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Introduction

Introduction

This course differs from the previous courses as we consider differential equations which also
incorporate time derivatives. In the first chapter we introduce the BOCHNER integral for
functions from a time interval into a BANACH space. We can then, in the second chapter,
explore time derivatives and the space W (0,7, the correct space for considering linear
first order evolution equations where we prove existence and uniqueness results. We show
existence results for nonlinear first order evolution equations with numerical schemes. While
we focused on the stationary NAVIER-STOKES equation in the course Differential Equations
Il B, we will now consider the instationary case including the famous Millennium problem.
Lastly, we consider systems of nonlinear evolution equations. Depending on the different
couplings of different PDEs this can mean a whole different world for the solvability of these

systems.

There are different approaches to evolution equations. Insights into the linear semigroup
approach, which we will not study here, can be found in [Paz12| or [Lunl2|, the idea being
the generalisation of e~ *4 from matrices A to general linear operators A. This works well for
linear, but not so well for nonlinear PDEs. For the nonlinear case, one can consult [Bar76]

or [Bré73], which only covers HILBERT spaces.

We will take the variational approach shown in [Emm13] and [RR06]. A great further
resources is [Roul3|. The variational approach follows the modelling of PDEs and is not
restricted to local existence results in the nonlinear case by using generalised solvability

notions.

12.04.2021



0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

Introductory Examples and Preliminaries

0.1 | Introductory examples

We first give an overview of the kinds of problems we will tackle in this course. Let 1" > 0.

Example. (Nonlinear heat equation) Consider

C(0)00 — V- (k(0)VO) + g(0) = f, on Q x (0,T),
n - k(0)VO + b16 + ba|0]36 = 0, on dQ x (0,7),
0(0) = b, on ()

where 6 is the temperature, C' is the heat capacity, s is the heat conductivity, g represents
heat sources or sinks (e.g. from a chemical reaction) and is a nonlinear function, f is
an external heat source and b; and by are constants of the convective and radiative heat
conduction. The first line is the differential equation, the second is the boundary condition

and the third line is the initial value condition. o

The previous problem is difficult to solve, but the following one is even harder.
Example. (NAVIER-STOKES equation) Consider

v+ (v-Vv+Vp—vAv=f, onQx(0,T),
Vv =0, on Q x (0,7),
v(0) = vo, on {2,

v =0, on Q2 x (0,T).

where v is the velocity field, p is the pressure and f is an external force, e.g gravity, and v
is the viscosity. This models flow in incompressible fluids. o
Example. (Complex fluids - Liquid Crystals) Liquid crystals can be found in displays
of phones. They can be modelled by the ERICKSEN-LESLIE equation

o+ (v-V)o+Vp—vAv+ V- (Vd'Vd) = f onQx(0,7),
Od+ (v-V)d+ (I —d®d)(—Ad) =0, on Q x (0,7),
|d| =1, Vv =0, on Q x (0,7),
d=dy, v=0, on Q2 x (0,7T),
d(0) = dp, v(0) = vg on €,

where the director d (a vector) models the averaged direction of the molecules.

We will see that we will have to follow the modelling and the physics (energetic principles

of the system) to show some kind of general solvability of this system. o

0.2 | Notation and functional analytic preliminaries

Let (X, |-]) be a real BANACH space, and { -, - ) denote the dual pairing of X* and X. Weak
convergence of (y)ney € X to z € X is denoted by z, — z and weak® convergence of
(fn)nen © X* to f € X* is denoted by f,, = f.

We equip
C([0,T]; X) :=={f:[0,T] = X : f continuous}

with the norm [ulc(jo,7),x) = Supsejo, lu(t)|x, which makes it a BANACH space.

Fig. 1:
a container

Molecules in
aligning
along a magnetic field.



0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

THEOREM: WEIERSTRASS DENSITY THEOREM

The space spanned by all polynomials

N
[0,T]5t— > ext®, cveX, NeN
k=0

is dense in C([0,T7]; X).

\.

Corollary. If X is separable, then so is C([0,T7]; X). o
For X we can choose P, LP(§2) for p € [1,00) or C([a,b];R) for a <be R.

Lemma 0.2.2 (Exercise 2.3)

Let Q = R? be a bounded domain and (Un)neny < L™(Q) with 1 < p <r < 0. If (up)nen <

L™(Q) is bounded and convergent in LP(Y), then it is also convergent in LI(Q) with p < ¢ <
T

Lemma 0.2.3 ((Exercise 4.2))
Let (X, | - ||x) and (Y,|| - |y) be BANACH spaces, which are subspaces of a vector space V.
Prove that the space

X+Y ={z+y:zeX,yeY}cV

equipped with the norm

Iy = _inf | max(fz]x, Jyly)
z=x+Yy

is @ BANACH SPACE.

Lemma 0.2.4 (Differenzielles Lemma von GRONWALL)
Seien a: [to,t] — R eine absolut stetige Funktionen und \,g € L*(to,T) integrierbar. Gilt
fiir fast alle t € (to,T)

a'(t) < g(t) + At)a(?), (1)
so folgt fir fast alle t € (to,T)

t
a(t) < erWa(ty) + f A=A g(5) ds

to

THEOREM 0.2.1: DISCRETE GRONWALL’S LEMMA

Let (an)nen, (bn)nen, (¢n)nen © R, where (b, )neny € R=g and ¢,, < ¢, 41 for all n e N.
Let A\,7 > 0 with A7 < 1. Then

n
an + by, <T)\Zaj+cn
j=1
implies
ap, + by < cp(1— A1)




0 INTRODUCTORY EXAMPLES AND PRELIMINARIES

Abstract functions

Bei vielen Prozessen unterscheiden sich raumliches und zeitliches Verhalten und insbesondere
die Zeit nimmt eine besondere Stellung ein. Soll die zeitliche Entwicklung, die Evolution,
beschrieben werden, so macht es Sinn, so genannte abstrakte Funktionen einzufithren: Unter
einer abstrakten Funktion verstehen wir dabei eine Funktion v = u(t): [0,T] — X, die fiir

jeden Zeitpunkt ¢ € [0, 7] Element eines linearen Raumes X ist.

Der Bildraum X kann auch selbst wieder aus Funktionen in x bestehen und etwa der uns
schon bekannte SOBOLEV-Raum H{ (a,b) sein. Fiir jedes t € [0,T] ist u(t) dann noch eine
Funktion in . Uber

[u(®)](z) = ulz, 1) (2)

stellen wir den Zusammenhang zu den reellwertigen Funktionen u = u(z,t): [a,b] x [0,T] —
R her. Wollen wir die Funktion u charakterisieren, so werden wir auf Funktionenrdume
zuriickgreifen, die iiber [a,b] x [0,T] erklart sind, zum Beispiel kénnte u € C([a, b] x [0,T])
gelten. Dagegen werden wir u: [0,T] — X beziiglich ¢ charakterisieren und es konnte zum
Beispiel u € C([0,T]; X) gelten. Geht die abstrakte Funktion via (2) aus einer reellwertigen
Funktion hervor, so werden wir kiinftig in der Bezeichnung zwischen beiden nicht mehr
unterscheiden, so dass u(t) = u(-,t) [Emm13, p. 147- 148|.

Lemma 0.2.5 (Exercise 1.1)
Let Q := Qx (0,T) the space-time cylinder for the bounded domain Q ¢ R and X a normed
space. Then

C([0,T];C(Q; X)) = C(Q; X)

In particular we have C([0,T];C([a,b];R)) = C([a,b] x [0,T]; R).

Proof. Let

®: C([0,T];C(Q; X)) — C(Q x [0,T]; X), (Pu)(t, x) = [u(t)](z).

Let u € C([0,T];C(2; X)). To show that ® is well defined, we show that ®u e C(Q2x[0,T]; X)
for w e C([0,T];C(©2; X)). For all z € Q we have
[( @) (tn, 2) = (Pu)(t, 2)[x = [[ultn) = u(B)](@)]x < max[u(tn) = u(®)](z)]x

n—o0

ueC([0,T];C (X))

0.

= u(tn) = u(®)lc@.x)

Furthermore, ® is isometric and hence injective as for all u € C([0,T];C(€; X)) we have

Pull . ey = max u(t)|(z)| = max max||u(t)|(x
[Puleeiomon =, max I(OIE)] = o me | [u0))(2)

Dle@.xy = TxN-
tg[l(%] Jlu( )HC(Q;X) HUHC([O,T];C(Q;X))

Further, ® is surjective: let @ € C(Q x [0,7]; X). Now define the function u by [u(t)](x) =
a(t, ), which fulfills ®u = @. It remains to show that u € C([0,T];C(; X)). Let (t,)nen <
[0,T] converge to t € [0,T]. Then for all z € Q we have

n—o0

) = u(®)l ey = max[ult) — u(O)@)]x = max [ty ) = aft, ) x 22 0

by the uniform continuity of @ (as Q x [0,7] ¢ R**! is compact). O
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Lemma 0.2.6 (Partial derivatives of abstract functions (Exercise 1.2))
Letue C(Qx[0,T];R) and i € C([0,T];C(Q; R)) such that w(t) = u(t,-). Then the function
u has a partial derivative %1; € C(Q x [0, T];R) if and only if @ € C*([0,T];C(Q;R)). Then

we have Z&(t,) = @ (t).

Proof. TODO



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

The BOCHNER integral and the BOCHNER spaces

1.1 | Bochner measurability

We will discuss BOCHNER measurability for functions taking values in BANACH spaces, which
is similar to LEBESGUE measurability.

DEFINITION 1.1.1 (BOCHNER INTEGRAL OF A SIMPLE FUNCTION)
A function u: [0,7] — X is a simple function if there exist finitely many pairwise disjoint
LEBESGUE measurable sets (E; < [0,T])™; such that u takes constant values u; € X on
each of these sets, that is u = }};*; u; 1 g,. The (BOCHNER) integral of u is

T m
u(t)dt = Yy w|E;| € X.
| > wlE,

i=1

DEFINITION 1.1.2 (BOCHNER MEASURABILITY)
A function u: [0,7] — X is BOCHNER measurable (or strongly measurable) if there exists
a sequence of simple functions (uy,: [0,T] — X)nen such that for almost all ¢ € (0,T)

Tim [ () — u(t)]| = 0. (3)
The following, non-reversible (Exercise!) implication holds.

Lemma 1.1.3 (LEBESGUE-measurability of |u])
Let u: [0,T] — X be BOCHNER measurable. Then |u| is LEBESGUE measurable on [0,T].

Proof. Aswuis BOCHNER measurable, there exists a sequence of simple functions (uy,: [0,T] —

X )nen such that (3) holds for almost all ¢ € [0, T]. For those t € [0,T] we thus have
un (t)| — |lu(t up(t) — u(t 22%,0.
lun(®)] ~ (o] < | 0] ==
The functions (||uy,|: [0,T] = R),en are simple functions (and hence measurable), because

the functions u,, = Z:Z”l ugn) ]lE@ are simple:

N ORIt
fan® = |3 1 (] € ) 111 (1),
i=1 i=1

where in () we use that the (El(n))f;"l are disjoint. Hence |u| is measurable as the limit of
the measurable functions [uy,|. O
Counterexample. 1.1.4 (BOCHNER measurability)

The function

1, ifz<t,
u: [0,1] x [0,1] = R, (z,t) — (4)
0, else
considered as an abstract function
a: [0,1] — L7([0,1];R), ¢ = u(t) = Loy (5)

simple function

BOCHNER

measurable

Fig. 2: The function u
from (4).



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

is measurable but not BOCHNER measurable but continuous if X is equipped with the weak™

topology (Homework 1.4). o

DEFINITION 1.1.5 (WEAK BOCHNER MEASURABILITY)
A function u: [0,T] — X is weakly BOCHNER measurable if for all f € X* the map
t — {( f,u(t) ) is LEBESGUE measurable.

Remark. 1.1.6 Since strong convergence implies weak convergence, BOCHNER measura-
bility implies weak BOCHNER measurability: if w,(t) — wu(t) for almost all ¢ € [0,T],
then { f,u(t) ) is LEBESGUE-measurable as the limit of the LEBESGUE-measurable functions

Cfrun(t) ).

For the converse of the above implication to hold, an additional property is needed.

DEFINITION 1.1.7 (ESSENTIALLY SEPARABLE VALUED)
A function u: [0,T] — X is (essentially) separable valued if it (up to a null set N < [0,77])
only takes values in a separable subset of X.

THEOREM 1.1.1: PETTIS’ MEASURABILITY THEOREM |

A function w: [0,T] — X is BOCHNER measurable if and only if u is weakly BOCHNER
measurable and essentially separable valued.

Corollary 1.1.8 (Weak and strong BOCHNER measurability in separable spaces)
If X is separable, weak and strong BOCHNER measurability coincide.

Proof. Subsets of separable spaces are separable. O

weakly BOCHNER
measurable

(essentially)

separable valued



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

1.2 | The Bochner integral

We want to integrate functions mapping into BANACH spaces X, in our case X often is a 19.04.2021
SOBOLEV spaces. This allows us to consider evolution PDEs, where the space derivative is
in the SOBOLEV space X and the time derivative is considered in the abstract BOCHNER
setting. Our approach will be similar to the construction of the LEBESGUE integral.
DEFINITION 1.2.1 (BOCHNER INTEGRAL)
Let u: [0,7] — X be BOCHNER measurable and (u,)neny & sequence of simple functions
with u,(t) — w(t) in X for almost all ¢ € [0,7]. Then u is BOCHNER integrable if
S?; [wn(t) — u(t)| dt — 0, that is, for all & > 0 there exists a M. € N such that
T
f ||’U,n (t) = u(t)H dt <e Vn > M,. (6) This is a LEBESGUE
0 integral, which is
well-defined by
We set lemma 1.1.3.
T T
f w(t)dt == lim | wu,(t)dte X. (7)
0 n=% Jo

For a measurable subset B c [0,T], we set

T

JB u(t) dt = f u(t) 1p(t) dt.

0

Remark. 1.2.2 The limit in (7) is well defined as each u,, and u are BOCHNER measurable

and hence the function |u, — u| is LEBESGUE measurable by lemma 1.1.3.

For n,m > M. we have, as u, — u,, is again a simple function and the triangle equality is

an equality for simple functions,

f o (t)dt — JT U (£) dt

0 0

T
=f0 Jun () — s (£) |t
X

az (T (6)
< Jo [wn(t) — w(@®)| + u(t) — um(t)] dt < 2e.

Hence (S(j; U (1) dt) . is a CAUCHY sequence in X and thus converges for n — o0 as X is
a BANACH space.

Remark. 1.2.3 (Independence of approximating sequence) The integral (7) is well
defined, that is, independent of the approximating sequence of simple functions, as (6) holds
for all such sequences and thus the procedure in the previous remark can be done with any
such sequence.

Remark. 1.2.4 The BOCHNER integral is linear, which directly follows from the limit def-

inition (7) and the fact that the integral of simple functions is linear.

Lemma 1.2.5
Every continuous function C([0,T]; X) is BOCHNER integrable.

Proof. Homework 1.1. O



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

THEOREM 1.2.1: PROPERTIES OF THE BOCHNER INTEGRAL

Let u: [0,7] — X be a function.
@ Let v be BOCHNER measurable. Then u is BOCHNER integrable if and only if
t — |lu(t)| is LEBESGUE integrable.
@) Let u be BocHNER integrable. For all measurable subsets B < [0,T] and for
all f € X* we have

[, ra < [ oraeaa (5] war) = [

@) Let (Y, ] |y) be a BaNACH space, A € L(X,Y) a linear bounded operator and
u BOCHNER integrable. Then Au: [0,7] — Y is BOCHNER integrable with

LT(AU)(t) dt — A ( L ") dt) . (8)

Proof. @ As u is BOCHNER measurable, there exists a sequence of simple function
(un: [0,T] = X)nen such that ||u,(t) — u(t)| — 0 for almost all ¢ € [0,7] and by
lemma 1.1.3, |u| is LEBESGUE measurable and |u, (¢)| — ||u(t)| almost everywhere in
[0,T].

"= ": We want to show that (SOT wn (2)]| dt) is a CAUCHY sequence: for n € N
N
we have "

[t = o] < [l = Ju®ldt < [ (o) — utey] @t 22 0.
0 0 0

By Fatou’s Lemma (FL) we conclude that
T T FL T
f [u(®)| dt = J lim [u,(t)|dt < lim Jwn (t)| dt < oo.

" «=": Define the cut-off function

un(t), if Jun ()] < 2[u®)],

Up(t) =
0, else.

First observe that v,(t) — w(t) almost everywhere: let M = {t € [0,T] : un(t) —
u(t)}. If u(t) = 0, then the statement is obvious. If t € M is such that wu(t) # 0, then
there exists a € > 0 such that ||u(t)| > €. For € choose ng € N such that

[lun (O] = [u®]] < Jun(t) — u(t)| < e

for all n = ng. Then we have
lun@)] < &+ [u@)] < 2[u(t)]

and hence v, (t) = u,(t) — u(t).

We have |Jv, () — u(t)| < 3|lu(t)], so we have found a dominating function and can
apply LEBESGUE’s dominated convergence theorem:

T
lim | oa(t) — u(t)] dt = 0.

n—0o0

Fa-

ToU’s Lemma states that
{7 lim infp oo f (£) dt <
lim inf,, o §¢ fn(t) dt if
fn = 0.
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@) Let (un)nen be a sequence of simple functions with w,(t) — u(t) in X for almost
all t € [0,7]. Consider the sequence of simple (due to the linearity of A) functions
(Aup: [0,T] > Y)pen. We have

T

T
[} 1m0 = Aoy @t < Ay [ Jun6) = @) e 2200
0 0 )

due to the BOCHNER measurability of u.

The assertion (8) is true for step functions. Due to the linearity of A, the continuity

of A grants the property for all functions.

@) For the second assertion take Y = R and A = ( f,- )y« - The first assertion is true
for steps functions due to the linearity of the integral. By FATOU’S LEMMA, we can
then take the limit. ]

Absolutely continuous functions

We will see that absolutely continuous function are the weakest class of functions for which
the weak derivative, which we define afterwards, makes sense. SOBOLEV already noticed in
the forties that for absolutely continuous functions the almost everywhere derivative coincide

with the weak derivative but if you weaken the function class, this is not true anymore.

The properties stated in the following theorem motivate the definition after it.

THEOREM 1.2.2: LEBESGUE POINTS

Let u: [0,T] — X be BOCHNER integrable. Then almost everywhere in [0,7] we
have

1 t+h
@ lim — f u(s)ds = u(t), that is, almost all points are LEBESGUE points,
t

1 t+h
@ Jimy [ It —u)ids o

where outside of [0, 7], u is continued by zero.

Proof. @ follows from @: by the triangle inequality we have

1

t+h
7 L u(s)ds — u(t) !

7 LHh u(s) —u(t)ds

t+h
= j Ju(s) — u(t)] ds.

@ We can’t guarantee the measurability of |u(-) — u(t)], so we have to use an approxi-
mation step. By PETTIS’ theorem, u is essentially separable valued. Hence for almost

all ¢ € [0, T] there exists a sequence (ng))neN c X converging to u(t).

By the triangle inequality, we have
t+h t+h
1 1 (1) (1)
7 Juls) —ut)]ds < & lu(s) =23, | ds + u(t) — 2|
t t

Taking n — oo and then h — 0 guarantees the measurability s — |u(s) — 2P [ ]

DEFINITION 1.2.6 (ABSOLUTE CONTINUITY)

A function u: [0,7] — X is absolutely continuous if for all € > 0 there exists a § > 0 such  absolutely
that for all N € N and pairwise disjoint intervals ((a;,b;) = [0, T])X;, Zfil |bi —a;] <&  continuous
implies that >, [lu(b;) — u(a;)|| <e.

10



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

Remark. 1.2.7 (Relationship to other kinds of continuity)
Absolute continuous functions are uniformly continuous and continuous differentiable func-

tions are absolutely continuous.

The following fundamental theorem is analogous to the theorem for functions w: [0,7] — R.

THEOREM 1.2.3: FUNDAMENTAL THEOREM

Let u: [0,7] — X be a BOCHNER integrable function. Then U: [0,T] — X, t —

So s)ds is absolutely continuous and almost everywhere differentiable with U’(t) =

u(t), in particular at all points of continuity.

Proof. (Idea) We show first differentiability. For t € [0,7] we have

per v _ )2 ( [ s [ o ds> )
= % J:Jrh u(s) ds — u(t) 220,

by Theorem 1.2.2 @

We now show absolute continuity. For (a;,b;) < [0,7] as in the definition of absolute

[ e Zj Ju(s)]ds

and the statement follows from the integrability of |u (cf. Theorem 1.2.1 (1)) as that implies

continuity, we have

N N

2 NU®) = Ula) =]

i=1 i=1

the absolute continuity of ¢ — S(t) [w(s)| ds. O

THEOREM 1.2.4: KOMURA | 11 ]

Let X be reflexive and u: [0,T] — X be absolutely continuous. Then w is classically
differentiable in (0,7, v’ is BOCHNER integrable and

t

u(t) = u(to) +£ u'(s)ds

0

for all ¢,t9 € [0, T7].

Counterexample. 1.2.8 (KoMURA: reflexivity of X is essential)
Consider again (5), which is absolutely continuous but not differentiable: let ((a;,b;) <
[0, T]){Z,, then

la(b:) — @(as) | 2 o1 = | o = Lo ot @o.r1.5) = | Lfaron |t (o.r7.5) = bi — @i,
9)
and hence
N N
Z bi) — w(a;)| L1 (0,1, ):Zbi—ai<5:2€,
i=1 =1

so @ is absolutely continuous. (By (9) it is even LIPSCHITZ continuous.)

11



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

But @ is not differentiable: for h # 0 we have by the previous calculations

h
===1

L1 ([0,T],X) h

a(t + h) — a(t)
h

hence if v should be a derivative of %, we must have

a(t + h) — a(t) o

L' ([0,T],X)

HUHLI([O,T],X) -

L' ([0,T],X)

and hence |v||z1([o,77,x) = 1. But

t t+h
_ f lo(s)| ds +f
L (]0,T],X) 0 t

has to vanish for h — 0, so v is zero on (0,t) U (¢t + h,1) for h — 0, we thus have v = 0

a(t+h)—u

n v

1 1
v(s) — h‘ds +L . lv(s)|ds
+

almost everywhere in (0,7"), which is a contradiction to |[v]|z1([o,77,x) = 1. o

Example. 1.2.9 (Revisiting counterexample. 1.1.4 in L?)

Consider the function
u: [07 1]2 - Ra (tvgj) = 1[0,15] (I‘) =

and the corresponding abstract function @: [0, 1] — L2([0, 1];R), t — u(t, -).

Then @ is BOCHNER measurable, nowhere differentiable (and hence not absolutely continu-
ous by Theorem 1.2.4) but continuous if L?([0,1];R) is equipped with the weak topology.
(Exercise 1.3, TODO) o

The BOCHNER spaces

A compact subset K < (0,7T) is denoted by Kcc(0,T).

DEFINITION 1.2.10 (BOCHNER SPACE LP(0,T; X))
For p € [1,00), LP(0,T; X) is the linear space of equivalence classes (of functions only
differing on a null set) of BOCHNER measurable functions w: [0,T] — X with

T 5
lulzeo,1,x) = <J |u(®)|? dt) <
0

and L®(0,T; X) is the linear space of equivalence classes of bounded BOCHNER measurable
functions w: [0,7] — X with

[w] Lo 0,7;x) = esssup |u(t)| < co.
te(0,T)

The space L, (0, T; X) can be used to model blow ups, for example at the endpoints of the
interval.
DEFINITION 1.2.11 (BOCHNER SPACE Lj, (0,T; X))

1

loc

The space Li .(0,7; X) is the space of locally integrable functions

L},.(0,T; X) := {u: [0,T] — X such that ulg € L'(0,T;X) VK == (0,T)}.

12



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

The BOCHNER spaces exhibit the usual properties we know from the LEBESGUE spaces.

THEOREM 1.2.5: PROPERTIES OF THE BOCHNER SPACES

@ For pe [1,0], LP(0,T; X) is a BANACH space.

@ For p € [1,00), the simple functions are dense in L?(0,T; X). As L® is not separable,
[1,0),
1,

)

)

@) Forpe C([0,T]; X) is dense in LP(0,T; X). ZZZSLTEI:;EES?TJSL@

@ For p e [1,00), LP(0,T; X) is separable if X is, too.

®) Let u e LP(0,T;X) and v € L(0,T; X*) where p,q € [1,0] are HOLDER
conjugates. Then {(v(-),u(-)) € L1(0,T;R) and the HOLDER inequality holds:

(t)>dt| <

HUHLQ(O,T;X*) HUHLP(O,T;X)~

@ For p € (1,0), LP(0,T; X) is reflexive if X is, too. If X is reflexive or X* is
separable, then (LP(0,7;X))* >~ L(0,T; X*) via the dual pairing

VWD (Lo (0,13 %))% x Lo (0,73 %) = L o) ult) )xnx At

Furthermore, (L'(0,T; X))* =~ L*(0,T; X*).
@ If X = H is a HILBERT space, then L?(0,T; H) is HILBERT space with the
inner product

(u, U>L20TH = f Cu( (t) ) dt.

