ÿ

i“1

A0pu
pnq
i q1

E
pnq
i
ptq `A0p0q1´ŤNn

i“1 E
pnq
i

¯{ptq

where the Lebesgue measurable sets pEpnqi q
Nn
i“1 are pairwisely disjoint for every n P N.

As Ei is measurable, so is pEpnqi q{ for all i P t1, . . . , Nnu. Hence pA0unqnPN is a sequence
of simple functions.

A0 being monotone and hemi-continuous implies A0 being demicontinuous. Hence

xpA0unqptq, w y Ñ xpA0uqptq, w y

for all w P V and almost every t P p0, T q. Hence pA0uqptq is weakly Bochner mea-
surable and by Pettis’ Theorem pA0uqptq is Bochner measurable.
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2 TODO: show that A0 is monotone and hemi-continuous (Exercise 5.2)

Now we show the estimates. We have

}A0u}
p1

Lp1 p0,T ;V ˚q
“

ż T

0

}A0uptq}
p1

V ˚ dt ď

ż T

0

´

β̃p1` }uptq}p´1q

¯p1

dt

“ β̃p
1

ż T

0

`

1` }uptq}p´1
˘p1

dt ď 2p
1
´1β̃p

1

˜

T `

ż T

0

}uptq}p dt

¸

“
1

2
p2β̃qp

1
´

T ` }u}pLpp0,T ;V q

¯

,

as for p ą 1 we have |a` b|p ď 2p´1p|a|p`|b|pq (this is because x ÞÑ |x|p is convex and
thus

ˇ

ˇ

a`b
2

ˇ

ˇ

p
ď
|a|p`|b|p

2 ).

Hence
A0 : Lpp0, T ;V q Ñ Lp

1

p0, T ;V ˚q

is well defined and bounded such that for all v P Lpp0, T ;V q we have

}A0v}Lp1 p0,T ;V ˚q ď β
´

1` }v}p´1
Lpp0,T ;V q

¯

as p 1
p1 “

p
p
p´1

“ p´ 1 and by choosing β :“ β̃maxp1, T
1
p1 q.

TODO: show coercivity (Exercise 5.2) l

Remark. 4.1.6 We can show a similar statement for B : V Ñ V ˚, but it is more involved.
Furthermore, this Lemma can be generalised to the case where A, A0 and B are time-
dependent, if the estimates hold uniformly in t.

Lemma 4.1.7 (Properties transfer from A to A (Homework 5.1))
Let V ãÑ H ãÑ V ˚ be a Gelfand triple and let p, q P p1,8q be Hölder conjugates. Let
A : Lpp0, T ;V q Ñ Lqp0, T ;V ˚q be given by Auptq “ Auptq for an operator A : V Ñ V ˚. If
A is bounded / monotone / coercive / hemicontinuous / strongly continuous, then A is, too.

4.2 Existence

Remark. 4.2.1 (Generalisation to pseudomonotone Operators)
This can be generalised to pseudomonotone pseudomonotoneoperators A : Lpp0, T ;V q Ñ Lp

1

p0, T ;V ˚q, that
is, to operators A that are bounded and fulfil

$

&

%

uk á u in Lpp0, T ;V q

lim sup
kÑ8

xApukq, uk ´ u y ď 0
ùñ

$

&

%

xApuq, u´ v y ď lim inf
kÑ8

xApukq, uk ´ v y

@v P Lpp0, T ;V q.

Theorem 4.2.1: Main Theorem on Monotone nonlinear PDEs

Assuming the standard assumptions, for every u0 P H and f P Lp
1

p0, T ;V ˚q, there
exists a solution u PWpp0, T q with

$

&

%

u1 `Apuq “ f in Lp
1

p0, T ;V ˚q,

up0q “ u0, in H.
(34)
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Proof. Previously we used time discretisation but now we want to use a Galerkin space
discretisation to prove existence.

1 Galerkin scheme. As V is separable, there exists a Galerkin basis tϕiuiPN Ă V

such that any finite selection of the ϕi is linearly independent. Let

Vm :“ spanpϕ1, . . . , ϕmq.

We also have
8
ď

m“1

Vm

}¨}

“ V. (Completeness in the limit)

2 Approximate scheme. Consider

pu1m, vq ` xAum, v y “ x f, v y @v P Vm. (Pm)

We write umptq :“
řm
i“1 u

m
i ptqϕi. Then we can write u1mptq :“

řm
i“1pu

m
i q
1ptqϕi, where

umi : r0, T s Ñ R for all m P N and i P t1, . . . ,mu.

To solve (Pm) it suffices to solve a system of ODEs
$

&

%

pu1mptq, ϕiq ` xpAumqptq, ϕi y “ x fptq, ϕi y @i P t1, . . . ,mu

ump0q “ um0 ,

where um0 is such that um0 P Vm for all m P N and um0 Ñ u0 in H with um0 “
řm
i“1 u

m
0,iϕ

m
i . (For instance we can choose um0 “ Pmu0, where Pm : H Ñ Vm is the

projection from H onto Vm.)

Let Umptq :“ pum1 ptq, . . . , u
m
mptqq

T P Rm, U0
m :“ pum0,1, . . . , u

m
0,mq

T P Rm and

pMmq
m
i,j“1 :“

`

pϕi, ϕjq
˘m

i,j“1
,

where p¨, ¨q is the scalar product in H. ThenMm is invertible as the tϕiuiPN are linearly
independent in the sense described in step 1 . Lastly, let

`

Fmpt, umq
˘

j
:“ x fptq, ϕj y´ xAum, ϕj y “ x fptq, ϕj y´

C

A

˜

m
ÿ

i“1

umi ϕi

¸

, ϕj

G

.

Hence (Pm) is equivalent to

$

&

%

U 1mptq “M´1
m Fmpt, Umptqq,

Ump0q “ U0
m.

(35)

24.05.2021

3 Existence of approximate solutions. We show that Fm is a Carathéodory func-
tion and has a dominating function. For the former observe that since A is monotone
and bounded, it is demicontinuous, so xA

´

řm
j“1 yjϕj

¯

, ϕk y converges strongly in R.
For the dominating function, we find for y P Rm and k P t1, . . . ,mu

Fmpt, yqk “ x fptq, ϕk y´

C

A

˜

m
ÿ

j“1

yjϕj

¸

, ϕk

G

ď }ϕk}V

¨

˝}f}Lp1 p0,T ;V ˚q `

›

›

›

›

›

A

˜

m
ÿ

j“1

yjϕj

¸
›

›

›

›

›

˚

˛

‚

ď }ϕk}V

´

}f}Lp1 p0,T ;V ˚q ` Cp1` }y}
p´1
Rm q

¯
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such that for any compact subset K Ă Rmˆr0, T s there exists a dominating function
`K : r0, T s Ñ r0,8q with

|M´1
m Fmpt, yq| ď `Kptq @pt, yq P K.

By the Theorem of Carathéodory Theorem of
Carathéodory

, there exists a solution Um to (35). Without loss
of generality, we may assume Um to be the maximal prolongation on r0, Tmq. Hence
Um is absolutely continuous on every compact subinterval of r0, Tmq. Hence Um is
almost everywhere classically differentiable and thus also in the weak sense.

4 A-priori estimates. We may choose vm “ um in (Pm) and obtain

xu1mptq, umptq y` xAumptq, umptq y “ x fptq, umptq y .

With the product rule, coercivity and Young’s inequality Young’s inequality
states |xy| ď
ε|x|p ` 1

p1
ppεq1´p

1
|y|p

1

if 1
p `

1
p1
“ 1 and ε ą 0.

we find

1

2

d

dt
|umptq|

2 ` µ}umptq}
p ď }fptq}˚}umptq}

(Y)
ď

µ

2
}umptq}

p ` C}fptq}p
1

˚ ` λ.

Integrating in time and multiplying by 2 yields

|umptq|
2 ` µ

ż t

0

}umpsq}
p ds ď |um0 |

2 ` 2

ż t

0

C}fpsq}˚ ds` 2tλ, (36)

implying that

}um}
2
L8p0,T ;Hq ď |u

m
0 |

2 ` 2C1

´

}f}p
1

Lpp0,T ;V ˚q ` 1
¯

and
µ}um}

p
Lpp0,T ;V q ď |u

m
0 |

2 ` 2C1

´

}f}p
1

Lpp0,T ;V ˚q ` 1
¯

.

We would like to deduce some estimate of u1m in (Pm) but this is rather difficult for
any general Galerkin approximation since (Pm) is a rather weak form: we don’t have
any estimate for the time derivative unless we assume any regularity of the Galerkin
space. We would need that the H-projection onto the Galerkin spaces is V -stable,
which gives a estimate for the projection in the V -norm. Otherwise we don’t get any
information on the time derivative because from (Pm) - we only have information in
V ˚m, which is strictly larger than V ˚. That is why we can’t deduce any bound on the
time derivative. If we would do a time discretisation, this might be easier, because we
test with the whole space.

5 Extracting subsequences We know

• um
˚
á u in L8p0, T ;Hq,

• um á u in Lpp0, T ;V q,

• umptq á θT in H,

• }Aum}Lp1 p0,T ;V ˚q ď β
´

1` }um}
p´1
Lpp0,T ;V q

¯

ď C and thus

Aum á a in Lp
1

p0, T ;V ˚q.

6 Weak derivative. We use the structure of the Galerkin scheme to identify the
weak time derivative. We want to to show that u1 “ f ´ a and thus also has the same
regularity in Lp

1

p0, T ;V ˚q. To this end consider a test function ϕ P C8c and vn P Vn
with n ď m such that Vn Ă Vm (this embedding allows a decoupling of the index of
the test function and the index of the solution). Then

ż T

0

pum, vnqϕ
1 dt`

ż T

0

xAum, vn yϕdt “

ż T

0

x f, vn yϕdt.
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Passing to the limit with mÑ8, we observe

´

ż T

0

pu, vnqϕ
1 dt`

ż T

0

x a, vn yϕdt “

ż T

0

x f, vn yϕdt.

Since mÑ8 this holds for all vn P
Ť8

i“1 Vi. The set
Ť8

i“1 Vi is dense in U such that

´

ż T

0

pu, vqϕ1 dt “

ż T

0

x f ´ a, v yϕdt

and hence u1 “ f ´ a in Lp
1

p0, T ;V ˚q and thus u P Wpp0, T q and hence we may use
the integration by parts formula p‹q.

7 Identifying the initial value. Let ϕ P C1
pr0, T sq and v P Vn with n ď m. Then

puptq ´ umpT q, vqϕpT q ´ pup0q ´ ump0q, vqϕp0q
p‹q
“

ż T

0

xu1ptq ´ u1mptq, v yϕptq

` puptq ´ umptq, vqϕ
1ptqdt

“

ż T

0

x f ´ a´ pf ´Aumq, v yϕptq

` puptq ´ umptq, vqϕ
1ptqdt

“

ż T

0

xAum ´ a, v yϕptq

` puptq ´ umptq, vqϕ
1ptqdt

mÑ8
ÝÝÝÝÑ 0

as Aum á a in Lp
1

p0, T ;V ˚q and um á u in Lpp0, T ;V q. Thus

puptq ´ θT , V qϕpT q ´ pup0q ´ u0, vqϕp0q

for all v P V via a density argument, as umptq á θ and ump0q Ñ u0 in H. Thus for
all v P V and ϕ P C1

pr0, T sq we have upT q “ θT and up0q “ u0.

(For the identification um á u in L1p0, T ;V ˚q would suffice to identify up0q with u0

in V ˚. But by ump0q Ñ u0 in H it is known that up0q P H.)

8 Identifying a “ Au by Minty’s trick. We use the assumption that A “ A0 `

B, where B : Lpp0, T ;V q Ñ Lp
1

p0, T ;V ˚q is strongly continuous. From um á u in
Lpp0, T ;V q we deduce that Bum Ñ Bu in Lp

1

p0, T ;V ˚q. Additionally, we observe
that (by the integration by parts formula)

ż T

0

xu1mptq, umptq ydt “
1

2
|umpT q|

2 ´
1

2
|um0 |

2.

Due to the weak convergence umpT q á θT “ upT q in H we have (by a corollary of
Hahn-Banach)

lim inf
mÑ8

1

2
|umpT q|

2 ě
1

2
|upT q|2.

Now we have to apply Minty’s Trick. We have
ż T

0

xA0umptq, umptq ydt “

ż T

0

x fptq, umptq y´ xBumptq, umptq y´ xu
1
mptq, umptq ydt

“

ż T

0

x fptq, umptq y´ xBumptq, umptq ydt

´
1

2
|umptq|

2 `
1

2
|um0 |

2
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as um solves the discretised problem. For m Ñ 8 we observe (as we identified the
initial condition)

lim sup
mÑ8

ż T

0

xA0umptq, umptq ydt ď

ż T

0

x fptq, uptq y´ xBuptq, uptq ydt

´
1

2
|uptq|2 `

1

2
|up0q|2

“

ż T

0

x fptq, uptq y´ xBuptq, uptq ydt´ xu1ptq, uptq y

“

ż T

0

x aptq, uptq y´ xBuptq, uptq ydt.

As A0 is monotone, we have for any w P Lpp0, T ;V q

ż T

0

xA0umptq, umptq ydt “

ż T

0

xA0umptq ´A0wptq, umptq ´ wptq ydt

`

ż T

0

xA0wptq, umptq ´ wptq y` xA0umptq, wptq ydt

ě

ż T

0

xA0wptq, umptq ´ wptq y` xA0umptq, wptq ydt

mÑ8
ÝÝÝÝÑ

ż T

0

xA0wptq, uptq ´ wptq y´ x a´Buptq, wptq ydt

and hence
ż T

0

xA0wptq, umptq ´ wptq ydt ď

ż T

0

x aptq ´Buptq, uptq ´ wptq ydt.

We continue with Minty’s trick. Choosing wptq :“ uptq ˘ αvptq with v P Lpp0, T ;V q

and α ą 0 yields

1

α

ż T

0

xA0puptq ˘ αvptqq,¯αvptq ydt ď
1

α

ż T

0

x aptq ´Buptq,¯αvptq ydt.

As αÑ 0 we conclude by demicontinuity that
ż T

0

xA0uptq, vptq ydt “

ż T

0

x aptq ´Buptq, vptq ydt

for all v P Lpp0, T ;V q. This implies

aptq “ pA0 `Bqpuptqq “ Apuptqq

in Lp
1

p0, T ;V ˚q. l

Remark. 4.2.2 (Hemi-continuity and radial continuity) The hemi-continuity can be
generalised to radial continuity, one only needs that the mapping

s ÞÑ xA0pu` svq, v y

is continuous on r0, 1s for all u, v P Lpp0, T ;V q.

Remark. 4.2.3 (Monotonicity and pseudomonotonicity)
As usual, the monotone operator A0 with strongly continuous perturbation B, A “ A0 `B

can be replaced by a pseudomonotone operator. In this scenario, we have as beforehand

lim sup
kÑ8

xApukq, uk ´ v y “ lim sup
kÑ8

xApukq, uk ´ vk y` lim
kÑ8

xApukq, vk ´ v y

ď x f ´ u1, u´ v y
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for a sequence pvkqkPN Ă Lpp0, T ;V q with vk Ñ v in Lpp0, T ;V q (exists because the
Galerkin scheme is complete in the limit) such that

lim sup
kÑ8

xApukq, uk ´ u y ď 0.

By pseudomonotonicity we have

xApuq, u´ v y ď lim inf
kÑ8

xApukq, uk ´ v y ď lim sup
kÑ8

xApukq, uk ´ v y ď x f ´ u
1, u´ v y

for all v P Lpp0, T ;V q, implying Apuq “ f ´ u1.

4.3 Uniqueness and continuous dependence

Lemma 4.3.1 (Uniqueness)
Assuming the standard assumptions and B “ 0, the solution of (34) is unique and the whole
sequence of approximate solutions converges to u.

Proof. Let u, v PWpp0, T q be two solutions to the problems
$

&

%

u1 `Apuq “ f, in Lp
1

p0, T ;V ˚q,

up0q “ u0 in H
and

$

&

%

v1 `Apvq “ f, in Lp
1

p0, T ;V ˚q,

vp0q “ u0 in H

As A is monotone we have

1

2

d

dt
|u´ v|2 “ xu1 ´ v1, u´ v y

ď xu1 ´ v1, u´ v y` xAu´A v, u´ v y “ x f ´ f, u´ v y “ 0

and hence (by integration)

|uptq ´ vptq|2 ď |u0 ´ u0|
2 “ 0

for all t P r0, T s. l

Lemma 4.3.2 (Continuous dependence)
Assuming the standard assumptions and B “ 0, the solution operator of the problem (34)

Lp
1

p0, T ;V ˚q ˆH Ñ Cpr0, T s;Hq, pf, u0q ÞÑ u

is continuous on bounded sets.

Proof. Let u, v PWpp0, T q be the two solutions to the problems
$

&

%

u1 `Apuq “ f, in Lp
1

p0, T ;V ˚q,

up0q “ u0 in H
and

$

&

%

v1 `Apvq “ g, in Lp
1

p0, T ;V ˚q,

vp0q “ v0 in H
(37)

for f, g P Lp
1

p0, T ;V ˚q and u0, v0 P H.

We have, as before,

1

2

d

dt
|u´ v|2 ď xu1 ´ v1, u´ v y` xAu´Av, u´ v y “ x f ´ g, u´ v y

ď }f ´ g}˚}u´ v} ď }f ´ g}˚p}u} ` }v}q.
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Integrating we find

1

2
|uptq ´ vptq|2 ď

1

2
|u0 ´ v0|

2 ` }f ´ g}Lp1 p0,T ;V ˚qp}u}Lpp0,T ;V q ` }v}Lpp0,T ;V qq.

From the a-priori estimate (36) we observe

µ}u}pLpp0,T ;V q ď |u0|
2 `

C

µ
}f}p

1

Lp1 p0,T ;V q
` λT

and similar for v and hence

}u}Lpp0,T ;V q ďMpu0, fq and }v}Lpp0,T ;V q ďMpv0, gq.

Thus
1

2
|uptq ´ vptq|2 ď

1

2
|u0 ´ v0|

2 ` }f ´ g}Lp1 p0,T ;V ˚q pMpu0, fq `Mpv0, gqq

for all t P r0, T s. We may take the supremum over t P r0, T s, implying the assertion.
The solution operator is even Lipschitz-continuous in the initial values and C0, 12 -Hölder-
continuous in the right-hand side. l

We now prove two different results about continuous dependence.

If B ‰ 0 but we require a condition similar to monotonicity on A, we have Lipschitz-
continuous dependence on the data.

Theorem 4.3.1: Lipschitz continuous dependence

Let the standard assumptions be fulfilled. Additionally, we require that A : r0, T s ˆ

V Ñ V ˚ fulfills
xAptqv ´Aptqw, v ´ w y ě ´gptq|v ´ w|2

for v, w P V and g P L1p0, T q. The operator A : Lpp0, T ;V q Ñ Lp
1

p0, T ;V ˚q is then
given by pAuqptq “ Auptq. Then the solution operator of the problem (34)

L2p0, T ;Hq ˆH Ñ Cpr0, T s;Hq, pf, u0q ÞÑ u

is Lipschitz-continuous.

Proof. Exercise. l

Theorem 4.3.2: Continuous dependence (p-monotone setting,
B “ 0)

Let the standard assumptions be fulfilled with A “““ A0 : V Ñ V ˚ being p-monotone,
that is, there exists a µ̃ ą 0 such that

xA v ´Aw, v ´ w y ě µ̃}v ´ w}p @v, w P V.

Then the solution operator of the problem (34)

Lp
1

p0, T ;V ˚q ˆH Ñ Cpr0, T s;Hq X Lpp0, T ;V q, pf, u0q ÞÑ u

is continuous.
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Proof. First we observe that

xAu´A v, u´ v yLp1 p0,T ;V ˚qˆLp1 p0,T ;V ˚q “

ż T

0

xAu´Av, u´ v yV ˚ˆV dt

ě µ̃

ż T

0

}u´ v}p dt “ µ̃}u´ v}pLpp0,T ;V q.

Assume that u, v PWpp0, T q solve the problems (37). Then

1

2

d

dt
|u´ v|2 ` µ̃}u´ v}pLpp0,T ;V q ď xu

1 ´ v1, u´ v y` xAu´Av, u´ v y “ x f ´ g, u´ v y

ď }f ´ g}˚}u´ v}.

