BOCHNER integral of a simple function

LEBESGUE-measurability of $\|u\|$

Differential Equations III

Definition, Theorem w/o proof \& Corollary w/ PROOF

Essentially separable valued and Pettis' Theorem

Differential Equations III

Remark

Well-definedness of the Bochner integral

Differential Equations III

Lemma w/ Proof

Bochner measurability

Definition \& Remark

Weak Bochner measurability

Differential Equations III

Definition

Bochner integral

Theorem w/o Proof

Properties of the Bochner integral

Theorem w/o Proof

A function $u:[0, T] \rightarrow X$ is Bochner measurable (or strongly measurable) if there exists a sequence of simple functions $\left(u_{n}:[0, T] \rightarrow X\right)_{n \in \mathbb{N}}$ such that for almost all $t \in(0, T)$

$$
\lim _{n \rightarrow \infty}\left\|u_{n}(t)-u(t)\right\|=0
$$

A function $u:[0, T] \rightarrow X$ is weakly Bochner measurable if for all $f \in X^{*}$ the map $t \mapsto\langle f, u(t)\rangle$ is Lebesgue measurable. Since strong convergence implies weak convergence, BOCHNER measurability implies weak Bochner measurability.

A function $u:[0, T] \rightarrow X$ is a simple function if there exist finitely many pairwise disjoint Lebesgue measurable sets $\left(E_{i} \subset[0, T]\right)_{i=1}^{m}$ such that u takes constant values $u_{i} \in X$ on each of these sets, that is $u=\sum_{i=1}^{m} u_{i} \mathbb{1}_{E_{i}}$. The (Bochner) integral of u is

$$
\int_{0}^{T} u(t) \mathrm{d} t:=\sum_{i=1}^{m} u_{i}\left|E_{i}\right| \in X .
$$

Let $u:[0, T] \rightarrow X$ be Bochner measurable. Then $\|u\|$ is LeBESGUE measurable on $[0, T]$.
As u is Bochiver measurable, there exists a sequence of simple functions $\left(u_{n}:[0, T] \rightarrow X\right)_{n \in \mathbb{N}}$ such that $u_{n}(t) \rightarrow u(t)$ holds for almost all $t \in[0, T]$. For those $t \in[0, T]$ we thus have $\mid\left\|u_{n}(t)\right\|-\|u(t)\|\|\leqslant\| u_{n}(t)-u(t) \| \xrightarrow{n \rightarrow \infty} 0$. The functions $\left(\left\|u_{n}\right\|:[0, T] \rightarrow \mathbb{R}\right)_{n \in \mathbb{N}}$ are simple functions (and hence measurable), because the functions $u_{n}=\sum_{i=1}^{m_{n}} u_{i}^{(n)} \mathbb{1}_{E_{i}^{(n)}}$ are simple:

$$
\left\|u_{n}(t)\right\|=\left\|\sum_{i=1}^{m_{n}} u_{i}^{(n)} \mathbb{1}_{E_{i}^{(n)}}(t)\right\| \stackrel{(\star)}{=} \sum_{i=1}^{m_{n}}\left\|u_{i}^{(n)}\right\| \mathbb{1}_{E_{i}^{(n)}}(t)
$$

where in (\star) we use that the $\left(E_{i}^{(n)}\right)_{i=1}^{m_{n}}$ are disjoint. Hence $\|u\|$ is measurable as the limit of the measurable functions $\left\|u_{n}\right\|$.

A function $u:[0, T] \rightarrow X$ is (essentially) separable valued if it (up to a null set $N \subset[0, T]$) only takes values in a separable subset of X.

A function $u:[0, T] \rightarrow X$ is Bochner measurable if and only if u is weakly Bochner measurable and essentially separable valued.

Corollary: If X is separable, weak and strong Bochner measurability coincide.

Subsets of separable spaces are separable.

The limit is well defined as each u_{n} and u are Bochner measurable and hence the function $\left\|u_{n}-u\right\|$ is Lebesgue measurable by a Lemma.
For $n, m \geqslant M_{\varepsilon}$ we have, as $u_{n}-u_{m}$ is again a simple function and the triangle equality is an equality for simple functions, $\left\|\int_{0}^{T} u_{n}(t) \mathrm{d} t-\int_{0}^{T} u_{m}(t) \mathrm{d} t\right\|_{X}=\int_{0}^{T}\left\|u_{n}(t)-u_{m}(t)\right\| \mathrm{d} t \stackrel{\Delta \neq}{\leqslant} \int_{0}^{T} \| u_{n}(t)-$ $u(t)\|+\| u(t)-u_{m}(t) \| \mathrm{d} t \leqslant 2 \varepsilon$. Hence $\left(\int_{0}^{T} u_{n}(t) \mathrm{d} t\right)_{n \in \mathbb{N}}$ is a CaUchy sequence in X and thus converges for $n \rightarrow \infty$ as X is a BANACH space. The integral is independent of the approximating sequence of simple functions, as $\int_{0}^{T}\left\|u_{n}(t)-u(t)\right\| \mathrm{d} t \rightarrow 0$ holds for all such sequences and thus the procedure in the previous remark can be done with any such sequence.

