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A function u: [0,T] — X is Bochner measurable (or stron-
gly measurable) if there exists a sequence of simple functions
(un: [0,T] = X)nen such that for almost all ¢ € (0,T)

lim, Jun () — ()] = 0.

n—o0

A function w: [0,T] — X is weakly BOCHNER measurable if
for all f € X* the map t — { f,u(t) ) is LEBESGUE measurable.
Since strong convergence implies weak convergence, BOCHNER

measurability implies weak BOCHNER measurability.

Let u: [0,T7] — X be BOCHNER measurable and (up)nen &
sequence of simple functions with u, () — w(t) in X for almost
all ¢ € [0,T]. Then u is Bochner integrable if Sér [un(t) —
u(t)| dt — 0. We set

T T
f u(t) dt == lim un(t)dt € X.

0 =% Jo
For a measurable subset B c [0,T], we set

T

fB u(t) dt = f w(t) 15 (t) dt.

0

Let u: [0,7] — X be B-measurable. Then u is B-integrable if
and only if ¢ — |Ju(t)| is L-integrable.

Let u: [0,T] — X be B-integrable. For all measurable sub-
sets B < [0,T] and for all f € X* we have ||{,u(t)dt| <
SB |u(t)] dt and <fv SB u(t) dt> = SB<f» u(t))dt.

Let (Y,] - |ly) be a BANACH space, A € L(X,Y) a li-
near bounded operator and w: [0,7] — X B-integrable.
Then Au: [0,T] — Y is B-integrable with Sg(Au)(t) dt =
A (jg u(t) dt).

Let X be reflexive and u: [0,T] — X be absolutely conti-
nuous. Then wu is classically differentiable in (0,T), v’ is BOCH-
NER integrable and

t

u(t) = u(to) + L u'(s) ds

0

for all ¢,t9 € [0,T7].

A function u: [0,7] — X is a simple function if there
exist finitely many pairwise disjoint LEBESGUE measurable
sets (E; < [0,T])™, such that u takes constant values u; € X
on each of these sets, that isu = Y\, u; 1 5,. The (BOCHNER)

integral of u is

T m
J u(t) dt ::Zui\Ei\eX.
0

i=1

Let u: [0,T] — X be BOCHNER measurable. Then |ju| is LE-
BESGUE measurable on [0,T7].

As u is BOCHNER measurable, there exists a sequence of simple functions
(wn: [0,T] = X)nen such that wu, (¢t) — w(t) holds for almost all ¢ € [0, T].
For those t € [0, T] we thus have ||wn (8)] — |u(t)]] < |un(t) — u(t)]| === 0.
The functions (|un|: [0,T] — R),en are simple functions (and hence measu-

(n)
u 1
i

. . \m .
rable), because the functions u, = " are simple:

B
i

mn oy Mn

lun @ = | >, ™1y (O] F Y a1 ) (@),
i=1 g

mn,

where in (x) we use that the <E1<”J), ' are disjoint. Hence [lu| is measurable

as the limit of the measurable functions |uy|.

A function u: [0,T] — X is (essentially) separable valued if it
(up to a null set N < [0,T]) only takes values in a separable
subset of X.

A function u: [0,T] — X is BOCHNER measurable if and only
if u is weakly BOCHNER measurable and essentially separable

valued.

Corollary: If X is separable, weak and strong BOCHNER mea-

surability coincide.

Subsets of separable spaces are separable.

The limit is well defined as each u, and u are BOCHNER measurable and
hence the function |u, — u| is LEBESGUE measurable by a Lemma.

For n,m > M. we have, as un, — um is again a simple func-
tion and the triangle equality is an equality for simple functions,

57 (1)t~ § () dt] = 3 fun(®) — (Ot L 5T fun(t)

w®)| + Ju(t) — um ()| dt < 2e. Hence (SOT un () dt) .
sequence in X and thus converges for n — o0 as X is ;%ANACH space.

is a CAUCHY

The integral is independent of the approximating sequence of simple func-
tions, as SOT [wn (t) —w(¢)| d¢ — O holds for all such sequences and thus the
procedure in the previous remark can be done with any such sequence.

Let u: R — X be B-integrable, ulg\[o,r] = 0 Then a.e. in [0,T] 1.
t+h

limp, o + §;7" u(s) ds = u(t), and 2. lim;,_,o + S;H'h [u(s) —u(t)]ds =0,

@ follows  from @: by the triangle inequality we have

+ \lf Fhou(s) ds — u(t)| = + \7 hu(s) —u(t)ds| < + \/r FPlu(s) — u(t)] ds.