If X — Y are BANACH spaces, then L”(0,7; X) — L%(0,7;Y) for all 1 < ¢ <

p < o0. This only holds for
bounded intervals.

Proof. Analogous to the standard case.
@ Homework 2.3
Homework 2.2. O

Remark. 1.2.12 (Not all properties can can be taken for granted)
A weakly continuous (that is, continuous with respect to the weak topology on X) function
u € Cyy ([0,T7]; X) must not be BOCHNER integrable.

Lemma 1.2.13 (Abstract functions)
Let @: [0,T] — LP((a,b);R) with p € [1,00] be BOCHNER measurable. Then u: [a,b] X
[0,T] = R, (x,t) — [u(t)](z) is LEBESGUE measurable.

Proof. Homework 1.2. OJ

Lemma 1.2.14 (The case X = LP((a,b);R), p < ©)
Forpe[1,00) and a < be R we have

LP(0,T; LP((a, b); R)) = LP([a, b] x (0,T); R)

but
L*(0,T5 LP((a,b);R)) € L*([a,b] x (0,T); R)

13



1 THE BOCHNER INTEGRAL AND THE BOCHNER SPACES

Proof. Homework 1.3.

The latter inclusion follows from lemma 1.2.13 and the standard example for nonequality is

(5)- O
Lemma 1.2.15 (Dominated convergence for abstract functions (Exercise 2.4))
Let (up)neny < LY(0,T;X), ue LY (0,T; X) and g € L*((0,T); R). If un(t) — u(t) in X and

|un(t)|x < g(t) for almost every t € [0,T], then (un)nen converges to u in L*(0,T; X).

Proof. TODO

14



2 GENERALISED TIME DERIVATIVES AND THE SPACE W (0,T)

Generalised time derivatives and the space
w(0,T)

In this section we will introduce the weak time derivative for abstract functions and obtain

weak formulations for evolution equations, as before, by multiplying with test functions.

2.1 | The generalised time derivative

Let X be a reflexive BANACH space.

DEFINITION 2.1.1 (WEAK TIME DERIVATIVE)
Let u,v e L _(0,T; X). Then v is the weak time derivative of u if

loc

fo u(t)g'(£) dt = — j v(Bp(t)dt Ve CE([0,T);R). (10)

Remark. 2.1.2 (Dual characterisation of weak derivatives)

The function v is the weak time derivative of u if for all f € X*

<f, u(t + h})z —u(t) U> o, o

THEOREM 2.1.1: FUNDAMENTAL THEOREM OF THE CALCULUS OF VARI-
ATIONS

Let ue L{ (0,T; X) with

T
J u(t)p(t)dt =0 (11)

0

for all ¢ € C°(0,T). Then u vanishes almost everywhere.

Proof. Let ¢ > 0. We may define ¢ € Ci°(0,T) such that ¢|+—.) = 1, ¢|1) = 0 for some
te (0,7). Then

Jt u(s)ds

0

(w < j (1= (s)) [u(s)] ds

0

[[t6) — ptoputsy

0

t

B J (1) s+ f (L= p(s)) Ju(s) [ ds = 0.
0 ~——

t—e
<1 <1

Hence HS?) u(s) dsH =0 for all t € (0,T) implies u = 0 almost everywhere.

This proof only works for v € L'(0,7) € L{ _(0,7)?? This is a proof for the general

loc
case: for f € X* we have

T T
f <f7u(t)90(t)>dt=<f, j u(t)so(t)dt>=o
0 0

and thus the Fundamental Theorem of the Calculus of Variations from DGL IlA implies that

{(f,u(t) ) = 0 almost everywhere and hence u = 0 almost everywhere. O

15
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2 GENERALISED TIME DERIVATIVES AND THE SPACE W (0,T)

Corollary 2.1.3 (Testing with the derivative of the test function)
Letue Li (0,T; X) such that

loc
T
J u(t)p' () dt =0
0
for all p € CF(0,T;R). Then there is a constant ug € X such that u = ug almost everywhere
n (0,7).

THEOREM 2.1.2: CHARACTERISATION OF WEAK DERIVATIVES

Let u,ve L}

loc

(0,T; X). Then the following are equivalent
@ v is a weak derivative of u
@ there exists a ug € X such that

t

u(t) = ug + J v(s)ds

0

almost everywhere in (0,7).
@) for all f € X* the function ¢ — { f,u(t) ) has the weak derivative ¢ — { f, v(t) ).

\. J

Proof. @ — @: If v is the weak time derivative of u, then

f u(t)' (t)dt = —J v(t)p(t) dt

0 0

for all ¢ € CJ(0,T). By a corollary of the HAHN-BANACH theorem, the above equations are

<f, j u(t)tp’(t)dt>=<f,— j v(t)go(t)dt>

for all f € X*. By linearity and continuity of f, this is equivalent to

equivalent to

f<f, )>¢'(t)dt = j<f, )y(t)di

for all f € X* due to Theorem 1.2.1 @ by choosing A = (f,- Dxsyx € L(X,R).
@ = @: By FuBInI’s theorem we have

J J s)dsy’(t JOT v(s) LT ' (t)dtds

=f WD), el ds = = | vlsee)as Y [,
— 0

0

using the fundamental theorem of calculus. Then

LT <u(t) - Lt v(s) ds) ¢’ (t)dt = 0.

By corollary 2.1.3 we have, up to a constant, u(t) = S(t) v(s)ds

@ = (@: Assume there exists a ug € X such that u(t) = ug + S(t) v(s)ds. Then

0= JOT o (1) dt = LT (u(t) - Jotv(s)ds) S (1) dt.

With the calculation from before we see that v is the weak derivative of u. ]

16

We can continue

¢ €CF(0,T) onto [0,T]
by zero due to ¢ being
compactly supported, so
@(T) makes sense.



2 GENERALISED TIME DERIVATIVES AND THE SPACE W (0,T)

DEFINITION 2.1.4 (THE sPACE W11(0,T; X))
Let

Wh0,T; X) == {ue L'(0,T; X) : u has a weak derivative v’ € L*(0,T; X)}

be equipped with

11 = luly + ']

u

THEOREM 2.1.3: Wl FUNCTIONS ARE ABSOLUTELY CONTINUOUS

The space W11(0,T; X) is a BANACH space. For every function v € W11(0,T; X)
we can find an absolutely continuous function, which is almost equal to w, that is,
WLL(0,T; X) < AC([0, TJ; X) < C([0, T; X).

Proof. (1) Completeness (sketch): Let (uy,)nen converge to u in W1(0,T; X). Then
there exists a v such that u,, — v in L1(0,T; X). We have

T T T T
J w(t)p' (t)dt = lm | u,(t)@' (t)dt = — lim | ul (t)p(t)dt = ff v(t)p(t) dt,

so v is the generalised derivative of u.

@ For an absolutely continuous function u we have the representation u(t) = wug +
S(t] u'(s)ds by Theorem 1.2.4. By the integral mean value theorem there exists a
to € [0, T] such that [u(to)| = + S(T; |u(t)| dt and hence

1,1

Jut)] = max(L 1)

T T
<7Luwww+knwww<

futto)] + [ w'(s) s < 7

O

17



2 GENERALISED TIME DERIVATIVES AND THE SPACE W (0,T)

2.2 | The space W(0,T)

We want to introduce the space W (0,T), which is the standard space for handling evolu-
tion equations. The overall idea is that time derivative is a different space than the space
derivative, so they have to be handled differently; the time derivative "lives in" another
space than the function itself. The function can have spatial regularity, which is lost when

differentiating in time.

DEFINITION 2.2.1 (GELFAND TRIPLE, EVOLUTIONARY TRIPLE)
Let (V| - |) be a real reflexive separable BANACH space, (H,|-|) a real HILBERT space

and V <& H. We identify H ~ H*. Since V is reflexive, we get H* L v*. We call
V € H ¢ V* a GELFAND or evolutionary triple.

The space H is called pivot space.

Remark. 2.2.2 (Notation of norms, dual pairing and scalar products)

The norm on V will be denoted by | - ||, the norm on H will be |- | and the norm on V* will
be || - [«. The dual pairing will be (-, ) %, and the scalar product on H is (-,-) such that
we have (g,v) = (g,v) for all ge H and v e V.

Proof. (Exercise 2.1) We show that H <V implies H* <& v*,

Let j: V — §(V) & H be the linear injective operator of the embedding V' < M and
I: H — H* the isometric RIESZ isomorphism satisfying (I(w),v) s g = (W, v)mxn for
all v,w e H. Consider the BANACH adjoint of j

j*e H* - V*, <j*(w)’v>v*><v=<w7j(v)>H*><H‘
We want to show that j*(H™*) c V* is dense.

TODO U

Remark. 2.2.3 (Notation of embeddings) We have shown that we can understand the
GELFAND triple V' S H >~ H* <% V* as inclusions of sets: V < H < V*. Therefore,
it is common not to write the embedding operators and simply identify the elements. For
example, for fe H andveV

G v ovsy = )i @) ) ps = (F3(0)),

but we write simply

<f,v>V*><V = (fvv)H~

Example. 2.2.4 (GELFAND triple)
o V= WP (Q), H = L3Q), V* := W~14(Q).
o Vi=1LP(Q), H:=H Q) = H}(Q), V* = LYUQ) if L + 1 =1.

In order for H}(Q) — L%(Q), the SOBOLEV embedding theorem says that we need

% < % — é, and together with the above condition this becomes 1 — zl) < % - %, that
is,%>%+é,thatis,p<%WhereQCRd. o

18
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2 GENERALISED TIME DERIVATIVES AND THE SPACE W (0,T)

DEFINITION 2.2.5 (THE SPACES W (0,T) AND W,(0,T))
Let V¢ H < V* be a GELFAND triple. We define

W(0, T):={ue L*(0,T;V) : W' e L*(0,T; V*)}

and endow it with the norm

N

lulwio.my = (lulz v + 4220,z

THEOREM 2.2.1: PROPERTIES OF W (0,T)

(@ The space (W(0,T),] - lwo,r)) is @ BANACH space.

@ Cc*([0,T]; V) € W(0,T) is dense.

@) We have W (0,T) < C([0,T]; H).

@ The integration-by-parts formula holds: for u,v € W(0,T) and 0 < s <t < T

J (' (7),0(7) ) + ' (7), u(r) ydr = (u(t), v(t) — (u(s),v(s)).

Proof. (1) We only show completeness. Let (un)ney © W(0,T) be a CAUCHY sequence.
Then (uy)nen is a CAUCHY sequence in L%((0,7),V) and (ul,)nen is a CAUCHY se-
quence in L2((0,7),V*). By Theorem 1.2.5 @, both of these spaces are complete, so
there exist limits u, v with u,, — w and u], — v. We want to show that ' = v. For all
p € Cy(0,T) we have

T T T T
J w(t)p' (t)dt = lim | u,(t)@' (t)dt = — lim | ) (£)p(t)dt = — f v(t)p(t) dt,

0 n—0o0 0 n—aoo0 0

where the (strong) convergence holds in V*. Hence v is the weak derivative of w.
The space W (0,T) is well defined as L2(0,T;V) < L'(0,T;V) — L'(0,T;V*) and
u' € L2(0,T;V*) < LY0,T;V*), so W(0,T) € WH1(0,T; V*) is a BANACH space as
a closed subset of a BANACH space.

@ This is proven, as usual, by mollifying (convolution with smoothing kernels p. €
C*([0,T];V)). Define the approximating sequence (u. = p. * u)e=g < C([0,T]; V)
with ue — u in L?((e,T — ¢); V). We have (u.) = ul. and hence (u;)’ — u in
L?((e, T —¢€); V). Since € > 0 was arbitrary, we deduce convergence.

@) Let v e CY([0,T]; V), ¢ € C*([0,T]; [0, 1]) with ¢(0) = 0, o(T) = 1. Let v; := v-¢ and
vy :=v-(1—¢). Then vy +v2 = v, v1(0) = v2(T) =0, v1(T) = v(T), and v2(0) = v(0).
By partial integration we have

(01 (), 0(t)) = (v2(0),0(0)) + L (1(s),0(s) ) + <0 (s),v1(s) yds
= (11(0),v(0)) +J @' (s)|v(s)[* + 20(s) (V' (s), v(s) yds

=0 0
and analogously
T
(v2(t),v(t)) = (v1(T), v2(T)) —J (=" ($)[v(s)[) +2(1 = p(s)) (V' (s), v(s) ) ds.
— t

=0

19
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2 GENERALISED TIME DERIVATIVES AND THE SPACE W (0,T)

Hence
[w(t)[2 = (02 (t), 0(8)) + (v2(t), 0(1))
T
=L)¢@HM$F+2%@<M@%M$>®
T
—L(—d@ﬂwaﬁ>+m1—ww»<uwxw@>w
Tl t
=J &(s) W@»st+2f o(s) (v/(s),0(s) ) ds
0 Y~ ~Y~—— 0 S—— —
<@’ o <a?|v(s)|? <1 <o/ ()l v (s)ll
T
fzf (1 - o(s)) (v'(5),0(s) ) ds.
' <1 <[ v’ ()% [v(s)]
As V — H, there exists a « > 0 such that |- | < «| - |. Thus by using the CAUCHY-

SCHWARTZ inequality and YOUNGS’s inequality, we obtain

1
|U(t)\2 < a2H‘P'||oo||’UHQL2((o,T):V) +4- 5 (H”/H2L2(0,T;V*) + HUH%%O,T;V))
< (@®[¢' oo + 2) 0]y 0,7y = comstlvly 0,7

and thus |v|e < const|v|w (o). For every u € W(0,T), there exists a sequence
(Un)nen < CP([0,T];V) such that u, — w in W(0,T). By the above, (u,)nen is
bounded in C([0,T]; H), so there exists a 4 such that u, — @ in C([0,T]; H). We may
identify the limit: we have

laleqo.rymy < % —=unleqory;my + lunleqo,r:m)

< |t = unlleo,rymy + llun — ullwo,r) + ulwo,r)-

Passing to the limit with n — o0, we obtain that the first two summands vanish.

@ The integration by parts rule holds for C' functions (Exercise 2.2, TODO) and by
density arguments it follows for functions in W (0, T). O

Corollary 2.2.6 (Integration by parts: derivative of the squared norm)
For ue W(0,T) we have 3 -%|u(t)> = (u'(t),u(t) ) almost everywhere in (0,T).

Proof. Let ¢ € CJ(0,T). Then
1 (T T
3 | PO = [ um)e i
by choosing u = v and v = pu in Theorem 2.2.1 @ Since L2(0,T;V) — L?(0,T; H) by

Theorem 1.2.5 8), we observe that |u(-)|> € L*(0,T) and (u'(-),u(-)) € L'(0,T;R). We
observe that t — |u(t)|? is absolutely continuous and almost everywhere differentiable.  []
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3 LINEAR FIRST ORDER EVOLUTION EQUATIONS

Linear first order evolution equations

3.1 | Introduction to Linear Operator-valued ODEs -

Assumptions and weak formulation

We will first look at linear first order PDEs. We want to prove well-posedness of certain
evolutionary equations in the form of the Theorem of LioNs (1962).

Let V < H € V* be a GELFAND triple and a: [0,T] x V x V — R be such that

a(-,v,w) is LEBESGUE measurable on [0,7T] for all v,w e V,

a(t,-,-) is bilinear for all ¢ € [0, T7,

the form a is uniformly bounded with respect to the first input variable, that is, there
exists a 8 > 0 such that

la(t, v, w)| < Bllv]|wl] (12)
for all t € [0,7T] and all v,we V.
the form a fulfills the GARDING inequality, that is, there exists a 1 > 0 and a x > 0

such that
a(t,v,v) = plv)* = klo|? (13)

for all t € [0,T] and all v € V. For & € [0, £3), a(t,-,-) is uniformly strongly positive
(that is, for all ¢ € [0,T]), where o > 0 is the embedding constant: || < «f - |
(Homework 3.2(a)).
Remark. 3.1.1 (Equivalent norm on V (Homework 3.2(b))) For any ¢, € [0,T] the
form

1
((u,v)) := i(a(to,u, v) + a(to,v,u)) + k(u,v)
defines an inner product on V' which induces a norm equivalent to | - || on V.
We get the following implications.

@ for all t € [0,7] and all v € V, the map a(t,v,-): V — R is lincar and bounded. We
define A(t)v := a(t,v,-) € V* which fulfils |A(t)v], < 5

@) for all t € [0,T], A(t) € L(V, V*) with
Finally, define A: [0,T] — L(V,V*), t — A(t).

ol.

A vv=) < B

(@) the GARDING inequality now becomes

(A + 61,0 )y = pl]?, (14)

where I: V' — V* is the embedding via (+,-): (0,0 )y sy = (v,0) = |v|*>. Hence A

with a nonnegative shift is strongly positive.

DEFINITION 3.1.2 (NEMITZKIJ OPERATOR)
The NEMITZKLJ operator of u: [0,T] — V is

Aw: [0,T] - V*, (Au)(t) = [A®)](u(t)) = A(t)u(t).
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3 LINEAR FIRST ORDER EVOLUTION EQUATIONS

Lemma 3.1.3 (Properties of the NEMITZKIJ operator)
Let the assumptions - be fulfilled. Then A maps

@ BOCHNER measurable functions to BOCHNER measurable functions and

@ L2(0,T;V) into L*(0,T; V*).

Proof. @ As u is BOCHNER measurable, there exists a sequence

< Z w1y : [0,7] — v)
neN

of simple functions such that ||u(t) — u,(¢)||y — 0 for almost all t € [0, T]. For we V
we have

CAun (), W )y iy = Z<A in7w>]1E§n> Z ) 1 gom (8).

By assumption , t — (Aun(t),w )%, is LEBESGUE measurable for all n € N.
Since A(t) € L(V,V*), we observe
((Aup)(t), w ) — {(Au)(t), w)

for all w € V and almost all ¢t € [0,T]. Hence {(Au)(t), w) is the pointwise limit of
LEBESGUE measurable functions (((Au,)(t),w )neny and hence also LEBESGUE mea-

surable. Since V'* is separable, the statement follows by Theorem 1.1.1.

@ Let u € L%(0,T;V), then Au is BOCHNER measurable in V* by @ By assumption

We have

Integration yields

[(Au)@) ]+ = [AG)u®) ]« < Blu®)]-

T T T
| AulZa 0 zs) = L [(Aw)(®)[5 dt = L [A®)u(t)| dt < B2L lu@®)I? dt = 52 ulZ20,7:0)-

O
Remark. 3.1.4 (A e L(L?*(0,T;V),L?((0,T); V*)) The proof of lemma 3.1.3 implies
that A e £(L?(0,T;V),L*(0,T;V*)) with norm bound 8.

Later on we want to prove the existence of weak solutions to this linear problem by a time
discretisation. Due to the discretisation of the time derivative, we have to deal with a shift

of the operator A.

Lemma 3.1.5 (Strong positivity of A + k1)
Additionally assuming the GARDING INEQUALITY , the shifted operator

A+rl: L*(0,T; V) — L*(0,T; V*)
is strongly positive:

(A+sDu,u) = plulizory)  Yue L2(0,T;V).

Proof. We have
T (14) T ) )
(A+rDu,u) = f QAW + KDut) ult) Syeyy dt > p f u(®) 2 dt = alul s 7.1
]
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3 LINEAR FIRST ORDER EVOLUTION EQUATIONS

In the following, we consider the problem

To ug € H and f € L?(0,T;V*) find u € W(0,T) with
w4+ Au= fin L%(0,T;V*), (%) (P)
u(0) = up.

Remark. 3.1.6 (Well-definedness of the initial condition)

Since u € W(0,T) < C([0,T]; H) by Theorem 2.2.1 (3), the initial condition has to be
understood to be attained in H.

Remark. 3.1.7 For u € W(0,T) we find v/ = f — Au € L?(0,T;V*) — LY(0,T;V*)
by Theorem 1.2.5 . Theorem 2.1.3 implies that u is an absolutely continuous function
u: [0,T] — V*. Since V* is reflexive, by Theorem 1.2.4 u is classically differentiable almost
everywhere. Hence (%) is equivalent to v/(t) + (Aw)(t) = f(t) in V* almost everywhere in
(0,7).

Remark. 3.1.8 (Weak formulation) As L2(0,T;V*) = (L*(0,T;V))*, (x) is equivalent
to

f Cu' (t),v(t) Y+ {(Au)(t),v >dt—f Cf(E),v(t) yde Yve L(0,T;V). (15)

Since C*(0,7) ® V is dense in CX(0,T;V) NN L?(0,T;V) (Exercisel), we can restrict the
test functions to v(t) = p(t)w with ¢ € C2(0,T) and w € V. Hence (15) is equivalent to

[ w+ canw) s = [ Gwuena voeczo.m, vev,
Theorem 2.1.1 now implies
! (t),w) +al(t,u(t),w) = f(t),w) YVweV  almost everywhere in (0,7).

Remark. 3.1.9 The function v being the generalised derivative of u is equivalent to the
mapping ¢ — (u(t),w ) having the weak derivative ¢t — (v(t),w) for every t € (0,T), where
the derivative has to be interpreted in the weak sense.

Remark. 3.1.10 (Wlog a is uniformly bd., strongly pos. (Homework 3.2 (c)))
Using the transformation

a(t) = e "u(t), ft) =e " f(t), a(t,v,w) = a(t,v,w) + k(v, w)
the equation
d
(), 0) +alt,ult),v) = (f(t),v),  veV,
where q fulfills the standard assumptions, is equivalent to

d . R . R
g —(a(t),v) + a(t,a(t),v) = {f(t),v), veV,

where a(t, -, -) is a uniformly bounded, strongly positive bilinear form.

3.2 | Existence and uniqueness of solutions
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THEOREM 3.2.1: JACQUEs-Louis LioNs (1962)

Under the assumptions = , the problem (P) is well-posed in the sense of
HADAMARD, that is, a unique solution exists and we have continuous dependence on

the initial value and the right side.

Remark. 3.2.1 (Generalisation by TARTAR/TEMAM)
In Theorem 3.2.1 we can allow f e LZ(0,7;V*)@® LY(0,7;H), i.e. f = fi + fo with
f1e LY0,T; H) and fo € L2(0, T; V*).

Lemma 3.2.2 (A priori estimates: uniqueness and stability)

Under the assumptions - the a priori estimate

t
u(®)]* + ML [u(s)|* ds < ¢ (luol® + £ L20,mv%)) (16)
holds for every solution we W(0,T) of (P).

As usual, this is proven by testing the equation in an appropriate sense.

Proof. (1) We first show the estimate. Since w e W (0,T), we can test (P) by w:

(w'(t), w(t) )+ (Aw(t),w(t)) = {g(t),w(t)) < [g(t)]«|w(®)].

_1dlw@P  Sulw® sl

For the first term we use Corollary 2.2.6 and for the second one we use GARDING’s

inequality as indicated above to obtain

1d Y 1
v WP+ @) = slw@)* < g@)] o) < Ellg(t)lli + gllw(t)Hz,
where (Y) is YOUNG’s inequality ab < - % for e > 0. Combining alike terms yields

1d 2, M 2 2 1 2
= — < — .
2 g O + Glw® — sl < 5190

and this can be rewritten as

d , _ _ 1 _
7 (€ w@P) + e plw@)]? < € gl

—2kt

by multiplying by 2e and absorbing the k-term into the derivative in the first term.

2kt

Integrating with respect to time and multiplying with e=** we get

t t
me+£f2t*ww)Ww<¥ﬂwF f 5= | (5)[2 ds
>1

<ot + [ a3 ds).

which proves the estimate, as we can upper bound the integral over [0,¢] on the RHS
by the integral over [0,7] and take C := e2*7.

(2) Assume that there exist two solutions of

u + Au = f,, v+ Av = f,,
u(0) = ug. v(0) = vp.
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Then u — v solves (P) with w = u — v, f = f, — f, and w(0) = ug — vo. Via (16) we
infer for almost every ¢ € (0,7")

t
) = o) + 1 [ uls) = v ds <€ (juo =00l + 1 = o))

so the solution depends continuously on the initial values and the right hand side.

Thus if the initial conditions and the right hand sides coincide, then the solution is

unique. ]

Remark. 3.2.3 (Generalisation of the a-priori estimate (Exercise 3.1))
If instead f e L%(0,T;V*)® L'(0,T; H), then

f lus)] ds < M (uo, f)
holds for every solution u € W(0,T) of (

Proof. Testing the differential equation in (P) with the solution u € W(0,T) yields, as in

the previous proof
d
5 3/ OF + i@ * = slu®)l® < [ @)« [e@)] + 1 f0llu@)]
¥ 1 w
< @Hﬁ(t)ﬂi + SO + @10 + [u@®)?)
and thus by multiplying by 2 and combining like terms
d 1
2/ OF + plu®] = 26u@®)]? < ;Hﬁ(t)l\i +2|f2(0)1(1 + [u(®)?)
Integration in time provides
¢
@+ [ 1) s < O + 2 [ 1A + 1205 +2 [ 126+ (o) ds
By GRONWALL’s Lemma we have
¢
1 K
[u()l? = p f Jus) | ds < (|u<o>|2 o (s + ||f2|L1<o,T;H>)> el o T2,

O

We will now prove the existence part of Theorem 3.2.1 via time discretisation.