Let $u: \mathbb{R} \rightarrow X$ be B-integrable, $\left.u\right|_{\mathbb{R} \backslash[0, T]} \equiv 0$ Then a.e. in $[0, T] 1$. $\lim _{h \rightarrow 0} \frac{1}{h} \int_{t}^{t+h} u(s) \mathrm{d} s=u(t)$, and $2 . \lim _{h \rightarrow 0} \frac{1}{h} \int_{t}^{t+h}\|u(s)-u(t)\| \mathrm{d} s=0$,

[^0]Bochner space $L^{p}((0, T) ; X)$

Differential Equations III

Definition \& Remark

Weak time derivative

Differential Equations III

Definition, Theorem w/o proof
$W^{1,1}((0, T) ; X)$ and absolutely continuous functions

Differential Equations III

Definition

The spaces $W(0, T)$ and $W_{p}(0, T)$

Differential Equations III

Remark

Assumptions on the form a

Theorem w/o proof
Properties of the Bochner spaces

Differential Equations III

Theorem w/o proof

Characterisation of weak derivatives

Differential Equations III

Definition \& Remark

Gelfand triple

Differential Equations III

Properties of $W(0, T)$

Differential Equations III

Remark

Obtaining the operator A from the form a

For $p \in[1, \infty], L^{p}((0, T) ; X)$ is a Banach space. For $p \in[1, \infty)$, the simple functions and $\mathcal{C}([0, T] ; X)$ are both dense in $L^{p}((0, T) ; X)$ and $L^{p}((0, T) ; X)$ is separable if X is, too.
Let $u \in L^{p}((0, T) ; X)$ and $v \in L^{q}\left((0, T) ; X^{*}\right)$ where $p, q \in[1, \infty]$ are Hölder conjugates. Then $\langle v(\cdot), u(\cdot)\rangle \in L^{1}((0, T))$ and the Hölder inequality holds: $\left|\int_{0}^{T}\langle v(t), u(t)\rangle \mathrm{d} t\right| \leqslant\|v\|_{L^{q}\left((0, T) ; X^{*}\right)}\|u\|_{L^{p}((0, T) ; X)}$.
For $p \in(1, \infty), L^{p}((0, T) ; X)$ is reflexive if X is, too. If X is reflexive or X^{*} is separable, then $\left(L^{p}((0, T) ; X)\right)^{*} \cong L^{q}\left((0, T) ; X^{*}\right)$ via the dual pairing $\langle v, u\rangle_{\left(L^{p}((0, T) ; X)\right) * \times L^{p}((0, T) ; X)}:=\int_{0}^{T}\langle v(t), u(t)\rangle_{X * \times X} \mathrm{~d} t$. If $X=H$ is a Hilbert space, then $L^{2}((0, T) ; H)$ is Hilbert space with the inner product $\langle u, v\rangle_{L^{2}((0, T) ; H)}:=\int_{0}^{T}\langle u(t), v(t)\rangle_{H} \mathrm{~d} t$.
If $X \hookrightarrow Y$ are Banach spaces, then $L^{p}((0, T) ; X) \hookrightarrow L^{q}((0, T) ; Y)$ for all $1 \leqslant q \leqslant p \leqslant \infty$.

Let $u, v \in L_{\text {loc }}^{1}((0, T) ; X)$. Then the following are equivalent

1. v is a weak derivative of u
2. there exists a $u_{0} \in X$ such that

$$
u(t)=u_{0}+\int_{0}^{t} v(s) \mathrm{d} s
$$

almost everywhere in $(0, T)$.
3. for all $f \in X^{*}$ the function $t \mapsto\langle f, u(t)\rangle$ has the weak derivative $t \mapsto\langle f, v(t)\rangle$.

Let $(V,\|\cdot\|)$ be a real reflexive separable Banach space, $(H,|\cdot|)$ a real Hilbert space and $V \xrightarrow{\mathrm{~d}} H$. We identify $H \cong H^{*}$. Since V is reflexive, we get $H^{*} \stackrel{\text { d }}{\hookrightarrow} V^{*}$. We call $V \subset H \subset V^{*}$ a Gelfand triple.
The space H is called pivot space.
The norm on V will be denoted by $\|\cdot\|$, the norm on H will be $|\cdot|$ and the norm on V^{*} will be $\|\cdot\|_{*}$. The dual pairing will be $\langle\cdot, \cdot\rangle_{V * \times V}$ and the scalar product on H is (\cdot, \cdot) such that we have $\langle g, v\rangle=(g, v)$ for all $g \in H$ and $v \in V$.

The space $\left(W(0, T) ;\|\cdot\|_{W(0, T)}\right)$ is a Banach space.
$\mathcal{C}^{\infty}([0, T] ; V) \subset W(0, T)$ is dense.
We have $W(0, T) \hookrightarrow \mathcal{C}([0, T] ; H)$.
The integration-by-parts formula holds: for $u, v \in W(0, T)$ and $0 \leqslant s \leqslant t \leqslant T$

$$
\int_{s}^{t}\left\langle u^{\prime}(\tau), v(\tau)\right\rangle+\left\langle v^{\prime}(\tau), u(\tau)\right\rangle \mathrm{d} \tau=(u(t), v(t))-(u(s), v(s)) .
$$

For $u \in W(0, T)$ we have $\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u(t)|^{2}=\left\langle u^{\prime}(t), u(t)\right\rangle$ a. e. in $(0, T)$.