@: We can’t guarantee the measurability of |u(:) — u(t)|, so we have to
use an approximation step. By PETTIS’ Theorem, u is essentially separable

valued. Hence for almost all ¢ € [0, T] there exists a sequence (z'/)),eny € X

converging to u(t).
B_\'kl‘h(‘ triangle iuoqule‘dil,y. we have ]l] N:Jrh u(s) —u(t)| ds < /]T _\':Jrh |lu(s) —
x| ds + ||Ju(t) — :1“”/’ |. Taking n — o0 and then h — 0 guarantees the

z,
measurability s — [u(s) — z{)].
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For p € [1,0], LP((0,T); X) is a BANACH space. For p € [1,0), the
simple functions and C([0,T]; X) are both dense in LP((0,7T); X) and
LP((0,T); X) is separable if X is, too.

Let w € LP((0,T); X) and v € L9((0,T); X*) where p,q € [1,00] are
HOLDER conjugates. Then {v(-),u(-)) € L*((0,T)) and the HOLDER ine-
quality bolds: {7 (v(t), u(t) > dt| < [0l za o100l o (0.1, x)-

For p € (1,), LP((0,T); X) is reflezive if X is, too. If X s reflexive
or X* is separable, then (LP((0,T); X))* =~ L2((0,T); X*) via the dual

pairing (U, U (1p (0,7 X))% x LP((0,T);X) = Sg Co(t), w(t) ) x5 x dt.

If X = H is a HILBERT space, then L2((0,T); H) is HILBERT space with
the inner product {u,v)r2(o,1y;m) = S(T; Cu(t),v(t) ) g dt.

If X — Y are BANACH spaces, then LP((0,T); X) — L2((0,T);Y) for
alll1 < g<p< oo

Let u,v € L ((0,T); X). Then the following are equivalent

loc

1. v is a weak derivative of u

2. there exists a ug € X such that

t

u(t) = ug +f v(s)ds

0

almost everywhere in (0, 7).

3. for all f € X* the function ¢t — { f,u(t)) has the weak
derivative ¢t — { f,v(t) ).

Let (V,|-|) be a real reflexive separable BANACH space, (H, ||)
a real HILBERT space and V' 4 H. We identify H ~ H*.
Since V is reflexive, we get H* L V* Wecall Ve HcV*
a Gelfand triple.

The space H is called pivot space.

The norm on V' will be denoted by | - ||, the norm on H will
be |-| and the norm on V* will be || - |«. The dual pairing will
be (-, )y %y and the scalar product on H is (-,-) such that
we have (g,v) = (g,v) for allge H andve V.

The space (W (0,T); | - |wo,r)) is a BANACH space.
C*([0,T];V) =« W(0,T) is dense.

We have W(0,T) — C([0,T]; H).

The integration-by-parts formula holds: for u,v € W(0,T) and
0<s<t<T

J (u'(7),0(r) ) +<0'(7), u(r) ) dr = (u(t), v(t) = (u(s), v(s)).

For u € W(0,T) we have 13 |u(t)|? = (u/(t),u(t)) a. e. in
(0,7).

For all t € [0,T] and all v € V, the map a(t,v,-): V — R is
linear and bounded. We define A(t)v = a(t,v,-) € V* which
fulfils | Aol < Bl

For all t € [0,T], A(t) € L(V,V*) with |A(t)|Lv,v+) < B.
Finally, define A: [0,T] — L(V,V*), t — A(t).

The GARDING inequality now becomes {((A(t) +
KDV, 0 sy = pfv|?, where I: V. — V* is the embed-
ding via (-,-): {Iv,0)yxyy = (v,v) = |v|?. Hence A with a
positive shift is strongly positive.

For p € [1,00), L?((0,T); X) is the linear space of equivalence
classes of BOCHNER measurable functions u: [0,7] — X with

T P
lull e o,y x) = (J u(t)|pdt> <
0

and L*((0,T); X) is the linear space of equivalence classes of
bounded BOCHNER measurable functions u: [0,7] — X with

lull e ((0,7;x) = esssup |u(t)]| < co.
te(0,T)

Let u,v € L}, ((0,7); X). Then v is the weak time deriva-
tive of w if

f u(t)g'(£) dt = — j (et dt Ve CE((0,T)R).

0 0

or (dual characterisation) if for all f e X*

<f>u(t+}2_u(t)—v>ﬂ>0.

The FTOCOV and its corollary hold.

The space
Wh((0,7); X) := {ue L'((0,T); X) : I’ e L'((0,T); X)}

equipped with |ul1,1 = |Jul1 + [[«/]1 is a BANACH space. For
every function u € W11((0,T); X) we can find an absolute-
ly continuous function, which is almost equal to u, that is,
WH((0,T); X) — AC([0, T]; X) — C([0, T]; X).

Let V ¢ H c V* be a GELFAND triple. We define
W(0,T) := {ue L*((0,T); V) : 3/ € L*((0,T); V*)}

and endow it with the norm

[N

lulw 0,7y = (||UH2L2((0,T);V) + Hu’||2L2((0,T);V*))

and analogously for p € [1,00] and ¢ = # € [1, 0]

W,(0,T) := {ve LP((0,T); V) : J' € LI((0,T); V*)}.