Integration and applying Young’s inequality implies

1

2
|uptq ´ vptq|2 ` µ̃

ż t

0

}u´ v}p ds ď

ż t

0

}f ´ g}˚}u´ v} ds`
1

2
|u0 ´ v0|

2

ď C

ż t

0

}f ´ g}p
1

˚ ds`
2

µ̃

ż t

0

}u´ v}2 ds`
1

2
|u0 ´ v0|

2

and thus (by taking suprema)

|uptq ´ vptq|2 ` µ

ż T

0

}u´ v}2 ds ď
1

2
|u0 ´ v0|

2 ` C

ż T

0

}f ´ g}p
1

˚ ds

for all t P r0, T s and thus

|uptq ´ vptq|2Cpr0,T s,Hq ` }u´ v}
p
Lpp0,T ;V q ď C

´

|u0 ´ v0|
2 ` }f ´ g}p

1

Lp1 p0,T ;V ˚q

¯

and thus the continuous dependence is shown. We are Lipschitz-continuous with respect
to the initial values again and some Hölder-continuity. l

Example. 4.3.3 We consider the initial value (and boundary value ?) problem
$

’

’

&

’

’

%

ut ´ pρpuxqqx “ f, on pa, bq ˆ p0, T q,

upa, ¨q “ upb, ¨q “ 0 on p0, T q,

up¨, 0q “ u0 on pa, bq

with

ρ : RÑ R, z ÞÑ

$

&

%

z?
|z|
, if |z| P p0, 1q,

z else.

We show that for a suitable choice of u0 and f there exists a unique solution u P W p0, T q.
It is lengthy, but not difficult to show that

`

ρpxq ´ ρpyq
˘`

x´ y
˘

ě
1

2
|x´ y|2 @x, y P R . (38)

By the arithmetic mean inequality we have for z P p´1, 1q

|ρpzq| “
a

|z| ď
1

2
`

1

2
|z|

and hence |ρpzq| ď 1`|z| for all z P R. By putting y “ 0 in (38), we obtain xρpxq ě 1
2 |x|

2 ě 0

for all x P R.

We choose the space V :“ H1
0 pa, bq and H :“ L2pa, bq and define

A : V Ñ V ˚, xAv,w yV ˚ˆV :“

ż b

a

ρpv1pxqqw1pxqdx,
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which comes from testing the differential equation

pρpuxpxqqqx “ fpxq, x P pa, bq ˛

with w and integrating by parts, where the boundary term vanishes due to the homogeneous
Neumann boundary conditions.

4.4 Strong Convergence by embedding and
monotonicity

31.05.2021In this section we want to deduce more information about the approximate sequence um.
In this existence proof we deduced weak convergence um á u in Lpp0, T ;V q, but we want
to deduce strong convergence. The strong convergence can then be used to deduce better
properties of the approximation. If this PDE was coupled with another differential equation,
we might need strong convergence in order to pass to the limit.

We either deduce strong convergence in a weaker topology, like in Lpp0, T ;Hq (achieved by
a compact embedding) or we assume additional monotonicity.

The following Theorem is omnipresent in the field of nonlinear evolutionary equations, since
every time we want to pass to the limit in some nonlinear term, which has to be of lower order
(in some sense) and we don’t have any monotonicity, we need the Theorem of Lions-Aubin
to deduce additional strong convergence in time.

Theorem 4.4.1: Lions-Aubin [Rou13]

Let T ą 0 and 1 ă r, s ă 8 and V1
c

ãÑ V0 ãÑ V´1 Banach spaces such that V˘1 are
reflexive. Then

tu P Lrp0, T ;V1q : Du1 P Lsp0, T ;V´1qu
c

ãÑ Lrp0, T ;V0q,

where the first space is equipped with the norm } ¨ }Lrp0,T ;V1q ` } ¨
1 }Lsp0,T ;V´1q.

Remark. 4.4.1 There are many different generalisations of this result. We may consider
s “ 1 or even further v1 just being a measure. It also suffices if V´1 is a locally convex
topological space.

Corollary 4.4.2 (V c
ãÑ H ùñ W p0, T q

c
ãÑ L2p0, T ;Hq)

If V c
ãÑ H Ă V ˚ is a Gelfand triple, then W p0, T q c

ãÑ L2p0, T ;Hq.

Lemma 4.4.3 (V -stability of H-projection grants strong convergence)
Let the standard assumptions be fulfilled. If the H-projection onto the Galerkin spaces
is V -stable, that is, there exists a C ą 0 such that }Pmv} ď C}v} for all v P V , where
Pm : H Ñ Vm is the orthogonal projection onto Vm, then there exists a subsequence such
that um1 Ñ u in Lqp0, T ;Hq for all q P r1,8q.

Lemma 4.4.4 (From interpolation inequality)
Let 1 ď p ă q ď 8, θ P p0, 1q and r P rp, qs with

1

r
“
θ

q
`

1´ θ

p
. (39)
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Then for all u P Lqp0, T ;Hq we have

}u}Lrp0,T ;Hq ď }u}
θ
Lqp0,T ;Hq}u}

1´θ
Lpp0,T ;Hq

Proof. We have by Hölder’s inequality with (due to (39) Hölder conjugate) exponents
p̃ :“ rθ

q and q̃ :“ rp1´θq
q

}u}rLrp0,T ;Hq “

ż T

0

|uptq|r dt “ }|u|rθ|u|rp1´θq}L1p0,T ;Rq

(H)
ď }|u|rθ}

L
q
rθ p0,T ;Rq}|u|

rp1´θq}
L

p
p1´θqr p0,T ;Rq

“ }|u|}rθLqp0,T ;Rq}|u|}
rp1´θq
Lpp0,T ;Rq.

l

Hence if we have some boundedness in the Lq space and we have some convergence in the
Lp space, we get convergence in Lr by lemma 4.4.4.

Lemma 4.4.5 (Second interpolation inequality (Exercise 5.1 (ii)))
Let V ãÑ H – H˚ ãÑ V ˚ be a Gelfand triple. Then for 1 ď p, q ď 8 and θ P p0, 1q we
have

}u}Lrp0,T ;Hq ď }u}
1
2

Lpp0,T ;V q}u}
1
2

Lqp0,T ;V ˚q for all u P Lpp0, T ;V q X Lqp0, T ;V ˚q

with 2
r “

1
p `

1
q .

Proof. (of lemma 4.4.3) Recall the approximate scheme from the existence proof

d

dt
pumptq, vq ` xAumptq, v y “ x fptq, v y @v P Vm

with the condition
ump0q “ um in Vm.

Using the stability, we can now circumvent the difficulty in the existence proof stemming
from the fact that we didn’t know enough about the time derivative.

Via stability of the projection, we deduce for any v P V that Pmv P Vm and thus

xu1mptq, Pmv y` xAumptq, Pmv y “ x fptq, Pmv y @v P V.

Hence by the stability there exists a C ą 0 independent of m such that

| xu1mptq, Pmv y | ď }fptq}˚}Pmv} ` }Aumptq}˚}Pmv} ď C p}fptq}˚ ` }Aumptq}˚q }v}.

Hence

}u1m}Lp1 p0,T ;V ˚q “ }u
1
m}pLpp0,T ;V qq˚ “ sup

vPLpp0,T ;V q
}v}Lpp0,T ;V q“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

xu1mptq, Pmv ydt

ˇ

ˇ

ˇ

ˇ

ˇ

4‰
ď sup

vPLpp0,T ;V q
}v}Lpp0,T ;V q“1

C

ż T

0

p}fptq}˚ ` }Aumptq}˚q }vptq}dt

ď C
´

}f}Lp1 p0,T ;V ˚q ` }Aum}Lp1 p0,T ;V ˚

¯

which is bounded as A is bounded (shown in the existence proof).
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Hence }u1m}Lp1 p0,T ;V ˚q ď C̃ independent of m. Since we already know that }um}Lpp0,T ;V q ď

C1 independent of m, pumqmPN is bounded in Wpp0, T q
c

ãÑ L2p0, T ;Hq, where the compact-
ness comes from corollary 4.4.2. Hence there exists a subsequence such that u1m Ñ u in
Lpp0, T ;Hq. Since pumqmPN is also bounded in L8p0, T ;Hq, the convergence follows for
every Lqp0, T ;Hq with q P r1,8q by lemma 4.4.4. l

Strong convergence by monotonicity

Using compact embeddings, we could deduce strong convergence in the H-norm but now
we want to deduce strong convergence in the V -norm, which we get by assuming additional
monotonicity of the operator.

Lemma 4.4.6 (Strong convergence for d-monotone operators)
Let the standard assumption be fulfilled. Additionally assume that A : V Ñ V ˚ is d-
monotone, that is, there exists a µ̃ ě 0 such that

xAv ´Aw, v ´ w y ě µ̃p}v}p´1 ´ }w}p´1qp}v} ´ }w}q ě 0 @v, w P Lpp0, T ;V q.

Then we have um Ñ u in Lpp0, T ;V q.

Remark. 4.4.7 (d-monotony and uniform p-monotony) The assumption of d-monotony
is weaker than the assumption of p-monotony. An operator A : V Ñ V ˚ is uniformly p-
monotone if there exists a µ̃ ą 0 such that

xAv ´Aw, v ´ w y ě µ̃}v ´ w}p @v, w P Lpp0, T ;V q.

Both conditions hold for the p-Laplacian.

Idea. We would like to use that

d

dt
|uptq ´ umptq|

2 ` xAuptq ´Aumptq, uptq ´ umptq y “ x fptq ´ fptq, uptq ´ umptq y “ 0,

but the second equality is not true because we cannot test with u´ um.

Instead, since pVnqnPN is a Galerkin scheme, we know that
Ť

nPN Vm Ă V is dense. We
take a sequence pvmqmPN Ă Lpp0, T ;V q such that vm Ñ u in Wpp0, T q. Then

|um ´ u|
2

ˇ

ˇ

ˇ

ˇ

T

0

`

ż T

0

xAumptq ´Auptq, umptq ´ uptq yV ˚ˆV dt

“ xu1m ´ u
1, um ´ u y` xAum ´Au, um ´ u yLp1 p0,T ;V ˚qˆLpp0,T ;V q

“ xu1m `Aum
looooomooooon

“f

, um ´ vm y` xu
1
m `Aum, vm ´ u y´ xAu` u

1, um ´ u y

“ x f, um ´ vm y´ x f, um ´ u y´ xum, v1m ´ u
1

looomooon

mÑ8
ÝÝÝÝÑ0 as

v1mÑu
1 in Lp

1
p0,T ;V ˚q

y` x umptq
loomoon

bounded in
Lpp0,T ;V q

, vmptq ´ uptq
loooooomoooooon

mÑ8
ÝÝÝÝÑ0 as

WpãÑCpr0,T s;Hq

y

´ pu0
m, vmp0q ´ up0qq ` x Aum

loomoon

bounded in
Lp
1
p0,T ;V ˚q

, vm ´ u
loomoon

Ñ0 strongly
in Lpp0,T ;V q

y
mÑ8
ÝÝÝÝÑ 0.

We infer that xAum´Au, um´u y
mÑ8
ÝÝÝÝÑ 0. The d-monotonicity implies that

şT

0
p}umptq}

p´1´
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}uptq}p´1qp}umptq} ´ }uptq}q dt
mÑ8
ÝÝÝÝÑ 0. We have by Hölder’s inequality

ż T

0

p}umptq}
p´1 ´ }uptq}p´1qp}umptq} ´ }uptq}q dt

“

ż T

0

}umptq}
p ` }uptq}p dt´

ż T

0

}umptq}
p´1}uptq}dt´

ż T

0

}uptq}p´1}umptq}dt

(H)
ě

ż T

0

}umptq}
p ` }uptq}p dt´

˜

ż T

0

}umptq}
p

¸

p´1
p

˜

ż T

0

}uptq}p

¸
1
p

´

˜

ż T

0

}umptq}
p

¸
1
p
˜

ż T

0

}uptq}p

¸

p´1
p

“

´

}um}
p´1
Lpp0,T ;V q ´ }u}

p´1
Lpp0,T ;V q

¯

`

}um}Lpp0,T ;V q ´ }u}Lpp0,T ;V q

˘

mÑ8
ÝÝÝÝÑ 0.

We conclude from um á u in Lpp0, T ;V q and }um}Lpp0,T ;V q Ñ }u}Lpp0,T ;V q in R and
Lpp0, T ;V q being uniformly convex, that indeed um Ñ u in Lpp0, T ;V q.
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5 Instationary Navier-Stokes problem
This chapter differs considerably from the previous ones since the Navier-Stokes equation
does not fit in our framework, so we will not be able to show existence and uniqueness in
the same spaces, at least for weak solutions.

We consider a bounded Lipschitz domain Ω Ă Rd with d P t2, 3u and the incompressible
Navier-Stokes equation

$

’

’

’

’

’

&

’

’

’

’

’

%

Btu´ ν∆u` pu ¨∇qu`∇p “ f , in Ωˆ p0, T q,

∇ ¨ u “ 0 in Ωˆ p0, T q,

u “ 0 on BΩˆ p0, T q,

up0q “ u0 in Ω,

where u : Ω ˆ r0, T s Ñ Rd is the velocity field, p : Ω ˆ r0, T s Ñ R is the pressure and ν is
the viscosity. The time derivative of the velocity is the acceleration, the second (dissipative)
term ν∆u describes how friction behaves in the fluid.

This equation is difficult to solve due to the convection term pu ¨∇qu (which is due to the
flow of the material) and also the pressure term ∇p and the additional constraint ∇ ¨ u “ 0.

We recall that 1
ν “ Re, where Re is the Reynolds number, a dimensionless parameter

in fluid dynamics which provides a ratio between the inertial and viscous forces. A small
Reynolds number implies a viscous fluid with little or no turbulence, whereas a large
Reynolds number implies a turbulent flow.

5.1 Modelling and Applications

Before we do some rigorous mathematical analysis, we talk about the modelling - where
these equations come from.

Fig. 6: A fluid part vp0q moves around with time and is deformed to some other vptq. This
is what the Navier-Stokes equations describe. Consider a point zp0q in vp0q, which is
transformed to zptq.

In the figure, z is the displacement field. Hence z1ptq “ uptq is the velocity field. Let ρptq be
the mass density - how many molecules are in a certain region of the flow.
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The Lagrangian perspective is imagining oneself sitting on such as stream line (like in the
figure above) and describing the evolution this way, while in the Eulerian perspective one
sits at a reference point and observes how the material flows along that point.

Mathematically speaking we usually work with the Eulerian perspective, because in the
Lagrangian framework we need that the evolution of the flow must be smooth, but not in
the Eulerian flow.

Let us look at the physical principle involved. The mass conservation is
ż

V

ρpt1, xqdx “

ż

V

ρpt2, xqdx´

ż t2

t1

ż

BV

ρpt, xqupt, xq ¨ npt, xqdS dt,

where V is a time-independent volume, t1, t2 P p0, T q, and the inflow/outflow is described
by the rightmost term. By Gauss’ Theorem, the right hand side is equal to

ż

V

ρpt2, xqdx´

ż t2

t1

ż

V

∇ ¨ pρpt, xqupt, xqq dx dt.

A pointwise relation holds:
Btρ`∇pρuq “ 0.

The second principle is the conservation of momentum, similar to Newton’s second law -
a “ mf , where a is the acceleration, m is the mass and f is the force applied. In order
to "press" this into the PDE framework we consider upx, tq “ mpzptq, tq, where z is the
displacement field which gives x at a certain time t. Then

d

dt
mpzptq, tq “ Btmpzptq, tq `∇mpzptq, tqBtzptq “ Btmpzptq, tq `∇mpzptq, tquptq.

This is the material derivative for the momentum m “ ρu

5.2 Solenoidal function space

We want to treat the Navier-Stokes equation more rigorously, so we start by defining the
appropriate function spaces.

As we saw, the conditions

u “ 0 on p0, T q ˆ BΩ and ∇ ¨ u “ 0 in p0, T q ˆ Ω (40)

are deeply entrenched in the problem formulation for an incompressible and viscous fluid
with fixed boundary. Thus, the definition of the following, so-called solenoidal, spaces is
motivated. Usually, we work with a pivot space in L2, but now we want incorporate the
incompressibility of the fluid.

As test functions we take

V :“
 

ϕ P C8c
`

Ω;Rd
˘

| ∇ ¨ϕ ” 0 in Ω
(

.

Since this is to regular for our purposes, we will take the closure with respect to theH1-norm.
An abstract function on r0, T s having values in V clearly fulfills (40). Now the spaces

V :“ clos }¨}H1
V and H :“ clos }¨}L2

V

form a Gelfand-triple. The space V is reflexive as the closed subspace of the reflexive space
H1

0 pΩq
d. Furthermore, V d

ãÑ H, since for every h P H by definition there exists a sequence
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pϕnqnPN Ă V Ă V with ϕn Ñ h in H. The compact embedding follows from Rellich-
Kondrachov, as we have H1

0 pΩq
c

ãÑ L2pΩq (if t0,´ 1
2u Q k´

d
p ą `´ d

q P t´1,´ 3
2u, then we

have W k,p c
ãÑW `,q).

V
c

ãÑ H – H˚ ãÑ V ˚,

where V is equipped with } ¨ } :“ } ¨ }H1
0 pΩq

and the scalar product

ppuptq,vptqqq :“

ż

Ω

∇uptq : ∇vptqdx

and H with | ¨ | :“ } ¨ }L2pΩq and the scalar-product

pu,vq :“

ż

Ω

u ¨ v dx.

One can show the characterisations

V “
 

u P H1
0 pΩq

d | ∇ ¨ u ” 0 in Ω
(

and

H “
 

u P L2pΩqd | ∇ ¨ u ” 0 in Ω, n ¨∇u ” 0 on BΩ
(

,

where the condition of zero divergence means
ż

Ω

u ¨∇ϕdx “ 0 for all ϕ P C8c pΩ;Rq

and the vanishing on the boundary is to be understood in the sense of a certain trace.

We now will develop the mentioned trace. First we define the auxiliary space (also called
anisotropic Sobolev space)

E :“
 

u P L2pΩqd | ∇ ¨ u P L2pΩq
(

(hence V ãÑ H Ă E) and equip it with the norm

}u}2E :“ }u}2L2pΩqd ` }∇ ¨ u}
2
L2pΩq.

Then E is a Banach space (due to the fact that L2pΩq is a Banach space and that the
divergence is a linear differential operator) with the density

clos }¨}EC
8
c pΩ;Rdq “ E,

which is shown in [TC78, Thm 1.1] (for the boundary terms, one uses some intermediate
contraction step).

Lemma 5.2.1 (Linear normal trace operator)
Let Ω Ă Rd be a bounded Lipschitz domain. We define the linear normal-trace operator
γn : E Ñ H´1{2pBΩq by

γnpeq “ e ¨ n on BΩ @e P CpΩ;Rdq X E.

Then γn is well-defined on E.

53



5 INSTATIONARY NAVIER-STOKES PROBLEM

Proof. The idea is to use the integration by parts formula:
ż

Ω

∇ ¨ v ¨ ϕdx`

ż

Ω

v ¨∇ϕdx “

ż

BΩ

n ¨ vϕdS @v P C1
pΩ;Rdq, ϕ P C1

pΩ;Rq. (41)

From DGL IIB we know that the Dirichlet trace

Γ0 : H1pΩq Ñ H´
1
2 pBΩq

is a well-defined surjective linear operator with kerpΓ0q “ H1
0 pΩq.

For e P E and ϕ P H1
0 pΩq, we observe that

ż

Ω

∇ ¨ e ¨ ϕdx`

ż

Ω

e ¨∇ϕdx
(41)
“ 0,

since it holds for C8c pΩ;Rdq functions and this set is dense in E and H1
0 pΩq.

We define an operator

LepΓ0pϕqq :“

ż

Ω

∇ ¨ e ¨ ϕdx`

ż

Ω

e ¨∇ϕdx.

For all ϕ P H1pΩq, this is well defined: let ϕ1, ϕ2 P H
1pΩq with Γ0pϕ1q “ Γ0pϕ2q. Then

ϕ1´ϕ2 P H
1
0 pΩq and Lepγ0pΦqq “ 0 for all Φ P H1

0 pΩq. Hence H1
0 pΩq is the kernel of Le and

Le : H1pΩq Ñ H
1
2 pBΩq is a linear bounded surjective operator (follows from the surjectivity

of Γ0).

For all ψ P C1
pΩq we identify

Lepψq “

ż

BΩ

n ¨ eψ dS

for all ψ P H
1
2 pBΩq (since H

1
2 pBΩq Ă L2pBΩq, the integral is well defined). Thus

Lepψq “

ż

Ω

∇ ¨ eϕdx`

ż

Ω

e ¨∇ϕdx

for all ϕ P H1pΩq with Γ0pϕq “ ψ.