Proof. @ Let NeN, 7:= % be the step size and t,, :== n7 be equidistant time step for
ne{l,...,N}. Then we consider the implicit EULER scheme: for n e {1,..., N} let

We consider the problem

To v~ ! find u™ € V such that

o (a7)
=t Aty ) = f7 ne{l,...,N}.
In the following we only consider © = 0 and assume that A is independent of ¢ (time),
otherwise we would have to set A(t,) = L St" -)dt.
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(2 The approximate system (17) is well defined. For every n € {1,..., N} consider the

problem in V*
1 1

The operator /%/ + A is a linear, bounded and strongly positive operator: for the last

property observe
7_[ +A)v,v)= 7_|v| +{Av,v) = 7_|v| + ulv|® = pfvl*.

For x > 0, choose 7 small enough, i.e. 7 < %, then %I + A is strongly positive.

We have ug € H and v~ ! € V and hence u"~! € V*. By the Theorem of Lax-

MILGRAM, there exists a unique u™ for every n € {1,..., N}, that is, a solution to
(18).
In the following we identify Iu™ < u™ and don’t write the I anymore.

@ A-priori estimates. It holds that %(u" —u" 1)+ Au" = f. Testing with u™ implies

1
—( =) (A ) = () < -

We use the following calculation rule:

1

1 1
(a=b,0) = 3lal* = SIbf* + 5la — b2

Applying this to the first term, using that ( Au™, u") > p|u™|? and using YOUNG’s
inequality on the right hand side yields

1 X 1
g7 (W7 = [0 7P =T P S o G

Multiplying by 27 and collecting alike terms yields
n n— n n— n T n
L R e e A o 7] [T RS ;Hf 13- (19)

Summing from ¢ = 1 to m € {1,..., N} and using a telescoping series in the first two
summands we infer

m m m

. - . T .
e e N G e /TN U e Y Vi -
i=1 i=1 H i=1

By rearranging and estimating away the nonnegative terms this implies

m
T .
2 < W02 + 2 5772 (20)
Kz
for any m € {1,..., N}, which gives us a bound on the solution and also
N o ‘ N _ SN
D i e 7 I e (T e S VAl 2 (21)
i=1 i=1 Kz

which can be used to get a bound on the discrete derivative: additionally, we have

u” — unfl

= " = Au" s < "+ [Au" s < 17" [ + Blu”|

T *

and hence
2

<2075 + 28]u"?, (22)

*

u — un—l
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as (a+ b)? < 2(a2 + b?). Hence
2 (s

“2) u 11|12 u 1|12
<20 YUSE 4 287 ) W
i=1 i=1
(2]) u 702 0 2 712
<2 DNfE + 28 \ - 2 112
=1

Do+ 2r (1 " f) SR, (23)

=1

i Z 1

*

10.05.2021

@ Constructing the approximate solutions. In this step we will construct an ap-
proximate solution to the problem (P) using the solutions of the time-discretised prob-
lems. For ¢ € (t,,—1,t,] define

ur(t) =u"

and u,(0) = u’. Hence u, is piecewise constant. Let

u” — unfl
U (t) = u" 1+ (t — tn—1)7 and fr(t) = f" (24)
for t € (tn—1,tn] (f- is only defined almost everywhere, so we can neglect the value for
t=0).
As 4, is piecewise linear, it is LIPSCHITZ continuous and hence weakly differentiable  Fig. 3: @, gives a (con-
almost everywhere with derivative tinuous) piecewise lin-
. ear prolongation of u;.
N u —u""
W (t) = ———— (25)

fort € (tn—1,t,]|. Hence we can interpret the implicit EULER scheme via these functions
and write

L (t) + Au, = fr.

@ A priori estimate for the approximate solutions. We now have to translate the
estimates from before to the previous functions living in BOCHNER spaces. Let N, — o0
for ¢ — o0 with Ny € N and 74 := N% Additionally, let the sequences (ur, )en, (tir, )ren
and (fr,)een be constructed as above. For ¢ € N, we choose a sequence (u?) ey € H
such that ug — ug as £ — oo.

We have u?, — ug as £ — o in H and u,,(0) = u). We want to show that (fr,)een
converges to f in L2(0,T;V*). We have

T
(24) ;
||fnu%2<o,T;v*):j TS j 112 dt
j=1Yti—1

det

The a priori estimates are 1ndependent of € and we may deduce

Z t;
dt < j IO dt = |12 0.1
ti—1

N, 5 (20) Te N .
7m0y = mix [u'[* < g + = S DI,
N, N
(2 )) T ;
s, HL2 0,1;v) = Tt Z ur, |2 <|U2 4= Z ||fl||i> )
=1 H =1

_ N, L5 (20) Ty .
123 0 0.0y = [P < a2+ 2S£
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®

Extracting subsequences. As (ur,)sen is bounded in L*(0,T; H) n L?(0,T; V) and
(tir, )een is bounded in L*(0,T; H), there exists a uw € L®(0,T; H) n L*(0,T;V) such
that

Uy, > u  in L®(0,T; H) n L*(0,T; V)
and there exists a 4 € L*(0,T; H) such that

Ur, — 1.
One has to observe that one can do this steps one after the other to infer that this
holds afterwards for one subsequence. Since L2(0,T; V) is reflexive and L*(0,T; H) =~
(LY(0,T; H))* is the dual of a separable BANACH space, this follows from the Theorem

of BANACH-ALAOGLU.
Identify the limits v and 4. For t € (¢,_1,t,] we have

n_ ,n—1
T tn,l)u —u"
Te

N (21)
|u7'e(t) - u‘l'e(t) =

< ’un o unfll + M |un o un71| < 2|un - unfl )

e
S —
<1
Hence
Ny ) .
”aﬂz — Ur, ”%2(0,T;H J |uT/z — Ur, (t)|2 dt < 47y Z |uZ - u171 ?
tr—1 i=1

_)é Tpconst fow, 0.
Hence @ = u in L?(0,T; H).
Time derivative. For t € (t,,-1,t,] we have (25) and thus
wt — i1 2

[ HLQOTV*>—WZ

N ‘
1 . ; (23)
= — Z |u' — w12 "< const.
P Ty 4

Te

We deduce that (i, )¢ is bounded in L?(0,T;V*) such that we may extract another
subsequence such that @/, — v in L*(0,T; V*).

We have to identify that 4@’ = v in the weak sense. Let ¢ € CJ(0,T) and w € V such
that pw, p'w € L?(0,T;V). By the weak convergence and the linearity of the weak

derivative we have

LT<v<t>,w>w<t>dt+LT<a< )ow) ! (8) dt = j< il (£),w ) p(t) dt

%,_/
L—0 0

T
" f Calt) — i, (£), ) /(1)
0 e——
2250

Hence t — (w(t),w ) is the weak derivative of t — (@, w ) for all w € V. Hence v = 4
in W(0, 7).

Passing to the limit. We have f,, — f in L*(0,T; V*) (Homework 3.1). We observe
that A: L2(0,T;V) — L?(0,T;V*) is linear and continuous. Hence A is weak-wealk-
continuous and thus Au,, — Aw in L2(0,T;V*). We find in L2(0,T;V*)

o, + Auy, = f-,  in L*(0,T;V*).
The three terms above converge weakly to «/, Au and f in L?(0,T;V*), respectively.

This implies that « is a solution to the abstract equation.
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Identify the initial condition. We have to show that u(0) = wo in H. We have
Gy, — win W(0,T) — C([0,T]; H). The embedding is linear and continuous and
hence weak-weak-continuous, so the weak convergence is translated to a pointwise weak
convergence on H. There exists a linear continuous trace operator I': W(0,T) — H,
I(u) =T, = u(0) in H. Hence @,;, — u in W(0,7T) and so 4,,(0) — u(0) in H. We
had the condition that @, (0) = u — ug in H. Hence the weak and strong limits have

to coincide.

One can also show this more directly without the trace operator: we have i, (T) = u¥

and by an a priori estimate |u’V| <const. Hence we can extract another subsequence
such that 4,,(T) — Vr in H. For any v € V and ¢ € C1([0,7T]) we have (using the
integration by parts rule for W(0,T') functions)

T
(i1r, (T), 0)(T) — (i, (0), v)(0) = f (g 0y + (liny, 0 '

~

—(vr,v)e(T) —(uo,v)¢(0)

— L (u' s vy +Cu,v) g de
= (u(T),v)p(T) — (u(0),v)¢(0).

As v and ¢ are arbitrary and V' S , we deduce (we choose ¢ such that ¢(T) = 0)
u(0) = ug and vy = u(T). ]

3.3 | Error estimates

THEOREM 3.3.1: ERROR ESTIMATES

Let u € W(0,T) be the solution of (P) with f € L?(0,T;V*) and let additionally
(f =) € L*((0,T); V*). Then the error estimate

n ) 7_2
Ju(tn) —u™® = pr Y Jults) — o [* < Juo — u®® + @Il(f — )22 0,755
7j=1

for all n € {1,..., N} holds for the implicit EULER time discretisation given in the
previous proof.

\. J

Remark. 3.3.1 Error estimates provide convergence rates for time discretisation under

additional regularity assumptions.

Proof. From (f — ) € L?(0,T;V*) and f —u' € L?(0,T;V*) we conclude that f —u’ €

AC([0,T]; V*) by Theorem 2.1.3. Let ¢" = u(t,) — u". From “nffn_l + Au = f" we
obtain )
P U R U R B
T T
w(tn) — w(tn— n
=t = ultos) g, )
1 tn , 1 tn ,
== uw'(s)ds — = (s)ds + (f —u')(tn).
T Ity 1 T Jtny

For some BOCHNER integrable function g we have by the Fundamental Theorem of Calculus
and FUBINI’s theorem

f 9() — 9(s) ds=f; fg«r)drds:f; j g'(r)dsdr=J: ¢ () (r — to) dr.

0
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Hence

er —e' ! n 1 tn "N n *
74—146 == (f=u)(s)(s—tp_1)ds = p" eV (26)
t

n—1
We call p” the consistency error, the error one makes when inserting the real solution in the
discretised scheme. Since e™ and "~ ! are solutions to the discrete scheme, we can deduce

a priori estimates as beforchand:
m . T m .
€™+ ur Y e < 127+ = D A3
i=1 iz

We have, using HOLDER’s inequality,

2
< (26) 1t
PRS-y )t ds
n=1 n=1 T tn—1
*
VLA | tn ?
<7 - (J ||(fU')’|*(5tn—1)d5>
n=1 tn1
H 1 &G b
<) (f (5 = tn-1)? d8> (J I(f —u')]15 ds
T a1 \Jtna tn—1
=3 (tn—tn_1)3=373
2
-
= gH(f — )| 220 %) 0
Remark. 3.3.2 (Motivation to deduce additional regularity.)
Differentiating v’ = f — Awu with respect to time yields
u' =f—(Au) = f —Au—Aud = f' —Au—-Af+ A%uw. (27)

With the compatibility condition «/(0) = f(0) — (Aw)(0) and
feWhr(0,T;V*) == {ue L*(0,T;V*) : W' e L*(0,T; V*)}

and A": L?(0,T;V) — L%*(0,T;V*) we may rewrite the equation above using v’ = v: v
solves the linear first order differential equation

v+ Av=f — Aue L*0,T;V*).

By Theorem 3.2.1, v is the unique solution in W (0, T') of this equation if the initial condition
coincides, which is the case by assumption. The compatibility condition is needed to infer
that «" = v in W(0,7"). Without this condition, we deduce only regularity for u away from
0. One can deduce regularity for v multiplied with a function that vanishes in zero and this
is called instant smoothing property.

3.4 | Regularity by Rothe’s method

We will show regularity via a time approximation scheme which is called ROTHE’s method
(which can also be used to prove existence). In the last section we had the assertion that we
can provide better (that is, higher order) error estimates when assuming additional regularity
of the solution. In a sense, we are trying to get better estimates using the structure of the
PDE (e.g. linearity).
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Lemma 3.4.1 (Additional regularity w e Wh*(0,T; H) n W12(0,T;V))

Letug € V and f € WH2(0,T;V*) and the operator A'(t): V — V* be continuous and linear
for all t € (0,7). If the compatibility condition A(ug) — f(0) € H holds, then the solution
u e W(0,T) to (P) admits the additional reqularity v € W5E* (0,7 H) o WE2(0, 75 V).
Especially, it holds

>
S 3=
|
IS

! in L*(0,T; H), (28)
o in L*(0,T;V). (29)

|

Remark. 3.4.2 If the compatibility conditions is not assumed, we only infer regularity for

the function multiplied by a weight exploding at zero (so-called instant smoothing property).

General idea:
By corollary 2.2.6 we have
d1

77|u/|2 :<u//’u/>(2:7) —<AIU+A’U,/,UI> + <f’,u’>
dt 2 N

<A uf g flw | —CAw Wy < e lwl
and hence by the CAUCHY-SCHWARZ and GOARDING’s inequality

d1 (14)
g VPP < sl Al ]+
—

<Bul
< w4+ (Bl + 1)1
) 1, -
< wlu']? + gHU'II2 + Z(BHUH 1)
*) I 1/
< wfu/ [+ S+ - (Bl + 1713))

I

where in the second inequality we use the continuity and linearity of A’ with some constant
3 > 0 which is independent of t:

JA"(t) | L vy < B

for all ¢t € (0,T) and in the last inequality (x) we use (a + b)? < 2(a? + b%). Collecting alike
terms yields
d1

1% L/
G+ G = P < (Bl + 1512)

Lemma 3.4.3

Let ug € V, f € L*(0,T;H) and for all t € [0,T] let the operator A(t): V. — V* be
continuous, linear and self-adjoint, that is, { A(t)v,w) = { A(t)w,v) for allv,w e V. Then
we W20, T H) o L7(0,7:V) and (28) and (29) hold.

Proof. Exercise. O

Proof. (of lemma 3.4.1) Consider the backward (or: implicit) EULER scheme and its
solution {u(™}"~ which solves

u(n) — u(n_l) u(n_l) — u(n_Q)

T T

LA ( +A<n—1>u<n—1>> ) _ ),
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Multiplying by the discrete time derivative u™ 7D (up to a factor of %) yields

1 ul — D) 2 1| — ) 2 1| = 20D 4 (-2 2
2T T 2T T 2T T
—1 —1 —1
. < A =D )l >> . <( A0 g1y 4 —g‘” )>
T T T
1‘ F) _ pe=1) 2 ) g1y
— - - + — N —
4 T

Applying Goardings inequality yields (we set u(~1 = 4(0)

w® — 2 i=1) 4 g (i=2) 2
T

w™ — (=12

T i=1

Luzl) ul® — i) 12

(1) _ f£(i—1) )
i Hf s W ). (30)
i 1/~‘ L(V,V*)

Here we already see that this very much looks as beforehand: in the previous proof we didn’t

u® _ u<o>

N

T

' f(z f(z 1)

incorporate the x term but now we can use the discrete GRONWALL lemma. First, observe
(this is given by the scheme, when we define f(®©) = £(0))
w® — ()

- = f(O) — A(’LLO) eH

We can show as before that the RHS of (30) is bounded. The last term from (30) can be
estimated as follows:

'f)_ Z1)

[ut= V13

AW — AG-1)
‘|
L(V,V#*)

o

®
<Cu (f/|%2(O,T;V*) + sup [A'(t) |L(V,V*)UL2(0,T;V)> =C
te[0,T7]

We get
w™ — (=1 |2 u® — =D
max —_— -
ne{l,...,N}

< C1|f(0) — A(uo)|? +C+m’2

i=1

T T

and

ORI CES W

D

i=1

<Cl|f( ) — (u0)|2+0+m'2

i=1

-
by a discrete GRONWALL argument.

Summary: We only differentiated the equation, which, one this discrete level amounts to
dividing by 7 and subtracting the previous step from the current one. We tested the equation
with %' and deduced the same upper estimates as one would for the continuous equation.
We actually need to show this on the discrete level and then pass to the limit to make this
rigorous, otherwise we don’t know that these calculations are allowed. O

3.5 | Examples for linear PDEs

Consider the heat equation, which models the distribution of heat in a material. The rough
modelling idea is the following: consider a small volume w € R%. Let v be the thermal
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energy. Then

% udx=f é’tudx—J- nVudS=f Oiu — Audx

where n is the outer normal and the second term represents what flows out of w and in the

second step we use GAUSS’ Theorem (Divergence Theorem).

Integrating yields Fig. 41 We look at
hy beh. i .
atu _ Au _ f, ln Q % (O,T)7 ow u ehaves 1In w

The red arrows visu-
'LL(O) = Uo, in Q7 alise Saw nVudz.

n-Vu =0, on 0Q x (0,7T).

|

B

3
Temperature (°C)

17.6

Fig. 5: The solution gives the distribution of a heat profile.

Example. 3.5.1 (Magnetoquasistatic approximation of MAXWELL’s equation)

The quasi-magneto-static (QMS) approximation to the macroscopic Maxwell equations is
sensible when we are considering good conductors and slowly varying external magnetic
fields. These lead to induced electric fields, which in turn stir up so-called eddy currents,
inside the conductors. For example, these induced currents might be used to heat up the

material.

In the considered setting the displacement current 0, D and the charge density p are negligible

and the Maxwell equations in differential/local form become

V - D=0, V x E =—0:B,
V. B=0, Vx H=J, (31)
where
E = (electric field), H = (magnetic field),
D = (electric flux density), B = (magnetic flux density),

J = (current density)

and we assume the linear material relations
D =cFE, B =uH J=0F.

To get a better understanding of the physics, we write (31) in integral form. We have
D - dS=0, E-d£=—f 0¢B dx,
Gle) oA A

B - dS =0, H-dE:J,de
oQ oA A

in a considered volume ) or on a surface A. The interpretations are
(electric flux out of Q) =0,
(electric field integral around A) = —(change of B over time thru A),
(magnetic flux out of Q) = 0,
(magnetic field integral around A) = (current thru A).
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The QMS approximation breaks the symmetry in the Maxwell equations; in the full equa-

tions we have
V X H = J + 6,5D,
(magnetic field integral around A) = (current thru A) + (change of D over time thru A),

hence change of electric field implies change of magnetic field, which implies change of electric
field implying change of magnetic field and so on. In QMS the scheme is that change of the
external magnetic field implies change of the electric field in the material, but this electric

field does not noticeably change the outer magnetic field again.
The relation V - B = 0 motivates the introduction of the vector potential A with
B=VxA and V - A=0.
Then
V x (E+ dA) =0, hence E=-Vp—-0A,
where ¢ is a scalar potential.

In fact, when considering an induction coil creating an outer magnetic field to heat up a
piece of metal as in [ADG'19], we find Joxs = —0Vp, where Joyt is the induced source
current, which only lives in the induction coil. It can be precomputed and thus serve as a

given right-hand side.

We may then derive a set of equations for A inside the conductor 2. Assuming sufficient

regularity we find

1 1
Vx -VxA=Vx-B=VxH=J=0FE=—-0(Vp+0A) in Q% (0,7T),
" [

thus ]
00lA+Vx -VxA=Jy and V - - A=0 in Qx (0,7).
1

These equations are then to be supplemented by boundary conditions, e.g.
Axn=0 on 00 x (0,7),
as in [ADG*19). o

Example. 3.5.2 (P01ssON equation (Exercise 4.1 (i)))
Let Q  R® be a bounded domain with smooth boundary. The weak formulation of the
PoO1SSON equation with NEUMANN boundary conditions

—Au=f, in €,
g—jj =g, on 0f)
for suitable functions f, g is
(Au,vy = f,v) YoeV = HY (Q),

where

AV > V*, (Au,v)y = JQ Vu(z) - Vo(z) dz

f: VR, <f,v> = J.Q f(z)v(z)dx + f g(x)v(z)do

ElY)
Then A is bounded as { Au,v ) < [Vu| 2()a|[VV| 120y < |ull g1 @)alv] g1 (aye, but A is not
strongly positive (choose u = C and f = g = 0) and hence there is no unique solvability.
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We require that f € H1(Q) and g € (H2(0))*, so that f is well-defined.

However, we can choose the solution space

V= {ve HY Q) : J v(z)de = O},
Q
on which A is coercive by the POINCARE-WIRTINGER inequality. o

Example. 3.5.3 (Heat equation (Exercise 4.1 (ii)))
Let ©  R® be a bounded domain with smooth boundary. The weak formulation of the
initial value problem of the heat equation with NEUMANN boundary conditions

ug—Au=f, on Q x (0,7),
%zg, on 002 x (0,T),
u(-,0) =wup, inQ

for ug e H, f € L2(0, T; V¥)@® L*(0,T; H) and g € L2(0,T; (H2 (0))*) is: find u e W(0,T)
such that

LT (u'(t), v(t) ydt + J:)T (Au(t),v(t) ydt = JOT LQ v(z, t)g(z, t) do(z) dt

T
+ f Cf),v(t)Ydt  Yoe L*0,T;V).
0

We can define

Fo[0, 1) = V*  (f(t),v) = mv(ﬂﬁ)g(w,t)dff(x)+<f(t),v>v*xv, ve H'(Q),

then f € L2(0,T;V*)@® L'(0,T; H). Lastly, A is continuous and satisfies GARDING’s in-

equality since

(Au,uy = JQ [Vu(z)|*de = JQ [Vu(z)]® +u(z)de — fgu (z)dz = |ul® — |u|.

By the Theorem of L1ONS, has a unique solution w € W(0,T).

We note that thanks to the GOARDING inequality, we obtain uniqueness of a solution with
values in H'(f2) which we failed to accomplish in the stationary problem in the previous

example due to the missing coercivity of a. o

Example. 3.5.4 (Biharmonic equation (Homework 4.2))
Let © = R? be a bounded domain with smooth boundary. We consider the initial-boundary

value problem
oru(t,r) = —A2u(t,z), in (0,T) x Q,

u(t,xz) =0, on (0,T) x 09, (32)
a%u(t,ar) =0, on (0,T) x 092,
(0, x) = up(x), in Q,
where A? = AA denotes the bi-LAPLACE operator. The bi-LAPLACE
operator appears in
We first consider the stationary problem various problems of
linear elasticity, for
AZU(I’) -0 in Q example when looking
e ’ at small displacements
’U,(IL‘) =0 on 09 of a plate (whereas the
’ ’ LapLAcIAN describes the
%u(t) =0, on 0. behaviour of a
membrane).
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We choose the spaces V := Hg(2) and H = L*(Q) and recall that |v[5, := {, |Av(z)[* dz
is an equivalent norm on V', that is, there exists ¢, C > 0 such that for all v € V' we have
c|v] < |v| < Cv|. Next, let

AV > VH (Au,v) = JQ Au(z)Av(z) dz,
which is linear and bounded as by CAUCHY-SCHWARZ we have
(Au,v) < |AulZs () | A2y = [ul3alvl3 2 < CFful]v]?
Furthermore, it is coercive:
CAuwy = | |Au(@) do = [uf > Al

Hence there exists a weak solution to the stationary problem by the Theorem of LAX-
MILGRAM, as to obtain the weak formulation we have to integrate by parts twice and use

that the boundary terms vanish.

Now considering the instationary formulation, the definitions don’t change and by the coer-
civeness of A we also get that A fulfills GOARDING’s inequality. By L1ON’s theorem, we get
wellposedness if ug € H = L?(2). o
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Nonlinear first order evolution equations with

monotone operator

4.1 | Preliminaries

Nonlinear equations will be the main focus of this course. In the beginning, the nonlinearities

will be monotone and hence not so severe.

Introduction to nonlinear PDEs

Example. 4.1.1 (p-LAPLACIAN)
Consider

du—V - ([Vu|P=2Vu) = f, in Qx (0,7)
u =0, on 0 x (0,7) (33)
u(0) = uyp, in Q,

with ug € H == L2(Q), V = WlP(Q) <% H < V* and right hand side f € (LP(0,T;V))*
LY (0, T; V*) with i + % = 1. Then the problem (33) can be formulated as

12

u + A(w) = f, in L' (0,T; V*),

find u € W,(0,T') such that
u(0) = uyg, in H.

with A =TODO. o

Remark. 4.1.2 (Assumptions for the nonlinear case) Let p > 1, % + pi, =landV c
H < V* a GELFAND triple.

Let Ag,B: V — V* and A = Ay + B with (Agv)(t) = Aov(t), (Bv)(t) = Bo(t) for
v: [0,T] - V and A = Ay + B with

Ao: LP(0,T;V) — s (0,7;V*) being monotone and hemi-continuous
B: LP(0,T;V) — L (0, T; V*) being strongly (or totally) continuous
A: LP(0,T; V) — L (0,T; V*) being coercive with g > 0 and A > 0 such that

T
CAv) = | CAD. 00t > ol ) = A
for all v e LP(0,T; V') and bounded with 5 > 0 such that
| AWl oy < B+ (0150 ) Vo€ LP(O,T5V).

Lemma 4.1.3 (Properties of W,(0,T): completeness, IBP rule, embedding)
Let pe (1,00). Then

W,(0,T) == {ue LP(0,T; V) : e v’ € L¥ (0,T; V*)}
equipped with the norm
lullw,0.7) = lulzeo.rvy + 191 Lo 0,705
is a BANACH space. We have

Wy(0,T) — C([0, T); H)
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and the rule of integration by parts:

J (U (1),0(7) )+ (V' (7), u(r) ydr = (u(t),v(t) — (u(s), v(s))
for all v,w e W,(0,T) and all s,t € [0,T]. Finally, it also holds

CP([0,T]: V) <5 W, (0, T).