For all $t \in[0, T]$ and all $v \in V$, the map $a(t, v, \cdot): V \rightarrow \mathbb{R}$ is linear and bounded. We define $A(t) v:=a(t, v, \cdot) \in V^{*}$ which fulfils $\|A(t) v\|_{*} \leqslant \beta\|v\|$.
For all $t \in[0, T], A(t) \in L\left(V, V^{*}\right)$ with $\|A(t)\|_{L\left(V, V^{*}\right)} \leqslant \beta$.
Finally, define $A:[0, T] \rightarrow L\left(V, V^{*}\right), t \mapsto A(t)$.
The GÅrding inequality now becomes $\langle(A(t)+$ $\kappa I) v, v\rangle_{V^{*} \times V} \geqslant \mu\|v\|^{2}$, where $I: V \rightarrow V^{*}$ is the embedding via $(\cdot, \cdot):\langle I v, v\rangle_{V^{*} \times V}=(v, v)=|v|^{2}$. Hence A with a positive shift is strongly positive.

For $p \in[1, \infty), L^{p}((0, T) ; X)$ is the linear space of equivalence classes of Bochner measurable functions $u:[0, T] \rightarrow X$ with

$$
\|u\|_{L^{p}((0, T) ; X)}:=\left(\int_{0}^{T}\|u(t)\|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}<\infty
$$

and $L^{\infty}((0, T) ; X)$ is the linear space of equivalence classes of bounded Bochner measurable functions $u:[0, T] \rightarrow X$ with

$$
\|u\|_{L^{\infty}((0, T) ; X)}:=\underset{t \in(0, T)}{\operatorname{ess} \sup }\|u(t)\|<\infty .
$$

Let $u, v \in L_{\mathrm{loc}}^{1}((0, T) ; X)$. Then v is the weak time derivative of u if

$$
\int_{0}^{T} u(t) \varphi^{\prime}(t) \mathrm{d} t=-\int_{0}^{T} v(t) \varphi(t) \mathrm{d} t \quad \forall \varphi \in \mathcal{C}_{0}^{\infty}((0, T) ; \mathbb{R})
$$

or (dual characterisation) if for all $f \in X^{*}$

$$
\left\langle f, \frac{u(t+h)-u(t)}{h}-v\right\rangle \xrightarrow{h \rightarrow 0} 0 .
$$

The FTOCOV and its corollary hold.

The space

$$
W^{1,1}((0, T) ; X):=\left\{u \in L^{1}((0, T) ; X): \exists u^{\prime} \in L^{1}((0, T) ; X)\right\}
$$

equipped with $\|u\|_{1,1}:=\|u\|_{1}+\left\|u^{\prime}\right\|_{1}$ is a Banach space. For every function $u \in W^{1,1}((0, T) ; X)$ we can find an absolutely continuous function, which is almost equal to u, that is, $W^{1,1}((0, T) ; X) \hookrightarrow \mathrm{AC}([0, T] ; X) \hookrightarrow \mathcal{C}([0, T] ; X)$.

Let $V \subset H \subset V^{*}$ be a GELFAND triple. We define

$$
W(0, T):=\left\{u \in L^{2}((0, T) ; V): \exists u^{\prime} \in L^{2}\left((0, T) ; V^{*}\right)\right\}
$$

and endow it with the norm

$$
\|u\|_{W(0, T)}:=\left(\|u\|_{L^{2}((0, T) ; V)}^{2}+\left\|u^{\prime}\right\|_{L^{2}\left((0, T) ; V^{*}\right)}^{2}\right)^{\frac{1}{2}}
$$

and analogously for $p \in[1, \infty]$ and $q:=\frac{p}{p-1} \in[1, \infty]$

$$
W_{p}(0, T):=\left\{v \in L^{p}((0, T) ; V): \exists v^{\prime} \in L^{q}\left((0, T) ; V^{*}\right)\right\} .
$$

$V \subset H \subset V^{*}$ Gelfand triple, $a:[0, T] \times V \times V \rightarrow \mathbb{R}$ s.t. (A1) $a(\cdot, v, w)$ is Lebesgue measurable on $[0, T] \forall v, w \in V$, A2 $a(t, \cdot, \cdot)$ is bilinear for all $t \in[0, T]$,
(A3) the form a is uniformly bounded with respect to the first input variable, that is, there exists a $\beta>0$ such that $|a(t, v, w)| \leqslant \beta\|v\|\|w\|$ for all $t \in[0, T]$ and all $v, w \in V$.
(A4) the form a fulfills the GÅrding inequality, that is, there exists a $\mu>0$ and a $\kappa \geqslant 0$ such that $a(t, v, v) \geqslant \mu\|v\|^{2}-\kappa|v|^{2}$ for all $t \in[0, T]$ and all $v \in V$. (For $\kappa=0, a(t, \cdot, \cdot)$ is strongly positive for all $t \in[0, T]$.)