We may argue by density that for all e P E, Le P pH
1
2 pBΩqq˚ – H´

1
2 pBΩq so Le “ γnpϕq. l

Remark. 5.2.2 (Helmholtz decomposition) Let

Y :“ t∇p : p P L2pΩqu Ă H´1pΩqd.

Then Y K V with respect to L2pΩq: for y “ ∇p for some p P L2pΩq and v P V we have by
integration by parts and by V ãÑ H

py,vq “

ż

Ω

vpxq ¨∇ppxqdx “ ´

ż

Ω

ppxq p∇ ¨ vpxqq
loooomoooon

“0

dx`

ż

BΩ

n ¨ vpxq
looomooon

“0 as vPH

ppxqdSpxq “ 0.

5.3 Weak formulation

The abstract operators and their properties

We define the bilinear form

a : V ˆ V Ñ R, pv,wq ÞÑ ν

ż

Ω

∇v : ∇w dx
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to deal with the diffusive part and the trilinear form

b : V ˆ V ˆ V Ñ R, pu,v,wq ÞÑ

ż

Ω

`

pu ¨∇qv
˘

¨w dx “

ż

Ω

`

p∇vqu
˘

¨w dx

for the convective part. We denote p∇vqi,j “ Bxjvi and
`

pu ¨∇qv
˘

i
“
řd
i“1 ujBxjvi and thus

bpu, v, wq “
d
ÿ

i“1

ż

Ω

`

pu ¨∇qv
˘

i
wi dx “

d
ÿ

i“1

ż

Ω

˜

d
ÿ

j“1

ujBjvi

¸

wi dx “
d
ÿ

i,j“1

ż

Ω

ujBjviwi dx.

The form a is bounded, symmetric and strongly positive (by Poincaré’s inequality) and b
is bounded and skew-symmetric with respect to the second and third argument: due to the
fact that u is divergence-free, the integration-by-parts formula together with the product
rule yields

bpu,v, wq “

ż

Ω

pu ¨∇qv ¨w dx

IBP
“ ´

ż

Ω

p∇ ¨ u
loomoon

“0

qv ¨w dx´

ż

Ω

pu ¨∇qw ¨ v dx`

ż

BΩ

γnpuq
loomoon

“0

v ¨w dS

“ ´

ż

Ω

pu ¨∇qw ¨ v dx “ ´bpu,w,vq

for all u,v,w P V . In particular we have bpu,v,vq “ 0 for all u,v P V .

We consider the Gelfand triple pV, } ¨ }, pp¨, ¨qqq, pH, | ¨ |, p¨, ¨qq, pV ˚, } ¨ }˚q.
Remark. 5.3.1 We will see later that V ˚ is a very weak space, e.g. if H “ L2pΩq, then V ˚

is weaker than H´1pΩq and we can’t even interpret its elements in the distributional sense
[Sim99].

We define the operators

A : V Ñ V ˚, xApuq,v y :“ apu,vq and B : V Ñ V ˚, xBpuq,v y :“ bpu,u,vq,

where A is linear and B is nonlinear. We now define

pAvqptq :“ Avptq and pB vqptq :“ Bpvptqq (42)

Then the instationary Navier-Stokes equation is equivalent to the operator equation
$

&

%

u1 `Au` Bpuq “ f in L1p0, T ;V ˚q,

up0q “ u0 in H.
(43)

We wrote the Navier-Stokes equation as

Btu´ ν∆u` pu ¨∇qu`∇p “ f .

If we test by v P V , then remark 5.2.2 implies that p vanishes.

We consider the associated Nemytskii operators.

Lemma 5.3.2 (Range of the Nemytskii operator of the linear operator A)
The linear operator A : L2p0, T ;V q Ñ L2p0, T ;V ˚q is well defined and continuous.
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Proof. To show that A is continuous, we just have to show that it is bounded because it is
linear. For u P L2p0, T ;V q we have

}Au}2L2p0,T ;V ˚q

(42)
“

ż T

0

}Auptq}2˚ dt “ ν2}u}2L2p0,T ;V q.

We use the definition of the dual norm, the Cauchy-Schwarz inequality and plug in
v “ u

}u} to obtain

ν}u} “ sup
vPV,}v}“1

}v}ν}u} ě }Au}˚ ě
ν}u}2

}u}
“ ν}u}

and thus }Au}˚ “ ν}u}. Hence A is continuous and thus maps Bochner measurable
functions to Bochner measurable functions (by lemma 3.1.3 1 ?). l

Lemma 5.3.3 (Range of the Nemytskii operator of the nonlinear operator B)
The nonlinear operator B : L2p0, T ;V q Ñ L1p0, T ;V ˚q is well defined. More precisely, the
nonlinear operator B : L8p0, T ;Hq X L2p0, T ;V q Ñ Lpp0, T ;V ˚q with

p “

$

&

%

2, if d “ 2,

4
3 , if d “ 3.

(44)

is well defined.

Proof. 1 From DGL II B we know that there exists a C ą 0 such that bpu,v, wq ď
C}u}}v}}w}, showing the first statement, as thus

|bpu, u,vq ´ bpū, ū,vq| ď |bpu, u´ ū,vq| ` |bpu´ ū, ū,vq| ď C}u´ ū}}v}p}u} ` }ū}q

and hence
}Bpuq ´Bpūq}˚ ď C}u´ ū}p}u} ` }ū}q.

Consider a sequence of simple functions un “
řmn
i“1 u

pnq
i 1

E
pnq
i

such that unptq Ñ uptq

almost everywhere in p0, T q. Then by the trilinearity of b we have

xBpunq,v y “ bpun, un,vq “
mn
ÿ

i,j“1

bpu
pnq
i , u

pnq
i ,vq1

E
pnq
i XE

pnq
j
“

mn
ÿ

i“1

bpu
pnq
i , u

pnq
i ,vq

looooooomooooooon

PV ˚

1
E
pnq
i

as the Epnqi are pairwisely disjoint. Hence xBpunq,v y is a simple function in V ˚.

Hence by continuity,

}Bpunptqq ´Bpuptqq}˚ “ Cp}unptq} ` }uptq}q}unptq ´ uptq}.

Since punqnPN converges, it is also bounded. The pointwise convergence follows for
Bpunq, so Bpuq is also Bochner measurable. We have

}B u}L1p0,T,V ˚q “

ż T

0

}Buptq}˚ dt ď C

ż T

0

}uptq}2 dt “ C}u}2L2p0,T ;V q.

2 Now let us prove the more precise statement. By the generalised Hölder inequality
we have

bpu,v, wq “

ż

Ω

p∇vuq ¨ w dx ď }∇v}Lα}u}Lβ }w}Lγ ,

where 1
α `

1
β `

1
γ “ 1. We choose α “ γ “ 4 and β “ 2 to infer bpu,v, wq ď

}u}L4}v}}w}L4 .
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The Gagliardo–Nirenberg inequality states that

}u}L4 ď

$

&

%

C}u}
1
2 |u|

1
2 , for d “ 2,

C̃}u}
3
4 |u|

1
4 , for d “ 3.

Hence for d “ 2 we have (using that |bpu,v, wq| “ |bpu,w,vq|)

}B u}2L2p0,T ;V ˚q ď

ż T

0

}uptq}4L4 dt ď C

ż T

0

}uptq}2|uptq|2 dt ď C}u}2L2p0,T ;V q}u}
2
L8p0,T ;Hq

and for d “ 3 we have

}B u}
4
3

L2p0,T ;V ˚q ď

ż T

0

}uptq}
8
3

L4 dt ď C̃

ż T

0

}uptq}2|u|
2
3 dt ď C̃}u}2L2p0,T ;V q}u}

2
3

L8p0,T ;Hq.

l

We observe that A and B are not maps from Lpp0, T ;V q to Lp
1

p0, T ;V ˚q (as before), so
the previous theory is not applicable, and hence we can’t test with the function itself (this
showed upper estimates and uniqueness), since we have less regularity of the range of the
operator and thus the solutions’ time derivative has less regularity.

Weak formulation

The problem may be formulated as

to u0 P H and f P L2p0, T ;V ˚q find u P L2p0, T ;V q with

xu111ptq,v y`νppuptq,vqq ` bpuptq,uptq,vq “ xfptq,v y @v P V, for almost all t P p0, T q.

Remark. 5.3.4 From f P L2p0, T ;V ˚q and u P L2p0, T ;V q ãÑ L1p0, T ;V ˚q as well as
Au`Bpuq P L1p0, T ;V ˚q (by lemma 5.3.2 and lemma 5.3.3) we infer that u1 P L1p0, T ;V ˚q‘

L2p0, T ;V ˚q “ L1p0, T ;V ˚q, which implies that u P W 1,1p0, T ;V ˚q ãÑ ACpr0, T s;V ˚q and
that the initial condition is attained in V ˚, that is, up0q “ u0 P V

˚

Hence the weak formulation can be written as

to u0 P H and f P L2p0, T ;V ˚q find u P L2p0, T ;V ˚q with u1 P L1p0, T ;V ˚q such that
$

&

%

u1 `Au` Bpuq “ f almost everywhere in V ˚ or L1p0, T ;V ˚q

up0q “ u0 in V ˚.

If d “ 2 we find u P L2p0, T ;V ˚q X L8p0, T ;Hq such that

u1 “ f ´Au´ Bpuq in L2p0, T ;V ˚q.

We infer that u PW p0, T q ãÑ Cpr0, T s;Hq such that uptq tŒ0
ÝÝÝÑ u0 P H.

If d “ 3, we have u P L2p0, T ;V ˚q X L8p0, T ;Hq such that u1 P L
4
3 p0, T ;V ˚q and we again

infer that u P ACpr0, T s;V ˚q ãÑ Cwpr0, T s;V ˚q, which is the space of continuous functions
with respect to V ˚ equipped with the weak topology, that is

Cwpr0, T s;Xq :“ tf : r0, T s Ñ X | f is demicontinuousu

for any Banach space X.
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Lemma 5.3.5 (Weak continuity)
Let H be a reflexive Banach space and H ãÑ V ˚, where V is also a Banach space. Then

Cwpr0, T s;V ˚q X L8p0, T ;Hq Ă Cwpr0, T s;Hq.

This doesn’t work for H “ L1pΩq, which is not reflexive.

Proof. Exercise!

The idea is that one has a pointwise bound in H on every sequence of functions and this
gives weak convergence in H of a subsequence by reflexivity. In this lower space one is able
to identify the weak limit via the weak continuity in V ˚. l

Hence uptq á u0 in H as tÑ 0.

5.4 Existence

Theorem 5.4.1: Global existence

Given a right-hand side f P L2p0, T ;V ˚q, initial data u0 P H and a bounded Lipschitz
domain Ω Ă Rd, where d P t2, 3u, a solution

u P L2p0, T ;V q X L8p0, T ;Hq XW 1,pp0, T ;V ˚q

to (43) exists, where (44).

Proof. In this proof we use a approximate system of combined linearisation and Schauder
arguments. One could also use time or Galerkin discretisation.

1 Regularisation. Consider

B̃ε : L2p0, T ;V q2 Ñ L2p0, T ;V ˚q, x B̃εpu,vq,w y :“

ż

Ω

`

pρε ˚ uq ¨∇qv ¨w dx,

where pρεqε Ă C8c pΩ;Rdq are d-dimensional mollifiers, where

Formally, one has to

integrate over Rd and
introduce some
extension operator for
Sobolev functions from
Ω to Rd, but since we
deal with zero boundary
conditions, the
extension is done by
zero.

pρε ˚ uqpxq “

ż

Ω

ρεpx´ yqupyqdy.

Let

Bε : L2p0, T ;V q Ñ L2p0, T ;V ˚q, u ÞÑ B̃εpu,uq.

Recall from DGL IIA that for non-abstract functions u

• ρε ˚ uÑ u in LppΩq with p P r1,8q

• ρε ˚ uÑ u almost everywhere in Ω,

• }ρε ˚ u}LppΩq ď }u}LppΩq.

Tim’s alternative Smoothing. Let ρTε for ε ą 0 be a smoothing kernel on p0, T q and ρΩ
ε a smoothing

kernel on Ω. For
ū P L

2
p0, T ;Hq Ă L

2
pp0, T q ˆ Ωq

we obtain
ρε ˚ ū P C8c pp0, T q ˆ Ωq,
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where

pρε ˚ ūqpt, xq :“
`

ρ
Ω
ε ˚ pρ

T
ε ˚ ūq

˘

pt, xq “

ż

Ω

ρ
Ω
ε px´ yq

ż T

0

ρ
T
ε pt´ sqūps, yq ds dy.

We set
Bε : L

2
p0, T ;Hq ˆ L

2
p0, T ;V q Ñ L

2
p0, T ;V

˚
q,

xBεpū, uq, wy “
ż T

0

xBpρε ˚ ū, uq, wy dt “

ż T

0

`

pρε ˚ ū ¨ ∇qu,w
˘

dt,

then measurability follows similarly to the proof earlier.

2 Approximate problem. For ε ą 0 we consider
$

&

%

u1ε `Auε `Bpuεq “ f,

uεp0q “ u0

(Pε)

We have

xBεpuq, v y “ x B̃εpu,uq, v y ď Cε}u}L2p0,T ;Hq}u}L2p0,T ;V q}v}L2p0,T ;V q.

3 Existence of solutions to (Pε). For every ū P L2p0, T ;Hq we solve the abstract regu-
larised problem

$

&

%

Btuε `Auε ` B̃εpū,uεq “ f , in L2p0, T ;V ˚q

uεp0q “ u0 in H.
(PS)

As argued beforehand, A`B̃εpū, ¨q : L2p0, T ;V q Ñ L2p0, T ;V ˚q is a bounded linear
operator. In order to apply the Theorem of Lions, we need some kind of coerciveness.

We have

xAu` B̃εpū,uq,u y “ νppu,uqq `

ż

Ω

`

pρε ˚ ūq ¨∇
˘

u ¨ udx

p‹q
“ ν}u}2V ´

ż

Ω

∇ ¨ pρε ˚ ūq
1

2
|u|2 dx “ ν}u}2,

where in p‹q we used integration by parts and pu1ptq, uptqq “ 1
2Bt|uptq|

2. The last step
is due to, by writing out the convolution, we have

∇ ¨ pρε ˚ ūq “
ż

Ω

∇ ¨ ρpx´ yqūdx “

ż

Ω

ρpx´ yq∇ ¨ ūdx “ 0.

By Lions’ Theorem of linear abstract ODEs, to every ū P L2p0, T ;Hq there exists a
unique solution to (PS).

4 Schauder fixed-point argument. Consider the set

Mp
R :“ tv P Lpp0, T ;Hq : }v}Lpp0,T ;Hq ď Ru

for p ă 8 and some R ě 0 determined later. Then, we define the solution operator

J : Mp
R ÑMp

R, v ÞÑ u,

where u is the solution of (PS) in the sense of Lions’ Theorem. (Tim’s interjection:

R
2 :“

1

cν

`

|u0|
2
`

1

ν
}f}

2
L2p0,T ;V˚q

˘

ą 0.

The operator is well-defined, since a solution always exists and moreover

}u}
2
L2p0,T ;Hq

ď
1

c
}u}

2
L2p0,T ;V q

ď R
2

holds for any u “ Jū with ū PMp
R.)

In order to apply the Schauder fixed-point theorem, we have to show that J maps
MR to MR, is continuous and compact and that MR is bounded, non-empty and
convex.

59



5 INSTATIONARY NAVIER-STOKES PROBLEM

1 Clearly, Mp
R is non-empty, bounded, closed and convex.

2 Compactness of J . We know that W p0, T q ãÑ Cpr0, T s;Hq by Theorem 2.2.1 3 .
By the theorem of Lions-Aubin, we observe that W p0, T q c

ãÑ L2p0, T ;Hq since
V

c
ãÑ H (by choosing the Hilbert spaces V1 :“ V , V0 :“ H, V1 :“ V ˚ and

r “ s “ 2). By the interpolation lemma we deduce that W p0, T q c
ãÑ Lpp0, T ;Hq

for all p P r1,8q (HOW???).

3 Welldefinedness of J . We show an a-priori estimate: we test (PS) by u to obtain

1

2

d

dt
|uptq|2 ` ν}u}2 ` B̃εpv,u,uq

looooomooooon

“0

“ xf ,u y

ď
1

2ν
}f}2˚ `

ν

2
}u}2

by Young’s inequality. Hence

}u}2L8p0,T ;Hq ` ν}u}
2
L2p0,T ;V q ď 4

ˆ

|u0|
2 `

1

ν
}f}2L2p0,T ;V ˚q

˙

“:
R

C
,

where C is chosen such that }u}Lpp0,T ;Hq ď R implies that u PMp
R.

4 Continuity of J . We show that vn Ñ v in Lpp0, T ;Hq implies that Jpvnq Ñ Jpvq

in W p0, T q. un “ Jpvnq and u “ Jpvq such that ūn “ un ´ u solves

ū1n `A ūn ` B̃εpv, ūnq “ B̃εpv ´ vn
loomoon

Ñ0

, un
loomoon

bd.

q.

It can be show that B̃εpv ´ vn, unq Ñ 0 in L2p0, T ;V ˚q such that the continuity
follows from the continuity of the solution operator.

By Schauder’s fixed-point theorem, there exists a solution uε for ε ą 0 of (Pε).
(Tim Alternative: Also, for u :“ Jū and v :“ Jv̄ with ū, v̄ PMR we find

ˇ

ˇxBεpū, uq ´ Bεpv̄, vq, u´ vy
ˇ

ˇ “
ˇ

ˇxBεpū´ v̄, uq ` Bεpv̄, u´ vq, u´ vy
ˇ

ˇ

“
ˇ

ˇxBεpū´ v̄, uq, u´ vy
ˇ

ˇ ď c2R
2
}ρε ˚ pū´ v̄q}L8pp0,T qˆΩq ď Cpεq2R

2
}ū´ v̄}L2p0,T ;Hq,

where we used

ˇ

ˇ

`

ρε ˚ pū´ v̄q
˘

pt, xq
ˇ

ˇ ď

ż

Ω

ˇ

ˇρ
Ω
ε px´ yq

ˇ

ˇ

ż T

0

ˇ

ˇρ
T
ε pt´ sq

ˇ

ˇ|ūps, yq ´ v̄ps, yq| ds dy

ď c
›

›ρ
Ω
ε ρ

T
ε

›

›

L8pp0,T qˆΩq
}ū´ v̄}L2p0,T ;Hq.

Hence, J is continuous, as we obtain by testing with u´ v the relation

0 “ |upT q ´ vpT q|
2
` ν}u´ v}

2
L2p0,T ;V q

` xBεpū, uq ´ Bεpv̄, vq, u´ vy,

where the last term on the right vanishes for v̄ Ñ ū in L2
p0, T ;Hq. Thus, in the limit

}u´ v}
2
L2p0,T ;Hq

ď c}u´ v}
2
L2p0,T ;V q

“ 0.

By Aubin-Lions
J
`

L
2
p0, T ;Hq

˘

Ă W
1,2,2

p0, T ;V, V
˚
q
c

ãÑ L
2
p0, T ;Hq

and for a solution u to ū PMR we find

}u
1
}L2p0,T ;V˚q “ }f ´Au´ Bεpū, uq}L2p0,T ;V˚q

ď }f}L2p0,T ;V˚q `
`

ν ` Cpεq}ū}L2p0,T ;Hq

˘

}u}L2p0,T ;V q,

where each solution u is bounded in L2
p0, T ;V q by the same constant. We find that J

`

L2
p0, T ;Hq

˘

is
bounded in W 1,2,2

p0, T ;V, V ˚q and thus relatively compact in L2
p0, T ;Hq. Therefore, J is compact and

Schauder’s fixed-point theorem furnishes a solution uε P W 1,2,2
p0, T ;V, V ˚q to

#

u1ε `Auε ` Bεpuε, uεq “ f in L2
p0, T ;V ˚q,

uεp0q “ u0 in H.

)
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5 Passing to the limit. We obtain a-priori estimate by testing (Pε) by uε, which is
allowed due to uε PW p0, T q to get

1

2

d

dt
|uε|

2 ` ν}uε}
2 ` xBεpuεq,uε y

looooooomooooooon

“0

“ xf ,uε y .