Proof. Analogous to the proof of Theorem 2.2.1. O

Remark. 4.1.4 Another norm of W, (0,T) is

1
w01 = (o vy + 0 o,z )

for any r > 1, where 1 + = = 1. This norm is equivalent since it is the r-norm of the vector
(lul, l']) € R?.

Lemma 4.1.5 (Properties generalise to abstract operators)

Let Ag: V. — V* be monotone, hemi-continuous and coercive with ji > 0, A >0 such that
(Agv, vy = filo]P =X YoeV

and bounded with B = 0 such that |Aouly+ < B + |u|?~") for all w € V. Then
Ao: LP(0,T;V) — Lp,(O,T; V*) is monotone, hemi-continuous and bounded with § = 0
such that

H AOUHL?’(O,T;V*) (1 + HuHLp OTV))

and coercive with > 0 and A = 0 such that

(Aouuy = plull, gy~ TA  Vue LP(0,T: V),

Proof. @ First we show that Ag maps BOCHNER measurable functions to BOCHNER
measurable functions. Let u be BOCHNER measurable, then there exists a sequence of
simple functions (u, = Ziv 1 u(") ]lE(n))neN such that u,(t) — u(t) pointwise almost
everywhere in (0,7"). Then '

(Agun)(t) = (Zu( 1 <n) >=

b=
i
S

(™) L s (8) + Ao(0) T o (1)

<.
=

2

n

Ag(u{™) 1 gt () + Ao(0) ]1( o(t)

Uil B(™)

Il
—

%

where the LEBESGUE measurable sets (E; ("))N " are pairwisely disjoint for every n € N.
As E; is measurable, so is (Ei(n))[} forallie {1,...,N,}. Hence (Apun)nen is a sequence

of simple functions.

Ag being monotone and hemi-continuous implies Ay being demicontinuous. Hence

((Agun)(t), w) — {(Agu)(t), w)

for all w € V and almost every ¢ € (0,7). Hence (Aou)(t) is weakly BOCHNER mea-
surable and by PETTIS’ Theorem (Agu)(t) is BOCHNER measurable.
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@ TODO: show that Ay is monotone and hemi-continuous (Exercise 5.2)

Now we show the estimates. We have

/
[0l o ey = Jo

T

Agu(®)xdt < | (B + )" ar

T

-~ T ’ , ~
_ J (1 + Ju(®)|P~)" de < 271 <T+J Ju®)[” dt)
0 0

1 ~ /
- 6 (0 )

as for p > 1 we have |a + b[? < 2P71(|a|? +|b|P) (this is because x — |z|P is convex and
thus ‘“T”’p < 7|a|p;r‘b‘p).

Hence
Ag: LP(0,T; V) — LP (0,T; V*)
is well defined and bounded such that for all v e L?(0,T; V) we have

[40] 2o 0.2y < B (1+ 101300 721 )

=

as pi = £ = p—1 and by choosing 3 = Bmax(l,Tp ).

p—1

TODO: show coercivity (Exercise 5.2) I

Remark. 4.1.6 We can show a similar statement for B: V' — V* but it is more involved.
Furthermore, this Lemma can be generalised to the case where A, Ay and B are time-
dependent, if the estimates hold uniformly in ¢.

Lemma 4.1.7 (Properties transfer from A to A (Homework 5.1))

Let V < H < V* be a GELFAND triple and let p,q € (1,00) be HOLDER conjugates. Let
A: LP(0,T;V) — Li(0,T;V*) be given by Au(t) = Au(t) for an operator A: V — V*. If
A is bounded / monotone / coercive / hemicontinuous / strongly continuous, then A is, too.

4.2 | Existence

Remark. 4.2.1 (Generalisation to pseudomonotone Operators)

This can be generalised to pseudomonotone operators A: LP(0,T;V) — LP,(O7 T;V*), that  pseudomonotone
is, to operators A that are bounded and fulfil

up — win LP(0,T;V) (A(u),u —v)y < liminf (A(ug), up — v )
N k—o0
liinsup<A(uk),uk —uy<0 Yue LP(0,T; V).
—00

THEOREM 4.2.1: MAIN THEOREM ON MONOTONE NONLINEAR PDESs

Assuming the standard assumptions, for every ug € H and f € L (0, T;V*), there
exists a solution u € W,(0,T) with

u + A(u) = f in LPI(O,T; V*),

u(0) = uyp, in H. 34
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Proof. Previously we used time discretisation but now we want to use a GALERKIN space

discretisation to prove existence.

@ GALERKIN scheme. As V is separable, there exists a GALERKIN basis {¢;}ien € V

such that any finite selection of the ¢; is linearly independent. Let

Vin = span(@i, ..., om)-

We also have

-1

o]

U Vin =V. (Completeness in the limit)
m=1

@ Approximate scheme. Consider

(ul,,v) + {Aup, vy =< f,v) Yov e V. (Py)

We write w,, (t) == X" u*(t)¢;. Then we can write ul, (t) = >\*, (u*)(t)p;, where
ul™: [0,T] > Rfor all me N and i € {1,...,m}.

To solve (P,,,) it suffices to solve a system of ODEs
Um(O) = u817

where ug® is such that ufg* € Vi, for all m € N and v’ — wuo in H with ug® =
2211 ug . (For instance we can choose uy' = Ppug, where P,,: H — V,, is the

projection from H onto V,;.)
Let U, (t) = (uf"(t),...,um(®)T € R™, UD, = (uf’y, ..., uf’,)" € R™ and
(Mm)zlj=1 = ((‘piv@j)):Lj:P

where (-, ) is the scalar product in H. Then M,, is invertible as the {¢; };en are linearly
independent in the sense described in step @ Lastly, let

(Fm(ta “m))j = f(t), Pj ) = Aty Pi ) = f(t), Pi )= <A (Z u?‘ﬂz) a‘Pj> .

Hence (F,,) is equivalent to

len(t) = M;llFm(t» Um(t)),
U (0) = UC..

@) Existence of approximate solutions. We show that F,,, is a CARATHEODORY func-
tion and has a dominating function. For the former observe that since A is monotone
and bounded, it is demicontinuous, so ( A (2211 ngoj) , Pk » converges strongly in R.
For the dominating function, we find for y € R™ and k € {1,...,m}

Fm(t,y)k = <f(t)790k>_<A (i yj@j) 790k>
A (i yj%‘)

< lerlv (Il o zve + CO+ lylE))

< lerlv {11 .5y +

*
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such that for any compact subset K < R™ x[0,T] there exists a dominating function
li: [0,T] — [0,00) with
My P (ty)l < C(t) - V(ty) e K.

By the Theorem of CARATHEODORY, there exists a solution U, to (35). Without loss
of generality, we may assume U, to be the maximal prolongation on [0,7,). Hence
U,, is absolutely continuous on every compact subinterval of [0,7,,). Hence U,, is

almost everywhere classically differentiable and thus also in the weak sense.

A-priori estimates. We may choose v, = u,, in (F,,) and obtain

(i (8); i () ) + C At (£), um (8) ) = (F (£), um (t) ) -
With the product rule, coercivity and YOUNG’s inequality we find

1d
2dt
Integrating in time and multiplying by 2 yields

Y) /
[ () + pllum @7 < (O« um ()] < gllum(t)l\p +COIFO + A

t t
an(@F 41 [ Jun()17ds < WP 42 [ Clr)leds+20 (30
0 0
implying that

e 0,0y < 112+ 261 (I£18 0 rvrny +1)
and
il %0,y < 1§12 4+ 201 (LW iy + 1) -

We would like to deduce some estimate of u!, in (F,,) but this is rather difficult for
any general GALERKIN approximation since (F,,) is a rather weak form: we don’t have
any estimate for the time derivative unless we assume any regularity of the GALERKIN
space. We would need that the H-projection onto the GALERKIN spaces is V-stable,
which gives a estimate for the projection in the V-norm. Otherwise we don’t get any
information on the time derivative because from (F7,,) - we only have information in

V*

m?

time derivative. If we would do a time discretisation, this might be easier, because we

which is strictly larger than V*. That is why we can’t deduce any bound on the

test with the whole space.
Extracting subsequences We know
o u, = win L*(0,T; H),
® u, —uin LP(0,T;V),
® U, (t) — 0rin H,

o [ Aun o o 1) < B (1 + H“m”i;(lo,T;v)> < C and thus
Aty —a  in LP(0,T; V*).

Weak derivative. We use the structure of the GALERKIN scheme to identify the
weak time derivative. We want to to show that v’ = f — a and thus also has the same
regularity in L (0,T;V*). To this end consider a test function ¢ € CX and v, € V,,
with n < m such that V,, < V,, (this embedding allows a decoupling of the index of
the test function and the index of the solution). Then

T T T
J (U, v )’ At + | (At vy Yo dt = f (fon ypdt.
0 0

0

41

Theorem of

CARATHEODORY

YouUNG’s inequality

states |zy| <

. ’
elel? + L (pe) 7 |y|P
P

e 1
1f;+

pi,:lands>0.
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Passing to the limit with m — oo, we observe

fT(u,vn)Qﬁl dt + LT<a,fun><pdt = LT<f7 v S dt.

0

Since m — oo this holds for all v,, € | J;~, Vi. The set | J;~, V; is dense in U such that

—JT(u,v)w/dt = JOT<f—a,v><pdt

0

and hence ' = f —a in L” (0,T;V*) and thus u € W,(0,T) and hence we may use
the integration by parts formula (x).

(@ Identifying the initial value. Let ¢ € C'([0,T]) and v € V,, with n < m. Then

w ("
wm—wwmwm—w@—w@Mﬂm=Lmm—%@wmw
F (ut) — wm (£), 0)'(¢)
T
=L<f*a*U*A%ﬂw>ﬂﬂ
T (u(t) — um(t),0) (8) dt
T
- | <At = a0yt
0

+ (u(t) — um(t),v) () dt

m—00
0

as Au,, — a in L”/(O,T; V*) and uy, — uw in LP(0,T;V). Thus

(u(t) = 07, V)@(T) = (u(0) — o, v)(0)

for all v € V via a density argument, as u,,(t) — 6 and u,,(0) — uo in H. Thus for
all ve V and ¢ € C'([0,T]) we have u(T) = 67 and u(0) = u.

(For the identification u,, — u in L'(0,T;V*) would suffice to identify u(0) with wug
in V*. But by 4, (0) — up in H it is known that u(0) € H.)

Identifying a = Au by MINTY’s trick. We use the assumption that A = Ay +
B, where B: LP(0,T;V) — Lp/(O,T; V*) is strongly continuous. From u,, — u in
LP(0,T;V) we deduce that Bu,, — Bu in L? (0,T;V*). Additionally, we observe
that (by the integration by parts formula)

T’t 0)Ydt = S um (D)2 = TP
| Gttt = Sl (DI = Sl

Due to the weak convergence u,,(T) — 0r = w(T) in H we have (by a corollary of
HAHN-BANACH)

. 2 1 2
— > —
lgnjoréf 2|um(T)| > 2|u(T)| .

Now we have to apply MINTY’s Trick. We have
T T
L<Awamwﬁ»w=ﬂ<ﬂmwﬁ»—ummmwm»—wmmwm»m
T
=J;<f@»um@>>f<3um@»um&>wﬂ
1 2 1 m|2
— Sl + 2l
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as U, solves the discretised problem. For m — o0 we observe (as we identified the

initial condition)

T T
limsupJ <A0um(t),um(t)>dt<f CF),u(t)y — ( Bult), u(t) ) dt
0 0

— Sl + Su(O)P?
j CF(E),ult) ) —( Bult), u(t) ydt — (ol (1), u(t) )
f< (1))~ Bu(t), u(t)) .

As Ag is monotone, we have for any w € LP(0,T; V)
J (At (), um(£) St j { Agtim () = Agw(t), um (£) — w(t) Yt
+ LT<A0w(t),um(t) —w(t) )+ Aoum(t), w(t) ) dt
> [ " Ago(t) (1) — (1) + C Agtn (1), (1)
e, L " Awt) ult) — w(t) )~ (a — Bu(t).w(t) Yt

and hence

T T
L { Agu(®), um(t) — w(t) ydt < f Calt) — Bu(t), u(t) — w(t) ) dt.

We continue with MINTY’s trick. Choosing w(t) := u(t) + av(t) with v € LP(0,T;V)
and a > 0 yields

1 (T
f (Ao(u(t) £ av(t)), Fau(t) ydt < af {(a(t) — Bu(t), Fau(t) ) dt.

0

As o — 0 we conclude by demicontinuity that

T T
|| st oy e = [ catt) - Bue), o0 ar
0 0
for all v e LP(0,7; V). This implies

a(t) = (Ao + B)(u(t)) = A(u(t))
in LP (0, T; V*). O

Remark. 4.2.2 (Hemi-continuity and radial continuity) The hemi-continuity can be

generalised to radial continuity, one only needs that the mapping
s (Ap(u + sv),v)

is continuous on [0, 1] for all u,v € LP(0,T;V).
Remark. 4.2.3 (Monotonicity and pseudomonotonicity)

As usual, the monotone operator Ay with strongly continuous perturbation B, A = Ay + B

can be replaced by a pseudomonotone operator. In this scenario, we have as beforehand

limsup { A(ug), ux — vy = limsup{ A(ug), ur, — vg )+ hm (A(ug),vg —v)

k—o0 k—o0

<<f—u,u—v>
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for a sequence (vi)ren < LP(0,7;V) with vy — v in LP(0,T;V) (exists because the
GALERKIN scheme is complete in the limit) such that

lim sup { A(ug), ur —u) < 0.

k—o0

By pseudomonotonicity we have

(Au),u—v)< lilgninf<A(uk),uk —v) < limsup{ Aug),up —v)y < {(f —u',u—v)
—®© k—o0

for all v e LP(0,T;V), implying A(u) = f —u'.

4.3 | Uniqueness and continuous dependence

Lemma 4.3.1 (Uniqueness)
Assuming the standard assumptions and B = 0, the solution of (34) is unique and the whole

sequence of approximate solutions converges to u.

Proof. Let u,v e W,(0,T) be two solutions to the problems

u + A(u) = f, in LV (0,T;V*), 1 v+ A(v) = f, in LY (0,T;V*),
an
u(0) = ug in H v(0) = ug in H

As A is monotone we have

< —vu—v)y+{Au—Avju—v)y={f—fiu—v)=0

and hence (by integration)
Ju(t) — v(®)]* < Juop — uol* = 0

for all ¢ € [0, 7. O

Lemma 4.3.2 (Continuous dependence)

Assuming the standard assumptions and B = 0, the solution operator of the problem (34)
L0, T;V*) x H - C([0.TLH),  (f,u0) ~u
15 continuous on bounded sets.

Proof. Let u,v € W,(0,T) be the two solutions to the problems

' + A(u) = f, in LY (0,T;V*), v + A(w) =g, in LV (0,T;V*),
and (37)
u(0) = ug in H v(0) = vy in H

for f,g € L¥ (0,T;V*) and ug,vo € H.

We have, as before,

——ju—v? < =V u—v)+{Au— Av,u—v)={f—gu—v)

< f = gllsluw = ol < 1F = glls (] + Jof)-
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Integrating we find

1 1
2 lult) = v(t)]? < 5 luo = vl + If = gl o o.rove) (el Leivy + [0 Leoiv))-

From the a-priori estimate (36) we observe

Il 0y < 0P+ S ) + AT
and similar for v and hence
[wl e o, 3vy < M(uo, f) and [vll e 0,7;v) < M(vo, g).
Thus . )
Slu®) = v < Sluo = vol” + |f = gll 1w 0,05%) (M (0, ) + M (vo, 9))

for all ¢ € [0,7]. We may take the supremum over ¢ € [0,7], implying the assertion.

The solution operator is even LIPSCHITZ-continuous in the initial values and C"2-HOLDER-
continuous in the right-hand side. ]
We now prove two different results about continuous dependence.

If B # 0 but we require a condition similar to monotonicity on A, we have LIPSCHITZ-

continuous dependence on the data.

THEOREM 4.3.1: LIPSCHITZ CONTINUOUS DEPENDENCE

Let the standard assumptions be fulfilled. Additionally, we require that A: [0,T] x
V — V* fulfills
(Ao — Atyw, v —w) > —g(t)]o — wf?

for v,w € V and g € L'(0,T). The operator A: LP(0,T;V) — LPI(O,T; V*) is then
given by (Au)(t) = Au(t). Then the solution operator of the problem (34)

L*(0,T;H) x H— C([0,T]; H),  (f,uo) — u

is LIPSCHITZ-continuous.

Proof. Exercise. O

THEOREM 4.3.2: CONTINUOUS DEPENDENCE (p-MONOTONE SETTING,

B =0)

Let the standard assumptions be fulfilled with A = Ag: V' — V* being p-monotone,
that is, there exists a i > 0 such that

(Av—Aw,v —w) = fifv —w|? Yo, w e V.
Then the solution operator of the problem (34)
L0, T;V*) x H = C([0, T H) A L0, T V), (fu0) =~ u

is continuous.
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Proof. First we observe that

T

<'A’U'_A,U7u_/U>Lp/(0,T;V*)XLpI(O,T;V*) :JO <AU_ AU,U_U>V*XV dt

T
> | Ju— ol dt = ilu= ol

Assume that u,v € W,(0,T') solve the problems (37). Then

1d .
§E|u—v|2 +MH“_”HIEP(0,T;V) < —vu—v)+{Au—Av,u—v)y={f—gu—v)
<|[f —glslu—v].

Integration and applying YOUNG’s inequality implies
1 ¢ t 1
1ot = o+ [ Ju— o1 ds < [ 17 = gleliu = ol ds + Jhuo — ol
0 0
t , 2 [t 1
<C [ If =gl dst 2 | Ju vl ds+ g fuo - uoP
0 K Jo 2

and thus (by taking suprema)

T T
1 ,
u(®) = o(®F +1 [ Ju— vl ds < Jluo— P+ C [ 1f ~glt ds
0 0
for all t € [0,T] and thus

lu(t) — U(t)@([o,:r],H) + fu— UHip(o,T;v) <C (|U0 —wol? + | f - 9“2#(0,%\/*))

and thus the continuous dependence is shown. We are LIPSCHITZ-continuous with respect
to the initial values again and some HOLDER-continuity. O

Example. 4.3.3 We consider the initial value (and boundary value ?) problem
Ut — (p(uz))m = fv on (avb) x (OvT)a
u(a, ) = u(b,-) =0 on (0,7T),
(,0) = ug on (a,b)
with
—=, if|z] € (0,1),
p: R—-R, 2 { VI
z else.
We show that for a suitable choice of ug and f there exists a unique solution v € W(0,T).
It is lengthy, but not difficult to show that

(p(z) = p(W) (x —y) = %Ix —y*  Va,yeR. (38)

By the arithmetic mean inequality we have for z € (—1,1)

1 1
= < = —
p(2)| = VIl < 5 + 512

and hence |p(z)| < 1+|z| for all z € R. By putting y = 0in (38), we obtain zp(z) > %|z[* > 0

for all z e R.

We choose the space V := H{(a,b) and H := L?(a,b) and define
b
AV - V* (AU, W )y = f p(v'(2))w' (z) da,

a
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which comes from testing the differential equation

(p(ue(2)))e = f(2), e (a,b) o

with w and integrating by parts, where the boundary term vanishes due to the homogeneous
NEUMANN boundary conditions.

4.4 | Strong Convergence by embedding and

monotonicity

In this section we want to deduce more information about the approximate sequence u,,.
In this existence proof we deduced weak convergence u,, — u in LP(0,T; V), but we want
to deduce strong convergence. The strong convergence can then be used to deduce better
properties of the approximation. If this PDE was coupled with another differential equation,

we might need strong convergence in order to pass to the limit.

We either deduce strong convergence in a weaker topology, like in L?(0,T; H) (achieved by

a compact embedding) or we assume additional monotonicity.

The following Theorem is omnipresent in the field of nonlinear evolutionary equations, since
every time we want to pass to the limit in some nonlinear term, which has to be of lower order
(in some sense) and we don’t have any monotonicity, we need the Theorem of LIONS- AUBIN

to deduce additional strong convergence in time.

THEOREM 4.4.1: LIONS-AUBIN | |

Let T>0and 1 <r,s < oo and V5 <> Vi < V_; BANACH spaces such that Vi, are
reflexive. Then

{fue L™(0,T;V1) : I/ € L*(0,T;V_1)} <> L7(0,T; Vp),

where the first space is equipped with the norm || - |-, 7;v5) + | s (0,7v1)-

Remark. 4.4.1 There are many different generalisations of this result. We may consider

s = 1 or even further v’ just being a measure. It also suffices if V_; is a locally convex
topological space.

Corollary 4.4.2 (V< H — W(0,T) < L?(0,T; H))
If V<5 H < V* is a GELFAND triple, then W (0,T) <> L?(0,T; H).

Lemma 4.4.3 (V-stability of H-projection grants strong convergence)

Let the standard assumptions be fulfilled. If the H-projection onto the GALERKIN spaces
is V-stable, that is, there exists a C > 0 such that |Pynv| < C|ov|| for all v € V, where
P,,: H — V,, is the orthogonal projection onto V,,, then there exists a subsequence such
that Uy — w in L0, T H) for all g € [1,00).

Lemma 4.4.4 (From interpolation inequality)
Let 1 <p<qg< oo, 0e(0,1) and r € [p, q] with
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Then for all uw e L1(0,T; H) we have

0
||UHL4(0 T;H) HUHLP(O,T;H)

Proof. We have by HOLDER's inequality with (due to (39) HOLDER conjugate) exponents

o ﬁ r(1-0)
p:=12and q = 7
T
0 1-0
lullzr 0,221 =f0 Ju(@®)]"dt = [l u]" | a0 7my
(H) 0
(1-6) r(1-0)
< 0l o 1 e gy = Wl Il S0y

Hence if we have some boundedness in the L? space and we have some convergence in the
LP space, we get convergence in L" by lemma 4.4.4.

Lemma 4.4.5 (Second interpolation inequality (Exercise 5.1 (ii)))
Let V. — H =~ H* — V* be a GELFAND triple. Then for 1 < p,q < o0 and 0 € (0,1) we
have

lwll Lr o, ) < ||uHLp(O V) HuHLq 0.7V ) for allue LP(0,T;V) n L0, T; V™)

. 2
wzth;— +

1.1
P g’
Proof. (of lemma 4.4.3) Recall the approximate scheme from the existence proof

d

S m(0),0) + CAun(6),0) = (B0 Ve,

with the condition

U (0) = u™ in Vi,.

Using the stability, we can now circumvent the difficulty in the existence proof stemming
from the fact that we didn’t know enough about the time derivative.

Via stability of the projection, we deduce for any v € V that P,,v € V,,, and thus

Cul, (8), Prv )+ { Aup (), Ppv ) = {f(t), P YveV.

Hence by the stability there exists a C' > 0 independent of m such that

|t (8), P ) | < [ f O [Pl + [ At (8) [ [P0 ]| < C (1 (0) s + | Aun (8) ) 0]

Hence
”u,mHLP'(O,T;V*) = HuImH(L?’(O,T;V))* = sup J (ty, (), Py ) dt
veLP(0,T;V)
HU”LP(O T;v)=1
At T
< sup Cf (1) + [ Awm (t)]) [0(t)] dt
veLlP?(0,T;V) 0

vl e o, 7yvy=1
< C (Il o) + 1 Atml oo v )

which is bounded as A is bounded (shown in the existence proof).
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Hence [[up,[ 1o (0,7, < C independent of m. Since we already know that [, | rs(07.v) <
C; independent of m, (upm )men is bounded in W,(0,T") <> L?(0,T; H), where the compact-
ness comes from corollary 4.4.2. Hence there exists a subsequence such that u), — u in
L?(0,T; H). Since (um)men is also bounded in L*(0,T; H), the convergence follows for
every L4(0,T; H) with ¢ € [1,00) by lemma 4.4.4. O

Strong convergence by monotonicity

Using compact embeddings, we could deduce strong convergence in the H-norm but now
we want to deduce strong convergence in the V-norm, which we get by assuming additional

monotonicity of the operator.

Lemma 4.4.6 (Strong convergence for d-monotone operators)
Let the standard assumption be fulfilled. Additionally assume that A:' V — V* is d-
monotone, that is, there exists a ji = 0 such that

(Av—Aw,v —w) > @(JolP~ = [w[P") (o] = [w]) =0 Yv,we LP(0,T; V).
Then we have uy, — u in LP(0,T;V).
Remark. 4.4.7 (d-monotony and uniform p-monotony) The assumption of d-monotony
is weaker than the assumption of p-monotony. An operator A: V. — V* is uniformly p-
monotone if there exists a fi > 0 such that
(Av — Aw,v —w) = fiflv — w|? Yo, we LP(0,T;V).

Both conditions hold for the p-Laplacian.