The linear problem

Differential Equations III

Theorem w/o proof

Lions

Differential Equations III

Proof of Lions' Theorem

Existence via time discretisation: 1. Setup

Differential Equations III

Proof of Lions' Theorem

Existence via time discretisation: 4.
Constructing the approximate solution using the solutions of the time-discretised problems

Existence via time discretisation: 6 . Extracting subsequences

Weak formulation of the linear problem

Existence via time discretisation: 5 . Translating a priori estimates from before to for the approximate solutions

Differential Equations III

Proof of Lions' Theorem

Existence via time discretisation: 9 .
Passing to the limit

As $L^{2}\left((0, T) ; V^{*}\right)=\left(L^{2}((0, T) ; V)\right)^{*}, u^{\prime}+\mathcal{A} u=f$ is equivalent to $\int_{0}^{T}\left\langle u^{\prime}(t), v(t)\right\rangle+\langle(\mathcal{A} u)(t), v(t)\rangle \mathrm{d} t=\int_{0}^{T}\langle f(t), v(t)\rangle \mathrm{d} t \forall v \in L^{2}((0, T) ; V)$.

Since $C_{0}^{\infty}(0, T) \otimes V$ is dense in $\mathcal{C}_{0}^{\infty}((0, T) ; V) \stackrel{\mathrm{d}}{\hookrightarrow} L^{2}((0, T) ; V)$ (Exercise!), we can restrict the test functions to $v(t)=\varphi(t) w$ with $\varphi \in \mathcal{C}_{0}^{\infty}(0, T)$ and $w \in V$. Hence (\star) is equivalent to

$$
\int_{0}^{T}\left(\left\langle u^{\prime}(t), w\right\rangle+\langle(\mathcal{A} u)(t), w\rangle\right) \varphi(t) \mathrm{d} t=\int_{0}^{T}\langle f(t), w\rangle \varphi(t) \mathrm{d} t
$$

for all $\varphi \in \mathcal{C}_{0}^{\infty}(0, T), w \in V$. The Fundamental Theorem now implies

$$
\left\langle u^{\prime}(t), w\right\rangle+a(t, u(t), w)=\langle f(t), w\rangle \forall w \in V \quad \text { a.e. in }(0, T) .
$$

Under the assumptions A1 - A4 the a priori estimate

$$
|w(t)|^{2}+\mu \int_{0}^{t}\|w(s)\|^{2} \mathrm{~d} s \leqslant c\left(\left|w_{0}\right|^{2}+\|g\|_{L^{2}\left((0, T) ; V^{*}\right)}\right)
$$

holds for every solution $w \in W(0, T)$ of

$$
\begin{cases}w^{\prime}+A w=g & \text { in } L^{2}\left((0, T) ; V^{*}\right) \\ w(0)=w_{0} & \text { in } H\end{cases}
$$

The approximate system is well defined. For every $n \in\{1, \ldots, N\}$ consider the problem in V^{*}

$$
\left(\frac{1}{\tau} I+A\right) u^{n}=f^{(n)}+\frac{1}{\tau} I u^{n-1}
$$

The operator $\frac{1}{\tau} I+A$ is a linear, bounded and strongly positive operator: for the last property observe $\left\langle\left(\frac{1}{\tau} I+A\right) v, v\right\rangle=\frac{1}{\tau}|v|^{2}+\langle A v, v\rangle \geqslant \frac{1}{\tau}|v|^{2}+$ $\mu\|v\|^{2} \geqslant \mu\|v\|^{2}$. For $\kappa>0$, choose τ small enough, i.e. $\tau<\frac{1}{\kappa}$, then $\frac{1}{\tau} I+A$ is strongly positive.
We have $u_{0} \in H$ and $u^{n-1} \in V$ and hence $u^{n-1} \in V^{*}$. By the Theorem of Lax-Milgram, there exists a unique u^{n} for every $n \in\{1, \ldots, N\}$, that is, a solution to the problem in V^{*}.
In the following we identify $I u^{n} \leftrightarrow u^{n}$ and don't write the I anymore.

Let $N_{\ell} \rightarrow \infty$ for $\ell \rightarrow \infty$ with $N_{\ell} \in \mathbb{N}$ and $\tau_{\ell}:=\frac{T}{N_{\ell}}$ and $\left\{u_{\tau_{\ell}}\right\}_{\ell},\left\{\hat{u}_{\tau_{\ell}}\right\}_{\ell}$ and $\left\{f_{\tau_{\ell}}\right\}_{\ell}$ be constructed as above. For $\ell \in \mathbb{N}$, we choose a sequence $\left\{u_{\ell}^{0}\right\}_{\ell} \subset H$ such that $u_{\ell}^{0} \rightarrow u_{0}$ as $\ell \rightarrow \infty$. We have $u_{\tau_{\ell}}^{0} \rightarrow u_{0}$ as $\ell \rightarrow \infty$ in H and $u_{\tau_{\ell}}(0)=$ u_{ℓ}^{0}. We want to show that $\left\{f_{\tau_{\ell}}\right\}_{\ell}$ converges to f in $L^{2}\left((0, T) ; V^{*}\right)$. We have $\left\|f_{\tau_{\ell}}\right\|_{L^{2}((0, T) ; V *)}^{2} \leqslant\|f\|_{L^{2}((0, T) ; V *}^{2}$. The a priori estimates are independent of ℓ and we may deduce