Estimating the RHS by Young’s inequality we deduce that

|uεptq|
2 ` ν

ż t

0

}uεpsq}
2 ds ď |u0|

2 `
1

ν

ż t

0

}fpsq}2.

We infer that
}uε}

2
L8p0,T ;Hq ` }uε}

2
L2p0,T ;V q ď C

for all ε ą 0. By the Theorem of Banach-Anaoglu there exists a subsequence such
that uε

˚
á u in L8p0, T ;Hq and uε á u in L2p0, T ;Hq.

We need some strong convergence to pass to the limit in the nonlinear term Bε, for
which we need information about the time derivative.

6 Time derivative We observe that

}u1εptq}˚ “ sup
vPV
}v}“1

xu1εptq,v y “ sup
vPV
}v}“1

xfptq ´Auεptq ´ Bpuεptqq,v y

ď }fptq}˚ ` }Auεptq}˚ ` }Bpuεptqq}˚
(H)
ď }fptq}˚ ` ν}uεptq}˚ ` }pρε ˚ uεqptq}L4}uεqptq}L4

ď }fptq}˚ ` ν}uεptq}˚ ` }uεptq}
2
L4

2
ď }fptq}˚ ` ν}uεptq}˚ ` }uεptq}

3
2 |uεptq|

1
2 . (d “ 3)

This implies that

}uεptq}
4
3

L
4
3 p0,T ;V ˚q

ď C

ż T

0

}fptq}
4
3
˚ ` ν

4
3 }uεptq}

4
3
˚ ` }uεptq}

2|uεptq|
2
3 dt

ď C

ˆ

}f}
4
3

L2p0,T ;V ˚q ` ν
4
3 }uε}

4
3

L2p0,T ;V ˚q

` }uε}
2
L2p0,T ;V ˚q|uεptq|

2
3

L8p0,T ;Hq

˙

by using Jensen’s inequality (???).

We extract another subsequence such that

u1ε
˚
á u in L

4
3 p0, T ;V ˚q.

By Lions-Aubin we infer strong convergence such that

uε Ñ u in L2p0, T ;Hq.

Using this, we want to show that we can pass to the limit, identifying the nonlinear
term:

u1ε
loomoon

˚
áu1

` Auε
loomoon

˚
áAu

`Bεpuεq
loomoon

á???

“ f .

But first, we deduce strong pointwise convergence. By the inverse of Lebesgue’s
theorem, we know that there exists another subsequence such that

uεpx, tq Ñ upx, tq almost everywhere in Ωˆ p0, T q
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and that there exists a dominating function in L2pΩˆ p0, T qq. Due to that pointwise
convergence, we have

pρε ˚ uεqpx, tq Ñ upx, tq almost everywhere in Ωˆ p0, T q.

Since the norm of ρε ˚ uε is dominated by uε in the L2-norm, there is a dominating
function in L2 for ρε ˚ uε.

For all ψ P C8c p0, T ;Vq we have
ż t

0

|bpρε ˚ uε,uε, ψq ´ bpu,u, ψq|dt

ď

ż t

0

|bpρε ˚ uε,uε ´ u, ψq| ` |bpρε ˚ uε ´ u,u, ψq|dt

ď

ż t

0

}ρε ˚ uε}L2pΩq
looooooomooooooon

converges
as it is bd.

}uε ´ u}L2pΩq
looooooomooooooon

εŒ0
ÝÝÝÑ0

`}ρε ˚ uε ´ u}L2pΩq
loooooooooomoooooooooon

εŒ0
ÝÝÝÑ0

}u}L2pΩq}ψ}W 1,8 dt.

Hence

xBεpuεq, ψ y
εŒ0
ÝÝÝÑ xBpuq, ψ y @ψ P C8c p0, T ;Vq.

By density and by boundedness of B in L
4
3 p0, T ;V ˚q (for d “ 3), we get

Bεpuεq
˚
á Bpuq in L

4
3 p0, T ;V ˚q.

Convergence of the initial values follows since they are fixed for all ε ą 0.
(Tim’s alternative: We have

|uεptq|
2
` ν}uε}

2
L2p0,t;V q

ď |u0|
2
`

1

ν
}f}

2
L2p0,T ;V q

for a.e. t P p0, T q. Thus, puεq is bounded in L2
p0, T ;V q and L8p0, T ;Hq and we find

uε á u in L
2
p0, T ;V q and uε

˚
á u in L

8
p0, T ;Hq.

We will now show boundedness of pu1εq in L
4{3
p0, T ;V ˚q. To this end, first notice

}Bεpuε, uεq}
4{3
˚ ď }ρε ˚ uε}

4{3

L4pΩq
}uε}

4{3

L4pΩq

ď }ρ
T
ε ˚ uε}

4{3

L4pΩq
}uε}

4{3

L4pΩq
ď c}ρ

T
ε ˚ uε}}uε}|ρ

T
ε ˚ uε|

1{3
|uε|

1{3
,

hence
}Bεpuε, uεq}4{3

L4{3p0,T ;V q

ď c}ρ
T
ε ˚ uε}L2p0,T ;V q}uε}L2p0,T ;V q}ρ

T
ε ˚ uε}

1{3

L8p0,T ;Hq
}uε}

1{3

L8p0,T ;Hq

ď c}uε}
2
L2p0,T ;V q

}uε}
2{3

L8p0,T ;Hq
. (45)

We have
}u
1
ε}

4{3

L4{3p0,T ;V˚q
“ }f ´Auε ´ Bεpuε, uεq}4{3

L4{3p0,T ;V˚q

ď c
´

}f}
2
L2p0,T ;V˚q

`
`

ν
4{3
` }uε}

2{3

L8p0,T ;Hq

˘

}uε}
2
L2p0,T ;V q

¯

.

Thus,
u
1
ε á 9u in L

4{3
p0, T ;V

˚
q.

Taking arbitrary ϕ P C8c p0, T q and v P V we find

´xu, vϕ
1
y ÐÝ ´xuε, vϕ

1
y “ xu

1
ε, ϕvy Ñ x 9u, ϕvy,

hence

´

B
ż T

0

uϕ
1
dt, v

F

“ ´xu, vϕ
1
y “ x 9u, ϕvy “

B
ż T

0

9uϕ dt, v

F

and so
ż T

0

uϕ
1
dt “

ż T

0

9uϕ dt, hence u
1
“ 9u.
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By Aubin-Lions we find strong convergence

uε Ñ u in L
2
p0, T ;Hq.

Using it, we obtain

ˇ

ˇxBεpuε, uεq ´ B u, ϕy
ˇ

ˇ ď

ż T

0

ˇ

ˇxBpρε ˚ uε ´ u, uεq, ϕy
ˇ

ˇ`
ˇ

ˇxBpu, uε ´ uq, ϕy
ˇ

ˇ dt

ď

´

}ρε ˚ uε ´ u}L2p0,T ;Hq}uε}L2p0,T ;Hq ` }u}L2p0,T ;Hq}uε ´ u}L2p0,T ;Hq

¯

}∇ϕ}L8pp0,T qˆΩq Ñ 0

for εÑ 0, thus
xBεpuε, uεq ´ B u, ϕy Ñ 0 for all ϕ P C8c

`

p0, T q ˆ Ω
˘

.

By density and (45) we find

xBεpuε, uεq ´ B u, vy Ñ 0 for all v P L
4
p0, T ;V q

or just

Bεpuε, uεq
˚
á B u in L

4{3
p0, T ;V

˚
q.

Clearly, also
xAuε ´Au, vy “ νxuε ´ u, vyL2p0,T ;V˚qˆL2p0,T ;V q Ñ 0,

hence

Auε
˚
á Au in L

2
p0, T ;V

˚
q.

To identify the initial value we use that

um, u P ACpr0, T s;V
˚
q

holds. Let v P C8pr0, T s;V q with vp0q “ w P V and vpT q “ 0 be arbitrary. We find

xu0, wy “ xuεp0q, wy “ ´

ż T

0

d
dt
xuε, vy dt “ ´

ż T

0

xu
1
ε, vy ` xuε, v

1
y dt

Ñ ´

ż T

0

xu
1
, vy ` xu, v

1
y dt “ ´

ż T

0

d
dt
xu, vy dt “ xup0q, wy.

As w P V can be chosen freely, we obtain up0q “ u0 in V ˚.

Overall, we obtain

f “ u
1
ε `Auε ` Bεpuε, uεq

˚
á u

1
`Au` B u in L

4{3
p0, T ;V

˚
q

and
up0q “ u0 in V

˚
,

where
u P L

2
p0, T ;V q X L

8
p0, T ;Hq XW

1,1
p0, T ;V

˚
q.

) l

5.5 Fractional time derivative

The regularisation we used in the above proof left us in a good position since we were allowed
to test with V . If we used a Galerkin approximation we would have need V -stability of the
H-projection onto the Galerkin subspaces. We need additional regularity of the boundary
in order to have such a stability, and this often does not hold for FEM.

We need some information on the time derivative of the approximate sequence in order to de-
duce strong convergence, which is crucial for passing to the limit in the nonlinear term (weak
convergence does not suffice!). But the sequence pu1εqεą0 is not bounded in L2p0, T ;V ˚q.
We need something weaker: either L

4
3 p0, T ;V ˚q or a Sobolev-Slobodeckij space. The

space Wσ,pp0, T ;Hq can be obtained by properly interpolating between Lpp0, T ;Hq and
W 1,pp0, T ;Hq.
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Definition 5.5.1 (Sobolev-Slobodeckij space)
Let p P r1,8q and σ P p0, 1q. Then

Wσ,pp0, T ;Hq :“ tu P Lpp0, T ;Hq : }u}Wσ,pp0,T ;Hq ă 8u,

where

|u|Wσ,pp0,T ;Hq :“

ż T

0

ż T

0

|uptq ´ upsq|p

|t´ s|1`σp
dtds

and

}u}Wσ,pp0,T ;Hq :“
´

}u}pWσ,pp0,T ;Hq ` |u|
p
Wσ,pp0,T ;Hq

¯
1
p

.

We abbreviate Hσp0, T ;Hq :“Wσ,2p0, T ;Hq.

We have
H1p0, T ;Hq ãÑ Hσp0, T ;Hq ãÑ L2p0, T ;Hq

(Exercise!) and furthermore for σ P p0, 1
2 q

Hσp0, T ;Hq “ Hσ
0 p0, T ;Hq :“ clos }¨}σ,2 C

8
c p0, T ;Hq,

which means that if we take derivative of order lower that 1
2 , we don’t see the boundary

conditions. For σ ą 1
2 , it doesn’t matter if we first take the closure and then interpolate or

the other way around.

Lemma 5.5.2
Let V c

ãÑ H for Banach spaces V and H. Then we have

L2p0, T ;V q XHσp0, T ;Hq
c

ãÑ L2p0, T ;Hq @σ ą 0.

Lemma 5.5.3
Let puεqεą0 be the sequence of approximate solutions. Then it holds for σ ă 1

8 (even holds
for σ ă 1

4 , see Exercises) that |uε|σ,2 ď C, where C is independent of ε.

Proof. It suffices to prove that |uε|σ,2 ď C for all ε ą 0. We have

|uεptq ´ uεpsq|
2 “

`

uεptq ´ uεpsq,uεptq ´ uεpsq
˘

“

ˆ
ż t

s

u1εpτqdτ,uεptq ´ uεpsq

˙

“

ż t

s

`

fpτq ´Auεpτq ´ Buεpτq,uεptq ´ uεpsq
˘

dτ

ď

ż t

s

p}fpτq}˚ ` ν}uεpτq} ` C}pρε ˚ uεqpτq}L4}uεpτq}L4q

¨ p}uεptq} ` }uεpsq}q dτ.

By 2 , as before,

}pρε ˚ uεqpτq}L4}uεpτq}L4 ď }uε}
2
L4 ď C̃}uε}

3
2

L4 |uε|
1
2 .

We use the abbreviation

gpτq :“ }fpτq}˚ ` ν}uεpτq} ` C̃}uε}
3
2

L4 |uε|
1
2 .
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We can now find

|uε|
2
σ,2 “

ż T

0

ż T

0

|uεptq ´ uεpsq|
2

|t´ s|1`2σ
dtds

“

ż T

0

ż T

0

|t´ s|´1´2σ

ż t

s

gpτq p}uεptq} ` }uεpsq}qdτ dtds

“ 2

ż T

0

ż T

0

ż maxps,tq

minps,tq

|t´ s|´1´2σgpτq}uεptq}dτ dsdt

“ 2

ż T

0

ż T

0

ż t

s

|t´ s|´1´2σgpτq}uεptq}dτ dsdt

` 2

ż T

0

ż T

0

ż s

t

|t´ s|´1´2σgpτq}uεptq}dτ dsdt

(F)
“ 2

ż T

0

ż T

0

ż τ

0

|t´ s|´1´2σ dsgpτq}uεptq}dτ dt

` 2

ż T

0

ż T

0

ż T

τ

|t´ s|´1´2σ dsgpτq}uεptq}dτ dt

“
1

σ

ż T

0

ż T

0

`

pt´ τq´2σ ´ t´2σ
˘

gpτq}uεptq}dτ dt

`
1

σ

ż T

0

ż T

0

`

pτ ´ tq´2σ ´ pT ´ tq´2σ
˘

gpτq}uεptq}dτ dt

“ TODO l

We may use the compact embedding

L2p0, T ;V q XHσp0, T ;Hq
c

ãÑ L2p0, T ;Hq.

We deduce uε Ñ u in L2p0, T ;Hq. Now proceed as in the previous proof to prove the
convergence

Bεpuεq
˚
á Bpuq in L

4
3 p0, T ;Hq.

5.6 Weak-strong uniqueness

Recall that we have at least one solution u P L2p0, T ;V q X L8p0, T ;Hq with

u1 P

$

&

%

L2p0, T ;V ˚q for d “ 2,

L
4
3 p0, T ;V ˚q for d “ 3,

Ă L1p0, T ;V ˚q

(e.g. less time integrability for the time derivative in d “ 3) and

u P

$

&

%

Cpr0, T s;Hq for d “ 2,

Cwpr0, T s;Hq for d “ 3.

Furthermore, u enjoys the fractional time regularity

u P Hσp0, T ;Hq for σ ă

$

&

%

1
2 for d “ 2,

1
4 for d “ 3.

Weak-strong uniqueness means that if there is a solution admitting additional regularity,
then this strong solution is unique in the class of weak solutions. So whenever there is a
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strong solution, this strong solution coincides with every weak solution to the same initial
values and right hand side f .

It is a major drawback of weak solutions, that one cannot show weak-strong uniqueness; one
has to get an additional ingredient - the energy inequality, which comes from the physical
insight (energy is conserved).

Definition 5.6.1 (Suitable weak solutions)
A weak solution to the Navier-Stokes equations is suitable if it fulfills the energy in-
equality

1

2
|uptq|2 ` ν

ż t

0

}upsq}2 ds ď
1

2
|u0|

2 `

ż t

0

xfpsq,upsq yds @t P p0, T q. (46)

For d “ 2, the energy inequality is an equality.

Theorem 5.6.1: Existence of suitable weak solutions

Let Ω Ă Rd be a Lipschitz domain for d P t2, 3u. Then there exists a suitable weak
solution to the Navier-Stokes equations.

Proof. In dimension 2. Since u P W p0, T q, we test the abstract equation by u in order to
infer

1

2

d

dt
|uptq|2 ` ν}uptq}2 “ xu1ptq,uptq y`ν

``

uptq,uptq
˘˘

` b
`

uptq,uptq,uptq
˘

loooooooooomoooooooooon

“0

“ xfptq,uptq y .

Integrating in time from 0 to t P p0, T q yields

1

2
|uptq|2 ` ν

ż t

0

}upsq}2 ds “
1

2
|u0|

2 `

ż t

0

xfpsq,upsq yds,

so the energy inequality is an equality (as mentioned above).

In dimension 3 the problem is that we are not allowed to test with the solution u, so we
have to go back to the approximation scheme (Pε) and do this calculation there. On the
approximate level, we are allowed to test with uε PW p0, T q, yielding

1

2

d

dt
|uεptq|

2 ` ν}uεptq}
2 “ xu1εptq,uεptq y`ν

``

uεptq,uεptq
˘˘

` b
`

pρε ˚ uεqptq,uεptq,uεptq
˘

looooooooooooooooomooooooooooooooooon

“0

“ xfptq,uεptq y .

Integrating in time from 0 to t P p0, T q yields

1

2
|uεptq|

2 ` ν

ż t

0

}uεpsq}
2 ds “

1

2
|u0|

2 `

ż t

0

xfpsq,uεpsq yds, (47)

We now want to pass to limit with εŒ 0. In the right hand side the uε appears linearly, so
we may pass to the limit using the weak convergence. For the integral left hand side we have
to use that the norm is weakly lower semi-continuous and that we have weak convergence
in L2p0, T ;V ˚q. We need a way to pass to the limit pointwise in the very first term to get
an equality that holds everywhere and not only almost everywhere, so we need something
more than L8.
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We already established that
}u1ε}L

4
3 p0,T ;V ˚q

ď c

independent of ε ą 0. Therefore, puεqεą0 Ă L8p0, T ;Hq Ă L1p0, T ;V ˚q and pu1εqεą0 Ă

L
4
3 p0, T ;V ˚q Ă L1p0, T ;V ˚q. Hence

pu1εqεą0 ĂW 1,1p0, T ;V ˚q ãÑ ACpr0, T s;V ˚q Ă Cwpr0, T s;V ˚q.

We know Cwpr0, T s;V ˚q X L8p0, T ;Hq Ă Cwpr0, T s;Hq by lemma 5.3.5. So a weakly con-
tinuous function in a weaker space which is bounded in a stronger space, is also weakly
continuous in the stronger space.

We observe that puεqεą0 is bounded in Cwpr0, T s;Hq. We need some information on the
time derivative and thus we can get this weak convergence pointwise - L8 is not enough to
get weak convergence pointwise.

There exists a subsequence such that

uε á u in Cwpr0, T s;Hq,

which means that for every t P r0, T s holds that

u1εptq á uptq in H.

For all t P r0, T s, we observe that by the lower semi-continuity of the H-norm we have

|uptq| ď lim inf
εŒ0

|uεptq|.

The same holds for the weak solution. Similarly, since uε á u in L2p0, T ;Hq, we have
ż t

0

}upsq}2 ds ď lim inf
εŒ0

ż t

0

}uεpsq}
2 ds @t P p0, T q.

From uε á u in L2p0, T ;V q, we deduce
ż t

0

xfpsq,uεpsq ydsÑ

ż t

0

xfpsq,upsq yds @t P r0, T s.

We have now derived for convergence for every term and end up with an inequality. Passing
to the limit εŒ 0 in the energy equality (47), we deduce the energy inequality (46). l

We will now consider the uniqueness of solutions in 2D and the weak-strong uniqueness of
solutions in 3D.

Lemma 5.6.2 (Intermediate regularity result)
Let u P L2p0, T ;V q X L8p0, T ;Hq. Then it holds that

u P

$

&

%

L4p0, T ;L4pΩqdq – L4pΩˆ p0, T qqd, for d “ 2,

L
8
3 p0, T ;L4pΩqdq, for d “ 3.

Proof. For d “ 2 we have by 2
ż T

0

}uptq}4L4pΩq dt ď C

ż T

0

|uptq|2}uptq}2 dt ď C}u}2L8p0,T ;Hq}u}
2
L2p0,T ;V q.

For d “ 3 we have by 2
ż T

0

}uptq}
8
3

L4pΩq dt ď C

ż T

0

}uptq}
3
4 ¨

8
3 |uptq|

1
4

8
3 dt ď C}u}

2
3

L8p0,T ;Hq}u}
2
L2p0,T ;Hq.

l
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Theorem 5.6.2: Uniqueness for d “ 2

For d “ 2 there exists a unique solution u P W p0, T q to the Navier-Stokes equa-
tions.

Proof. Let u, ũ be two solutions such that
$

&

%

pu´ ũq1 `Apu´ ũq ` Bpuq ´ Bpũq “ 0, in L2p0, T ;V ˚q,

pu´ ũqp0q “ u0 ´ ũ0, in H.

Since u, ũ PW p0, T q, we may test the equations by u´ ũ, inferring

1

2

d

dt
|u´ ũ|2 ` ν}u´ ũ}2 ` bpu,u,u´ ũq ´ bpũ, ũ,u´ ũq “ 0.