V < H < V* GELFAND triple, a: [0,T] x V x V — R s.t.
a(+,v,w) is LEBESGUE measurable on [0,T] Vv, w e V,

a(t,-,-) is bilinear for all t € [0,T7,

@ the form a is uniformly bounded with respect to the
first input variable, that is, there exists a 5 > 0 such that
la(t, v, w)| < B|v||w| for all ¢ € [0,T] and all v,w e V.

the form a fulfills the GARDING inequality, that is, there
exists a 4 > 0 and a s > 0 such that a(t,v,v) = ulv|? — klv|?
for all t € [0,T] and all v € V. (For k = 0, af(t,-,-) is strongly

positive for all ¢ € [0,T7.)
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As L2((0,T); V*) = (L2((0,T); V))*, v/ + Au = f is equivalent to

f Cul(£), v(t) > + (A u)(®), v<t>>dt—j CF), () ydt Yo € L2((0,T); V).

T); V) <5 L2((0,7); V) (Exercise!),
p(t)w with ¢ € CF(0,T) and

Since C° (0, T)®V is dense in CF((0,
we can restrict the test functions to v(t) =
w € V. Hence (*) is equivalent to

T T
fo(<u’(t>,w>+<<Au)<t>,w>)w(t)dt:L CFt),w) () dt.

for all ¢ € CF(0,T), w € V. The Fundamental Theorem now implies

(! (8),w ) +alt,u(t), w) = (f(t),wHYwe V a.e. in (0,7).

Under the assumptions - the a priori estimate

t
(&) + p f Jw(s)2 ds < ¢ (juwol? + 9] z2o.ryvs))
holds for every solution w € W(0,T') of

w' + Aw =g in L*((0,
w(0) = wy in H.

T); V*),

The approximate system is well defined. For every n € {1,...
the problem in V*
1
<71 i A>
.

The operator 71 + A is a linear, bounded and strongly positive operator:
for the last property observe <( I+ A)v,vy=1 2 |v]24+<¢ Av R 2 w2+
wlv|? = p|v|?. For k > 0, choose T small enough i.e. 7 < =, then 1IJrA

, N} consider

u = M 4 lIun_l
T

is strongly positive.

We have ug € H and v~ ! € V and hence u"~! € V*. By the Theorem
of LAX-MILGRAM, there exists a unique u™ for every n € {1,..., N}, that
is, a solution to the problem in V*.

In the following we identify Iu™ < u™ and don’t write the I anymore.

Let Ny — oo for £ — o0 with Ny € N and 7, = Nle and {un]}g, {717.2}[ and

{fr,}¢ be constructed as above. For £ € N, we choose a sequence {udte c H
such that ug — ug as £ — 0. We have u?e
uf. We want to show that {fr,}¢ converges to f in L?((0,T); V

— ug as £ — o0 in H and u,-Z(O) =
*). We have

[l £, HLZ((O Ty vy S HfHLQ((O YV The a priori estimates are independent

of ¢ and we may deduce
2 Ne q2 02, TE Wy pig2
lurglToo 0,7y 0) = ffjﬂu I7 < ugl™ + " Z I %
i=1
e &
0,2 0 )2
<p (lue\ +— Z HJ“H*> )

HUTZHLOC((O T);H) = max|u 1> < fugl? + Z 1£15%-

2
lury 20, 7y5v)

Ny

2

=70 ) Jur,l
i=1

We have f,, — fin L2((0,T); V*) (Exercise). We observe that
A: L?((0,T); V) — L*((0,T
Hence A is weak-weak-continuous and thus Au.,
L2((0,T); V*). We find in L2((0,T); V*)

); V*) is linear and continuous.

— Au in

@, + Aug, = f-,  in L*((0,T); V*).

The three terms above converge weakly to u/, Au and f in
L?((0,T); V*), respectively. This implies that u is a solution

to the abstract equation.

To ug € H and f € L*((0,T),V*) find uw e W(0,T) with
u(0) = up and
'+ Au = fin L2((0,T); V*). (%)

Since u € W(0,T) < C([0,T]; H), the initial condition has to be under-
stood to be attained in H.

For uw € W(0,T) we find v’ € L2((0,T); V¥) — LY((0,T); V*). Since u €
WLL((0,T); X), u is an absolutely continuous function w: [0, 7] — V*.
Since V* is reflexive, by KOMURA u is classically differentiable almost
everywhere. Hence () is equivalent to u/(t) + Au(t) = f(t) in V* almost
everywhere in (0, 7).

Under the assumptions - , the problem (P) is well-

posed in the sense of HADAMARD, that is, a unique solution

exists and we have continuous dependence on the right side f.