$$
\begin{aligned}
& \left\|u_{\tau_{\ell}}\right\|_{L^{\infty}((0, T) ; H)}^{2}=\max _{i=1}^{N_{\ell}}\left|u^{i}\right|^{2} \leqslant\left|u_{\ell}^{0}\right|^{2}+\frac{\tau_{\ell}}{\mu} \sum_{i=1}^{N}\left\|f^{i}\right\|_{*}^{2}, \\
& \left\|u_{\tau_{\ell}}\right\|_{L^{2}((0, T) ; V)}^{2}=\tau_{\ell} \sum_{i=1}^{N_{\ell}}\left\|u_{\tau_{\ell}}\right\|^{2} \leqslant \mu\left(\left|u_{\ell}^{0}\right|^{2}+\frac{\tau_{\ell}}{\mu} \sum_{i=1}^{N}\left\|f^{i}\right\|_{*}^{2}\right), \\
& \left\|\widehat{u_{\tau_{\ell}}}\right\|_{L^{\infty}((0, T) ; H)}^{2}=\max _{i=1}^{N_{\ell}}\left|u^{i}\right|^{2} \leqslant\left|u_{\ell}^{0}\right|^{2}+\frac{\tau_{\ell}}{\mu} \sum_{i=1}^{N}\left\|f^{i}\right\|_{*}^{2} .
\end{aligned}
$$

We have $f_{\tau_{\ell}} \rightarrow f$ in $L^{2}\left((0, T) ; V^{*}\right)$ (Exercise). We observe that $A: L^{2}((0, T) ; V) \rightarrow L^{2}\left((0, T) ; V^{*}\right)$ is linear and continuous. Hence A is weak-weak-continuous and thus $A u_{\tau_{\ell}} \rightarrow A u$ in $L^{2}\left((0, T) ; V^{*}\right)$. We find in $L^{2}\left((0, T) ; V^{*}\right)$

$$
\hat{u}_{\tau_{\ell}}^{\prime}+A u_{\tau_{\ell}}=f_{\tau_{\ell}} \quad \text { in } L^{2}\left((0, T) ; V^{*}\right) .
$$

The three terms above converge weakly to $u^{\prime}, A u$ and f in $L^{2}\left((0, T) ; V^{*}\right)$, respectively. This implies that u is a solution to the abstract equation.
$\left\{\begin{array}{l}\text { To } u_{0} \in H \text { and } f \in L^{2}\left((0, T), V^{*}\right) \text { find } u \in W(0, T) \text { with } \\ u(0)=u_{0} \text { and } \\ u^{\prime}+\mathcal{A} u=f \text { in } L^{2}\left((0, T) ; V^{*}\right) .\end{array}\right.$
Since $u \in W(0, T) \hookrightarrow \mathcal{C}([0, T] ; H)$, the initial condition has to be understood to be attained in H.
For $u \in W(0, T)$ we find $u^{\prime} \in L^{2}\left((0, T) ; V^{*}\right) \hookrightarrow L^{1}\left((0, T) ; V^{*}\right)$. Since $u \in$ $W^{1,1}((0, T) ; X), u$ is an absolutely continuous function $u:[0, T] \rightarrow V^{*}$. Since V^{*} is reflexive, by Komura u is classically differentiable almost everywhere. Hence (\star) is equivalent to $u^{\prime}(t)+A u(t)=f(t)$ in V^{*} almost everywhere in $(0, T)$.

Under the assumptions A1 - A4, the problem (P) is wellposed in the sense of HADAMARD, that is, a unique solution exists and we have continuous dependence on the right side f.

Generalisation by Tartar/Temam: in the above theorem we can allow $f \in L^{2}\left((0, T) ; V^{*}\right) \oplus L^{1}((0, T) ; H)$, i.e. $f=f_{1}+f_{2}$ with $f_{1} \in L^{1}((0, T) ; H)$ and $f_{2} \in L^{2}\left((0, T) ; V^{*}\right)$.

Let $N \in \mathbb{N}, \tau:=\frac{T}{N}$ be the step size and $t_{n}:=n \tau$ be equidistant time step for $n \in\{1, \ldots, N\}$. Then we consider the implicit Euler scheme: for $n \in\{1, \ldots, N\}$ let $u^{n}:=u\left(t_{n}\right), u^{\prime}\left(t_{n}\right) \approx \frac{u^{n}-u^{n-1}}{\tau}$ and for the right hand side use $f^{n}:=\frac{1}{\tau} \int_{t_{n-1}}^{t_{n}} f(t) \mathrm{d} t \in V^{*}$. We consider the problem

$$
\left\{\begin{array}{l}
\text { To } u^{n-1} \text { find } u^{n} \in V \text { such that } \\
\frac{I u^{n}-I u^{n-1}}{\tau}+A\left(t_{n}\right) u^{n}=f^{n}, \quad n \in\{1, \ldots, N\} .
\end{array}\right.
$$

In the following we only consider $\kappa=0$ and assume that A is independent of t (time), otherwise we would have to set $A\left(t_{n}\right)=$ $\frac{1}{\tau} \int_{t_{n-1}}^{t_{n}} a(t, \cdot, \cdot) \mathrm{d} t$.