We observe that

|bpu,u,u´ ũq ´ bpũ, ũ,u´ ũq| “
ˇ

ˇ bpu,u´ ũ,u´ ũq
loooooooooomoooooooooon

“0

´bpu´ ũ, ũ,u´ ũq
ˇ

ˇ

“ bpu´ ũ,u´ ũ, ũq

(H)
ď }u´ ũ}L4}u´ ũ}}ũ}L4

2
ď }u´ ũ}

3
2 |u´ ũ|

1
2

L4}ũ}L4

(Y)
ď

ν

2
}u´ ũ}2 ` Cν |u´ ũ|

2}ũ}L4 ,

where (H) is the generalised Hölder inequality and (Y) is Young’s inequality. By Gron-
wall’s inequality, we have for all t P p0, T q

|uptq ´ ũptq|2 `

ż t

0

ν}uptq ´ ũptq}2 exp

ˆ
ż t

s

Cν}ũ}
4
L4 dτ

˙

ds
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

ě0

ď |u0 ´ ũ0|
2 exp

ˆ
ż t

s

Cν}ũ}
4
L4 dτ

˙

ds.
l

Theorem 5.6.3: Weak-strong uniqueness property (Serrin 1962,
Prodi 1959)

Assume that a suitable weak solution u P L8p0, T ;Hq X L2p0, T ;V q to the Navier-
Stokes equations fulfills additionally

u P Lsp0, T ;LrpΩqdq

with s P r2,8s, r ě d such that
2

s
`
d

r
ď 1.

Then the solution is unique in the class of suitable weak solutions.

Example. 5.6.3
Standard value combinations for s and r include

• In 2D, we can choose ps, rq “ p4, 4q or ps, rq “ p8, 2q. We get the function space
L4p0, T ;L4pΩqdq and L8p0, T ;L2pΩqdq.
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• In 3D, there is at most one solution in L8p0, T ;L4pΩqdq, that is, ps, rq “ p8, 4q. As
8 ą 8

3 , this function is class is smaller than the class considered beforehand. ˛

Remark. 5.6.4 In three dimensions, only a weak-strong uniqueness results holds: if there
exists a solution fulfilling the additional regularity L8p0, T ;L4pΩqdq, all weak solutions em-
anating from the same initial value coincide with the regular solutions (it is unique).

Problem for well-posedness in 3D. Existence in L
8
3 p0, T ;L4pΩqdq and uniqueness in

L8p0, T ;L4pΩqdq. There is a regularity gap, uniqueness only in a smaller space.

Proof. (of Theorem 5.6.3) Let u be a suitable weak solution to the Navier-Stokes
equations. Then u P L8p0, T ;Hq X L2p0, T ;V q XW 1, 43 p0, T ;V ˚q.

Let ũ be a more regular solution with ũ P L8p0, T ;L4pΩqdq. Now we can get better estimates
for the nonlinear operator B (we will see that it maps to L2p0, T ;V ˚q).

Then

}B ũ}L2p0,T ;V ˚q “

ż T

0

}B ũptq}2˚ dt ď c

ż T

0

p}ũptq}2L4pΩqq
2 dt ď c}ũ}4L4p0,T ;L4pΩqdq ă 8.

This implies ũ P W p0, T q by ũ1 “ f ´A ũ´ Bpũq in L2p0, T ;V ˚q. Hence testing with this
function is allowed such that we infer the energy equality

1

2
|ũ|2 `

ż t

0

ν}ũpsq}2 ds “
1

2
|ũ0|

2 `

ż t

0

xfpsq, ũpsq yds @t P p0, T q.

We now show an integration-by-parts rule:

`

uptq,vptq
˘

´

ż t

0

`

upsq, Btvpsq
˘

´
`

u0,v0

˘

“

ż t

0

`

Btupsq,vpsq
˘

ds

for all u P Cwp0, T ;HqXW 1, 43 p0, T ;V ˚qXL2p0, T ;V q as well as v PW p,0, T qXL8p0, T ;L4pΩqdq.
This holds for continuously differentiable function, then generalised by density arguments.

For the weak solution u, it holds

`

uptq,vptq
˘

´

ż t

0

xv1ptq,upsq yds´
`

u0,vp0q
˘

`

ż t

0

νppupsq,vpsqqq ` xBpupsqq,vpsq y

“

ż t

0

xfpsq,vpsq yds,

which can be shown by integration by parts formula above or one multiplies by a function
v which is only supported on p0, tq and then integrates by parts.

This formulation is well defined, observe for the nonlinear operator B:
ż t

0

bpupsq,upsq,vpsqqds ď

ż t

0

}upsq}L4}upsq}}vpsq}L4 ds

2
ď

ż t

0

}upsq}
3
2 }vpsq}L4 ds

(Y)
ď

ż t

0

ν

2
}upsq}2 ` Cν |upsq|

2}vpsq}4L4 ds,

so all terms are well-defined.

We now use the relative energy approach. We start by defining the relative energy

Rpu | ũq :“
1

2
|u´ ũ|2,
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the relative dissipation

Wpu | ũq :“ ν}u´ ũ}2.

We have by using the energy inequality and the energy inequality

Rpu | ũqptq `
ż t

0

Wpu | ũqpsqds “
1

2
|u|2 ` ν

ż t

0

}upsq}2 ds

`
1

2
|ũ|2 ` ν

ż t

0

}ũpsq}2 ds

´
`

uptq, ˜uptq
˘

´

ż t

0

2νppupsq, ũpsqqq ds

ď
1

2
|u0|

2 `

ż t

0

xfpsq,upsq yds`
1

2
|ũ0|

2

`
���������ż t

0

xfpsq, ũpsq yds´
`

u0, ũp0q
˘

´

ż t

0

νppupsq, ũpsqqq ds´

ż t

0

x ũ1psq,upsq yds

`

ż t

0

x B̃pupsqq, ũpsq yds
����������
´

ż t

0

xfpsq, ũpsq yds

“ Rpu0 | ũp0qq `
���������ż t

0

xfpsq,upsq yds`

ż t

0

xBpuq, ũ yds

`

ż t

0

xBpũq,u y ds
����������
´

ż t

0

xfpsq,upsq yds

“ Rpu0 | ũp0qq `

ż t

0

bpu,u, ũqds`

ż t

0

bpũ, ũ,uqds

“ Rpu0 | ũp0qq `

ż t

0

bpu´ ũ,u, ũqds

and
ż t

0

bpu´ ũ,u, ũqds “

ż t

0

bpu´ ũ,u´ ũ, ũqds

ď

ż t

0

}u´ ũ}}u´ ũ}L4}ũ}L4 ds

2
ď

ż t

0

}u´ ũ}
7
4 |u´ ũ|

1
4 }ũ}L4 ds

(Y)
ď

ż t

0

ν

2
}u´ ũ}2 ` Cν |u´ ũ|

2}ũ}8L4 ds.

We conclude again by Gronwall’s Lemma

R
`

uptq | ũptq
˘

`

ż t

0

W
`

upsq | ũpsq
˘

exp

ˆ
ż t

s

Cν}ũpτq}
8
L4 dτ

˙

ds

ď R
`

u0 | ũp0q
˘

exp

ˆ
ż t

0

Cν}ũpτq}
8
L4 dτ

˙

.

This proves weak-strong uniqueness but also continuous dependence, if such a ?? solution
exists. l
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5.7 Local existence and uniqueness in three
dimensions

In the previous section we assumed a more regular solution exists. Now we want to prove
that this is actually the case, but we will only be able to show this on a small time interval
or with small data.

We want to use the property of the Stokes-operator A to construct the smooth solution we
talked about. if we want to prove something like this, one would test the equation not with
u, but with Au or ∆u such that we are again in the solenoidal functions. Even if we have
the resulting estimates, we need some discretisation argument to make the proof rigorous.
We do this here by constructing an appropriate Galerkin scheme.

Idea: find an estimate for }uptq}V . We want to ask for which v we have

}v}2 “ }v}2H1
0 pΩq

“ xAv,v y “ pv, AvqL2pΩq3 ,

that is, for which v P V we have Av P H.

Consider the elliptic problem
$

’

’

&

’

’

%

´ν∆u`∇p “ f , in Ω,

u “ 0 on BΩ,

∇ ¨ u “ 0 in Ω,

whose solution operator is the Stokes-operator.

Preliminaries

Let A : V Ñ V ˚ be a linear, bounded, strongly positive and symmetric operator:

xAu,v y “ ppu,vqq “ p∇u,∇vqL2pΩqd

with a Gelfand triple V c
ãÑ H

d
ãÑ V ˚. By Lax-Milgram, there exists a solution operator

A´1 : V ˚ Ñ V , which again is linear, bounded, strongly positive and symmetric.

We consider the restriction A´1
F :“ A´1

ˇ

ˇ

H
: V ˚ Ą H Ñ DpAq Ă V Ă H, where DpAq :“

ranpA´1|Hq. Then is A´1
F is bounded in H: for v P H we have (as V ãÑ H ãÑ V ˚ implies

| ¨ | ď c} ¨ } and } ¨ }˚ ď c| ¨ |)

|A´1
F v| ď c}A´1

F v} “ c}A´1v} ď c
1

µ
}v}˚ ď c2

1

µ
|v|.

As A´1
F is linear and symmetric:

pA´1
F u,vq “ xA

´1u,v y “ xA´1v,u y “ pA´1
F v,uq

Thus it is self-adjoint.

Furthermore, A´1
F is compact: let pgnqnPN be a bounded sequence. Then pA´1

F gnqnPN Ă V

is bounded in V . From V
c

ãÑ H, we infer that pA´1
F gnqnPN Ă H is relatively compact.

By the Spectral Theorem (from Functional Analysis II) there exists an ONB consisting of
eigenfunctions of A´1

F , that is, there exists a sequence pλnqnPN Ă R of eigenvalues that is
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bounded and converges to 0 such that the eigenspaces kerpA´λnIq are finite dimensional. We
find an an orthonormal basis pϕnqnPN Ă H consisting of eigenfunctions with A´1

F ϕn “ λnϕn

(the eigenvalue have to be counted according to their geometric multiplicity). Furthermore,
H “ kerpA´1

F q ‘ spanptϕnunPNq and A´1 is strongly positive such that

λn|ϕn|
2 “ λnpϕn, ϕnq “ pϕn, A

´1
F ϕnq “ ν}A´1ϕn}

2 ě
ν

β
}ϕn}

2
˚ ě 0,

so λn ě 0 for all n P N.

We observe that A´1
F is invertible, since kerpA´1

F q “ t0u, so A
´1
F is injective. It is additionally

surjective by definition, since it is restricted to DpAq:

AF : H Ą DpAq :“ tu P V : Au P Hu Ñ H.

The operator AF is called the Friedrich’s extension. In this case the domain can be
identified via DpAq “ V X H2pΩqd for the Friedrich’s extension (this identification only
works when BΩ is of class C2). As ϕn are eigenfunctions to the eigenvalue λn of A´1, they
are also eigenfunctions of AF to the eigenvalue λ´1

n :

λnAFϕn “ AF pλnϕnq “ AF pA
´1
F ϕnq “ ϕn.

We consider the orthogonal projections on Vm :“ spantϕ1, . . . , ϕmu defined by Pm : H Ñ

Vm Ă H defined via Pmv :“
řm
j“1pv, ϕiqϕi. Therewith, we infer Pmv Ñ v for all v P H as

mÑ8 (limit closedness). From the definition, we find ϕj P DpAq (since ϕj “ λ´1
j A´1

F ϕj P

DpAq). Thus Vm Ă DpAq.

Lemma 5.7.1
The eigenfunctions pϕiqiPN are a Galerkin basis in V .

Proof. TODO l

Theorem 5.7.1: Cattabriga

Let Ω Ă Rd be a convex (not needed) bounded domain with BΩ P C2. There exists a
c ą 0 such that

|Av| ď }v}H2pΩqd ď c|Av| @v P DpAq “ V XH2pΩqd.

Proof. TODO l

Remark. 5.7.2 The first inequality is obvious. From the previous theorem, it follows that
the norm |A ¨ | is equivalent to the full norm on H2pΩq X V . The assumptions on Ω can be
generalised.

Theorem 5.7.2: Weak solution on small time interval

Let Ω Ă R3 be a bounded domain of class C2. To u0 P C and f P L8p0, T ;Hq there
exists a T0 :“ minpT, T˚q with

T˚ ď
Cν

p1` }u0}
2q2

min

ˆ

ν2,
1

}f}L8p0,T ;Hq

˙

, (48)

such that the Navier-Stokes problem admits a unique weak solution on r0, T0q with
u P L8p0, T0, V q X L

2p0, T ;DpAqq.
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Remark. 5.7.3 If the data }u0}, }f}L8p0,T ;Hq and Re “ 1
ν are small enough, there exists

a global (on r0, T s) solution.

Proof. TODO l

In the last theorem we proved that for (48), pumqmPN Ă L8p0, T˚;V q X L2p0, T˚;DpAqq is
bounded. As usual the existence of a solution

u P L8p0, T ;V q X L2p0, T˚;DpAqq

follows. Moreover, u P Cpr0, T˚q;V q XW 1,2p0, T˚;DpAqq, which implies uniqueness, i.e. we
may test the equation by u in order to find the energy inequality and the uniqueness follows
from the previous weak-strong uniqueness theorem as L8p0, T ;V q ãÑ L8p0, T ;L4pΩqdq.

Corollary 5.7.4 (Uniqueness in 2D)
Let Ω Ă R3 be a bounded domain of class C2. To u0 P V and f P L8p0, T ;Hq there exists a
unique solution

u P L8p0, T ;V q X L2p0, T ;DpAqq

in dimension 2.

5.8 Existence of the pressure

The Navier-Stokes equations have four unknowns (u P R3 and p P R) but in the weak
formulation, the pressure vanishes because we test with solenoidal functions. How do we get
the pressure back?

Formally, we may write

∇p “ f ´ u1 ` ν∆u´ pu ¨∇qu “: g.

For all v P V it holds that

x g,v y “ xf ´ u1 ` ν∆u´ pu ¨∇qu,v y “ 0.

We may use the result of the exercise.

Theorem 5.8.1: deRham

Let g P H´1pΩqd with

x g,v yH´1pΩqd,H1
0 pΩq

d “ 0 @v P V .

Then there exists a p P L2pΩq with
ş

Ω
ppxqdx “ 0 such that ∇p “ g.

In contrast to our previous result, we now assume that f P L2p0, T ;H´1pΩqdq (instead of
L2p0, T ;V ˚q). This is a more restrictive assumption. Since V Ă H1

0 pΩq
d implies H´1pΩqd Ă

V ˚.

Theorem 5.8.2: Simon (1988)

Let Ω Ă R3 be a Lipschitz domain, u0, f P L2p0, T ;H´1pΩqdq. Then there exists a
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pair

pu, pq P
`

L8p0, T ;Hq X L2p0, T ;V q X Cwpr0, T s;Hq
˘

ˆW´1,8p0, T ;L2pΩq{Rq

satisfying the Navier-Stokes equation in the weak sense.

Remark. 5.8.1 The main problem is that V ˚ ( D1pΩq. The elements of the dual space V ˚

are no distributions. [Sim99] even showed that there exists no Hausdorff space (minimal
assumptions to distinguish two elements) such that V ˚ and H´1pΩqd can be embedded into
this Hausdorff space.
Remark. 5.8.2 Formally, we may get from ∇p “ f ´u1` ν∆u´pu ¨∇qu by applying the
divergence

∆p “ ∇ ¨
`

f ´ u1 ` ν∆u´ pu ¨∇qu
˘

“ ∇ ¨ f ´ trpp∇uq2q

in Ωˆ p0, T q and

n ¨∇p “
`

f ´ u1 ` ν∆u´ pu ¨∇qu
˘

¨ n “
`

f ` ν∆u´ pu ¨∇qu
˘

¨ n

on BΩˆp0, T q. From u, one may deduce p by solving formally the above Neumann problem.
Remark. 5.8.3 (Difficulties for proving additional regularity) When trying to prove
additional regularity of solutions, we need additional compatibility assumptions for these so-
lutions. This leads to problems! Let u0 P V and let the compatibility condition u1p0q “
ν∆u0 ´ pu0 ¨∇qu0 ´ fp0q P V be fulfilled. Due to the original equation, we find

u1p0q ` pu0 ¨∇qu0 ´ ν∆u0 `∇pp0q “ fp0q.

From ∇u0 “ 0 ad ∇ ¨ u1p0q “ 0, we find that

∆p0 “ ∇ ¨
`

fp0q ` ν∆u0 ´ u
1p0q ´ pu0 ¨∇qu0

˘

“ ∇ ¨
`

fp0q ´ trpp∇u0q
2q

and
∇p0 “ fp0q ´ u

1p0q ` ν∆u0 ´ pu0 ¨∇qu0 “ fp0q ` ν∆u0

on BΩ. The boundary terms for u0 vanish since u0 ” 0 on BΩ. This is an overdetermined
system and does not possess a solution in general.

Singular limits and long-time behaviour

We want to consider the singular limit ν Ñ 0 and the long behaviour for solutions of the
Navier-Stokes equations. As a tool, we will use the relative-energy inequality. We already
implicitly used it to prove the weak strong uniqueness result.

Definition 5.8.4 (Relative energy, solution operator)
The relative energy relative energyis

R : H ˆH Ñ R`, pv | ṽq ÞÑ
1

2
}v ´ ṽ}2L2pΩq

and the solution operator solution operatorAν is defined by

xAνpṽq, ¨ y :“ x Btṽ ` pṽ ¨∇qṽ ´ ν∆ṽ ´ f , ¨ y,

which has to be understood in a weak sense, at least with respect to space.
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If ∇ ¨ v “ 0, then
∇ ¨ pv b vq “ pv ¨∇qv “ p∇vqv,

so the Navier-Stokes equations can be rewritten as

$

’

’

&

’

’

%

Btv `∇ ¨ pv b vq ´ ν∆v `∇p “ f and ∇ ¨ v “ 0, in Ωˆ p0, T q,

vp0q “ v0 in Ω,

νpI ´ nb nqv “ 0 and n ¨ v “ 0, on BΩˆ p0, T q.

By writing the boundary conditions in this way, the system incorporates theNavier-Stokes
system with no-slip conditions for ν ą 0 and the Euler equations for ν “ 0. Indeed, for
ν ą 0, the tangential and normal part of the velocity field vanish such that this is equivalent
to v “ 0 on BΩ ˆ p0, T q. For the friction-less case of ν “ 0, only the normal component
vanishes on the boundary.

Theorem 5.8.3: Local existence of smooth solutions

Let Ω “ R3 be a bounded domain with smooth enough boundary and u0 P H
s
0pΩqXH

with s ě 3. Then there exists a T0 ą 0 such that there exists a solution

u P L8p0, T0;HspΩq XHq

solving the Euler equations.

Proof. Exercises. l

Theorem 5.8.4: Singular limit for ν Œ 0

For ν ą 0, let uν P L2p0, T ;Hq X L2p0, T ;V q be a weak solution to the Navier-
Stokes equations for uν0 P H for f ” 0. Additionally, let u P L1p0, T ;W 1,8pΩqq X

L8p0, T ;Hq solve the Euler equations in a weak sense. Then for almost all t P p0, T q
it holds that

1

2
|uνptq ´ uptq|

2 ď c

ˆ

|uν0 ´ u0|
2 `

?
ν

2
}u}L2p0,T ;V q

˙2

exp

ˆ
ż t

0

}p∇uqsym}8 ds

˙

.

Theorem 5.8.5: Long-term behaviour

We consider the case T “ 8. For f P L1p0, T ;L2pΩqq and v0 P H, assume there
exists a weak solution u to the Navier-Stokes equations. Then, there exists a
sequence ptnqnPN Ă r0,8q such that uptnq Ñ 0 in V for nÑ8.

5.9 Energy-variational solutions

Motivation

Weak solutions have some drawbacks

• they yield existence only, no uniqueness,
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• natural energy estimates alone do not suffice to pass to the limit, thus the time-
derivative has to be estimated,

• weak solutions without energy conservation are known to display non-physical be-
haviour,

• weak-strong uniqueness only for suitable weak solutions,

• the motivation for the weak solution is questionable.

In the process of modelling, one assumes that the functions involved are regular enough
to write down pointwise relations to come up with the PDE. Then in existence theory, the
equations are generalised for scenarios of less regularity. But maybe, the pointwise equations
do not describe the physical behaviour away from the right regularity?

This motivates a different approach – the energy-variational solution concept. The variation
of the energy inequality, since this relation should hold for every reasonable solution, is
taken with respect to more regular functions, for which the pointwise relation given by the
PDE makes sense.