Idea. We would like to use that

%IU(t) =t () + CAu(t) = Au (1), ut) = um(t) ) = (F(8) = F(),ult) —um(t) ) = 0,

but the second equality is not true because we cannot test with u — wu,.

Instead, since (V,)nen is a GALERKIN scheme, we know that |,y Vin © V is dense. We
take a sequence (Vp,)men < LP(0,T; V) such that v, — u in W,(0,T). Then

. j<Aum — Au(t), i (£) — ult) Yy dt

= <Um = Uy — )+ Aty — Ay, — U>LP'(O,T;V*)><LP(O,T;V)

= (ul, + Aty U — U )+l + At vy —u) — AU+ U Uy, — u)

=f
= (fottm = om ) =y ttm = ) = i, Uy, — U P+ um(t)  vm(t) —ult) )
—_— Y——
2% 50 as liopu%d;“(‘iVin 2250 as
v, —u in Lp/(o T:V¥) (0,75V) W, —C([0,T:H)
o m—00
_umvvmo_uo + Aum ) Um — U —>0
(48, (0) — u(0)) + ¢ >

bounded in —O0 strongly
L? (0,T;V*) in LP(0,T;V)

We infer that { At,, —Au, Uy —1u ) ———=> 0. The d-monotonicity implies that Sg(\\um(t) |P=t—
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[ (@) [P~ 1) (laemn (8) ]| = Ju(t)]) dt Z=25 0. We have by HOLDER’s inequality

JO (lem @7~ = Ju@ 1P~ (lum @) = Ju®)]) dt

T
- f um (87 + ()| d — f
(H) T , . T , pT T , %
> j Jtim ()7 + Ju(2)] dt—(fo um(t>|> (f u<t>|>
—(j ||um<t>|p> (f u<t>|p>

—1 —1
= (lml o2y = ulno 22y ) (lml o0y = Nlioo7:17)

m—00
—— 0.

T
e (07~ ()]t — L Ju(®) [P~ um ()] dt

We conclude from wu,, — wu in LP(0,T;V) and |um|reo,r5vy) — |ulzeo,r;vy in R and
L?(0,T;V) being uniformly convex, that indeed w,, — u in LP(0,T;V).

50



5 INSTATIONARY NAVIER-STOKES PROBLEM

Instationary NAVIER-STOKES problem

This chapter differs considerably from the previous ones since the NAVIER-STOKES equation
does not fit in our framework, so we will not be able to show existence and uniqueness in

the same spaces, at least for weak solutions.

We consider a bounded LipscHITZ domain Q < R? with d € {2,3} and the incompressible
NAVIER-STOKES equation

oiu —vAu+ (u-V)u+Vp=f, inQx(0,7),

V-u=0 in Q x (0,7,
u=0 on 09 x (0,7),
’U,(O) = Ug in Q,

where u: Q x [0,7] — R? is the velocity field, p: € x [0,T] — R is the pressure and v is
the viscosity. The time derivative of the velocity is the acceleration, the second (dissipative)
term vAwu describes how friction behaves in the fluid.

This equation is difficult to solve due to the convection term (w - V)u (which is due to the
flow of the material) and also the pressure term Vp and the additional constraint V -« = 0.

We recall that % = Re, where Re is the REYNOLDS number, a dimensionless parameter
in fluid dynamics which provides a ratio between the inertial and viscous forces. A small
REYNOLDS number implies a viscous fluid with little or no turbulence, whereas a large
REYNOLDS number implies a turbulent flow.

5.1 | Modelling and Applications

Before we do some rigorous mathematical analysis, we talk about the modelling - where

these equations come from.

Vig

Fig. 6: A fluid part v(0) moves around with time and is deformed to some other v(¢). This

is what the NAVIER-STOKES equations describe. Consider a point z(0) in v(0), which is

transformed to z(¢).

In the figure, z is the displacement field. Hence 2/(t) = wu(t) is the velocity field. Let p(t) be
the mass density - how many molecules are in a certain region of the flow.

o1
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The LAGRANGIAN perspective is imagining oneself sitting on such as stream line (like in the
figure above) and describing the evolution this way, while in the EULERian perspective one

sits at a reference point and observes how the material flows along that point.

Mathematically speaking we usually work with the EULERian perspective, because in the
LAGRANGIAN framework we need that the evolution of the flow must be smooth, but not in
the EULERian flow.

Let us look at the physical principle involved. The mass conservation is

J;/ p(t1,z)dx = J;/ p(te, z) da — J:lz LV p(t, x)u(t,x) - n(t,xz)dS dt,

where V' is a time-independent volume, t1,t5 € (0,7, and the inflow/outflow is described
by the rightmost term. By GAUss’ Theorem, the right hand side is equal to

L plts, z) dz — f fv V- (p(t, 2)ult, ) dz dt.

A pointwise relation holds:
Otp + V(pu) = 0.

The second principle is the conservation of momentum, similar to NEWTON’s second law -
a = mf, where a is the acceleration, m is the mass and f is the force applied. In order
to "press" this into the PDE framework we consider u(x,t) = m(z(t),t), where z is the
displacement field which gives x at a certain time ¢. Then
d
o™

This is the material derivative for the momentum m = pu

(2(£),8) = dym(z(t), t) + Vm(=(t), )32 (t) = dem(2(t), 1) + Vim(z(t), t)u(t).

5.2 | Solenoidal function space

We want to treat the NAVIER-STOKES equation more rigorously, so we start by defining the

appropriate function spaces.

As we saw, the conditions
u=0 on (0,7)x0Q and V-u=0 in (0,7)xQ (40)

are deeply entrenched in the problem formulation for an incompressible and viscous fluid
with fixed boundary. Thus, the definition of the following, so-called solenoidal, spaces is
motivated. Usually, we work with a pivot space in L?, but now we want incorporate the
incompressibility of the fluid.

As test functions we take

= {goecgo(ﬁ;RdﬂV-cpEO in Q}.

Since this is to regular for our purposes, we will take the closure with respect to the H'-norm.

An abstract function on [0, T'] having values in V clearly fulfills (40). Now the spaces

V = clos ”'HHIV and H := clos ”'HL2V

form a Gelfand-triple. The space V is reflexive as the closed subspace of the reflexive space
H}(Q)4. Furthermore, V N , since for every h € H by definition there exists a sequence
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(pn)ney € V < V with ¢, — h in H. The compact embedding follows from RELLICH-
KONDRACHOV, as we have Hg(€2) <> L*(Q) (if {0,—3} 3k — % >(— g € {—1,—3}, then we
have Wh» <& Wha),

V S HxHY oV
where V' is equipped with | - || == | - | 71 () and the scalar product

(u(t), v(t))) = L Val(t) : Vo(t) de

and H with |- | := | - [ z2(q) and the scalar-product

(u,v) = J’Qu ~vdx.

One can show the characterisations

V={ueHj(Q)*"|V-u=0 in Q}

and

H={uel*)*|V-u=0 in Q n-Vu=0 on 0Q},

where the condition of zero divergence means
J u-Vodr =0 forall ¢eCP(QR)
Q

and the vanishing on the boundary is to be understood in the sense of a certain trace.

We now will develop the mentioned trace. First we define the auxiliary space (also called

anisotropic SOBOLEV space)

E:={uel*Q)"|V -ueL*Q)}

(hence V — H < E) and equip it with the norm
Julf = lulZa@ + IV - uli2q)-

Then E is a Banach space (due to the fact that L?(Q2) is a BANACH space and that the

divergence is a linear differential operator) with the density
clos H.”ECEO(Q; Rd) =F,

which is shown in [TC78, Thm 1.1] (for the boundary terms, one uses some intermediate

contraction step).

Lemma 5.2.1 (Linear normal trace operator)
Let Q < R? be a bounded LipscHITZ domain. We define the linear mormal-trace operator
Yo B — H™2(09) by

Tm(e)=e-n on dQ VeeC(QRY nE.

Then 7, is well-defined on E.
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Proof. The idea is to use the integration by parts formula:
J V-v-pdr+ f v-Vedr = J n-vedS  VYveC'(LRY, peCHQR).  (41)
Q Q o
From DGL IIB we know that the DIRICHLET trace
To: H'(Q) —» H 3(0Q)

is a well-defined surjective linear operator with ker(I'y) = HJ (€2).

For e € E and ¢ € HE (L), we observe that
(41)
Jv-eogodx—kf e -Vodz =0,
Q Q

since it holds for C*(Q; R?) functions and this set is dense in E and H{ ().

We define an operator

L(Tole) = |

Q

For all p € H(Q), this is well defined: let ¢y, s € HY(Q) with Tg(¢1) = To(p2). Then
01— € HY(Q) and L.(y(®)) = 0 for all ® € H}(Q). Hence H}(Q) is the kernel of L, and
Le: HY(Q) — Hz(09) is a linear bounded surjective operator (follows from the surjectivity
of Fo)

V-e~godcc+f e-Vodzx.
Q

For all ¢ € C*(Q) we identify
Le(y) = f n-eydS

for all ¢ € Hz(09) (since Hz (0Q) c L2(09), the integral is well defined). Thus
Le(y) = J V-egoda:—i—f e -Vodr
Q Q

for all p € H'(Q) with ['o(p) = 9.
We may argue by density that for all e € E, L, € (Hz(09))* =~ H2(09) 50 Le = vn(¢).[]

Remark. 5.2.2 (HELMHOLTZ decomposition) Let

Y = {Vp:pe L}(Q)} c H ()%

Then Y | V with respect to L?(Q): for y = Vp for some p € L?(Q) and v € V we have by
integration by parts and by V — H

(y,v) = f v(x) - Vp(x)de = ff p(x) (V-v(x))de + J n-v(x) p(x)dS(z) = 0.
Q Q — o0 SY——

=0 =0 as veH

5.3 | Weak formulation

The abstract operators and their properties

We define the bilinear form

a:VxV >R, (v,w)»—H/J Vv :Vwdr
Q
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to deal with the diffusive part and the trilinear form

b: VxVxV >R, (u,v,w) ’_)Lz (uw-V)v) ~'wd:c:JQ (Vo)u) - wdz

for the convective part. We denote (Vv); ; = 0,,v; and ((u- V)v)i = Zle u;0,,;v; and thus

d d d d
b(u,v,w) = ZJ ((u . V)v)iwi dr = ZJ (Z ujﬁjvi> w; dr = Z f u;j0;v;w; de.
i=17Q i=1Y9 \j=1 i,j=179
The form a is bounded, symmetric and strongly positive (by POINCARE’s inequality) and b
is bounded and skew-symmetric with respect to the second and third argument: due to the
fact that u is divergence-free, the integration-by-parts formula together with the product

rule yields

b(u,v,w) = L(u Vv -wdz

HiP_J(V~U)U'Wd$_f(u'v)w'vdx+f Yn(uw) v-wdS
o T Q e

_ ,L(u V)w - vdr = —b(u, w,v)

for all u,v,w € V. In particular we have b(u,v,v) =0 for all u,v e V.

We consider the GELFAND triple (‘/7 H ’ H7 ((7 )))a (H7| ’ |a ('a ))a (V*7 H ’ H*)
Remark. 5.3.1 We will see later that V* is a very weak space, e.g. if H = L%(), then V*
is weaker than H~1(£2) and we can’t even interpret its elements in the distributional sense

[Sim99].

We define the operators

A:V > V* (Alu),v) = a(u,v) and B:V > V* (B(u),v):=b(u,u,v),

where A is linear and B is nonlinear. We now define

(Av)(t) == Av(t) and (Bv)(t) := B(v(t)) (42)

Then the instationary NAVIER-STOKES equation is equivalent to the operator equation

uw +Au+B(u)=f in LY(0,T;V*), (43)
u(0) = uo in H.
We wrote the NAVIER-STOKES equation as
ou —vAu + (u-V)u + Vp = f.

If we test by v € V, then remark 5.2.2 implies that p vanishes.

We consider the associated NEMYTSKII operators.

Lemma 5.3.2 (Range of the NEMYTSKII operator of the linear operator A)
The linear operator A: L2(0,T;V) — L2(0,T;V*) is well defined and continuous.
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Proof. To show that A is continuous, we just have to show that it is bounded because it is
linear. For u € L?(0,T; V) we have

T
(42)
[ A0 zw) E f [ Au(t) 2 dt = v a0 1o

We use the definition of the dual norm, the CAUCHY-SCHWARZ inequality and plug in
v = m to obtain

v]ul?
Vfu| = sup  for|u] = |Auf. = = V|lu|
veV,|v||=1 H H
and thus |Au|, = v|u|. Hence A is continuous and thus maps BOCHNER measurable
functions to BOCHNER measurable functions (by lemma 3.1.3 (@)?). ]

Lemma 5.3.3 (Range of the NEMYTSKII operator of the nonlinear operator B)
The nonlinear operator B: L*(0,T;V) — L*(0,T;V*) is well defined. More precisely, the
nonlinear operator B: L*(0,T; H) n L*(0,T;V) — LP(0,T; V*) with

(44)

is well defined.

Proof. @ From DGL Il B we know that there exists a C' > 0 such that b(u,v,w) <

Cllu|||v|/|w], showing the first statement, as thus
[b(u, uw, v) = b(@, @, v)| < [b(u,w = @, v)| + [b(u — @, @, v)| < Clu—a|[v]([u] + |uf)

and hence
|B(u) — B()[x < Clu—af(ful +|a]).

Mn,

Consider a sequence of simple functions u, = >}, ugn) 1 such that u,(t) — u(t)

almost everywhere in (0,7"). Then by the trilinearity of b we have

<B(un)v ’U> = b(u?“m Un,s U) = Z b(ugn)7 uz(n)a ’U) ]]'E.(7L>0E(7L> = 2 b(ugn)v ugn)a U) ]lE(”)
i J —_ i

i,j=1 i=1 v

as the El(n) are pairwisely disjoint. Hence { B(uy,),v ) is a simple function in V*.

Hence by continuity,

| B(un(t)) = B(u(®)) [« = C(Jun(®)] + [u®)])un(t) — ut)].

Since (un)nen converges, it is also bounded. The pointwise convergence follows for
B(uy), so B(u) is also BOCHNER measurable. We have

T

T
| Bulzoys = j |Bu(t)] dt < C j [u(®)]2 dt = Clul20.rov)-

0

@ Now let us prove the more precise statement. By the generalised HOLDER inequality
we have

b, v, w) = j (Vou) - wde < [Vl e Ju] 2o o] v,
Q

where é + % + = =1. We choose @« = v = 4 and 8 = 2 to infer b(u,v,w) <

1
>
lull Lafo] lwl s
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The GAGLIARDO—-NIRENBERG inequality states that

Clulz|ulz, ford=2,

luls < § o o)
Clu)z|ulz, for d=3.

Hence for d = 2 we have (using that |b(u,v,w)| = |b(u,w,v)|)
T T
| BulZz o v+) < L Ju(®)l70 dt < CL Ju®)*[u(®)]* dt < Clul72 0,z [l Zor 0,701

and for d = 3 we have

4
15Ul bz < |

T 8 ~ T 2 ~ 2
(Ol d < € [ )Pl e < Clulag ol o,y

O

We observe that A and B are not maps from L?(0,7;V) to L (0,T;V*) (as before), so
the previous theory is not applicable, and hence we can’t test with the function itself (this
showed upper estimates and uniqueness), since we have less regularity of the range of the
operator and thus the solutions’ time derivative has less regularity.

Weak formulation
The problem may be formulated as
toug € H and f e L*(0,T;V*) find u e L*(0,T;V) with
' (t),v) +v((u(t),v)) + blu(t), u(t),v) = { f(t),v )Vv € V, for almost all t € (0,7).

Remark. 5.3.4 From f € L?(0,T;V*) and w € L%(0,T;V) — LY(0,T;V*) as well as
Au+B(u) € L*(0,T; V*) (by lemma 5.3.2 and lemma 5.3.3) we infer that u’ € L1 (0, T; V*)®
L2(0,T;V*) = LY(0,T;V*), which implies that w € W(0,7;V*) < AC([0,T]; V*) and
that the initial condition is attained in V*, that is, u(0) = ug € V*

Hence the weak formulation can be written as
to up € H and f e L*(0,T;V*) find w € L*(0,T; V*) with w’ € L' (0,7;V*) such that
u + Au+ B(u) = f almost everywhere in V* or L1(0,T;V*)
u(0) = ug in V*.
If d =2 we find w e L2(0,T;V*) n L®(0,T; H) such that
u =f—-Au—B(u) in L2(0,T;V*).
We infer that w e W (0.7) < C([0,T]; H) such that u(t) N, ug € H.

If d = 3, we have u € L?(0,T;V*) n L*(0,T; H) such that u' € L%(O,T; V*) and we again
infer that w € AC([0,T]; V*) — C,([0,T]; V*), which is the space of continuous functions
with respect to V* equipped with the weak topology, that is

Cu([0,T]; X) =={f:[0,T] — X | f is demicontinuous}

for any BANACH space X.
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Lemma 5.3.5 (Weak continuity)
Let H be a reflexive BANACH space and H — V*, where V is also a BANACH space. Then

Cou([0, T;V*) A L0, T; H) < Cou ([0, T]; H).

This doesn’t work for H = L(£2), which is not reflexive.

Proof. Exercise!

The idea is that one has a pointwise bound in H on every sequence of functions and this
gives weak convergence in H of a subsequence by reflexivity. In this lower space one is able

to identify the weak limit via the weak continuity in V*. O

Hence u(t) — ug in H as t — 0.

5.4 | Existence

THEOREM 5.4.1: GLOBAL EXISTENCE

Given a right-hand side f € L?(0,T; V*), initial data ug € H and a bounded Lipschitz
domain Q c R, where d € {2, 3}, a solution

we L*(0,T;V) n L*(0,T; H) n WHP(0,T;V*)

to (43) exists, where (44).

Proof. In this proof we use a approximate system of combined linearisation and SCHAUDER

arguments. One could also use time or GALERKIN discretisation.

@ Regularisation. Consider

B.: L*(0,T;V)? — L2(0,T;V*), (B.(u,v),w) = L ((pe *u) - Vv wd,

where (p.). = CX(; ]Rd) are d-dimensional mollifiers, where

(pe *u)(x) = J pe( — y)u(y) dy.

Let

B.: L*(0,T;V) — L*(0,T; V*), u — Be(u,u).

Recall from DGL lIA that for non-abstract functions u
o p.xu— uin LP(Q) with p e [1,0)
e p. *u — u almost everywhere in €,

o [pe*ulpr(o) < |ullLr ()

Tim’s alternative Smoothing. Let pg for e > 0 be a smoothing kernel on (0,7") and p? a smoothing
kernel on Q. For
we L?(0,T; H) < L*((0,T) x Q)

we obtain
pe x T € CL((0,T) x Q),

o8

Formally, one has to

integrate over R and
introduce some
extension operator for
SoBOLEV functions from
Q to R, but since we
deal with zero boundary
conditions, the
extension is done by
Zero.
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where

(%*ﬂxmm:=@?*@f*ﬂnwx%=Lp&zfyﬂ:pﬂt7$M&wdﬂw

We set
Bo: L?(0,T; H) x L*(0,T; V) — L*(0,T; V¥),

T T
(Be(t,u), wy = L (B(pe * G, u),wydt = J-o ((pe @ - V)u,w)dt,

then measurability follows similarly to the proof earlier.

@ Approximate problem. For € > 0 we consider

u. + Au. + B(u.) = f,
u:(0) = ug

We have
(B:(u),v) = <Ba(uvu)vv> < CeHuHL2(o,T;H) HuHLQ(O,T;V) HUHLZ(O,T;V)-

@) Existence of solutions to (FP.). For every w e L?(0,T; H) we solve the abstract regu-
larised problem
Ot + A, + Be(@,u.) = f, in L2(0,T;V*)

ue(0) = ug in H. (Ps)

As argued beforehand, A +B.(a,-): L?(0,T;V) — L2(0,T;V*) is a bounded linear
operator. In order to apply the Theorem of LiONS, we need some kind of coerciveness.

We have

(A + B (i, u), 0 — v((u,w) +J ((pe » ) - V)u - ude
Q
*) 2 N T 2
D ufull ~ [ V(o v @) ul? do = vl
where in (x) we used integration by parts and (u'(t),u(t)) = $0|u(t)|?. The last step

is due to, by writing out the convolution, we have
V- (pe =) =J V~p(m—y)ﬁdm=f plx —y)V-adz =0.
Q Q
By Lions’ Theorem of linear abstract ODEs, to every @ € L?(0,T; H) there exists a
unique solution to (Pg).
@ SCHAUDER fixed-point argument. Consider the set
Po._ . .
M = {ve LP(0,T; H) : |[v]|ro,1;m) < R}
for p < o0 and some R > 0 determined later. Then, we define the solution operator
J: M, — MY, v = u,
where u is the solution of (Ps) in the sense of LIONS’ Theorem. (Tim’s interjection:
2 . 1 2 1 2
R™ = ;(\u(ﬂ + ;HfHL2(0,T;V*>) > 0.
The operator is well-defined, since a solution always exists and moreover
2 1 2 2
lulrt2g0,7my < Zluli20,1v) < R
holds for any u = Ja with @ € M%)

In order to apply the SCHAUDER fixed-point theorem, we have to show that J maps
Mpg to Mg, is continuous and compact and that Mg is bounded, non-empty and

convex.
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@ Clearly, MY, is non-empty, bounded, closed and convex.

@ Compactness of J. We know that W (0,T) < C([0,T]; H) by Theorem 2.2.1 @).
By the theorem of LIONS-AUBIN, we observe that W(0,7) < L?(0,T; H) since
V <% H (by choosing the HILBERT spaces Vi = V, Vi == H, V; := V* and
r = s = 2). By the interpolation lemma we deduce that 1 (0,7 < LP(0,T; H)
for all p e [1,0) (HOW?7?).

@) Welldefinedness of .J. We show an a-priori estimate: we test (5) by u to obtain

1d -
§&Iu(lﬁ)|2 + vl + Bo(v,u,u) = (f,u)
=0
1 2 |V 2
< _
71 + 2l

by YOUNG’S inequality. Hence

1 R
bl + Al <4 (1ol + 21 Bairvm ) =

where C' is chosen such that |w e 1) < R implies that w € M7,

@ Continuity of J. We show that v, — v in LP(0,T; H) implies that J(v,) — J(v)
in W(0,T). u, = J(v,) and u = J(v) such that @, = u, — u solves

ﬂil—i-Aﬂn-i-Be(v,an) =B.(v—0vp, u, ).
—— ——
—0 bd.

It can be show that B.(v — v, u,) — 0 in L2(0,T; V*) such that the continuity

follows from the continuity of the solution operator.
By SCHAUDER'’s fixed-point theorem, there exists a solution u. for ¢ > 0 of (P.).
(Tim Alternative: Also, for v := Ju and v := Jov with @, € M we find
|<B€(ﬁ, u) — B (0,v),u — v>‘ = |<B€(ﬁ —v,u) + B (0, u —v),u — v>|
= (B — 5, u),u — v)| < 2B [pe # (@ — )| 10 (0.7 x ) < C()2R [ — 0l L2 (0.1t
where we used
Q T r
(oo s @ =)t o) < [ o2 = vl [ 1oT (¢t = o)a(s ) — a(s,) dsdy
0
Q T o
< CHps Pe HLoo((o,T)xQ)”u - UHL2(0,T;H)'
Hence, J is continuous, as we obtain by testing with u — v the relation
0= [u(T) = vo(D)* + vlu = v 32 g 1y + Be(@u) = Be(9,0),u —v),
where the last term on the right vanishes for ¥ — @ in L2(0, T; H). Thus, in the limit
fle — v”iQ(O,T;H) < cfu— U”i%o,T;v) =0

By Aubin-Lions
J(L?(0,T; H)) €« WH2(0,T; v, V¥) <5 L*(0,T; H)

and for a solution u to @ € Mg we find
|‘u/“L2(o,T;v*) = Hf —Au— Bs(ﬂvu)HL%o,T;v*)
< HfHLZ(o,T;v*) + (V + C(E)”'EHLZ(O,T;H))HUHL2(0,T;V):

where each solution u is bounded in L2 (0,T;V) by the same constant. We find that J(L2(0, T; H)) is
bounded in W1’2’2(0,T; V,V*) and thus relatively compact in L2(O,T; H). Therefore, J is compact and
Schauder’s fixed-point theorem furnishes a solution u. € W1’2’2(0, TV, V*) to

ul + Aue + Be(ue,ue) = f in L2(0,T;V*),
ue(0) = uo in H.
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(®) Passing to the limit. We obtain a-priori estimate by testing (7.) by u., which is
allowed due to u. € W(0,T) to get

5yl + vl + (Be(ue),ue ) = (f ue).
=0

Estimating the RHS by YOUNG’s inequality we deduce that

el v | Jue(o) s < fuof? 5 | 1£(3) 1%

We infer that
2 2
lwelze 0,11y + el z200,m5v) < C
for all € > 0. By the Theorem of BANACH-ANAOGLU there exists a subsequence such

that u. = w in L®(0,T; H) and u. — w in L*(0,T; H).

We need some strong convergence to pass to the limit in the nonlinear term B., for

which we need information about the time derivative.