For $t \in\left(t_{n-1}, t_{n}\right]$ define $u_{\tau}(t):=u^{n}$ and $u_{\tau}(0)=u^{0}$. Hence u_{τ} is piecewise constant. Let $\hat{u}_{\tau}(t):=u^{n-1}+\left(t-t_{n-1}\right) \frac{u^{n}-u^{n-1}}{\tau}$ and $f_{\tau}(t):=f^{n}$ for $t \in\left(t_{n-1}, t_{n}\right]$. As \hat{u}_{τ} is piecewise linear, it is LipsChitz continuous and hence weakly differentiable almost everywhere with derivative $\hat{u}_{\tau}^{\prime}(t)=\frac{u^{n}-u^{n-1}}{\tau}$ for $t \in\left(t_{n-1}, t_{n}\right]$. Hence we can interpret the implicit Euler scheme via these functions: we may write $\hat{u}_{\tau}^{\prime}(t)+A u_{\tau}=f_{\tau}$.

As $\left(u_{\tau_{\ell}}\right)_{\ell}$ is bd in $L^{\infty}((0, T) ; H) \cap L^{2}((0, T) ; V)$ and $\left(\hat{u}_{\tau_{\ell}}\right)_{\ell}$ is bd in $L^{\infty}((0, T) ; H), \exists u \in L^{\infty}((0, T) ; H) \cap L^{2}((0, T) ; V)$ such that $u_{\tau_{\ell}} \xrightarrow{*} u$ in $L^{\infty}((0, T) ; H) \cap L^{2}((0, T) ; V)$ and there exists a $\hat{u} \in L^{\infty}((0, T) ; H)$ such that $\hat{u}_{\tau_{\ell}} \xrightarrow{*} \hat{u}$. One has to observe that one can do this steps one after the other to infer that this holds afterwards for one subsequence. Since $L^{2}((0, T) ; V)$ is reflexive and $L^{\infty}((0, T) ; H) \cong\left(L^{1}((0, T) ; H)\right)^{*}$ is the dual of a separable Banach space, this follows from the Theorem of Banach Alaoglu.

Existence via time discretisation: 10 .
Identify the initial condition.

Differential Equations III

Theorem w/o proof

Additional regularity $u \in W^{1, \infty}((0, T) ; H) \cap W^{1,2}((0, T) ; V)$

Differential Equations III

Lemma w/o proof

Properties of $W_{p}(0, T)$: completeness, IBP rule, embedding

Differential Equations III

Lemma \& Proof

Uniqueness in the nonlinear case

Theorem w/o Proof

Continuity of solution operator if \mathcal{A} is " g-monotone"

Error estimates

Hypothesis for the nonlinear case

Differential Equations III

Theorem w/o proof

Main Theorem on Monotone nonlinear PDEs

Differential Equations III

LEMMA W/O PROOF

Continuity of solution operator if $B=0$

Differential Equations III

Theorem w/o Proof

Continuity of solution operator if \mathcal{A} is p-monotone

Let $u \in W(0, T)$ be the solution of (P) with $f \in L^{2}\left((0, T) ; V^{*}\right)$ and let additionally $\left(f-u^{\prime}\right)^{\prime} \in L^{2}\left((0, T) ; V^{*}\right)$. Then the error estimate

$$
\begin{aligned}
& \left|u\left(t_{n}\right)-u^{n}\right|^{2}-\mu \tau \sum_{j=1}^{n}\left\|u\left(t_{j}\right)-u^{j}\right\|^{2} \\
& \quad \leqslant\left|u_{0}-u^{0}\right|^{2}+\frac{\tau^{2}}{3 \mu}\left\|\left(f-u^{\prime}\right)^{\prime}\right\|_{L^{2}\left((0, T) ; V^{*}\right)}^{2}
\end{aligned}
$$

for all $n \in\{1, \ldots, N\}$ holds for the implicit EuLER time discretisation given in the previous proof.

Let $p>1, \frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $V \subset H \subset V^{*}$ a GELFAND triple. Let $A_{0}, B: V \rightarrow V^{*}$ and $A:=A_{0}+B$ with $\left(\mathcal{A}_{0} v\right)(t):=A_{0} v(t),(\mathcal{B} v)(t):=B v(t)$ for $v:[0, T] \rightarrow V$ and $\mathcal{A}:=\mathcal{A}_{0}+\mathcal{B}$ with $\mathcal{A}_{0}: L^{p}((0, T) ; V) \rightarrow L^{p^{\prime}}\left((0, T) ; V^{*}\right)$ monotone, hemi-continuous, $\mathcal{B}: L^{p}((0, T) ; V) \rightarrow L^{p^{\prime}}\left((0, T) ; V^{*}\right)$ strongly continuous, $\mathcal{A}: L^{p}((0, T) ; V) \rightarrow L^{p^{\prime}}\left((0, T) ; V^{*}\right)$ coercive with $\mu>0, \lambda \geqslant 0$ s.t. $\langle\mathcal{A} v, v\rangle=\int_{0}^{T}\langle\mathcal{A} v(t), v(t)\rangle \mathrm{d} t \geqslant$ $\mu\|v\|_{L^{p}((0, T) ; V)}^{p}-\lambda$ for all $v \in L^{p}((0, T) ; V)$ and bounded with $\beta \geqslant 0$ such that $\|\mathcal{A} v\|_{L^{p^{\prime}}\left((0, T) ; V^{*}\right)} \leqslant \beta\left(1+\|v\|_{L^{p}((0, T) ; V)}^{p-1}\right)$ for all $v \in L^{p}((0, T) ; V)$.