Preliminaries

Lemma 5.9.1
Let A Ă Rd`1 be a bounded open set and

f : Aˆ RnˆRm Ñ r0,8q

with d, n,m ě 1 a measurable non-negative function such that

• fpx, ¨, ¨q is lower semi-continuous on RnˆRm for a.e. x P A,

• fpx, y, ¨q is convex for fixed x P A and y P Rn.

For sequences pukqkPN Ă L1
locpA;Rnq and pvkqkPN Ă L1

locpA;Rmq as well as functions u P
L1

locpA;Rnq and v P L1
locpA;Rmq with

uk Ñ u a.e. in A and vk á v in L1
locpA;Rmq

it holds
lim inf
kÑ8

ż

A

fpx, ukpxq, vkpxqq dx ě

ż

A

fpx, upxq, vpxqqdx.

Lemma 5.9.2
Let f P L1p0, T q and g P L8p0, T q with g ě 0 a.e. in p0, T q. Then

´

ż T

0

ϕ1pτqgpτqdτ ´ gp0q `

ż T

0

ϕpτqfpτqdτ ď 0

holds for all ϕ P C̃r0, T s if and only if

gptq ´ gpsq ď

ż t

s

fpτqdτ

for almost all s, t P p0, T q, where

C̃r0, T s :“ tψ P C1r0, T s | ψ ě 0, ψ1 ď 0, ψp0q “ 1, ψpT q “ 0u.
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Definitions

We define the spaces

• X :“ L8p0, T ;Hq X L2p0, T ;V q for solutions,

• Y :“ H2pΩq X V X LdpΩq for test functions,

• Z :“ L2p0, T ;H´1pΩqq ‘ L1p0, T ;L2pΩqq for the right-hand side,

where H denotes the solenoidal L2pΩq and V the solenoidal H1
0 pΩq functions.

Definition 5.9.3 (Energy-variational solution)
A function u is called an energy-variational solution energy-variational

solution
, if u P X and the relative energy

inequality

Rpuptq | vptqq `
ż t

0

`

Wνpu | vq ` xAνpvq, u´ vy
˘

e
şt
s
Kνpvq dτ ds ď Rpu0 | vp0qqe

şt
0
Kνpvq ds

holds for a.e. t P p0, T q, where

Rpuptq | vptqq “ 1

2
}uptq ´ vptq}2L2pΩq

and xAνpvpsqq, ¨y “ xBtvpsq ` pvpsq ¨∇qvpsq ´ ν∆vpsq ´ fpsq, ¨y,

and for all v P C1pr0, T s;Y q and all convex non-negative potentials Kν : Y Ñ r0,8q such
that

Wν : V ˆ Y Ñ r0,8q,

Wνpu | vq “ ν}∇u´∇v}2L2pΩq ´

ż

Ω

ppu´ vq ¨∇qpu´ vq ¨ v dx`Kνpvq
1

2
}u´ v}2L2pΩq

is convex in u and continuous in v.

Remark. 5.9.4 The solution concept fulfills the standard requirements for a generalized
solution concept

• existence of generalized solution,

• weak-strong uniqueness of solutions,

• additional regularity implies uniqueness,

• convergence to stationaly states.
Remark. 5.9.5 Advantages over weak solutions are

• existence in every space dimension,

• only relies on classical energy estimates,

• the convex solution set allows to define a descent selection criterion to find the physi-
cally relevant solution dissipating most energy.

Remark. 5.9.6 (Well-definedness of the solution concept) The convection term is well-
defined, since we have V c

ãÑ L2d{pd´2qpΩq, thus
ż T

0

ż

Ω

ppu´ vq ¨∇qpu´ vq ¨ v dxdt

ď }u´ v}L2p0,T ;L2d{pd´2qpΩqq}u´ v}L2p0,T ;V q}v}L8p0,T ;LdpΩqq ă 8.

Moreover, the set of possible Kν ’s is non-empty. To see this consider

Kν : Y Ñ r0,8q, Kνpvq “ c}v}sLrpΩq for
2

s
`
d

r
ď 1.
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5 INSTATIONARY NAVIER-STOKES PROBLEM

Then by the Gagliardo-Nirenberg inequality

}v}LppΩq ď }∇v}αL2pΩq}v}
1´α
L2pΩq

for α “ dpp´2q
2p and d ď 2d

p´2 (TODO: this simplifies to p ď 4...) with

1

p
“

ˆ

1

2
´

1

d

˙

α`
1

2
p1´ αq

we obtain
ˇ

ˇ

ˇ

ˇ

ż

Ω

ppu´ vq ¨∇qpu´ vq ¨ v dx

ˇ

ˇ

ˇ

ˇ

ď }u´ v}LppΩq}∇u´∇v}L2pΩq}v}L2p{pp´2qpΩq

ď C}u´ v}1´αL2pΩq}∇u´∇v}1`αL2pΩq}v}L2p{pp´2qpΩq

ď
ν

2
}∇u´∇v}2L2pΩq ` c}v}

2{p1´αq

L2p{pp´2qpΩq

1

2
}u´ v}2L2pΩq.

Existence

Let us give a proof of existence, which does not require any time-derivative estimate.

Theorem 5.9.1: Navier-Stokes Existence

Let Ω Ă Rd for d ě 2 be a bounded Lipschitz domain, ν ě 0 and R,Wν ,Kν and Aν

as above. Then there exists at least one energy-variational solution u P X to every
u0 P H and f P Z. Moreover, the set of solutions is convex and weakly sequentially
closed.

Proof. We attack by Galerkin discretization. As V is dense in V there exists a Galerkin-
Scheme pVmqmPN Ă V of V . The m’th approximate problem reads

$

&

%

pBtum, vq ` ppum ¨∇qum, vq `∇ppum, vqq “ xf, vy, for all v P Vm and t P r0, T s,

u0
m “ Pmu0,

(49)

where Pm : H Ñ Vm is the orthogonal projection from H onto the subspace Vm.

Via the Theorem of Caratheodory we find solutions um to the approximate problems given
by 49 on time intervals r0, Tmq with Tm ą 0. In fact, when we show the apriori estimates
in the next step, we excluded the possibility of finite-time blowups and thus Tm “ T will
follow for all m P N.

Testing by um itself leads to the apriori estimate

1

2

d
dt
|um|

2 ` ν}um}
2 “ xf, umy,

where

f “ f1 ` f2 with f1 P L
1p0, T ;L2pΩqq and f2 P L

2p0, T ;H´1pΩqq,

hence

xf, umy “ xf1, umy ` xf2, umy ď }f1}L2pΩq}um} ` }f2}H´1pΩq}um}

ď }f1}L2pΩqp1` |um|
2q `

ν

2
}um}

2 `
1

2ν
}f2}

2
H´1pΩq.
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5 INSTATIONARY NAVIER-STOKES PROBLEM

Therefore, we obtain

d
dt
|um|

2 ` ν}um}
2 ď 2}f1}L2pΩqp1` |um|

2q `
1

ν
}f2}

2
H´1pΩq (50)

and via Gronwall

|umptq|
2 `

ż t

0

ν}um}
2 ds

ď

ˆ

|u0|
2 ` 2}f1}L1p0,T ;L2pΩqq `

1

ν
}f2}

2
L2p0,T ;H´1pΩqq

˙

e2}f1}L1p0,T ;L2pΩqq

a.e. in p0, T q. The Gronwall argument can be seen as follows: integrating (50) and using
şt
0
}...} ds ď

şT
0
}...} ds

yields

|umptq|
2
ď |ump0q|

2
´ ν

ż t

0

}umpsq}
2

ds` 2}f1}L1p0,T ;L2pΩq `
1

ν
}f2}

2
L2p0,T ;H´1pΩq

`

ż t

0

2}f1psq}L2pΩq|umpsq|
2

ds.

Now, Gronwall’s Lemma (again using
şt
0
}...} ds ď

şT
0
}...} ds) implies

|umptq|
2
ď

ˆ

|ump0q|
2
´ ν

ż t

0

}umpsq}
2

ds` 2}f1}L1p0,T ;L2pΩq `
1

ν
}f2}

2
L2p0,T ;H´1pΩq

˙

e
}f1}L1p0,T ;L2pΩq .

Since the exponential term is greater than one, the ´ν-term can be put on the other side of the inequality and
estimate such that the above equation holds.

This boundedness implies

um
˚
á u in L8p0, T ;Hq and um á u in L2p0, T ;V q,

hence

um
˚
á u in X “ L8p0, T ;Hq X L2p0, T ;V q.

We will proceed by establishing an approximate relative-energy inequality. We already
deduced the relative energy inequality for each um, i.e.

1

2

d
dt
|um|

2 ` ν}um}
2 “ xf, umy. (51)

We test the Erstaz-problem by Pmv, where v P C1pr0, T s;Y q, to obtain

pBtum, Pmvq ` ppum ¨∇qum, Pmvq ` νppum, Pmvqq “ xf, Pmvy. (52)

Moreover, we find for the solution operator

xAνpPmvq, umy “ pBtPmv, umq ` ppPmv ¨∇qPmv, umq ` νppPmv, umqq ´ xf, umy (53)

and
xAνpPmvq, Pmvy “

1

2

d
dt
|Pmv|

2 ` ν}Pmv}
2 ´ xf, Pmvy. (54)

Combining (51) - (52) - (53) + (54) gives

1

2

d
dt
|um ´ Pmv|

2 ` ν}um ´ Pmv}
2

`
`

ppum ´ Pmvq ¨∇qPmv, um
˘

` xAνpPmvq, um ´ Pmvy “ 0.

Multiplying by e´
şt
0
KνpPmvq ds and simplifying yields

1

2

d
dt

´

|um ´ Pmv|
2e´

şt
0
KνpPmvq ds

¯

`
1

2
KνpPmvq|um ´ Pmv|

2e´
şt
0
KνpPmvq ds

`

ˆ

ν}um ´ Pmv}
2 `

`

ppum ´ Pmvq ¨∇qPmv, um
˘

` xAνpPmvq, um ´ Pmvy

˙

e´
şt
0
KνpPmvq ds “ 0.
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Integrating from 0 to t gives

Rpumptq | Pmvptqqe´
şt
0
KνpPmvq ds

`

ż t

0

`

Wνpum | Pmvq ` xAνpPmvq, um ´ Pmvy
˘

e´
şs
0
KνpPmvq dτ ds

ď Rpump0q | Pmvp0qq. (55)

Take any ϕ P C̃r0, T s, multiply (55) by ´ϕ1, integrate from 0 to T and use integration by
parts to arrive at

´

ż T

0

ϕ1Rpum | Pmvqe´
şs
0
KνpPmvq dτ ds

`

ż T

0

ϕ
`

Wνpum | Pmvq ` xAνpPmvq, um ´ Pmvy
˘

e´
şs
0
KνpPmvq dτ ds

ď Rpump0q | Pmvp0qq. (56)

We proceed by passage to the limit for mÑ8. Since V is dense in Y , we have

Pmvptq Ñ vptq in Y for each t P r0, T s. (57)

Appealing to Lemma 5.9.1 and an approximation argument we obtain

´

ż T

0

ϕ1Rpu | vqe´
şs
0
Kνpvq dτ ds`

ż T

0

ϕWνpu | vqe
´

şs
0
Kνpvq dτ ds

ď lim inf
mÑ8

˜

´

ż T

0

ϕ1Rpum | Pmvqe´
şs
0
KνpPmvq dτ ds`

ż T

0

ϕWνpum | Pmvqe
´

şs
0
KνpPmvq dτ ds

¸

,

where the weak convergence of um to u and (57) were used. Since Pn Ñ idH , we find for
the initial values

Rpump0q | Pmvp0qq “
1

2
|Pmpu0 ´ vp0qq|

2 Ñ
1

2
|u0 ´ vp0q|

2 “ Rpu0 | vp0qq.

And for the solution operator part we have

pBtPmv, um ´ Pmvq “ pPmBtv, um ´ Pmvq “ pBtv, um ´ Pmvq,

as Pm is an orthogonal projection, thus

xAνpPmvq, um ´ Pmvy ´ xAνpvq, um ´ Pmvy

“
`

pPmv ¨∇qpPmv ´ vq ` ppPmv ´ vq ¨∇qv, um ´ Pmv
˘

` νp∇Pmv ´∇v,∇um ´∇Pmvq

ď }Pmv}LdpΩq}∇Pmv ´∇v}L2pΩq}um ´ Pmv}L2d{pd´2qpΩq

` }Pmv ´ v}Ld{2pΩq}∇v}L2d{pd´2qpΩq}um ´ Pmv}L2d{pd´2qpΩq

` ν}∇Pmv ´∇v}L2pΩq}∇um ´∇Pmv}L2pΩq,
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and so
ż T

0

ϕ
`

xAνpPmvq, um ´ Pmvy ´ xAνpvq, um ´ Pmvy
˘

e´
şs
0
KνpPmvq dτ ds

ď }Pmv}L8p0,T ;LdpΩqq}∇Pmv ´∇v}L2p0,T ;L2pΩqq}um ´ Pmv}L2p0,T ;L2d{pd´2qpΩqq

` }Pmv ´ v}L2p0,T ;Ld{2pΩqq}∇v}L8p0,T ;L2d{pd´2qpΩqq}um ´ Pmv}L2p0,T ;L2d{pd´2qpΩqq

` ν}∇Pmv ´∇v}L2p0,T ;L2pΩqq}∇um ´∇Pmv}L2p0,T ;L2pΩqq,

(58)
where 0 ď ϕ ď 1 was used. Using um á u in L2p0, T ;V q and (57) we find

}um ´ Pmv}L2p0,T ;L2d{pd´2qpΩqq ď }um ´ Pmv}L2p0,T ;V q ă 8,

}∇um ´∇Pmv}L2p0,T ;L2pΩqq “ }um ´ Pmv}L2p0,T ;V q ă 8,

and that the right-hand side of (58) vanishes. This implies

ż T

0

ϕ
`

xAνpPmvq, um ´ Pmvy ´ xAνpvq, u´ vy
˘

e´
şs
0
KνpPmvq dτ dsÑ 0.

Therefore,

´

ż T

0

ϕ1Rpu | vqe´
şs
0
Kνpvq dτ ds

`

ż T

0

ϕ
`

Wνpu | vq ` xAνpvq, u´ vy
˘

e´
şs
0
Kνpvq dτ ds

ď Rpup0q | vp0qq.

holds for all ϕ P C̃r0, T s. Lemma 5.9.2 then implies the relative-energy inequality. l
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Homework 12.1: Assume that in the definition of energy-variational solution for the Navier-
Stokes equations, equality holds for a function u. Show that u is a weak solution to the
Navier-Stokes equations.
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6 ERICKSEN-LESLIE EQUATIONS FOR THE DESCRIPTION OF NEMATIC
LIQUID CRYSTALS

6 Ericksen-Leslie equations for the description
of nematic liquid crystals

6.1 Motivation and Applications

This equation is even more complicated than the Navier-Stokes equation due to the
presence of an additional variable modelling the anisotropy (dt.: Richtungsabhängigkeit) in
the fluid, giving rise to different applications:

TODO (w/ images)

6.2 Modelling

This is more or less a static problem: if you only want to consider how the molecules are
distributed without any movement in them (identifying the static states), then one ends up
with the Oseen-Frank energy, modelling the behaviour of the liquid crystals.

A solution to the stationary problem solves the minimisation problem for the Oseen-Frank
energy

FOF pd,∇dq :“ k1p∇ ¨ dq2 ` k2|dˆ p∇ˆ dq|2 ` k3pd ¨ p∇ˆ dqq2 (59)

for all d P H1pΩq X L8pΩq. (One could also write
FOF pa,Bq “

k1ptrpBqq2 ` k2|pB ´

BT qa|2 `
k3
4 prasˆ :

pB ´ BT qq2.)

The parameters k1, k2 and k3 depend on the material. (Gener-
ally, k1 and k3 are of similar order, while k2 is different.) This also allows for singularities.

Fig. 7: The k1-term in (59) corresponds to (a), the splay of the material. The k2-term
(shown in (b)) is the twist term and is modelled by the curl of the director, where the
direction is orthogonal to the molecules, that is, p∇ˆdq K d. In (c) we can see the bending
term (the k3-term), where p∇ˆ dq ‖ d.

The associated (static) minimisation problem is

min
dPH1pΩq

ż

Ω

FOF pd,∇dqdx with |dpxq| “ 1 a.e. in Ω and d “ d1 on BΩ.

The norm restriction |dpxq| “ 1 encodes that we are only interested in the direction and not
the magnitude of d. The velocity field is, as beforehand, modelling the velocity of the fluid
in some container and d models the direction of the dispersed molecules.

We have the following symmetry of the Oseen-Frank enery: if we change the signs of both
inputs, the value remains the same.

For k “ k1 “ k2 “ k3, the Oseen-Frank energy simplifies to

FOF pd,∇dq “ k|∇d|2
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(see Exercises). This is the simplification we are going to consider from now on. One can still,
with some more work, show the existence of energy-variational solutions when k1 ‰ k2 ‰ k3.

How is this system going to evolve? We don’t only have to minimise the energy, but also
the dissipation. Given a dissipation potential Dpv,∇v, Btd,dq (which describes how energy
is dissipated in this mechanism) and a free energy Fpd,∇d,vq the system of equations can
be formally derived by

Btv ` pv ¨∇qv
looooooomooooooon

material time derivative

´∇ ¨
ˆ

BDpv,∇v, Btd,dq
Bp∇vq

´ pI

˙

`
BDpv,∇v, Btd,dq

Bv
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

dissipative forces

“ f.

BDpv,∇v, Btd,dq
BpBtdq

`
BFpd,∇d,vq

Bd
´∇ ¨

ˆ

BFpd,∇d,vq
Bp∇dq

˙

loooooooooooooooooooooooomoooooooooooooooooooooooon

total derivative of the energy

`λ2d “ 0. (60)

The Lagrangian multipliers p and λ2 are due to the algebraic restrictions ∇ ¨ v “ 0 and
|d| “ 1, respectively. By choosing (the simplest energy we can think about)

Fpd,∇d,vq :“
1

2
|v|2 `

1

2
|∇d|2 (61)

and
Dpv,∇v, Btd,dq :“ ν |p∇vqsym|

2
`

1

2
|Btd` pv ¨∇qd|2 (62)

we find formally by the proposed scheme the simplified version of the Ericksen-Leslie
equations

Btv ` pv ¨∇qv `∇p´ ν∆v `∇ ¨ p∇dT∇dq “ f in Ωˆ p0, T q

Btd` pv ¨∇qd´ pI ´ db dq∆d “ 0 in Ωˆ p0, T q

∇ ¨ v “ 0, |d| “ 1 in Ωˆ p0, T q.

Proof. We have

∇ ¨ BDpv,∇v, Btd,dq
B∇v

(62)
“ ∇ ¨ 2νp∇vqsym “ ν∆v,

BFpd,∇d,vq
Bp∇dq

(61)
“ ´∇ ¨∇d “ ´∆d,

BDpv,∇v, Btd,dq
BpBtdq

(62)
“ Btd` pv ¨∇qd.

Hence (as by (61), BF
Bd “ 0) the second equation (60) becomes

Btd` pv ¨∇qd´∆d` λ2d “ 0.

Multiplying by d yields

1

2
pBt ` pv ¨∇qq|d|2 ´∆d ¨ d` λ2|d|

2 “ 0.

By choosing λ2 :“ ∆d ¨ d, the norm restriction holds. We end up with

Btd` pv ¨∇qd´ pI ´ db dq∆d “ 0. (63)

As ∆d is the derivative of the energy, pI ´ db dq acts as a projection onto the sphere.
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As |d| “ 1, ∇|d| “ 0 and thus

BDpv,∇v, Btd,dq
Bv

(62)
“ ∇dTpBtd` pv ¨∇qdq

(63)
“ ∇dTpI ´ db dq∆d

“ ∇dT∆d´
1

2
∇|d|2
loomoon

“0

pd ¨∆dq

“ ∇ ¨ p∇dT∇dq ´ 1

2
∇|∇d|2

“

d
ÿ

i,j,k“1

BxidjB
2
xk
dj

“

d
ÿ

i,j,k“1

`

BxkBxjdjBxkdj
˘

´ B2
xjxk

djBdj

“ ∇ ¨ p∇dT∇dq ´ 1

2
∇|∇d|2.

We redefine p̃ :“ p´ 1
2 |∇d|

2. l

6.3 Preliminaries

In the Navier-Stokes equation we had the condition that v vanished on the boundary. As
we want to have inhomogeneous boundary conditions, we add a constant (in time) function
which fulfills the boundary condition. We didn’t do this for the Navier-Stokes equation,
but here we cannot easily obtain homogeneous Dirichlet boundary conditions by, say, a
linear transformation.