®) Time derivative We observe that

Il (0)]s = sup Cul(t).v) = sup (F(0) — Aue(t) = Blue(t)).v)

vVE v
lvl=1 lvf=1

< [F@ s + [ Aue(@)]s + [ Blue(t))]

< IF @O + viwe )]s + (o we) ()] £s [we)(2)] s
[F @) + Ve (@) + e ()L

<
@
<

1) + vl ()5 + e (0)]F [ue(t)]2. (d=3)
This implies that
4 T 4 4 1 2
Ol 3 o ey <€ f IFOF + v [uc ()2 + Jue)]?|ue(t)]F dt

4 4 4
S C(”sz(O,T;V*) + 3 uel| a0

2
+ |ua%2(0,T;v*)|u6(t)|zw(o,T;H)>
by using JENSEN’s inequality (777).
We extract another subsequence such that

w. 2w in L3(0,T;V*).
By L1oNs-AUBIN we infer strong convergence such that

u. —u  in L*(0,T; H).

Using this, we want to show that we can pass to the limit, identifying the nonlinear

term:
u. + Au. +B.(u.) = f.
—— N—— ~——
%, * 4 —777
Aau u

But first, we deduce strong pointwise convergence. By the inverse of LEBESGUE’s

theorem, we know that there exists another subsequence such that

uc(x,t) = u(x,t) almost everywhere in 2 x (0,7)
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and that there exists a dominating function in L?(Q x (0,T)). Due to that pointwise

convergence, we have
(pe = ue)(z,t) = u(x,t) almost everywhere in Q x (0,7).

Since the norm of p. * u. is dominated by wu. in the L?-norm, there is a dominating
function in L? for p. * u..
For all ¢ € CX(0,T;V) we have
t
| e <) = b )

0

t
< f |b(p5 * U, Ue _uaw)‘ + |b(p€ * Ue —u,uaw)\dt
0

t
< f e e 120y e — wlpaoy + o * we — wl oo Jual ooy [l dt.
0

v v
converges N0 N0
as it is bd. —>0 —>0

Hence
(Bo(uz), ) =% (Blu),d) Wb e Cl(0,T5V).
By density and by boundedness of B in L3 (0, T;V*) (for d = 3), we get
B.(u:) = B(w)  in L3(0,T;V*).

Convergence of the initial values follows since they are fixed for all £ > 0.

(Tim’s alternative: We have
2 2 2 1 .0
e (012 + wheae 2,0y < fiol? + 11220000
for a.e. t € (0,T). Thus, (uc) is bounded in L%(0,T;V) and L*(0,T; H) and we find
us — u in LQ(O,T; V) and wu. X u in L¥,T; H).

We will now show boundedness of (u’) in L*3(0,T; V*). To this end, first notice

1Be(ue, ue) 3/ < lloe # el 72 o luel
< lod # el o) luel 12 ) < cllpf s uellucllpd # we|*®fue|*,
hence
| Be (e, ue)l s oz
< ellpd # uellp2o,mvy el L20,r 102 % well /o oz 1l o0 0 )
< elluclyz o r lue 7 o rmm - (45)
‘We have g 43
Il s oy = I = Atte = Be(ueruo)l s
<c (“f”iQ(O,T;V*) + (" + H“E“i/;(omy))H“f”il’(o,T;V)) :
Thus,

. —a in LY3(0,T;V¥).

Taking arbitrary ¢ € C°(0,T) and v € V we find

—(u, w9’y — —(ue, ve’) = (ul, pv) — (i, o),

—<LT up’ dt,v> = —(u, 09"y = (i, pv) = <LT e dt, v>

T T
J up' dt = J up dt, hence u' = .
0 0

hence

and so
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By Aubin-Lions we find strong convergence
we > u in  L2(0,T; H).

Using it, we obtain

T
[(Beueue) = Bu)] < [ KBloe % e = wou), )]+ [(Blu we - w), o] de
0
< (lpe % we = ull 20,7 el 20,z + 10l 20,7, It = w20, 200) ) 1901 L (0,792 = O

for ¢ — 0, thus
(Be(ue,uc) —Bu,py —> 0 forall ¢eCl((0,T) x Q).

By density and (45) we find
(Be(ue,ue) — Bu,v)y >0 forall ve L4(0,T; V)

or just
Be(ue, ue) X Bu in L4/3(0,T;V*)‘

Clearly, also
(Aue — Au,v) = v{ue — w4, V)12 1,v#)x£2(0,15v) = 05

hence
Auc X Au in L2(0,T;VF).

To identify the initial value we use that
Um,u € AC([0, T]; VF)
holds. Let v € C*([0,T]; V) with v(0) = w € V and v(T) = 0 be arbitrary. We find
T q T, ,
{ug, wy = {ue(0), w) = —f a(us,v>dt = —J (ug,v) + {ue, v )dt
0 0

R var=— [ 4 dt = (u(0
= [ e = = [ Sy = o), w.

As w € V can be chosen freely, we obtain u(0) = ug in V¥.

Overall, we obtain

f=ul 4+ Auc +Bo(uc,us) 2w’ + Au+Bu in LY30,T;V¥)

and
w(0) =up in V¥
where
we L*(0,T; V) A L0, T; H) n W (0, T; V¥).
) O

5.5 | Fractional time derivative

The regularisation we used in the above proof left us in a good position since we were allowed
to test with V. If we used a GALERKIN approximation we would have need V-stability of the
H-projection onto the GALERKIN subspaces. We need additional regularity of the boundary
in order to have such a stability, and this often does not hold for FEM.

We need some information on the time derivative of the approximate sequence in order to de-
duce strong convergence, which is crucial for passing to the limit in the nonlinear term (weak
convergence does not suffice!). But the sequence (u’).~o is not bounded in L?(0,T;V*).
We need something weaker: either L3 (0,T;V*) or a SOBOLEV-SLOBODECKIJ space. The
space W?P(0,T; H) can be obtained by properly interpolating between LP(0,T; H) and
Whe(0,7T; H).
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DEFINITION 5.5.1 (SOBOLEV-SLOBODECKIJ SPACE)
Let p € [1,0) and o € (0,1). Then

WoP0,T;H) == {ue LP(0,T; H) : |u|weoro,r;m) < ©},

where
|u(t) —u(s)|P
|ulwo.r0,1;H) *J J |t—s\1+0P dtds

and

D=

lwlwonorseny = (1o oz + Wl mm )
We abbreviate H°(0,T; H) := W2(0,T; H).
We have
HY0,T;H) — H°(0,T; H) — L*(0,T; H)
(Exercise!) and furthermore for o € (0, 1)
HU(O,T;H) HO(OTH) —CIOSH” 2C (OTH)

which means that if we take derivative of order lower that 1, we don’t see the boundary
conditions. For o > 5, it doesn’t matter if we first take the closure and then interpolate or

the other way around.

Lemma 5.5.2
Let V <5 H for BANACH spaces V and H. Then we have

L*(0,T;V)n H(0,T; H) <% L*(0,T; H) Yo > 0.

Lemma 5.5.3
Let (u5)5>0 be the sequence of approximate solutions. Then it holds for o < % (even holds

foro < 3 , see Exercises) that |uel,2 < C, where C is independent of €.

Proof. It suffices to prove that |u.|s2 < C for all € > 0. We have
|u5(t) - u5(3)|2 = (us(t) —uc(s), u(t) — us(s))

) ut) - wels))

S

=J (£(7) = Aue(r) — Bua(r), uc(t) — uc(s)) dr
< J (IF () + v]ue ()] + Cll(pe * u) (7)o |we ()] 22)

“(lue ()] + [uc(s)]) dr.

By @, as before,

~ 3 1
[(pe # we) (T) 24 e (7) s < el Zo < Clluse|7a e |2

We use the abbreviation

9(7) = 1F ()]s + V()] + Cluc]F fuc 2.
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We can now find

T
2 Jue(t) — ue(s)?
[ucls o f f |t—s\1+2‘7 dtds

:f f £ sl f 9(7) (lu=(®)] + luc(s)]) dr dt ds
-7 J f fmaxm) — 5727 g(r) fuc (1) dr dsdt

min(s,t)

2 f f f [t — 87727 g(r) ()] dr ds d

T T ps
”f f f [t — 5|12 (7) [ue ()] dr ds dt
0 0 t
® ("
:2f J f |t — 5| 7172 dsg(r) | ue(t)] dr dt
0 0 0

T ~T T
+ QJ J J |t — s|_1_2‘7 dsg(7)|ue(t)| dr dt
0 0 T

1 T rT o _20
o] | = = g o) ar

l e T — —20 _ _ 3\ —20 Pl .
+aJO f ((r=1) (T —)7%) g(7)|ue(t)]| dr dt
= TODO -

We may use the compact embedding
L*(0,T;V) n H°(0,T; H) <% L*(0,T; H).

We deduce u. — w in L?(0,7; H). Now proceed as in the previous proof to prove the
convergence

B.(u.) = B(w)  in L3(0,T; H).

5.6 | Weak-strong uniqueness

Recall that we have at least one solution uw € L?(0,T;V) n L*(0,T; H) with

L%2(0,T;V*) ford =2,
u' e 4( ) for c LY0,T;V¥)
L3(0,7;V*) for d =3,
(e.g. less time integrability for the time derivative in d = 3) and
C([0,T);H) ford=2,
Cw([0,T); H) ford=3.

u e

Furthermore, u enjoys the fractional time regularity

for d = 2,
for d = 3.

uwe H?(0,T;H) foro <

PN

Weak-strong uniqueness means that if there is a solution admitting additional regularity,

then this strong solution is unique in the class of weak solutions. So whenever there is a
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strong solution, this strong solution coincides with every weak solution to the same initial
values and right hand side f.

It is a major drawback of weak solutions, that one cannot show weak-strong uniqueness; one
has to get an additional ingredient - the energy inequality, which comes from the physical

insight (energy is conserved).

DEFINITION 5.6.1 (SUITABLE WEAK SOLUTIONS)
A weak solution to the NAVIER-STOKES equations is suitable if it fulfills the energy in-
equality

SuOF + [ TP ds < GluoP + | (Fhuldds  vee©D). (o)

For d = 2, the energy inequality is an equality.

THEOREM 5.6.1: EXISTENCE OF SUITABLE WEAK SOLUTIONS

Let Q « R? be a LiPscHITZ domain for d € {2,3}. Then there exists a suitable weak

solution to the NAVIER-STOKES equations.

Proof. In dimension 2. Since u € W(0,T), we test the abstract equation by w in order to

infer

S lu®F + v]u®)]* = (' (1), ult) ) +v((u(t), u®)) + b(u(t), ult), u(t)) = (F(t),ult)).

=0

Integrating in time from 0 to ¢ € (0,7T) yields

SR+ [ Tl ds = Slua + | (Fls).u)ds,

so the energy inequality is an equality (as mentioned above).

In dimension 3 the problem is that we are not allowed to test with the solution u, so we
have to go back to the approximation scheme (F.) and do this calculation there. On the
approximate level, we are allowed to test with u. € W(0,T), yielding

S e + e ()17 = Cul (1), ue0)) (2 (0) 200 0))) + (e %202 ) (1) e 1) 1))
=0
= (f(t),uc(t)).
Integrating in time from 0 to ¢ € (0,7T) yields
FlucOF + | o) ds = Gluol? + [ CF0).us) s (47)

We now want to pass to limit with € ™\, 0. In the right hand side the u. appears linearly, so
we may pass to the limit using the weak convergence. For the integral left hand side we have
to use that the norm is weakly lower semi-continuous and that we have weak convergence
in L2(0,T;V*). We need a way to pass to the limit pointwise in the very first term to get
an equality that holds everywhere and not only almost everywhere, so we need something
more than L*.
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We already established that
/!
HUEHL%(O,T;V*) s¢
independent of ¢ > 0. Therefore, (u.)e=o < L*(0,T;H) < LY(0,T;V*) and (ul).~o <
L3(0,T;V*) c L'(0,T; V*). Hence
(ul)eso = WHH0, T;V¥) <> AC([0, T]; V) < Co ([0, T V).

We know C,,([0,T]; V*) n L*(0,T; H) < C([0,T]; H) by lemma 5.3.5. So a weakly con-
tinuous function in a weaker space which is bounded in a stronger space, is also weakly

continuous in the stronger space.

We observe that (u.).~o is bounded in C,,([0,T]; H). We need some information on the
time derivative and thus we can get this weak convergence pointwise - L® is not enough to

get weak convergence pointwise.

There exists a subsequence such that
U — U in C,([0,T7; H),
which means that for every ¢ € [0, T] holds that
ul(t) — u(t) in H.

For all t € [0, T], we observe that by the lower semi-continuity of the H-norm we have

< limi ().
[u(t)] < lim inf fue (£)]
The same holds for the weak solution. Similarly, since w. — w in L?(0,T; H), we have

t t
“u(s)H?dsgnmian luc(s)|2ds Ve (0,T).
0 eN0  Jo

From u. — w in L?(0,T;V), we deduce

f<ﬂ@m4@ws~f<ﬂ@m@»w vt e [0,7].
0 0

We have now derived for convergence for every term and end up with an inequality. Passing

to the limit € \{ 0 in the energy equality (47), we deduce the energy inequality (46). O

We will now consider the uniqueness of solutions in 2D and the weak-strong uniqueness of

solutions in 3D.

Lemma 5.6.2 (Intermediate regularity result)
Let we L*(0,T;V) n L*(0,T; H). Then it holds that

L0, T; L*(Q)?) = L*(Q x (0,7))%, ford =2,
L5(0,T; L*(Q)), ford = 3.

u e

Proof. For d = 2 we have by (0

T T
LHMM%@&<CLhﬂWW@W&<CwﬁmmmWﬁmmw

For d = 3 we have by (@)

T 8 g 3.8 18 2
| iy dt < € [ OISO at < Clul gl
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THEOREM 5.6.2: UNIQUENESS FOR d = 2

For d = 2 there exists a unique solution u € W(0,T) to the NAVIER-STOKES equa-

tions.

Proof. Let u,u be two solutions such that

(u—a) + Alu — @) + Bu) — B(@) =0, in L2(0,T;V*),

(u —a)(0) = uo — to, in H.

Since u, @ e W(0,T), we may test the equations by u — @, inferring

1d
§a|u—'&|2+1/||u—12H2+b(u,u,u—ﬂ)—b('&,ﬁ,u—ﬁ) = 0.
We observe that
b(u, w,u — @) — b(a, @, v — @) = |b(u,u —a,u— @) —b(u—,a,u—u)
=0

-3 JORE
< Ju—al>|u—al7|af
YY) v N 121~
< 5IIU—UHZ+Cu|u—UI2\IUIIL4,

where (H) is the generalised HOLDER inequality and (Y) is YOUNG’s inequality. By GRON-
WALL’s inequality, we have for all ¢ € (0,T)
t

¢
v|u(t) — a(t)|? exp <f Cy a7 d7'> ds

=0

t
< ug — wo)? exp <J Cy ||} d7'> ds.

S

mm—amﬁ+j

0

THEOREM 5.6.3: WEAK-STRONG UNIQUENESS PROPERTY (SERRIN 1962,

ProbDI1 1959)

Assume that a suitable weak solution w € L®(0,T; H) n L2(0,T;V) to the NAVIER-
STOKES equations fulfills additionally

we L*(0,T; L"(2)%)

with s € [2,00], r = d such that

2 d
-+-<1
s T

Then the solution is unique in the class of suitable weak solutions.

Example. 5.6.3
Standard value combinations for s and r include

e In 2D, we can choose (s,7) = (4,4) or (s,r) = (00,2). We get the function space
L40,T; L*(Q)4) and L*(0,T; L%(Q)?).
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e In 3D, there is at most one solution in L8(0,7T; L*(2)9), that is, (s,7) = (8,4). As
8 > %, this function is class is smaller than the class considered beforehand. o

Remark. 5.6.4 In three dimensions, only a weak-strong uniqueness results holds: if there
exists a solution fulfilling the additional regularity L8(0,T; L*(Q)9), all weak solutions em-
anating from the same initial value coincide with the regular solutions (it is unique).

Problem for well-posedness in 3D. Existence in L3 (0,T; L*(Q)?) and uniqueness in
L8(0,T; L*(Q)%). There is a regularity gap, uniqueness only in a smaller space.

Proof. (of Theorem 5.6.3) Let u be a suitable weak solution to the NAVIER-STOKES
equations. Then we L®(0,T; H) A L2(0,T;V) A Wh3(0,T; V*).

Let @ be a more regular solution with @ € L8(0,T; L*(Q)%). Now we can get better estimates

for the nonlinear operator B (we will see that it maps to L?(0,7;V*)).

Then

T

T
HBMm@ﬁw>=jnsmwﬁw<cLummﬁﬂmfw<ﬂmm@ﬁu@q<w-

0

This implies @ € W(0,T) by @' = f — Aa — B(a) in L?(0,T;V*). Hence testing with this

function is allowed such that we infer the energy equality

lal? + [ Ve as = Sl + | CFo)a)ds v ©.7)

We now show an integration-by-parts rule:

() 0(0) - [

0

t t

(u(s), dv(s)) — (ug,vo) = f (Qru(s),v(s)) ds

0

forallu € Cy (0, T; H)nW L (0, T; V¥)AL2(0,T; V) as well as v € WO, T)AL3(0, T; LA(Q)4).
This holds for continuously differentiable function, then generalised by density arguments.
For the weak solution w, it holds

t

(u(t), v(t) - L (V'(t),u(s) yds — (uo, v(0)) + J v((u(s), v(s))) + (B(u(s)),v(s))

0
t
- [ #0060,
0
which can be shown by integration by parts formula above or one multiplies by a function
v which is only supported on (0,¢) and then integrates by parts.
This formulation is well defined, observe for the nonlinear operator B:

f( b(u(s), u(s),v(s)) ds < L lu(s)]La]wls)[v(s)]Ls ds

)

<2£JM$3wwumS
(Y)

t
14
< | Flue)1? + s () ds.

so all terms are well-defined.

We now use the relative energy approach. We start by defining the relative energy

_ 1 _
R(u| @)= fu—af,
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the relative dissipation

W(u | @) = vl|u—a|>

We have by using the energy inequality and the energy inequality

¢ ¢
+J W(u | a)(s)ds = %|u|2 + VJ |(s)|? ds
0 0
1.5 b a2
+ L —l—z/J la(s)|2 ds
2 0

— (u(t), u(t)) —f 20((u(s), a(s))) ds

0

< gluol+ [ CF6) () s + ol

+ W - (uo. u(0))

—f v((u(s) ds—f<u 5)yds

+ [ Bt >>dsW
~ Rluo | a(0 ))+W+L<B(u>,a>ds
+L<B(a),u>dsW

= R(up | u(0)) + L b(u,u,u)ds + f b(w,w,u)ds

0

and

¢ ¢
J b(u—ﬁ,u,ﬁ)dS:J blu —a,u —u,u)ds
0 0

< [ alfu @l ds
0

@

< f Ju— @ F | — i @] o ds
0

) (‘v N o
< [ e - aPlalyds
0

We conclude again by GRONWALL’s Lemma

t

R(u(t) | u(t) + J W (u(s) | a(s)) exp <f Cylla(r)|%s dT) ds

0
< R(uo | @(0)) cxp (Lt Cla(m)[E. dT) .

This proves weak-strong uniqueness but also continuous dependence, if such a 7?7 solution

exists. ]
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5.7 | Local existence and uniqueness in three

dimensions

In the previous section we assumed a more regular solution exists. Now we want to prove
that this is actually the case, but we will only be able to show this on a small time interval

or with small data.

We want to use the property of the STOKES-operator A to construct the smooth solution we
talked about. if we want to prove something like this, one would test the equation not with
u, but with Au or Awu such that we are again in the solenoidal functions. Even if we have
the resulting estimates, we need some discretisation argument to make the proof rigorous.
We do this here by constructing an appropriate GALERKIN scheme.

Idea: find an estimate for ||u(t)|y. We want to ask for which v we have
o] = H"’Hi]&(g) = (Av,v) = (v, Av)2(0),
that is, for which v € V' we have Av € H.

Consider the elliptic problem

—vAu+Vp=Ff, inQ,
u=0 on 012,
V-u=0 in Q,

whose solution operator is the STOKES-operator.

Preliminaries

Let A: V — V* be a linear, bounded, strongly positive and symmetric operator:
<Aua U> = ((uv ’U)) = (vuv VfU)L2(Q)4

with a GELFAND triple V <> H N 76 By LAX-MILGRAM, there exists a solution operator

A=l V* — V, which again is linear, bounded, strongly positive and symmetric.

We consider the restriction A" := A‘l‘H: V* 5 H - D(A) < V < H, where D(A) :=
ran(A~! ). Then is AL is bounded in H: for v € H we have (as V <> H < V* implies

|-[<cf-[and |- [«<cf-])
—1 -1 -1 1
|[Ap v < c|Ap v = A7 | < e— o]« < =Jvl.

As A;l is linear and symmetric:
(A 'u,v) = (A u,v) = (A7 v, u) = (A7, )

Thus it is self-adjoint.

Furthermore, A;l is compact: let (g, )neny be a bounded sequence. Then (A}lgn)neN cV

is bounded in V. From V <% H, we infer that (Al;1 Jn)nen © H is relatively compact.

By the Spectral Theorem (from Functional Analysis IT) there exists an ONB consisting of
eigenfunctions of A}l7 that is, there exists a sequence (A,)neny < R of eigenvalues that is
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bounded and converges to 0 such that the eigenspaces ker(A—\,, I) are finite dimensional. We
find an an orthonormal basis (¢,,),en © H consisting of eigenfunctions with Az ¢, = \,pn
(the eigenvalue have to be counted according to their geometric multiplicity). Furthermore,
H = ker(A") @ span({¢n }nen) and A1 is strongly positive such that

_ _ 14
Malnl? = An(@n, @n) = (¢n, Ap'on) = VA pul® > B\I%Hi >0,

so A\, =0 for all n € N.
We observe that A" is invertible, since ker(A4') = {0}, so A" is injective. It is additionally
surjective by definition, since it is restricted to D(A):

Ap: Ho>D(A)={ueV:Aue H} — H.

The operator Ap is called the FRIEDRICH’S extension. In this case the domain can be
identified via D(A) = V n H?(Q)? for the FRIEDRICH’s extension (this identification only
works when 012 is of class CQ). As ¢, are eigenfunctions to the eigenvalue \,, of A~!, they

are also eigenfunctions of Ar to the eigenvalue A

We consider the orthogonal projections on V,,, = span{y1,...,¢mn} defined by P,,: H —
V,, © H defined via P,,v = Z;n:l(v, ©i)pi. Therewith, we infer P,,v — v for all v € H as
m — oo (limit closedness). From the definition, we find ¢; € D(A) (since ¢; = )\j_lA;lcpj €
D(A)). Thus V,,, =« D(A).

Lemma 5.7.1
The eigenfunctions (¢;)ien are a GALERKIN basis in V.

Proof. TODO U

THEOREM 5.7.1: CATTABRIGA

Let Q = R? be a convex (not needed) bounded domain with 69 € C?. There exists a

¢ > 0 such that

|Av| < |v| g2 (q)e < c|Av| Vv e D(A) =V n H?(Q)%

Proof. TODO U

Remark. 5.7.2 The first inequality is obvious. From the previous theorem, it follows that
the norm |A - | is equivalent to the full norm on H?(Q)) n V. The assumptions on €2 can be
generalised.

THEOREM 5.7.2: WEAK SOLUTION ON SMALL TIME INTERVAL

Let Q < R? be a bounded domain of class C?. To ug € C and f € L®(0,T; H) there
exists a Ty = min(7T, Ty ) with
Cv _ ( 2 1 )
Ty < ———— s min (v, —— |, 48
"5 T Tl [Tzomm )
such that the NAVIER-STOKES problem admits a unique weak solution on [0, Ty) with
ue L*®(0,Ty, V) n L?(0,T; D(A)).
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Remark. 5.7.3 If the data |uo|, | f|r=(0,7.r) and Re = 1 are small enough, there exists

a global (on [0,77]) solution.
Proof. TODO O

In the last theorem we proved that for (48), (tum)meny © L%(0,Ty; V) n L%(0,Ty; D(A)) is
bounded. As usual the existence of a solution

we L0, T;V) n L*(0,Ty; D(A))

follows. Moreover, u € C([0,T%); V) n WH2(0, Ty; D(A)), which implies uniqueness, i.e. we
may test the equation by u in order to find the energy inequality and the uniqueness follows
from the previous weak-strong uniqueness theorem as L*(0,T;V) «— L8(0,T; L*(Q)%).
Corollary 5.7.4 (Uniqueness in 2D)

Let Q < R? be a bounded domain of class C*. Toug €V and f € L*(0,T; H) there exists a
unique solution

we L*(0,T;V)n L*(0,T; D(A))

i dimension 2.

5.8 | Existence of the pressure

The NAVIER-STOKES equations have four unknowns (u € R® and p € R) but in the weak
formulation, the pressure vanishes because we test with solenoidal functions. How do we get
the pressure back?

Formally, we may write
Vp=f—u +vAu— (u-V)u=g.
For all v € V' it holds that

(gv)y={(f—u +vAu—(u-V)u,v)=0.

We may use the result of the exercise.

THEOREM 5.8.1: DERHAM

Let g € H~Y(Q)? with
<g7U>H*1(Q)d,H6(Q)d =0 V'UEV.