Assuming the standard assumptions, for every $u_{0} \in H$ and $f \in L^{p^{\prime}}\left((0, T), V^{*}\right)$, there exists a solution $u \in W_{p}(0, T)$ with

$$
\begin{cases}u^{\prime}+A(u)=f & \text { in } L^{p^{\prime}}\left((0, T) ; V^{*}\right) \\ u(0)=u_{0}, & \text { in } H\end{cases}
$$

Assuming the standard assumptions and $B=0$, the solution operator of the nonlinear problem

$$
L^{p^{\prime}}\left((0, T) ; V^{*}\right) \times H \rightarrow \mathcal{C}([0, T] ; H), \quad\left(f, u_{0}\right) \mapsto u
$$

is continuous on bounded sets.位

We have to show that $u(0)=u_{0}$ in H. We have $\hat{u}_{\tau_{\ell}} \rightharpoonup u$ in $W(0, T) \hookrightarrow \mathcal{C}([0, T] ; H)$. The embedding is linear and continuous and hence weak-weak-continuous, so the weak convergence is translated to a pointwise weak convergence on H. There exists a linear continuous trace operator $\Gamma: W(0, T) \rightarrow$ $H, \Gamma(u):=\Gamma_{u}:=u(0)$ in H. Hence $\hat{u}_{\tau_{\ell}} \rightharpoonup u$ in $W(0, T)$ and so $\hat{u}_{\tau_{\ell}}(0) \rightarrow u(0)$ in H. We had the condition that $\hat{u}_{\tau_{\ell}}(0)=u_{\ell}^{0} \rightarrow u_{0}$ in H. Hence the weak and strong limits have to coincide.

Let $u_{0} \in V$ and $f \in W^{1,2}\left((0, T) ; V^{*}\right)$ and the operator $A^{\prime}(t): V \rightarrow V^{*}$ be continuous and linear for all $t \in(0, T)$. If the compatibility condition $A\left(u_{0}\right)-f(0) \in H$ holds, then the solution $u \in W(0, T)$ to (P) admits the additional regularity $u \in W^{1, \infty}((0, T) ; H) \cap W^{1,2}((0, T) ; V)$. Especially, it holds

$$
\begin{array}{ll}
\hat{u}_{n}^{\prime} \rightharpoonup u^{\prime} & \text { in } L^{\infty}((0, T) ; H) \\
\hat{u}_{n}^{\prime} \rightharpoonup u^{\prime} & \text { in } L^{2}((0, T) ; V)
\end{array}
$$

Let $p \in(1, \infty)$. Then $W_{p}(0, T)$ equipped with the norm $\|u\|_{W_{p}(0, T)}:=\|u\|_{L^{p}((0, T) ; V)}+\left\|u^{\prime}\right\|_{L^{p^{\prime}}\left((0, T) ; V^{*}\right)}$ is a BANACH space. We have $W_{p}(0, T) \hookrightarrow \mathcal{C}([0, T] ; H)$ and the rule of integration by parts:
$\int_{s}^{t}\left\langle u^{\prime}(\tau), v(\tau)\right\rangle+\left\langle v^{\prime}(\tau), u(\tau)\right\rangle \mathrm{d} \tau=(u(t), v(t))-(u(s), v(s))$
for all $v, w \in W_{p}(0, T)$ and all $s, t \in[0, T]$. Finally, $\mathcal{C}^{\infty}([0, T] ; V) \stackrel{\mathrm{d}}{\hookrightarrow} W_{p}(0, T)$.

Assuming the standard assumptions and $B=0$, the solution of the nonlinear problem is unique and the whole sequence of approximate solutions converges to u.
Let $u, v \in W_{p}(0, T)$ be two solutions to the problems
$\left\{\begin{array}{ll}u^{\prime}+\mathcal{A}(u)=f, & \text { in } L^{p^{\prime}}\left((0, T) ; V^{*}\right), \\ u(0)=u_{0} & \text { in } H\end{array}, \begin{cases}v^{\prime}+\mathcal{A}(v)=f, & \text { in } L^{p^{\prime}}\left((0, T) ; V^{*}\right), \\ v(0)=u_{0} & \text { in } H\end{cases}\right.$
As \mathcal{A} is monotone we have
$\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u-v|^{2}=\left\langle u^{\prime}-v^{\prime}, u-v\right\rangle$
$\leqslant\left\langle u^{\prime}-v^{\prime}, u-v\right\rangle+\langle\mathcal{A} u-\mathcal{A} v, u-v\rangle=\langle f-f, u-v\rangle=0$
and hence (by integration) $|u(t)-v(t)|^{2} \leqslant\left|u_{0}-u_{0}\right|^{2}=0$ for all $t \in[0, T]$.