Lemma 6.3.1 (Extension operator)
There exists a linear continuous operator E : H3{2pBΩq Ñ H2pΩq, where Ω is of class C1,1.
This operator is the right-inverse of the trace operator, that is, for all right hand sides
g P H3{2pBΩq, we have Eg “ g on BΩ in the sense of the trace operator. There exists a
constant c ą 0 such that

}Eg}H2pΩq ď c}g}H3{2pBΩq @g P H3{2pBΩq.

We can write down this operator E via the Fourier transform on the boundary as well as
on Ω. Another equivalent description is the solution h of

$

&

%

´∆h “ 0, in Ω,

h “ g, on BΩ.

Assume that d P C1
pΩ;R3

q. Then p∇dqi,j :“ Bxjdi for i, j P t1, . . . , 3u and thus ∇d P R3ˆ3.

Definition 6.3.2 (Skew-symmetric part, curl)
The skew-symmetric part skew-symmetric

part
of a vector field is

p∇dqskew :“
1

2

`

∇d´ p∇dqT
˘

“
1

2

¨

˚

˝

0 Bx2
d1 ´ Bx1

d2 Bx3
d1 ´ Bx1

d2

Bx1
d2 ´ Bx2

d1 0 Bx3d2 ´ Bx2
d2

Bx1
d2 ´ Bx3

d1 Bx2
d2 ´ Bx3

d2 0

˛

‹

‚

and its curl curlis

∇ˆ d :“

¨

˚

˝

Bx2
d3 ´ Bx3

d2

Bx3d1 ´ Bx1d3

Bx1d2 ´ Bx2d1

˛

‹

‚

,
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where the i-th component of d is denoted by di.

We have
2|p∇dqskew|

2 “ |∇ˆ d|2,

where |A|2 “ A : A and A : B :“
řn
i,j“1Ai,jBi,j is the Frobenius product and

|∇d|2 “ |∇ˆ d|2 ` trp∇d2q

or, differently put, (for lemma 6.3.4)

|∇d|2 “ p∇ ¨ dq2 ` |∇ˆ d|2 ` trp∇d2q ´ p∇ ¨ dq2.

Definition 6.3.3 (Cross-product-matrix)
We define the mapping

r¨sˆ : R3
Ñ R3ˆ3, h ÞÑ

¨

˚

˝

0 ´h3 h2

h3 0 ´h1

´h2 h1 0

˛

‹

‚

.

Let I be the identity matrix. For all a, b P R3 we have

rasˆb “ aˆ b and rasTˆrbsˆ “ pa ¨ bqI ´ bb a. (64)

Additionally, for all a, b P C1
pΩ;R3

q we have

∇ ¨ rasˆ “ ´∇ˆ a, rasˆ : ∇b “ rasˆ : p∇bqskew “ a ¨ p∇ˆ bq, r∇ˆ asˆ “ 2p∇aqskew.

Lemma 6.3.4 (Exercise 12.1)
We have

arg min

ż

Ω

|∇d|2 dx “ arg min

ż

Ω

p∇ ¨ dq2 ` |dˆ∇ˆ d|2 ` pd ¨∇ˆ dq2 dx

for all d P H1pΩq with |d| “ 1 almost everywhere in Ω and d “ d1 P C1
pBΩq with |d1| “ 1

on BΩ.

Proof. We have

pd ¨ p∇ˆ dqq2 “

¨

˚

˝

¨

˚

˝

d1

d2

d3

˛

‹

‚

¨

¨

˚

˝

B2d3 ´ B3d2

B3d1 ´ B1d3

B1d2 ´ B2d1

˛

‹

‚

˛

‹

‚

2

“

and
|d ¨ p∇ˆ dq|2 “ ...

Adding both quantities and simplifying, we obtain

pd ¨ p∇ˆ dqq2 ` |d ¨ p∇ˆ dq|2 “ |d|2|∇ ¨ d|2.

We note further, that we can write the term

trp∇d2q ´ p∇ ¨ dq2 “ ∇ ¨ p∇dd´∇ ¨ ddq
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can be written as the divergence of a vector field. By the divergence theorem, we obtain
ż

Ω

∇ ¨ p∇dd´∇ ¨ ddqdd “

ż

BΩ

p∇dd´∇ ¨ ddq ¨ nds “

ż

BΩ

p∇d1d1 ´∇ ¨ d1d1q ¨ nds,

which is therefore independent of the particular choice for d. Therefore,

arg min

ż

Ω

|∇d|2 dx “ arg min

ż

Ω

p∇ ¨ dq2 ` |∇ˆ d|2 ` trp∇d2
q ´ p∇ ¨ dq2 dx

“ arg min

ż

Ω

p∇ ¨ dq2 ` pd ¨ p∇ˆ dqq2 ` |dˆ∇ˆ d|2 ` trp∇d2
q ´ p∇ ¨ dq2 dx

“ arg min

ż

Ω

p∇ ¨ dq2 ` pd ¨ p∇ˆ dqq2 dx`

ż

BΩ

p∇d1d1 ´∇ ¨ d1d1q ¨ n ds

“ arg min

ż

Ω

p∇ ¨ dq2 ` pd ¨ p∇ˆ dqq2 dx.

for all d P H1pΩq with |d| “ 1 almost everywhere in Ω and d “ d1 P C1
pBΩq with |d1| “ 1

almost everywhere on BΩ. l

Lemma 6.3.5 (Exercise 12.2)
Prove that

dˆ∆d “ ∇ ¨ prdsˆ∇dq

for all d P C2
pΩq.

Proof. For all d P C2
pΩq we have

∇ ¨ prdˆs∇dq “ ∇ ¨
´

dˆ B1d dˆ B2d dˆ B3d
¯

“ B1

`

dˆ pB1dq
˘

` B2

`

dˆ pB2dq
˘

` B3

`

dˆ pB3dq
˘

“ pB1dq ˆ pB1dq ` dˆ pB
2
1dq ` pB2dˆ B2dq

` pdˆ B2
2dq ` pB3dq ˆ pB3d3q ` dˆ pB

2
3dq

“ dˆ pB2
1d` B

2
2d` B

2
3dq “ dˆ p∆dq,

where we have used that aˆ a “ 0, the product rule Bipaˆ bq “ pBiaq ˆ b` aˆ pBibq and
that the cross product has the distributive property. l

We consider the following simplified Ericksen-Leslie system

Btv ` pv ¨∇qv `∇p´ ν∆v `∇ ¨ p∇dT∇dq “ f in Ωˆ p0, T q

Btd` pv ¨∇qd´ pI ´ db dq∆d “ 0 in Ωˆ p0, T q

∇ ¨ v “ 0, |d| “ 1 in Ωˆ p0, T q

v “ 0, d “ d1 on BΩˆ p0, T q

vp0q “ v0, dp0q “ d0 in Ω

(65)

(66)

(67)

(68)

(69)

for which we want to prove some existence result.

Energy principle of the model.

Formally, testing (multiplying, integrating over Ω and applying integration by parts to the
last term) (65) by v, we observe (as v is velocity-free, the ∇p-term vanishes)

1

2

B

Bt
|v|2 `

1

2

ż

Ω

pv ´∇|v|2qdx
loooooooooomoooooooooon

“0

`

ż

Ω

ν|∇v|2 dx´

ż

Ω

∇dT∇d : ∇v dx “ x f,v y .
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Formally, testing (66) by ´∆d, we obtain (using integration by parts on the first term)

1

2

B

Bt
}∇d}2L2 ´

ż

Ω

pv ¨∇qd∆d´ pI ´ db dq
looooomooooon

“rdsTxrdsx

∆d ¨∆d dx “ 0.

An integration-by-parts provides (v vanishes on the boundary, so there is no boundary term)

´

ż

Ω

pv ¨∇qd∆ddx “

ż

Ω

∇ppv ¨∇qdq : ∇ddx

p‹q
“

ż

Ω

pv ¨∇q∇d : ∇d
loooooooooomoooooooooon

“
ş

Ω
1
2 pv¨∇q|∇d|2 dx“0

`∇dT∇d : ∇v dx “

ż

Ω

∇dT∇d : ∇v dx,

where p‹q is the product rule. Cancelling everything and integrating in time provides the
formal energy estimate

1

2

ż

Ω

|vptq|2 ` |∇dptq|2 dx`

ż t

0

ż

Ω

∇|∇v|2 ` |dˆ∆d|2 dx ds
loooooooooooooooooooomoooooooooooooooooooon

dissipative parts

“
1

2

ż

Ω

|v0|
2 ` |∇d0|

2 dx`

ż t

0

xf ,v yds.

6.4 Definitions and energy-variational formulation

We define

X :“
`

L8p0, T ;Hq X L2p0, T ;V q, L8p0, T ;H1pΩqq
˘

.

Definition 6.4.1 (Relative energy, dissipation, Hamiltonian, form)
The relative energy is

Rpv,d | ṽ, d̃q :“
1

2

´

}v ´ ṽ}2L2pΩq ` }∇d´∇d̃}2L2pΩq

¯

.

The relative dissipation is

WDpv,d | ṽ, d̃q :“ ν}∇v ´∇ṽ}2L2pΩq ` }dˆ∆d´ d̃ˆ∆d̃}2L2pΩq

`
`

dˆ∆d´ d̃ˆ∆d̃, pd̃´ dq ˆ∆d̃
˘

´
`

∇pd̃ˆ∆d̃q; pd̃´ dq ˆ p∇d̃´∇dq
˘

,

the relative Hamiltonian is

WHpv,d | ṽ, d̃q :“
`

v ´ ṽ, p∇ṽqsympv ´ ṽq
˘

`

ˆ

´

∇d´∇d̃
¯T ´

∇d´∇d̃
¯

; p∇ṽqsym

˙

´

ˆ

∇d̃
T
´

∇d´∇d̃
¯

,∇v ´∇ṽ
˙

`

ˆ

`

pv ´ ṽq ¨∇
˘

∇d̃;∇d´∇d̃
˙

,

where p¨, ¨q denotes the L2 inner product and the relative form is

Wpv,d | ṽ, d̃q :“WDpv,d | ṽ, d̃q `WHpv,d | ṽ, d̃q `Kpṽ, d̃qRpv,d | ṽ, d̃q, (70)

where the regularity measure can be chosen as

Kpṽ, d̃q “ C}∆d̃}2L3pΩq ` C}d̃ˆ∆d̃}W 1,3pΩq ` 2}p∇ṽqsym}L8pΩq

`
1

ν
}∇d̃}2L8pΩq `

C

ν
}∇2d̃}2L8pΩq.
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Definition 6.4.2 (Solution operator)
The solution operator is

Apṽ, d̃q : C1
pr0, T s;Y q Ñ X, Apṽ, d̃q :“

˜

Btṽ ` pṽ ¨∇qṽ ´ ν∆ṽ `∇ ¨ p∇d̃T∇d̃q ´ f
Btd̃` pṽ ¨∇qd̃` d̃ˆ pd̃ˆ∆d̃q.

¸

.

The relative energy inequality can be expressed via

Rpv,d | ṽ, d̃q

`

ż t

0

˜

W pv,d | ṽ, d̃q `

C

Apṽ, d̃q,

˜

v ´ ṽ

∆d̃´∆d

¸G¸

exp

ˆ
ż t

s

Kpṽ, d̃qdτ

˙

ds

ď Rpv0,d0 | ṽp0q, ˜dp0qq exp

ˆ
ż t

0

Kpṽ, d̃qds

˙

. (71)

Definition 6.4.3 (Energy-variational solution)
A tuplet of functions pv,dq P X is an energy-variational solution energy-variational

solution
to the Ericksen-Leslie

system, if the additional regularity assumptions

pdˆ∆dq P L2p0, T ;L2pΩqq and Btd̃ P L
2p0, T ;L

3
2 pΩqq

hold as well as |d| “ 1 almost everywhere in Ω ˆ p0, T q and it fulfills the relative energy
inequality (71) for all pṽ, d̃q P C1

pr0, T s;Y q for almost all t P p0, T q and for all K : Y Ñ R`
such that the form W from (70) is convex and lower semicontinuous in pv,d,dˆ∆dq and
continuous in pṽ, d̃q. Additionally, the director equation director equationholds:

dˆ Btd` dˆ pv ¨∇qd` dˆ∆d “ 0 almost everywhere in Ωˆ p0, T q (72)

with d “ d1 on BΩ and dp0q “ d0 in Ω both fulfilled in the sense of the respective trace
operator.

Lemma 6.4.4 (Norm restriction)
For a function d P L8p0, T ;H1pΩqq and v P X such that

Btd` pv ¨∇qd´ dˆ a “ 0 (73)

Note that pdˆ aq ¨ d “

aT
rds

T
ˆd

loomoon

“0

“ 0.

for some a P L2pΩq with d “ d1 on BΩ and dp0q “ d0 in Ω and |d0| “ 1, we have

|dpx, tq| “ 1 almost everywhere in Ωˆ p0, T q.

Proof. Multiplying (73) by sgnp|d|2 ´ 1qd and integrating over Ω, we observe

Bt

ż

Ω

ˇ

ˇ|d|2 ´ 1
ˇ

ˇdx`

ż

Ω

pv ¨∇q
ˇ

ˇ|d|2 ´ 1
ˇ

ˇdx “ 0, (74)

where we used that d ˆ d “ 0 in the last term of (73). Since v is a solenoidal vector field
(∇ ¨ v “ 0), the second term on the left-hand side of the previous equality (74) vanishes.
Integrating in (74) in time, we observe

ż

Ω

ˇ

ˇ|dptq|2 ´ 1
ˇ

ˇdx “

ż

Ω

ˇ

ˇ|d0|
2 ´ 1

ˇ

ˇdx,

which proves the assertion. l
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Theorem 6.4.1: Existence of energy-variational solution to the
Ericksen-Leslie equations

Let Ω Ă R3 be bounded domain of class C1,1 and let v0 P H and d0 P H
1pΩ;S2q

with trpd0q “ d1
a on BΩ for d1 P H

3
2 pBΩq. Then there exists an energy-variational

solution.
atrpd0q “ d1 is a compatibility condition in order to fulfil the boundary conditions: this would

be the same for linear PDE (third chapter) in order to deduce H2-regularity. We will need this
additional regularity on the approximate level.

Remark. 6.4.5 The energy-variational solution for the Ericksen-Leslie model fulfills the
same standard assumptions on a solvability concept as in the Navier-Stokes case:

• existence of generalised solutions,

• weak-strong uniqueness of solutions,

• additional regularity implies uniqueness,

• convergence to stationary states.

Assume that pv,dq solves the Ericksen-Leslie system of equations. Formally, we may
derive the relative energy inequality. We may add (65) tested by v´ ṽ and (66) by ´p∆d´
∆d̃q and perform integration by parts in the ∆v-term, the ∇ ¨ p∇dT∇dq-term and the Btd-
term (the ppv ¨∇qv,vq-term vanishes because ∇ ¨ v “ 0 ??):

pBtv,v ´ ṽq ´ ppv ¨∇qv, ṽq ` νp∇v,∇v ´∇ṽq ´ p∇dT∇d,∇v ´∇ṽq ´ xf ,v ´ ṽ y

` p∇Btd,∇d´∇d̃q ` ppv ¨∇qd,´∆d`∆d̃q ` ppI ´ db dq∆d,∆d´∆d̃q “ 0,

(75)

where p¨, ¨q denotes the L2 scalar product and the red terms cancel by integration by parts
(as beforehand).

C

Apṽ, d̃q,

˜

v ´ ṽ

´∆d`∆d̃

¸G

´

ˆ

pBtṽ,v ´ ṽq ` ppṽ ¨∇qṽ,vq

` νp∇ṽ,´∇v `∇ṽq ´ p∇d̃T∇d̃,∇v ´∇ṽq

´ xf ,v ´ ṽ y

` p∇Btd̃,∇d´∇d̃q ´ ppṽ ¨∇qd̃,∆d´∆d̃q

` ppI ´ d̃b d̃q∆d̃,∆d´∆d̃

˙

“ 0. (76)

(We have dˆpdˆ∆dq “ ´pI´dbdq∆d if |d| “ 1.) Again, the red terms vanish, as above,
by integration by parts. Adding (75) and (76), the f -terms cancel and we find

0 “
1

2

d

dt

´

|v ´ ṽ|2H ` }∇d´∇d̃}2L2

¯

` ν}∇v ´∇ṽ}2L2

` }dˆ∆d´ d̃ˆ∆d̃}2L2 ` 2pdˆ∆d, d̃ˆ∆d̃q ´ pdˆ∆d,dˆ∆d̃q ´ pd̃ˆ∆d, d̃ˆ∆d̃q

´ pv ¨∇qv, ṽq ´ ppṽ ¨∇qṽ,vq ` p∇d̃T∇d̃,∇vq ` ppṽ ¨∇qd̃,∆dqp∇dT∇d,∇ṽq ` ppv ¨∇qd,∆d̃q
looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

convective terms

.

We now only consider

2pdˆ∆d, d̃ˆ∆d̃q ´ pdˆ∆d,dˆ∆d̃q ´ pd̃ˆ∆d, d̃ˆ∆d̃q ´ pv ¨∇qv, ṽq

´ppṽ ¨∇qṽ,vq ` p∇d̃T∇d̃,∇vq ´ ppṽ ¨∇qd̃,∆dq ` p∇dT∇d,∇ṽq ´ ppv ¨∇qd,∆d̃q.
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We have

2pdˆ∆d, d̃ˆ∆d̃q ´ pdˆ∆d,dˆ∆d̃q ´ pd̃ˆ∆d, d̃ˆ∆d̃q

“
`

dˆ∆d, pd̃´ dq ˆ∆d̃
˘

`
`

pd´ d̃q ˆ∆d, d̃ˆ∆d̃
˘

“
`

dˆ∆d´ d̃ˆ∆d̃, pd̃´ dq ˆ∆d̃
˘

`
`

pd´ d̃q ˆ∆pd´ d̃q
looooooooooomooooooooooon

∇¨prd´d̃sˆ∇pd´d̃qq

, d̃ˆ∆d̃
˘

p‹q
“

`

dˆ∆d´ d̃ˆ∆d̃, pd̃´ dq ˆ∆d̃
˘

´
`

rd´ d̃sˆ∇pd´ d̃q,∇pd̃ˆ∆d̃q
˘

,

where in p‹q we use integration by parts and the boundary term vanishes, because both d
and d̃ have to fulfil the same Dirichlet boundary conditions. On the other hand,

´
`

pv ¨∇qv, ṽ
˘

´
`

pṽ ¨∇qṽ,v
˘

“
`

pv ¨∇qṽ,v ´ ṽ
˘

´
`

pṽ ¨∇qṽ,v ´ ṽ
˘

“

ˆ

`

pv ´ ṽq ¨∇
˘

ṽ,v ´ ṽ

˙

“
`

pv ´ ṽq b pv ´ ṽq; p∇ṽqsym

˘

.

Lastly, by integration in the last terms
`

∇dT∇d,∇ṽ
˘

`
`

∇d̃T∇d̃,∇v
˘

`
`

pṽ ¨∇qd̃,∆d
˘

`
`

pv ¨∇qd,∆d̃
˘

loooooooooooooooooooomoooooooooooooooooooon

“´

`

pṽ¨∇q∇d̃,∇d
˘

´

`

∇ṽ,∇d̃T∇d
˘

“
`

p∇d´∇d̃qT∇d,∇ṽ
˘`

p∇d̃T ´∇dTq∇d̃,∇v
˘

´
`

pṽ ¨∇q∇d̃,∇d
˘

´
`

pv ¨∇q∇d,∇d̃
˘

“
`

p∇d´∇d̃qTp∇d´∇d̃q,∇ṽ
˘

`
`

p∇d̃T ´∇dTq∇d̃q,∇v ´∇ṽ
˘

`

ˆ

`

v ´ ṽq ¨∇
˘

∇d̃,∇d´∇d̃
˙

.

This should formally be the terms that arise in the definition of WH and WD.