Then there exists a p € L?(Q) with {, p(z) dz = 0 such that Vp = g.

In contrast to our previous result, we now assume that f € L2(0,7; H~*(Q)?) (instead of
L2(0,T;V*)). This is a more restrictive assumption. Since V < H}(Q)¢ implies H~1(Q)¢ <
V*.

THEOREM 5.8.2: SIMON (1988)

Let Q < R® be a LipscHITZ domain, ug, f € L?(0,T; H~(2)?). Then there exists a
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pair
(u,p) € (L*(0,T; H) n L*(0,T; V) n Cy ([0, T); H)) x WH%(0,T; L*(Q2)/r)

satisfying the NAVIER-STOKES equation in the weak sense.

\. J

Remark. 5.8.1 The main problem is that V* C D’(€). The elements of the dual space V*
are no distributions. [Sim99] even showed that there exists no HAUSDORFF space (minimal
assumptions to distinguish two elements) such that V* and H~!(Q)¢ can be embedded into
this HAUSDORFF space.
Remark. 5.8.2 Formally, we may get from Vp = f — v/ + vAu — (u- V)u by applying the
divergence

Ap=V-(f—u +vAu—(u-V)u) =V- f—tr((Vu)?)

in Q x (0,7) and
n-Vp:(f—u/—i—l/Au—(’lL'V)U)'n:(f+VAu_(u'V)u)'n

on 002 x (0,T). From wu, one may deduce p by solving formally the above NEUMANN problem.
Remark. 5.8.3 (Difficulties for proving additional regularity) When trying to prove
additional regularity of solutions, we need additional compatibility assumptions for these so-
lutions. This leads to problems! Let ug € V' and let the compatibility condition u'(0) =
vAug — (ug - V)ug — f(0) € V be fulfilled. Due to the original equation, we find

u'(0) + (ug - V)ug — vAug + Vp(0) = £(0).
From Vug =0 ad V- 4/(0) = 0, we find that
Apy =V - (£(0) + vAug — /' (0) — (ug - V)ug) = V- (£(0) — tr((Vuo)?)

and
Vpo = f(0) —u'(0) + vAug — (ug - V)ug = f(0) + vAug

on 0Q2. The boundary terms for uy vanish since ug = 0 on 092. This is an overdetermined

system and does not possess a solution in general.

Singular limits and long-time behaviour

We want to consider the singular limit ¥ — 0 and the long behaviour for solutions of the
NAVIER-STOKES equations. As a tool, we will use the relative-energy inequality. We already

implicitly used it to prove the weak strong uniqueness result.

DEFINITION 5.8.4 (RELATIVE ENERGY, SOLUTION OPERATOR)
The relative energy is

. 1 ~
R:HxH — Ry, (U|U)H§HU*”HQL2(Q)
and the solution operator A, is defined by
<AV({})a> = <at,ﬁ + (’B ' V)’[) —vAv — f7'>7

which has to be understood in a weak sense, at least with respect to space.
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If V-v =0, then
V- (v®v)=(v-V)v=(Vv)v,

so the NAVIER-STOKES equations can be rewritten as

Ov+V-(v®v)—vAv+Vp=f and V-v=0, inQx(0,7T),
v(0) = vy in Q,
vI—-n®n)v=0 and n-v=0, on 02 x (0,7T).

By writing the boundary conditions in this way, the system incorporates the NAVIER-STOKES
system with no-slip conditions for v > 0 and the EULER equations for v = 0. Indeed, for
v > 0, the tangential and normal part of the velocity field vanish such that this is equivalent
to v = 0 on 00 x (0,7). For the friction-less case of ¥ = 0, only the normal component

vanishes on the boundary.

THEOREM 5.8.3: LOCAL EXISTENCE OF SMOOTH SOLUTIONS

Let © = R® be a bounded domain with smooth enough boundary and ug € H;()nH
with s > 3. Then there exists a Ty > 0 such that there exists a solution

ue L°(0,To; H° () n H)

solving the EULER equations.

Proof. Exercises.

THEOREM 5.8.4: SINGULAR LIMIT FOR v \ 0

For v > 0, let w, € L?(0,T;H) n L?*(0,T;V) be a weak solution to the NAVIER-
STOKES equations for u§ € H for f = 0. Additionally, let w € L'(0,7; W1*(Q)) n
L*(0,T; H) solve the EULER equations in a weak sense. Then for almost all ¢ € (0,7
it holds that

O

1 2 v 2 ﬁ 2 ‘
gl (0) — () < e g —wol® + Tz ) exp ( | 1Tyl ds ).

THEOREM 5.8.5: LONG-TERM BEHAVIOUR

We consider the case T = oo. For f € L'(0,7;L?(Q2)) and vy € H, assume there
exists a weak solution u to the NAVIER-STOKES equations. Then, there exists a
sequence (t,)nen < [0,00) such that w(t,) — 0 in V for n — oo.

5.9 | Energy-variational solutions

Motivation

Weak solutions have some drawbacks

e they yield existence only, no uniqueness,

(0]
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e natural energy estimates alone do not suffice to pass to the limit, thus the time-

derivative has to be estimated,

e weak solutions without energy conservation are known to display non-physical be-

haviour,
e weak-strong uniqueness only for suitable weak solutions,
e the motivation for the weak solution is questionable.

In the process of modelling, one assumes that the functions involved are regular enough
to write down pointwise relations to come up with the PDE. Then in existence theory, the
equations are generalised for scenarios of less regularity. But maybe, the pointwise equations
do not describe the physical behaviour away from the right regularity?

This motivates a different approach — the energy-variational solution concept. The variation
of the energy inequality, since this relation should hold for every reasonable solution, is
taken with respect to more regular functions, for which the pointwise relation given by the
PDE makes sense.

Preliminaries

Lemma 5.9.1
Let A < R be a bounded open set and

f: AxR"xR™ = [0, 0)

with d,n,m = 1 a measurable non-negative function such that
o f(xz,-,-) is lower semi-continuous on R™ x R™ for a.e. x € A,
o f(x,y,-) is convex for fired x € A and y € R".

For sequences (up)ren < Li.(A;R™) and (vg)ken < L (A;R™) as well as functions u €

Li (A;R™) and v e L (A;R™) with
U — U a.e. in A and v —v in Li (A;R™)
it holds
liminf | f(z,ugx(x), vg(z))da = J flz,u(x),v(r)) de.
k—oo 4 A
Lemma 5.9.2

Let f € L*(0,T) and g€ L*(0,T) with g > 0 a.e. in (0,T). Then
T

T
- j ¢'<T>g<7>d7—g<o>+f () f(r)dr <0

0 0

holds for all p € C[0,T] if and only if

g(t) — g(s) < f f(r)dr

for almost all s,t € (0,T), where

Cl0,T] = {4 € C*[0,T] | =0, ¥’ <0, ¥(0) = 1, ¢(T) = 0}.
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Definitions
We define the spaces
o X :=L%(0,T;H) L?0,T;V) for solutions,
o Y :=H%*Q)nV n LYQ) for test functions,
o 7 :=L20,T; H1(Q)) @ L' (0,T; L?(Q2)) for the right-hand side,
where H denotes the solenoidal L?(€2) and V the solenoidal H}(Q) functions.
DEFINITION 5.9.3 (ENERGY-VARIATIONAL SOLUTION)

A function u is called an energy-variational solution, if u € X and the relative energy

inequality
t
R(u(t) | v(t)) + f (W (1 | v) + (A (v), u — o)) el Kr 9T ds < R (ug | v(0))elo v () ds
0

holds for a.e. t € (0,T), where

R(u(t) | v()) = lu(t) ~ v(®)3aqey
and (A (v(s)),) = @o(s) + (0(s) - Vels) — vAu(s) = Fs),,

and for all v € C}([0,7];Y) and all convex non-negative potentials ,,: Y — [0, 0) such
that

W,:V xY — [0,0),

1
Wy (u | v) = v|Vu = Vs q) = L((u —v) - V)(u—v)-vde + Ky (v)5u— vl

is convex in v and continuous in v.

Remark. 5.9.4 The solution concept fulfills the standard requirements for a generalized

solution concept
e existence of generalized solution,
e weak-strong uniqueness of solutions,
e additional regularity implies uniqueness,

e convergence to stationaly states.
Remark. 5.9.5 Advantages over weak solutions are

e existence in every space dimension,
e only relies on classical energy estimates,

e the convex solution set allows to define a descent selection criterion to find the physi-
cally relevant solution dissipating most energy.
Remark. 5.9.6 (Well-definedness of the solution concept) The convection term is well-
defined, since we have V <% L2¥/(=2)(Q), thus

T
f J ((u—v)-V)(u—v)-vdedt
0o Ja
< u = v 20,75 020/a-2 () [ = vl 20,75 [V] Lo (0,729 (02)) < 90

Moreover, the set of possible K, ’s is non-empty. To see this consider

N

2 d
K,:Y —[0,0), Ko(v) =clv|r(q) for St 1.

7
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Then by the GAGLIARDO-NIRENBERG inequality
vlze@) < [VV]Z2q) HUHm Q)

for a = 22=2 and d < % (TODO: this simplifies to p < 4...) with

2p
1 1 1 1
_(z_Z (1 —
, (2 d>a+2( a)

J((u—v)-V)(u—v)-vdx
Q

we obtain

< fu— U”LP(Q) IVu — VU||L2(Q) HUHsz/(p—z)(Q)

< Cllu — vz |V = Vol it 0] pasioo o)

2/(1—a) 1”

*HVU_VUHLZ(Q + c|v]| Y aps o 2(9)3

U||2L2(Q)~

Existence

Let us give a proof of existence, which does not require any time-derivative estimate.

THEOREM 5.9.1: NAVIER-STOKES EXISTENCE

Let Q = R? for d > 2 be a bounded LIPSCHITZ domain, v > 0and R, W,, K, and A,

as above. Then there exists at least one energy-variational solution u € X to every
ug € H and f € Z. Moreover, the set of solutions is convex and weakly sequentially

closed.

Proof. We attack by GALERKIN discretization. As V is dense in V' there exists a Galerkin-
Scheme (V;,)men © V of V. The m’th approximate problem reads

(Cttim, v) + ((Um * V)Um, 0) + V((tm,v)) = (f,v), forallveV,, and te[0,T],

0

U,, = Ppug,

(49)

where P,,,: H — V,, is the orthogonal projection from H onto the subspace V,,.

Via the Theorem of Caratheodory we find solutions u,, to the approximate problems given
by 49 on time intervals [0,T,,) with T;, > 0. In fact, when we show the apriori estimates
in the next step, we excluded the possibility of finite-time blowups and thus T, = T will

follow for all m € N.

Testing by u,, itself leads to the apriori estimate

1d ) )
5 gt lml® + vlunl® = (f um),
where
f=fi+fo with fieL'0,T;L%(Q)) and f,e L*(0,T; H1(Q)),
hence

Frump = iy um) + (fooum) < [ frllzz@lum| + [ f2ll z-2 @) luml

v 1
< Al (1 + [um|?) + §||um|\2 + 5Hfz\|§;—1m)-
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Therefore, we obtain

d 1
a|um|2 + vfum|? < 2| fill L2 ) (1 + |uml?) + ;HfQH%I—l(Q) (50)

and via GRONWALL
t
un (@ + [ vl ds
0

1
<QwP+2ﬁuwmmm»+yh@mjﬂqmﬂéﬂ“wwww

a.e. in (07 T) The GRONWALL argument can be seen as follows: integrating (50) and using S[t) ... ds < Sg |...[ ds
yields

t 1 t

2 2 2 2 2
(O < fum OF = [[ Jum () ds + 20101011200 + 2120320 7,051y + || 2O 200plum (9 s
Now, GRONWALL’s Lemma (again using Sz) [...[ds < Sg |...Il ds) implies

¢ L 111 .
|Um,(t)‘2 < (\um(0)|2 _ yfo Hum(s)”2 ds + 2| f1 HLl(O,T;LQ(Q) + ;Hle‘iQ(o,T;H—l(Q)) L1072 ()

Since the exponential term is greater than one, the —v-term can be put on the other side of the inequality and
estimate such that the above equation holds.

This boundedness implies
Uy ~u  in LP0,T;H) and u, —u in  L*0,T;V),

hence
*

Up —u in X =L%0,T;H)nL*0,T;V).

We will proceed by establishing an approximate relative-energy inequality. We already
deduced the relative energy inequality for each wu,,, i.e.

5 77 luml? + vl | = (f um). (51)
We test the Erstaz-problem by P,,v, where v € C1([0,T];Y), to obtain
(Ortimy, Prav) + (U - V), Pv) + V(U Prv)) = (f, Prv). (52)
Moreover, we find for the solution operator

(AL (Pnv), )y = (0t Prv, um) + ((Prv - V)Prv, up) + v(Prv,um)) — fomy  (53)

and L d
l/Pm >Pm = 51
(A(Prt), Py = 55

Combining (51) - (52) - (53) + (54) gives

|Pool? + V| Prv|? — (f, Pv). (54)

1d
§a|um — va|2 + v|uy, — msz
+ (((um = Puv) - V) Prv, ) + (Ay(Pv), ty — Prpv)y = 0.

Multiplying by e~ §& Ky (Pmv) ds

1d
2dt
+ <V|um — Poo|? + (((uny = Prv) - V) Py, sy, )

and simplifying yields

¢ 1 4
(|Um - mv|267 SO /C,,(va) ds) + iKV(va”um — Pm’U‘267 XO ’C"(va) ds

+ (A (Pv), i — va>> e SoKv(Pmv)ds _
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Integrating from 0 to ¢ gives

R(um (t) | Pm’l}(t))e_ S(tJ Ky (Pmv)ds

t
+ f (Wl,(um | o) + (AL (Pv), U, — va>)e‘55 Ky (Pmv)dr g g
0

< Rum(0) | Puv(0)).  (55)

Take any ¢ € C[0,T], multiply (55) by —¢/, integrate from 0 to T’ and use integration by

parts to arrive at
T s
| R | Pr)e BP0 g
0

T
+ J L,O(WV(Um | Prv) + (AL (Prv), up, — mv>)e‘ §o Ko (Prmv)dT 44
0

< R(um(0) | Prov(0)).  (56)
We proceed by passage to the limit for m — c0. Since V is dense in Y, we have
Po(t) — v(t) inY for each ¢ € [0,T]. (57)

Appealing to Lemma 5.9.1 and an approximation argument we obtain

T T
— J O'R(u|v)e” o Kv(w)dr g5 4 f oW, (u | v)e” §o Kv(v)dT qg
0 0

T

T
< liminf <—J O R (U | Prv)e o fvPmo)dr g 4 f
0 0

m—00

(qu(um | va)e_ S:) Ky (Pmv)dr ds> ,

where the weak convergence of u,, to u and (57) were used. Since P, — idg, we find for
the initial values

R(un(0) | Port(0)) = ] Prto — o) = Lo — v(O)> = R | 0(0).

And for the solution operator part we have
(6thv,um - mv) = (Pmatvaum - Pm”) = (atvaum - mU),

as P, is an orthogonal projection, thus
(A (Pr0), gy, — Pvy — (AL (0), g, — Prv)
= ((Pnv - V)(Prv = v) + (Pv — v) - V)0, Uy, — Pp)
+v(VP,v—Vv,Vu,, — VP,v)
< | Pmvllpa@) [VPmv = Vo[ r2(a)[um = Povl| 2a@-2 g
+ |1Pmv — vl pare () | VIl 2ara—2 () [um — Prv|| L2ara-2 (o)
+ V| VEnv = Vo[ 2(0)[Vum — VPrv| 120,
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and so

T
J 50(<A,,(va), U, — Prv) — (AL (), U, — va>) e~ Yo Kv(Prmv)dr 4 ¢
0

< HPmUHLOO(O,T;Ld(Q)) IV P — Vo 20,112 (0)) [em — PmUHL2(07T;L2d/(d—2)(Q))
+ [ Prav = vl 20,75 002 () | VU] L0 0,1 2070020 () [t — Prv]| 20,1 £20/00-2) ()

+ Z/HVPmU - Vv||L2(07T;L2(Q))HVum — VPmUHL2(O,T;L2(Q))>

(58)
where 0 < ¢ < 1 was used. Using u,, — u in L?(0,T;V) and (57) we find

lem — PmU”L2(O,T;L2'i/(d*2>(Q)) < um — Pl p20,1v) < 0,

IVum — VPprv|r201:2(0) = |[tm — Puv|20,1mv) < 0,

and that the right-hand side of (58) vanishes. This implies

T
f (AL (Pr) i — P = (A (v),u = v)) e T ke P 47 45— .
0

Therefore,
T s
— J G R(u | v)e~ o dr gg
0

+ L (W (u | v) + (A (v),u — v))e o X7 g
< R(u(0) [ v(0))-

holds for all ¢ € C [0,7]. Lemma 5.9.2 then implies the relative-energy inequality. O
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5 INSTATIONARY NAVIER-STOKES PROBLEM

Homework 12.1: Assume that in the definition of energy-variational solution for the NAVIER-
STOKES equations, equality holds for a function u. Show that u is a weak solution to the
NAVIER-STOKES equations.
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6 ERICKSEN-LESLIE EQUATIONS FOR THE DESCRIPTION OF NEMATIC
LIQUID CRYSTALS

ERICKSEN-LESLIE equations for the description

of nematic liquid crystals

6.1 | Motivation and Applications

This equation is even more complicated than the NAVIER-STOKES equation due to the
presence of an additional variable modelling the anisotropy (dt.: Richtungsabhédngigkeit) in

the fluid, giving rise to different applications:

TODO (w/ images)

6.2

Modelling

This is more or less a static problem: if you only want to consider how the molecules are
distributed without any movement in them (identifying the static states), then one ends up
with the OSEEN-FRANK energy, modelling the behaviour of the liquid crystals.

A solution to the stationary problem solves the minimisation problem for the OsEEN-FRANK
energy

For(d,Vd) =k (V-d)*> + ka|ld x (V x d)|* + k3(d - (V x d))? (59)

for all d € H'(Q) ~ L*(Q). The parameters kq, ks and k3 depend on the material. (Gener-

ally, k1 and ks are of similar order, while k5 is different.) This also allows for singularities.

- "
1 22:?5%

(a) (b) ()

Fig. 7: The ki-term in (59) corresponds to (a), the splay of the material. The ko-term
(shown in (b)) is the twist term and is modelled by the curl of the director, where the
direction is orthogonal to the molecules, that is, (V x d) L d. In (c¢) we can see the bending
term (the ks-term), where (V x d) || d.

The associated (static) minimisation problem is

min

J For(d,Vd)dx with |d(x)| =1 a.e. in Q and d = d; on 9.
deH'(Q) Jo

The norm restriction |d(x)| = 1 encodes that we are only interested in the direction and not
the magnitude of d. The velocity field is, as beforehand, modelling the velocity of the fluid
in some container and d models the direction of the dispersed molecules.

We have the following symmetry of the OSEEN-FRANK enery: if we change the signs of both

inputs, the value remains the same.

For k = k1 = ko = k3, the OSEEN-FRANK energy simplifies to

For(d,Vd) = k|Vd|*
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(One could also write
F‘op(a7 B) =

k1 (tr(B))? + kz|(B —
B)al® + 52 ([a]x -
(B—BT)?)
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(see Exercises). This is the simplification we are going to consider from now on. One can still,

with some more work, show the existence of energy-variational solutions when k; # ko # k3.

How is this system going to evolve? We don’t only have to minimise the energy, but also
the dissipation. Given a dissipation potential D(v, Vv, did, d) (which describes how energy
is dissipated in this mechanism) and a free energy F(d, Vd, v) the system of equations can

be formally derived by

0w+ (v-V)v V-(
—_—

material time derivative

0D(v, Vv, did,d) B I) N 0D(v, Vv, did,d)

(Vo) ov =/

dissipative forces
0D(v.Vv.od.d) | OF(d,Vd,v) 0 F(d,Vd,v)
0(0:d) od o(Vd)

+lod =0.  (60)
)

total derivative of the energy
The LAGRANGIAN multipliers p and Ay are due to the algebraic restrictions V- v = 0 and
|d| = 1, respectively. By choosing (the simplest energy we can think about)
oo 1 2
F(d,Vd,v) = §|'u| + §|Vd| (61)
and )
D(v, Vv, 0id, d) == v |(V0)sym|” + 5o+ (v V)d|? (62)

we find formally by the proposed scheme the simplified version of the ERICKSEN-LESLIE

equations

ov+(v-Vo+Vp—vAv+V-(Vd'Vd)=f inQx(0,7)
Gd+(v-V)d—(I—-d®d)Ad =0 in Q x (0,7)
V-v=0, |d=1 in Qx (0,7).

Proof. We have
0D(v,Vv,0d, d) (62)

V- o ="V - 2u(V0)gym = VAv,
0F(d,Vd,v) (61)
—— = = —V-Vd=—-Ad,
o(Vd) vV ’
0 ’D(’U.ﬂvﬁv_ ord., d) (62) od+ (v-V)d.
0(0d)
Hence (as by (61), %—5 = 0) the second equation (60) becomes

ord + (v-V)d — Ad + \ad = 0.
Multiplying by d yields
%(at + (v-V)|d]? = Ad - d + \y|d|* = 0.
By choosing Ay := Ad - d, the norm restriction holds. We end up with

od+ (v-V)d— (I —d®d)Ad = 0. (63)

As Ad is the derivative of the energy, (I — d® d) acts as a projection onto the sphere.
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As |d| =1, V|d| = 0 and thus
0D(v, Vv, did,d)

ov

CVd(d+ (v-v)d) Y vd (I - dod)ad

=Vd'Ad — % V|d|* (d - Ad)
=0

1
=V-(Vd'Vd) - 5V|Vd\2
d
= ) 0.,d;02 d;
i,5,k=1

d
- 2 (02 00,80, d;) — 02, d;0d;

i,5,k=1 .
1
=V-(Vd'Vd) - 5V|vcz\2.
We redefine p := p — 3|Vd|?.

6.3 | Preliminaries

In the NAVIER-STOKES equation we had the condition that v vanished on the boundary. As
we want to have inhomogeneous boundary conditions, we add a constant (in time) function
which fulfills the boundary condition. We didn’t do this for the NAVIER-STOKES equation,

but here we cannot easily obtain homogeneous DIRICHLET boundary conditions by, say, a
linear transformation.

Lemma 6.3.1 (Extension operator)
There exists a lincar continuous operator E: HY/2(0Q) — H?(Q), where Q is of class C11.
This operator is the right-inverse of the trace operator, that is, for all right hand sides

g € H*?(0Q), we have Eg = g on 0 in the sense of the trace operator. There exists a
constant ¢ > 0 such that

|Eglaz0) < clglmsroa) Vg€ HY?(09).

We can write down this operator E via the FOURIER transform on the boundary as well as
on . Another equivalent description is the solution h of

—Ah =0, in Q,
h=g, on 0.

Assume that d € C'(Q;R?). Then (Vd); ; = O, d; for i,j € {1,...,3} and thus Vd e R3*3,

DEFINITION 6.3.2 (SKEW-SYMMETRIC PART, CURL)

The skew-symmetric part of a vector field is skew-symmetric
art
. . 0 Opyd1 — Ogydy  Ogydy — Oy, do e
(Vd)skew = 5(vol —(Va)") = 3 | Ozd2 = Oasn 0 Ox3dy — Oy, do
Oy do — Ogydi  Og,do — Opyda 0

and its curl is curl
6I2d3 - azng
V x d = 6w3d1 — amldg

axl d2 - axg dl

)
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where the i-th component of d is denoted by d;.

We have
2‘(Vd)skeW|2 = |V x d‘27
where [A]> = A: Aand A: B:=3",_| A; ;B is the and

|Vd? = |V x d|? + tr(Vd?)
or, differently put, (for lemma 6.3.4)
IVd? = (V- d)? + |V x df? + tx(Vd?) — (V- d)>.

DEFINITION 6.3.3 (CROSS-PRODUCT-MATRIX)
We define the mapping

0 —hs  ho
[]x: R® — R**3, h— | hs 0 —h
—hy M 0

Let I be the identity matrix. For all a,b e R® we have

[a],b=axb and [a]'[b]x = (a-b)I -b®a. (64)
Additionally, for all a,b e C'(; R?) we have

V- lalx ==V xa, [a]x:Vb=][a]lx: (Vb)xew =a-(V xb), [V xalx=2(Va)skew-

Lemma 6.3.4 (Exercise 12.1)
We have

argminf |Vd|*dz = argminf (V-d)?+|dxV xd?+(d-V xd)?dz
Q Q

for all d € HY(Q) with |d| = 1 almost everywhere in Q and d = dy € C(0Q) with |d;| = 1
on 0.

Proof. We have
dy O2d3 — O3da
(d-(Vxd))? = dy |- | 03dy — O1d3 =
ds 0O1dy — Oady
and
|d-(V xd)|]? = ...