Let the standard assumptions be fulfilled. Additionally, we require that $A:[0, T] \times V \rightarrow V^{*}$ fulfills

$$
\langle\mathcal{A}(t) v-\mathcal{A}(t) w, v-w\rangle \geqslant-g(t)|v-w|^{2}
$$

for $v, w \in V$ and $g \in L^{1}(0, T)$. The operator $\mathcal{A}: L^{p}((0, T) ; V) \rightarrow L^{p^{\prime}}\left((0, T) ; V^{*}\right)$ is then given by $(\mathcal{A} u)(t)=$ $A u(t)$. Then the solution operator of the nonlinear problem

$$
L^{2}((0, T) ; H) \times H \rightarrow \mathcal{C}([0, T] ; H), \quad\left(f, u_{0}\right) \mapsto u
$$

We consider a bounded LIPSChitz domain $\Omega \subset \mathbb{R}^{d}$ with $d \in\{2,3\}$ and the incompressible Navier-Stokes equation

$$
\begin{cases}\partial_{t} \mathbf{u}-\nu \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=f, & \text { in } \Omega \times(0, T) \\ \nabla \cdot u=0 & \text { in } \Omega \times(0, T), \\ u=0 & \text { on } \partial \Omega \times(0, T), \\ u(0)=0 & \text { in } \Omega,\end{cases}
$$

where $u: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R}^{d}$ is the velocity field, $p: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R}$ is the pressure and ν is the viscosity. The time derivative of the velocity is the acceleration, the second (dissipative) term $\nu \Delta \mathbf{u}$ described how friction behaves in the fluid.

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded Lipschitz domain. Assume that $0<\beta<\beta^{\prime}(r) \leqslant \bar{\beta}<\infty$ and $b_{1}, b_{2}>0$. Assume additionally that $\hat{c}^{-1}: \overline{\mathbb{R}} \rightarrow \mathbb{R}$ is a monotone function with $\left|\left(\hat{c}^{-1}\right)^{\prime}\right| \leqslant C$. Then there exists a weak solution to

$$
\begin{cases}\partial_{t} u+\nabla \beta(u)=g & \text { in } \Omega \times(0, T), \\ \mathbf{n} \cdot \nabla \beta(u)+\left(b_{1}+b_{2}\left|\hat{c}^{-1}(u)\right|^{3}\right) \hat{c}^{-1}(u)=h & \text { on } \partial \Omega \times(0, T), \\ u(0)=u_{0} & \text { in } \Omega,\end{cases}
$$

As test functions we take $\mathbb{V}:=\left\{\varphi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right) \mid \nabla \cdot \varphi \equiv 0\right.$ in $\left.\Omega\right\}$. Since this is to regular for our purposes, we will take the closure with respect to the H_{1}-norm. Now the spaces $V:=\operatorname{clos}_{\|\cdot\|_{H_{0}^{1}}} \mathbb{V}$ and $H:=\operatorname{clos}_{\|\cdot\|_{L^{2}}} \mathbb{V}$ form a Gelfand-triple (compact embedding follows from Rellich-Kondrachov). $V \stackrel{\text { c }}{\hookrightarrow} H \cong H^{*} \hookrightarrow V^{*}$, where V is equipped with $\|\cdot\|:=\|\cdot\|_{H_{0}^{1}}$ and the scalar-product $((u, v)):=\int_{\Omega} \nabla u: \nabla v \mathrm{~d} x$ and H with $|\cdot|:=\|\cdot\|_{L^{2}}$ and the scalar-product $(u, v):=\int_{\Omega} u \cdot v \mathrm{~d} x$. One can show the characterisations $V=\left\{u \in H_{0}^{1}(\Omega)^{d} \mid \nabla \cdot u \equiv 0\right.$ in $\left.\Omega\right\}$ and $H=\left\{u \in L^{2}(\Omega)^{d} \mid \nabla \cdot u \equiv 0\right.$ in $\Omega, n \cdot u \equiv 0$ on $\left.\partial \Omega\right\}$, where the condition of zero divergence means $\int_{\Omega} u \cdot \nabla \varphi=0$ for a.a. $\varphi \in \mathcal{C}_{\mathrm{c}}^{\infty}(\Omega)$ and the vanishing on the boundary is to be understood in the sense of a certain trace.

[^0]: (1) follows from (2): by the triangle inequality we have $\left\|\frac{1}{h} \int_{t}^{t+h} u(s) \mathrm{d} s-u(t)\right\|=\left\|\frac{1}{h} \int_{t}^{t+h} u(s)-u(t) \mathrm{d} s\right\| \leqslant \frac{1}{h} \int_{t}^{t+h}\|u(s)-u(t)\| \mathrm{d} s$.
 (2): We can't guarantee the measurability of $\|u(\cdot)-u(t)\|$, so we have to use an approximation step. By Pettis' Theorem, u is essentially separable valued. Hence for almost all $t \in[0, T]$ there exists a sequence $\left(x_{n}^{(t)}\right)_{n \in \mathbb{N}} \subset X$ converging to $u(t)$.
 By the triangle inequality, we have $\frac{1}{h} \int_{t}^{t+h}\|u(s)-u(t)\| \mathrm{d} s \leqslant \frac{1}{h} \int_{t}^{t+h} \| u(s)-$ $x_{n}^{(t)}\|\mathrm{d} s+\| u(t)-x_{n}^{(t)} \|$. Taking $n \rightarrow \infty$ and then $h \rightarrow 0$ guarantees the measurability $s \mapsto\left\|u(s)-x_{n}^{(t)}\right\|$.