Proof. (of Theorem 6.4.1) 1 We use a semi-discretisation in space as an approximate
system. Let pWnq Ă V be a sequence of space that form an Galerkin approximation
of the space V . We denote the L2pΩq-orthogonal projection onto Wn by Pn. For the
approximation of the direction equation (72) we use an L2pΩq orthonormal Galerkin
basis consisting of eigenfunctions y1,y2, . . . of the differential operator corresponding
to the boundary value problem

$

&

%

´∆z “ h in Ω,

z “ 0 on BΩ.
(77)

The above problem is a symmetric strongly elliptic system that possesses a unique
weak solution z P H1

0 pΩq for any h P H´1pΩq. Its solution operator is thus a compact
selfadjoint operator in L2. Hence there exists an orthogonal basis of eigenfunctions
y1,y2, . . . in L2pΩq, which are orthonormal in L2pΩq. A regularity result provides
regularity of the eigenfunctions such that Yn :“ spanty1, . . . ,ynu Ă H2pΩq XH1pΩq.
The associated orthogonal L2pΩq-projection is denoted by Rn : L2pΩq Ñ Yn, d ÞÑ
řn
i“1pd,yiqL2yi. So for each eigenvector yi there is an eigenvalue λi. Then by partial

integration (as the eigenfunctions fulfil the homogeneous boundary conditions) in the
first step and third step and inserting the definition of Rn in the second step we have

p∇Rnd,∇hq “ ´p∆Rnd, hq “
n
ÿ

i“1

pd,yiqpλiyi, hq

“

n
ÿ

i“1

pd, λiyiqpyi, hq “
n
ÿ

i“1

p∇d,∇yiqpyi, hq “ p∇d,∇Rnhq
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for h P H´1pΩq. This shows that Rn is also an orthogonal projection in the space H1.

Note that the projection Rn is H1pΩq-stable, that is, there exists a constant c ą 0

(which can explicitly calculated by inserting h “ Rnd in the above term and using
Plancharel’s inequality) such that }Rny}H1pΩq ď c}y}H1pΩq for all y P H1pΩq.

2 Let n P N. We consider the ansatz (recall that ´∆E d1 “ 0 in Ω and E d2 “ d1 on
BΩ)

vnptq “
n
ÿ

i“1

vinptqwi, dn “ Ed1 `

n
ÿ

i“1

dinptqzi,

where pvin, dinq are absolutely continuous functions on p0, T q for all i P t1, . . . , nu. The
approximate system approximate

system
is

`

Btvn ` pvn ¨∇qvn,w
˘

`
`

ν∇vn ´∇dTn∇dn,∇w
˘

“ xf ,w y @w PWn,
`

Btdn ` pvn ¨∇qdn ´ p|dn|2I ´ dn b dnq∆dn,y
˘

“ 0 @y P Yn

(78)

(79)

such that vn “ Pnv0 and dnp0q “ Ed1 `Rnpd0 ´ Ed1q.

A classical existence theorem provides, for every n P N, the existence of a maximally
extended solution to the above approximate problem on an interval r0, Tnq in the sense
of Caratheódory.

3 A priori estimates. Choosing w :“ vn in (78) and z :“ ´∆dn (79), which are
suitable test functions, by adding (78) and (79) and integrating by parts in the Bt-
terms we find

1

2

d

dt

´

}vn}
2
L2pΩq ` }∇dn}

2
L2pΩq

¯

` ν}∇vn}2L2pΩq ` }dn ˆ∆dn}
2
L2pΩq

`
`

pvn ¨∇qvn,vn
˘

looooooooomooooooooon

“´ 1
2

ş

Ω
∇¨vn|vn|2 dx“0

´
`

∇dTn∇dn,∇vn
˘

´
`

pvn ¨∇qdn,∆dn
˘

loooooooooooomoooooooooooon

“p∇vn;∇dT
n∇dq` 1

2

`

pvn ¨∇q∇|dn|2
˘

loooooooooomoooooooooon

“0
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

“0

“ xf ,vn y .

Hence the above equation reduces to

1

2

d

dt

´

}vn}
2
L2pΩq ` }∇dn}

2
L2pΩq

¯

` ν}∇vn}2L2pΩq ` }dn ˆ∆dn}
2
L2pΩq “ xf ,vn y .

Integrating provides

1

2

´

}vn}
2
L2pΩq ` }∇dn}

2
L2pΩq

¯

ˇ

ˇ

ˇ

ˇ

t

0

`

ż t

0

ν}∇vn}2L2pΩq ` }dn ˆ∆dn}
2
L2pΩq ds “ xf ,vn y .

If we assume that f P L2p0, T ;H´1pΩqq ‘ L1p0, T ;L2pΩq, then

xf ,vn y “ xf1,vn y` xf2,vn y

ď }f1}
2
L2pΩqp1` }vn}

2q `
C

2ν
}f2}

2
H´1pΩq `

ν

2
}∇vn}2L2pΩq,

where we used Young’s inequality and the constant C ą 0 stems from the Poincaré
embedding.

We find that by Gronwall
´

}vn}
2
L2pΩq ` }∇dn}

2
L2pΩq

¯

ptq `

ż t

0

ν}∇vn}2L2pΩq ` 2}dn ˆ∆dn}
2
L2pΩq ds

ď

´

}vn0 }
2
L2pΩq ` }∇d

n
0 }

2
L2pΩq

¯

exp

ˆ
ż t

0

2}f1}L2pΩq ds

˙

`
C

ν
}f1}L2p0,T ;H´1pΩqq exp

ˆ
ż t

0

2}f1}L2pΩq ds

˙

.
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Hence

}vn}L8p0,T ;Hq ` }vn}L2p0,T ;V q ` }dn}L8p0,T ;H1pΩqq ` }dn ˆ∆dn}L2pΩˆp0,T qq ď C.

4 Estimate for the time derivative. Let y P H1
0 pΩq, then test (79) by Rny P Yn and

integrate in time to obtain
ż t

0

|pBtdn, Rnyq|ds ď

ż t

0

y|pvn ¨∇qdn, Rnyq| `
ˇ

ˇ

ˇ

ˇ

prdns
T
ˆrdnsˆ∆dn

looooooooomooooooooon

“´dnˆpdnˆ∆dnq

, Rnyq

ˇ

ˇ

ˇ

ˇ

ds

(H)
ď }vn}L2p0,T ;L6pΩqq}dn}L8p0,T ;H´1pΩq}Rny}L2p0,T ;L3pΩq

` }dn}L8p0,T ;L6pΩqq}dn ˆ∆dn}L2pΩˆp0,T qq}Rny}L2p0,T ;L3pΩqq,

where in (H) we useHölder’s inequality with " 1
2`

1
8
` 1

2 “ 1" in time and 1
6`

1
2`

1
3 “ 1

in space and we use that in the three-dimensional space Ω, we have H1pΩq ãÑ L6pΩq.

We have

}Rny}L2p0,T ;L3pΩqq ď C}Rny}L2p0,T ;H1pΩqq ď C}y}L2p0,T ;H1pΩqq,

where the last inequality is due to the H1pΩq-stability of Rn. Hence by the definition
of the dual norm we have

}Btdn}L2p0,T ;H´1pΩqq “ sup
yPL2

p0,T ;H1
0 pΩqq:

}y}
L2p0,T ;H1

0 pΩqq
“1

| x Btdn,y y |

ď C

ˆ

}vn}L2p0,T ;L6pΩqq}dn}L8p0,T ;H´1pΩqq

` }dn}L8p0,T ;L6pΩqq}dn ˆ∆dn}L2pΩˆp0,T qq

˙

ď C̃.

5 Converging subsequences. We have

vn
˚
á v in L8p0, T ;Hq X L2p0, T ;V q,

dn
˚
á d in L8p0, T ;H1pΩqq,

dn ˆ∆dn Ñ ξ in L2pΩˆ p0, T qq,

Btdn Ñ Btd in L2p0, T ;H´1pΩqq.

By the Lemma of Aubin-Lions, the compact embedding

L8p0, T ;H1pΩqq XW 1,2p0, T ;H´1pΩqq
c

ãÑ L2p0, T ;L2pΩqq

holds. By some interpolation inequality, we find

L8p0, T ;H1pΩqq XW 1,2p0, T ;H´1pΩqq
c

ãÑ Lpp0, T ;LqpΩqq

with p ă 8 and q ă 6 in d “ 3.

6 Identification of the limit of pdn ˆ∆dnqnPN. Recall dn ˆ∆dn “ ∇ ¨ prdnsˆ∇dnq.
Now observe that by Hölder’s inequality we have

}rdnsˆ∇dn}L8p0,T ;L3pΩqq ď }dn}L8p0,T ;L6pΩqq}∇dn}L2p0,T ;L2pΩqq

which implies that

rdnsˆ∇dn á rdsˆ∇d in Lpp0, T ;LrpΩqq
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for p ă 8 and r ă 3
2 . Thus (as ∇ is linear)

∇ ¨ prdnsˆ∇dnq á ∇ ¨ prdsˆ∇dq in Lpp0, T ;W 1,rpΩqq

for p ă 8 and r ă 3
2 . Since a weak limit is unique, we have

dn ˆ∆dn “ ∇ ¨ prdnsˆ∇dnq á ∇ ¨ prdsˆ∇dq in L2pΩˆ p0, T qq.

Hence
dn ˆ∆dn á dˆ∆d in L2pΩˆ p0, T qq.

7 Approximate relative energy inequality Define

Y :“ pW 2,ppΩq X V,H2,ppΩqq

for p ą d “ 3.

Testing (78) by pvn ´ Pnṽq and (79) by y “ ´∆pdn ´Rnd̃q yields

pBtvn,vn ´ Pnṽq ´
`

pvn ¨∇qvn, Pnṽ
˘

` νp∇vn,∇vn ´∇Pnṽq

´ p∇dTn∇dn,���∇vn ´∇Pnṽq ´ xf ,vn ´ Pnṽ y`pBt∇dn,∇dn ´∇Rnd̃q

´
`

vn ¨∇qdn,���∆dn ´∆Rnd̃
˘

`
`

dn ˆ∆dn,dn ˆ p∆dn ´∆Rnd̃q
˘

“ 0, (80)

where the two terms cancel as beforehand by integration by parts.

Additionally, testing ApPnṽ, Rnd̃q by pPnṽ ´ vn,∆dn ´∆Rnd̃q yields

pBtPnṽ, Pnṽ ´ vnq `
`

pPnṽ ¨∇qPnṽ,��Pnṽ ´ vn
˘

` νp∇Pnṽ,∇Pnṽ ´∇vnq

´ p∇Rnd̃T∇Rd̃,���∇Pnṽ ´∇vnq ´ xf ,∇ṽ ´ vn y`pBt∇Rnd̃,∇Rnd̃´∇dnq

´
`

pPnṽ ¨∇qRnd̃,���
∆Rnd̃´∆dn

˘

` pRnd̃ˆ∆Rnd̃, Rnd̃ˆ∆pRnd̃´ dnq
˘

“ 0. (81)

Adding (80) and (81) and integrating in time yields (the f -terms cancel each other
out)

1

2

d

dt

´

}vn ´ Pnṽ}
2
L2 ` }∇dn ´∇Rnd̃}2L2

¯

`

ż t

0

ν}∇vn ´∇Pnṽ}2L2 ` }dn ˆ∆dn ´Rnd̃ˆ∆Rnd̃}
2
L2 ds

`

ż t

0

2pdn ˆ∆dn, Rnd̃ˆ∆Rnd̃q ´ pdn ˆ∆dn,dn ˆRnd̃q ´ pRnd̃ˆ∆dn, Rnd̃ˆ∆Rnd̃q ds

´

ż t

0

`

pvn ¨∇qvn, Pnṽ
˘

`
`

pPnṽ ¨∇qPnṽ,vn
˘

´ p∇dT
n∇dn,∇Pnṽq ´ p∇Rnd̃T∇Rnd̃,∇vnq ds

`

ż t

0

`

pvn ¨∇qdn,∆Pnd̃
˘

`
`

pPnṽ ¨∇qPnd̃,∆dn
˘

ds “ 0.

On the discrete level it holds that (as the last three lines can be rewritten similarly to
the calculation on the continuous level)

d

dt
Rpvndn | Pnṽ, Rnd̃q `Wpvndn | Pnṽ, Rnd̃q `

C

ApPnṽ, Rnd̃q,

˜

vn ´ Pnṽ

∆pRnd̃´ dnq

¸G

`KpPnṽ, Rnd̃qRpvndn | Pnṽ, Rnd̃q “ 0.

(82)
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Since the Galerkin spaces ppWn, YnqqnPN are also limit-dense in Y , we infer

Rnd̃Ñ d̃ in Y and almost everywhere in p0, T q.

This implies

∆Rnd̃Ñ ∆d̃ in L2p0, T ;L3pΩqq,

rRnd̃sˆ∇Rnd̃Ñ rd̃sˆ∇d̃ in L2p0, T ;W 2,3pΩqq, due to the L8-bound
(??).

p∇Pnṽqsym Ñ p∇ṽqsym in L1p0, T ;L8pΩqq,

∇Rnd̃Ñ ∇d̃ in L2p0, T ;L8pΩqq,

Rnd̃Ñ d̃ in L2p0, T ;W 2,3pΩqq.

We see that the projection Rn is constructed in such a way that we have more regular
convergences.

Applying Gronwall’s Lemma to (71), we find by the Lemma for weak inequalities
that

´

ż T

0

Φ1Rpvn,dn | Pnṽn, Rnd̃nq exp

ˆ

´

ż t

0

KpPnṽ, Rnd̃qds

˙

dt

`

ż T

0

Φ

ˆ

Wpvn,dn | Pnṽn, Rnd̃nq

`

C

ApPnṽ, Rnṽq,

˜

vn ´ Pnṽ

∆pRnd̃´ dnq

¸G

˙

exp

ˆ

´

ż t

0

KpRnṽ, Pnd̃qds

˙

dt

ď Φp0qRpPnv0, Rnd0 | Pnṽp0q, Rnd̃p0qq.

for all Φ P C̃pr0, T sq.

8 Indeed,

WDpv,d | ṽ, d̃q `WHpv,d | ṽ, d̃q “ ν}∇v ´∇ṽ}2L2pΩq ` }dˆ∆d´ d̃ˆ∆d̃}2L2pΩq

`
`

dˆ∆d´ d̃ˆ∆d̃, pd̃´ dq ˆ∆d̃
˘

´
`

∇pd̃ˆ∆d̃q; pd̃´ dq ˆ p∇d̃´∇dq
˘

`

v ´ ṽ, p∇ṽqsympv ´ ṽq
˘

`

ˆ

´

∇d´∇d̃
¯T ´

∇d´∇d̃
¯

; p∇ṽqsym

˙

´

ˆ

∇d̃T
´

∇d´∇d̃
¯

,∇v ´∇ṽ
˙

`

ˆ

`

pv ´ ṽq ¨∇
˘

∇d̃;∇d´∇d̃
˙

“: p‹q

p¨, ¨q denotes the L2

scalar product for scalar
and vector-valued
functions while p¨; ¨q is
for matrix-valued
functions

and thus

p‹q ě ν}∇v ´∇ṽ}2L2pΩq ` }dˆ∆d´ d̃ˆ∆d̃}2L2pΩq ´
1

2
}dˆ∆d´ d̃ˆ∆d̃}2L2pΩq

´
1

2
}∆d̃}2L3pΩq}d´ d̃}

2
L6pΩq ´ }∇pd̃ˆ∆d̃q}L3pΩq}d´ d̃}L6pΩq}∇d´∇d̃}L2pΩq

´ }p∇ṽqsym}L8pΩq

´

}v ´ ṽ}2L2pΩq ` }∇d´∇d̃}2L2pΩq

¯

´
ν

2
}∇v ´∇ṽ}2L2pΩq

´
1

2ν
}∇d̃}2L8pΩq}∇d´∇d̃}2L2pΩq ´

ν

2CΩ
}v ´ ṽ}2L6pΩq

`
CΩ

2ν
}∇2d̃}2L3pΩq}∇d´∇d̃}2L2pΩq

ě Kpṽ, d̃qRpv,d | ṽ, d̃q.
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We observe that W is quadratic in the terms

u :“

¨

˚

˚

˚

˚

˚

˚

˝

∇vn ´∇d̃
dn ˆ∆dn ´ dˆ∆d

∇dn ´∇d̃
dn ´ d̃

vn ´ ṽ.

˛

‹

‹

‹

‹

‹

‹

‚

Together, we deduce weakly lower semi-continuity

´ lim inf
nÑ8

ż T

0

Φ1Rpvn,dn | Pnṽ, Rnd̃q exp

ˆ

´

ż t

0

KpPnṽ, Rnd̃qds

˙

dt

` lim inf
nÑ8

ż T

0

ΦWpvn,dn | Pnṽ, Rnd̃q exp

ˆ
ż t

0

KpPnṽ, Rnd̃qds

˙

dt

ě ´

ż T

0

Φ1Rpv,d | ṽ, d̃q exp

ˆ

´

ż t

0

Kpṽ, d̃qds

˙

dt

`

ż T

0

ΦWpv,d | ṽ, d̃q exp

ˆ
ż t

0

Kpṽ, d̃qds

˙

dt.

From Pnv0 Ñ v0 in H and Rnd0 Ñ d0 in H1pΩq we find

R
`

Pnv0, Rnd0 | Pnṽp0q, Rnd̃p0q
˘

Ñ R
`

v0,d0 | ṽp0q, d̃p0q
˘

.

Finally, we have to prove that the consistency error vanishes, i.e.

}ApPnṽ, Rnd̃q ´Apṽ, d̃q}L2p0,T ;V ˚qbL1p0,T ;H1pΩq
nÑ8
ÝÝÝÑ 0.

For the time derivatives, we find

pBtPnṽ,vn ´ Pnṽq “ pPnBtṽ,vn ´ Pnṽq “ pBtṽ, ṽn ´ Pnṽq

and

pBtRnd̃,∆Rnd̃´∆dnq “ pRnBtd̃,∆Rnd̃´∆dnq “ pBtd̃,∆Rnd̃´∆dnq

since Pn and Rn are orthogonal projections and vn ´ Pnṽ P Wn as well as ∆Rnd̃ ´

∆dn P Yn are elements of the respective approximate Galerkin space. Thus, we may
estimate the consistency error as follows

}ApPnṽ, Rnd̃q ´Apṽ, d̃q}L2p0,T ;V ˚qbL1p0,T ;H1pΩq

ď }pPnṽ b Pnṽq ´ pṽ ´ ṽq}L2pΩˆp0,T qq ` ν}∇Pnṽ ´∇ṽ}L2pΩˆp0,T qq

` }∇Rnd̃T∇Rnd̃´∇d̃T ´∇d̃T∇Rnd̃}L2pΩˆp0,T qq

` }pPnṽ ¨∇qRnd̃´ pṽ ¨∇qd̃}L1p0,T ;H1pΩqq

` }Rnd̃ˆ pRnd̃ˆ∆d̃q ´ d̃ˆ pd̃ˆ∆d̃q}L1p0,T ;H1pΩqq Ñ 0.

The strong convergences in (23) allow to pass to the limit on the right hand side, which
vanishes. This together with the weak converges (21a) and (21b) and (24), we infer

ż T

0

Φ

C

ApPnṽ, Rnd̃q,

˜

vn ´ Pnṽ

∆Rnd̃´∆dn

¸G

exp

ˆ
ż t

0

KpPnṽ, Rnd̃qds

˙

dt

Ñ

ż T

0

Φ

C

Apṽ, d̃q,

˜

v ´ ṽ

∆d̃´∆d

¸G

exp

ˆ
ż t

0

Kpṽ, d̃qds

˙

dt.

Via the lemma we check the ?? in time ??? It remains to consider the director equation
`

Btdn ` pvn ¨∇qdn ´ p|dn|2 ´ dn b dnq∆dn, y
˘

“ 0 @y P Yn,
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which is equivalent to

x Btdn, y y´pdn b vn,∇yq ` pdn ˆ∆dn,dn ˆ yq “ 0 @y P Yn

. . .

But nÑ8 such that it holds for all m P N.

pBtd,yq ´ pdb d,∇yq ` pdˆ∆d,dˆ yq “ 0 @y P L2p0, T ;L3pΩqq.

Therefore the equation holds even pointwise

Btd` pv ¨∇qd` dˆ pdˆ∆dq “ 0 almost everywhere in Ωˆ p0, T q

for d0 with |d0| “ 1 almost everywhere in Ω. It follows that |dpx, tq| “ 1 almost
everywhere in Ωˆ p0, T q. l
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Exercise 13.1: Let v be an energy-variational solution to the Ericksen-Leslie equations.
Show that v8 :“ limtÑ8 vptq P R. To do so, show that there exists a sequence tn Ñ8 such
that

}∇vptnq}2 ` }dptnq ˆ∆dptnq}2 Ñ 0 as tn Ñ8.
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