Adding both quantities and simplifying, we obtain
(d-(Vxd)?+|d-(Vxd) =|d?V-d.
We note further, that we can write the term

tr(Vd?) — (V-d)* =V - (Vdd — V - dd)
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can be written as . By the , we obtain
J- V~(Vdd—V-dd)dd=J. (Vdd—V-dd)~nds=f (Vdidy — V- didy) - nds,
Q o0 o0

which is therefore independent of the particular choice for d. Therefore,
argminf |Vd|* dz = argminf (V-d)? + |V xd|’ + tr(Vd®) — (V- d)* dz
Q Q
= argminf (V-d)? + (d-(V xd)’+|dxV xd?+tr(Vd®) — (V-d)’dx
Q

= argminf (V . d)2 + (d (V X d))2dw +f (Vd1d1 -V d1d1) -nds
Q oQ

- argminfn(v L)+ (d- (V x d))* da.

for all d € H'(Q) with |d| = 1 almost everywhere in Q and d = d; € C'(dQ) with |d;| = 1
almost everywhere on 0€). ]

Lemma 6.3.5 (Exercise 12.2)
Prove that
dx Ad=V-([d«xVd)

for all d € C*(9Q).

Proof. For all d € C*(Q) we have

V- ([de]Vd) = V - (d x 01d dxopd dx a3d)
=0 (d X ((91d)) + 09 (d X (62d)) + 03 (d X (83d))
= (61d> X (61d) +d x ((ﬁd) + (agd X 62d)
+ (d x 03d) + (03d) x (03d3) + d x (02d)
=d x (02d + 03d + 03d) = d x (Ad),

where we have used that a x a = 0, the product rule 0;(a x b) = (d;a) x b+ a x (0;b) and
that the cross product has the distributive property. O

We consider the following simplified ERICKSEN-LESLIE system

ov+(v-Vo+Vp—vAv+V-(Vd'Vd)=f inQx(0,7) (65)
od+ (v-V)d— (I —-d®d)Ad =0 in Qx (0,7) (66)
V-v=0, |d=1 in Qx (0,7) (67)
v=0, d=d; ondx(0,7T) (68)
v(0) =vp, d(0)=dp inQ (69)
for which we want to prove some existence result.
Energy principle of the model.

Formally, testing (multiplying, integrating over 2 and applying integration by parts to the

last term) (65) by v, we observe (as v is velocity-free, the Vp-term vanishes)

1o
20t

1
lv|? + §J ('U—V|'u\2)dw+J V|Vv|2da:—J Vd'Vd: Vvdx = {f,v).
) Q Q

=0
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Formally, testing (66) by —Ad, we obtain (using integration by parts on the first term)

1
5%HWH%2 - J (v-V)dAd — (I —d®d) Ad - Addz = 0.
Q ~—

= [l [d].

An integration-by-parts provides (v vanishes on the boundary, so there is no boundary term)
—f (v-V)dAddz = J V((v-V)d): Vddx
Q Q

© J (v-V)Vd:Vd +Vd'Vd : Vvdx = J vd'Vd : Vv dz,
Q Q

~
={, 3(v'V)|Vd|? de=0

where (%) is the product rule. Cancelling everything and integrating in time provides the

formal energy estimate

t
%J lv(®)]? + |Vd(t)|? dz +J f V|Vo|? + |d x Ad|* dz ds
Q 0 JQ

dissipative parts

1 t
= EJ- lvo|? + |Vdo|2dx+J {f,v)ds.
Q 0

6.4 | Definitions and energy-variational formulation

We define

X == (L(0,T; H) ~ L*(0,T; V), L*(0, T; H'())).

DEFINITION 6.4.1 (RELATIVE ENERGY, DISSIPATION, HAMILTONIAN, FORM)

The relative energy is

R(v,d|9,d) = 5 (v —8l32(q) + IVd— Vdl3z(q ) -

N =

The relative dissipation is
Wp(v,d | 5,d) = v|Vv— V77||2Lz(9) +[d x Ad —d x AdHiQ(Q)
+(d x Ad —d x Ad, (d — d) x Ad)
— (V(d x Ad); (d — d) x (Vd — Vd)),

the relative HAMILTONIAN is

Wi (v,d | #,d) = (v — b, (V)aym(v — ) + ( <Vd - vd)T (Vd - vd) : (Vﬁ)sym)

)

= (vcf (va-vd) ,w-w) + (((v—f))~ ;w-w)

where (-, ) denotes the L? inner product and the relative form is

W(Uvd | ﬁv d) = WD(”? d | ﬁad) + WH('U,d | ﬁv d) + K(ﬁa d)R(Ua d | 'E,d)7 (70)
where the regularity measure can be chosen as

K(®,d) = C|Ad|%: ) + Clld x Ad|wis() + 2|(VD)sym| 1= (@)
o

1 -
ZIvd|? .. =
+VH Iz @ T
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DEFINITION 6.4.2 (SOLUTION OPERATOR)

The solution operator is

7 7 v+ (0-V)o —vAD (Vd'Vd) —

The relative energy inequality can be expressed via

R(v,d|v,d)
t - = v—1 t -
+ W(v,d|v,d) +( A(v,d), - ex JKﬁ,d dr | ds
[ (wewaisdsCaa. (570 ) ) )eo ([ ko)
t
< R(vo,do | 5(0),d{0)) exp (f K(®,d) ds> . (71)
0
DEFINITION 6.4.3 (ENERGY-VARIATIONAL SOLUTION)
A tuplet of functions (v, d) € X is an energy-variational solution to the ERICKSEN-LESLIE energy-variational
system, if the additional regularity assumptions solution

(dx Ad) € L*(0,T;L*(2))  and  d,d e L*(0,T; L3 (Q))

hold as well as |d| = 1 almost everywhere in 2 x (0,7) and it fulfills the relative energy
inequality (71) for all (9,d) € C'([0,T];Y) for almost all ¢ € (0,T) and for all K: Y — R,
such that the form W from (70) is convex and lower semicontinuous in (v, d,d x Ad) and

continuous in (9, d). Additionally, the director equation holds: director equation

dxod+dx(v-V)d+dxAd=0 almost everywhere in Q x (0,7") (72)

with d = dy on 02 and d(0) = dy in 2 both fulfilled in the sense of the respective trace

operator.

Lemma 6.4.4 (Norm restriction)
For a function d € L*(0,T; H*(Q)) and v e X such that

od+(v-V)d—dxa=0 (73)
for some a € L*(Q) with d = dy on dQ and d(0) = dy in Q and |dy| = 1, we have Note that (d x @) - d =
a' [d]%,d = 0.
|d(x,t)| =1 almost everywhere in Q x (0,T). =0

Proof. Multiplying (73) by sgn(|d|? — 1)d and integrating over 2, we observe
atf ||d|2f1|dw+f(v~V)||d|2f1|dm=0, (74)
Q Q

where we used that d x d = 0 in the last term of (73). Since v is a solenoidal vector field
(V-v = 0), the second term on the left-hand side of the previous equality (74) vanishes.

=~
{

Integrating in (74) in time, we observe

fy|d(t)|2—1|dm:f dof? — 1] d,
Q Q

which proves the assertion. ]
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THEOREM 6.4.1: EXISTENCE OF ENERGY-VARIATIONAL SOLUTION TO THE

ERICKSEN-LESLIE EQUATIONS

Let Q@ < R® be bounded domain of class C"*' and let vy € H and dy € H'(Q:S?)
with tr(dg) = d1® on 99 for dy € H2(09)). Then there exists an energy-variational

solution.

%r(do) = di is a compatibility condition in order to fulfil the boundary conditions: this would
be the same for linear PDE (third chapter) in order to deduce HZ?-regularity. We will need this
additional regularity on the approximate level.

\. J

Remark. 6.4.5 The energy-variational solution for the ERICKSEN-LESLIE model fulfills the

same standard assumptions on a solvability concept as in the NAVIER-STOKES case:
e existence of generalised solutions,
e weak-strong uniqueness of solutions,
e additional regularity implies uniqueness,
e convergence to stationary states.

Assume that (v,d) solves the ERICKSEN-LESLIE system of equations. Formally, we may
derive the relative energy inequality. We may add (65) tested by v — © and (66) by —(Ad —
AJ) and perform integration by parts in the Av-term, the V - (Vd' Vd)-term and the 0;d-
term (the ((v - V)v,v)-term vanishes because V- v =0 77?):

(v, v — ) — ((v-V)v,8) + v(Vo,Vv — Vo) — (Vd'Vd, Vv - Vd) —{fv—9)

+ (Voud, Vd — Vd) + (v - V)d, —Ad + Ad) + =0,
(75)

where (-,-) denotes the L? scalar product and the red terms cancel by integration by parts
(as beforehand).

<A(13, d), (_Ad_+ Ad) > - ((atf;, v—9)+ ((0-V)d,0)

+ v(Vo, -V + Vo) — (Vd'Vd, Vv — Vo)

- < f7 vV — 'E>

+(Véid,Vd — Vd) — (% - V)d, Ad — Ad)

+ =0. (76)
(We have d x (d x Ad) = —(I —d®d)Ad if |d| = 1.) Again, the red terms vanish, as above,
by integration by parts. Adding (75) and (76), the f-terms cancel and we find

1d

0=5 % (|v o+ | Vd— vdniz) + Vo — V§|2e

—(v-V)v,8) — ((©-V)0,v) + (Vd' Vd, Vo) + ((¢ - V)d, Ad)(Vd'Vd, V3) + (v - V)d, Ad) .

convective terms

We now only consider

2(d x Ad,d x Ad) — (d x Ad,d x Ad) — (d x Ad,d x Ad) — (v-V)v, D)
—((v-V)o,v) + (Vd'Vd, Vo) — (v - V)d,Ad) + (Vd'Vd, VD) — (v - V)d, Ad).
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We have
2(d x Ad,d x Ad) — (d x Ad,d x Ad) — (d x Ad,d x Ad)
= (dx Ad, (d—d) x Ad) + ((d — d) x Ad,d x Ad)
= (dx Ad—d x Ad,(d—d) x Ad) + ((d —d) x A(d —d),d x Ad)

V-([d—d]« V(d—d))

—

*

= (dx Ad—d x Ad, (d — d) x Ad) — ([d — d]«V(d — d),V(d x Ad)),

a2

where in (%) we use integration by parts and the boundary term vanishes, because both d
and d have to fulfil the same DIRICHLET boundary conditions. On the other hand,

—((v-V)v,0) = ((v-V)o,v) = ((v-V)o,v—3) — ((0-V)0,v— D)

Lastly, by integration in the last terms

(Vd'Vd, Vo) + (Vd'Vd,Vv) + (& V)d,Ad) + ((v-V)d, Ad)

——((@-v)vd,va) - (vs,vd va)
= (Vd—Vd)'Vd,Vd)((Vd" —Vvd")Vd,Vv) — ((#-V)Vd,Vd) — (v V)Vd, Vd)
= ((Vd - Vd)" (Vd — Vd), V%) + ((Vd" — Vd")Vd), Vv — V)

+ ((v ~ ) - v)vd,w-vd).

This should formally be the terms that arise in the definition of ¥V and Wp.

Proof. (of Theorem 6.4.1) @ We use a semi-discretisation in space as an approximate
system. Let (W,) € V be a sequence of space that form an GALERKIN approximation
of the space V. We denote the L?(£2)-orthogonal projection onto W,, by P,. For the
approximation of the direction equation (72) we use an L?(Q2) orthonormal GALERKIN
basis consisting of Y1, Y2, ... of the differential operator corresponding
to the boundary value problem

—Az=h inQ,

(77)
z=0 on 0f).

The above problem is a system that possesses a unique
weak solution z € H}(Q) for any h € H~1(Q). Its solution operator is thus a compact
selfadjoint operator in L?. Hence there exists an orthogonal basis of eigenfunctions
Y1,Y2, ... in L?(Q), which are in L?(Q). A regularity result provides
regularity of the eigenfunctions such that Y,, := span{y1,...,yn} = H?(Q) n H1 ().
The associated orthogonal L?(Q)-projection is denoted by R,: L?(Q) — Y, d —
S (d,yi)L2y;. So for each eigenvector y; there is an eigenvalue );. Then by partial
integration (as the eigenfunctions fulfil the homogeneous boundary conditions) in the

first step and third step and inserting the definition of R,, in the second step we have

(VR,d,Vh) = —(AR,d,h) Z d,y:)(Niyi, h)
= > 2(d, \iwi) (i h) = >.(Vd, Vy,)(yi, h) = (Vd, VR,h)
i=1 i=1
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for h € H=1(Q2). This shows that R, is also an orthogonal projection in the space H'.

Note that the projection R, is H'(f)-stable, that is, there exists a constant ¢ > 0
(which can explicitly calculated by inserting h = R,d in the above term and using
PLANCHAREL’s inequality) such that | R,y m1 (o) < c|y|m1 (o) for all y € H(Q).

@ Let n € N. We cousider the ansatz (recall that —AEd; = 0 in Q and Edy = d; on

9]

n n .

2 thwi,  dp=Edi+ Y di(t)z,

i=1 i=1
where (v?,d!) are absolutely continuous functions on (0,T) for all i € {1,...,n}. The
approximate system is

(Grvn + (v - V)Vu,w) + (vVo, — Vd, Vd,, Vw) = f,w) Ywe W,, (78)
(atdn + ('Un : v)dn - (|dn‘21 - dn ® dn)Ad’my) = O Vy € Yn (79)
such that v,, = P,vg and d,,(0) = Edy + R,(dy — Ed;).

A classical existence theorem provides, for every n € N, the existence of a maximally
extended solution to the above approximate problem on an interval [0,T;,) in the sense
of CARATHEODORY.

) and =z = —Ad, (79), which are

(3) A priori estimates. Choosing w — n (78
9) and 1ntegrat1ng by parts in the 0;-

suitable test functions, by adding (78) and (

terms we find

1d
535 (Ioalfa) + Vealae)) + vIVonlEaa) + ldn x Adal3ao)
+ ((vnV)v,v,) —(Vd,Vd,, Vv,) —((vy - V)dn, Ady,)
| S —
——4 5o Vovalon* deo (VoA V)4 (0n - V)V]dal?)
[ S —
=0
=0
= <.fa Un > .
Hence the above equation reduces to
2 S (on gy + I3y + V0l + i x Adala(q) = CFrv)
2 dt nliL2(Q) nllL2(Q) nliL2(Q) n nliLz2(Q) — \J>Tn /-

Integrating provides

1
5 (o320 + IVenlao))

If we assume that f € L?(0,7; H=Y(Q)) ® L*(0,T; L?(£2), then
<.f’vn> = <f1,’vn>+<.f2;vn>

C v
< [ FilFz o)+ Joal?) + 5||f2\@{—1(9) + §\|an\|%2(m,

t t
+f0 VIV0n2 0 + [ % Adu 2y ds = (F0m ).
0

where we used YOUNG’s inequality and the constant C' > 0 stems from the POINCARE
embedding.

We find that by GRONWALL
1
(lonliZz0) + IV dal32ay ) (8 +JO V[ Von 32 + 2ldn x Adalfa g ds
t
< (108 ey + IV T3y ) oo (| 21l as)

C t
+ Sy o ([ 28l ).
0
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Hence

valle o1y + |vnll2o,0v) + ldnl Lo 0,701 () + ldn X Ady| L2 x(0,7)) < C-

(@) Estimate for the time derivative. Let y € H} (), then test (79) by R,y € Y, and

integrate in time to obtain

" t
f |(0¢dy, Rny)| ds <J Y| V), Ruy)| + |([dn] [dn] < Adyy, Ryy)| ds
. 0 —

=—d, x(dp,xAdy)

(H)
< onllz2 0,705 l@n Lo 0,781 @) 1 BnY | 2 (0,7:23 ()
+ | @nll L 0,18 @) lldn X Ady|L2@x 0.1) | Bryl L2 0,7:23(2))

where in (H) we use HOLDER’s inequality with "$+2+3 = 1" in time and §+5+35 = 1
in space and we use that in the three-dimensional space €2, we have H'(Q) — L5(Q).

We have
IRny 20,7503 0)) < ClRuyY| 200,781 ) < Clylr20,m:81 ),

where the last inequality is due to the H'(§)-stability of R,,. Hence by the definition
of the dual norm we have
HatdnHLz(O,T;H*l(Q)) = sup | {0,y )]

yeL?(0,T;Hy (Q)):
=1

llL2 0,71 2

<C <|Un||L2(o,T;L6(Q)) Il oo (0,721 (2))

+ |ldn| L0108 [ dn x Adn||L2(Qx(o,T))> <C.

@ Converging subsequences. We have

v, 2 v  in L®(0,T; H) n L*(0,T; V),
d, =d inL®0,T; H(Q)),
d, x Ad, —» ¢  in L*(Q x (0,T)),
O¢d,, — 0rd in L?(0,T; H1(Q)).

By the Lemma of AuBin-Lions, the compact embedding

L*(0,T; H* () n Wh2(0,T; H1(Q)) <% L2(0,T; L*(Q))
holds. By some interpolation inequality, we find

L*(0,T; HY(Q)) n WH2(0,T; H~1(Q)) <5 LP(0,T; L9())
with p < o0 and ¢ <6 in d = 3.

@ Identification of the limit of (d,, x Ad,)nen. Recall d,, x Ad,, =V - ([d,]xVd,).
Now observe that by HOLDER’s inequality we have

l@n]xVdul L= (0,r;03 ) < |dnlzeo,r;28 ) [VanllL20,7;02(0))
which implies that

[du]xVd, — [d]xVd  in LP(0,T; L"())
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for p < oo and r < 3. Thus (as V is linear)
V- ([dn]xVd,) — V- ([d]xVd)  in LP(0,T;W""(Q))
for p < oo and r < % Since a weak limit is unique, we have
d, x Ad, =V -([d,]xVd,) = V- ([d]xVd) in L2(Q x (0,7T)).

Hence
d, x Ad,, —~dxAd  in L*(Qx (0,T)).

@ Approximate relative energy inequality Define

forp>d=3.

Testing (78) by (v, — P,®) and (79) by y = —A(d,, — R,d) yields
(Orvp, v, — Pp®) — ((vn . V)vn,Pnf)) + v(Vvy,, Vv, — VP,?)
—(Vd!Vd,, Yo, — VP,%) —{ f,v, — P,9)+(8,Vd,,Vd, — VR,d)
— (vn - V)d,, Ady, — AR,d) + (d,, x Ady,dy, x (Ad, — AR,d)) =0, (80)

where the two terms cancel as beforehand by integration by parts.

Additionally, testing A(P,v, R,d) by (P,® — v,, Ad,, — AR, d) yields

(0P, Pa® — v,) + (P - V) Po, Pr® — v,) + v(V P, VP, o — Vu,)
— (VR,d"VRd, NP5 — Vv,) — ( f, V0 — v, ) +(6,VR.d, VR,d — Vd,,)
— ((Py® - V)R, d, ARyd — Ad,,) + (Rnd x AR, d, R,d x A(R,d —d,)) =0. (81)

Adding (80) and (81) and integrating in time yields (the f-terms cancel each other
out)

557 (low = Pulia + |V, — VR.d]32)
t

+J V|V, — VP22 + |dn x Ady, — Rnd x AR, d)32 ds
0

t
+J 2(dn x Adp, Rnd x AR,d) — (dn x Ady,dn X Rnd) — (Rnd x Ady, Rnd x AR, d)ds
0

t
- f ((Vn - V)vn, Pa®) + (P - V) Pu®,v5) — (Vd,,Vdy, VP®) — (VRod' VR, d, Vv,)ds
0

t
+ f ((vn - V)dn, APnd) + ((Pa® - V) Prd, Ady,) ds = 0.
0

On the discrete level it holds that (as the last three lines can be rewritten similarly to

the calculation on the continuous level)

d - ~ - ~ - ~ v, — P,v
aR(’Undn | P,v, R,d) + W(v,d,, | P,v, R,d) + <A(an, R.d), <A(Rnd— dn)>>

+ K(Poo, Ryd)R(vndy, | Pat, Ryd) = 0.
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Since the GALERKIN spaces (W, Y,))nen are also limit-dense in Y, we infer
R,d —d in Y and almost everywhere in (0,7).

This implies

AR,d — Ad in L2(0,T; L3(Q
[R.d]«VR,d — [d],Vd in L*0,T;W?3
(VPu0)sym — (VO)sym  in L1(0,T3 L%(9)),

VR,d — Vd in L?(0,T; L*(Q)),
R.d—d in L2(0,T; W23(Q)).

);

Q)), due to the L*-bound
?7).

)
(

We see that the projection R, is constructed in such a way that we have more regular

convergences.

Applying GRONWALL’s Lemma to (71), we find by the Lemma for weak inequalities
that

T t
—f " R(vp, dy | Py, Rpdy,) exp (—J K(P,, R,d) ds) dt
0 0

T
+ J ) <W(vn, d,, | Py, Rnd,)
0

+ <A(Pnf;, R,®), (J;;j?gﬂ)) >> exp (— f: K(Rn®, Pod) ds) dt

< ®(0)R(P,wo, Rpdy | P,9(0), R,d(0)).
for all ® € C([0,T]).
Indeed,
Wp(v,d | 9,d) + Wy (v,d | 9,d) = v|Vo — V|72 + |d x Ad — d x Ad|3 g,
+ (d x Ad — d x Ad, (d — d) x Ad)
— (V(d x Ad); (d — d) x (Vd — Vd))
(v =9, (VO)sym(v — 0))

AT

+ ( (Va-vd) (va-vd); (V'f))sym>
- (VdT (Vd - vd) Vo — w)
+ (((v ~%)-V)Vd; Vd — vd) — (%)

and thus (-, -) denotes the L?
scalar product for scalar

(%) = V| Vo — Vs + |d x Ad — d x Ad]Zz ) — %lld x Ad —d x Ad|2. g Famctioms while (3 i
for matrix-valued
- %HAJH%%Q) |d—d|7e0) — IV(d x Ad)| 130y |ld = d] o) | Vd — Vd| o)~ fnctions
~[(V&)syml () (0 = 812y + 1Vd = Vdl32q) ) = 51V0 = Vol3a(q
- ooVl Vd ~ Va0 — 550~ tlReqa)
+ S22 )|V~ Vg
> K(5,d)R(v,d | %, d).
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We observe that in the terms
Vv, — vd
d, x Ad,, —d x Ad
U= vd, —Vvd
d,—d
v, — V.

Together, we deduce weakly lower semi-continuity

T t
— lim inff 'R (vn,dy, | P, Ryd) exp <f K(P,®, R,d) ds> dt
0 0

n—0o0

T ¢
+ lim inff W (v, d, | P,U, R,d) exp <J K(P,?, R,d) ds> dt
0

n—ao0 0

T t
> —J 'R (v,d | ®,d)exp (—j K(v,d) ds) dt
0 0
T B t B
+J W (v, d | &, d) exp (J K(5,d) ds) .
0 0

From P,vq — vy in H and R,dy — dy in H() we find

R(P,vo, Rudo | P,9(0), R,d(0)) — R(vo,do | 9(0),d(0)).
Finally, we have to prove that the vanishes, i.e.

| A(P,®, Ryd) — A(®,d)| 1207 #)00 (0,7:11 (9) —— 0.
For the time derivatives, we find

(0t Pp, vy, — P0) = (P00, vy, — Py0) = (040, 9, — P,0)
and

(0,Rnd, AR, d — Ad,,) = (R,0,d, AR,d — Ad,,) = (6,d, AR, d — Ad,,)

since P, and R,, are and v,, — P,v € W,, as well as ARnd —
Ad,, €Y, are elements of the respective approximate GALERKIN space. Thus, we may

estimate the consistency error as follows

| AP, Rud) — A(®, d)| 2(0.1v )01 (0,738 ()

< (Prt @ Ppv) — (0 — 9)| L2(0x(0,1)) + VIV Pa® — V0| 12(ax(0,1))
+|VR,d"VR,d — Vd" — Vd' VR,d|20x(0,1))
+[(Pa® - V)Ryd — (& - V)d| 11 (0,71 ()
+ |Rnd x (Rpd x Ad) — d x (d x Ad)| 11 (0.7.11 () — 0-

The strong convergences in (23) allow to pass to the limit on the right hand side, which
vanishes. This together with the weak converges (21a) and (21b) and (24), we infer

J()T<I><A(Pn1},Rn (AR ;PZdn>>eXp (J K(P,®, R,d) ds> dt
ﬁLTcp<A(f;, (AZ_Ad>>exp (J K(& )

Via the lemma we check the 7?7 in time 77?7 It remains to consider the

(Ordy, + (vn - V)dy — (|dn|* — dr, ®dy)Ady,y) =0 Vyey,,
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which is equivalent to

(Odn,y ) —(dn ® vy, Vy) + (d, x Ady,dy, xy) =0 YVyeY,

But n — oo such that it holds for all m € N.

(Oid,y) — (d®d,Vy) + (dx Ad,d xy) =0  Vye L*0,T;L*(Q)).
Therefore the equation holds even pointwise

od+ (v-V)d+dx (dxAd) =0 almost everywhere in Q x (0,7)

for dy with |dy| = 1 almost everywhere in Q. It follows that |d(x,t)] = 1 almost
everywhere in Q x (0,T). I
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Exercise 13.1: Let v be an energy-variational solution to the ERICKSEN-LESLIE equations.
Show that v, := lim;_,o v(t) € R. To do so, show that there exists a sequence t,, — 00 such
that

[Vu(t,)llz + [d(t,) x Ad(tp)|2 — 0  ast, — .
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