Generalisation by TARTAR/TEMAM: in the above theorem we can allow

FeL?((0,7);1 )@fl(( T);H),i.e. f = f1+fo with f1 € L1((0,T); H)
and fo € L2((0,7); V*
Let N e N, 7 := % be the step size and t, := n7 be equidistant

time step for n € {1,...,
scheme: for n € {1,..., N} let u™
for the right hand side use f™ := 1 St"
the problem

N}. Then we consider the implicit EULER
n—1

= u(ty ) u'(t,) ~ =" and

T

t)dt e V*. We consider

To u™ ! find u™ € V such that

L L At )u = f7, mefl,..., N}

In the following we only consider x = 0 and assume that A is

mdependent of t (time), otherwise we would have to set A(t,) =
5 ) dt.

For t € (tp—1,tn
is piecewise constant. Let @i, (¢) :== u" " + (t —t,_1)
and f,(t) :== f"fort e (t,_1,t
LipscHITZ continuous and hence weakly differentiable almost

] define u, (t) :== u™ and u,(0) = u°. Hence u,

un,_unfl

-
n]. As @, is piecewise linear, it is

everywhere with derivative @/ (t) = “%“%1 for t € (tp—1,tn]-
Hence we can interpret the implicit EULER scheme via these

functions: we may write 4. (t) + Au, = f.

As (ur,)¢ is bd in L®((0,T); H) n L2((0,T); V) and (i, ) is
bd in L*((0,T); H), Ju e L*((0,T); H) n L*((0,T); V) such
that w,, - in L*((0,T); H) n L?>((0,T); V) and there exists
a e L*((0,T); H) such that i,
that one can do this steps one after the other to infer that
this holds afterwards for one subsequence. Since L2((0,7); V)
is reflezive and L*((0,T); H) = (L*((0,T); H))* is the dual
of a separable BANACH space, this follows from the Theorem
of BANACH ALAOGLU.

— 4. One has to observe
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Let u € W(0,T) be the solution of (P) with f € L2((0,T); V*)
and let additionally (f — )" € L2((0,T); V*). Then the error
estimate

Jultn) =™ [* = pr Y Julty) — o)
j=1

2
-
< Jup — ) + @H(f - u/)lH2L2((O,T);V*)

for all n € {1,..., N} holds for the implicit EULER time dis-
cretisation given in the previous proof.

Let p > 1,%4—1% = 1land V ¢ H < V* a GEL-
FAND triple. Let Ag,B: V — V* and A = Ay + B with
(Agw)(t) == Agv(t), (Bv)(t) == Bu(t) for v: [0,T] — V and
A = Ay +B with Ag: LP((0,T); V) — L¥((0,T); V*) mo-
notone, hemi-continuous, B: L?((0,T);V) — Lpl((O,T);V*)
strongly continuous, A: LP((0,T); V) — L¥ ((0,T); V*) coer-
cive with p > 0, A = 0 s.t. (Av,v) = Sg(Av(t),v(t)>dt >
,u||v|\’£p((0’T);V) —Mfor all ve LP((0,7); V) and bounded with
B = 0 such that | Av| o7y < B1+ \|U\|i;(l(0;r);v)) for
all ve LP((0,T); V).

Assuming the standard assumptions, for every ug € H and
fe LY ((0,T),V*), there exists a solution u € W,(0,T) with

VAW = i I (0.7 V),
U(O) = ug, in H.

Assuming the standard assumptions and B = 0, the solution
operator of the nonlinear problem
(0, T):V*) x H—C([0,TLH),  (f.u0) = u

is continuous on bounded sets.

Let the standard assumptions be fulfilled with A = Ay: V —
V* being p-monotone, that is, there exists a fi > 0 such that

(Av—Aw,v—w) = jflv—w|’  Yo,weV.
Then the solution operator of the nonlinear problem

LP((0,T); V¥)x H — C([0, T); H) A LP((0,T); V), (f,u0) = u

is continuous.

We have to show that u(0) = ug in H. We have 4,, — u in
W(0,T) — C([0,T]; H). The embedding is linear and conti-
nuous and hence weak-weak-continuous, so the weak conver-
gence is translated to a pointwise weak convergence on H.
There exists a linear continuous trace operator I': W (0,T) —
H, T'(u) =T, = u(0) in H. Hence 4,, — u in W(0,T)
and so 4, (0) — w(0) in H. We had the condition that
7, (0) = uY — up in H. Hence the weak and strong limits
have to coincide.

Let up € V and f € WH2((0,T);V*) and the operator
A'(t): V — V* be continuous and linear for all ¢ € (0,7). If
the compatibility condition A(ug) — f(0) € H holds, then the
solution u € W(0,T) to (P) admits the additional regularity
uwe Wh®((0,T); H) n WH2((0,T); V). Especially, it holds

—u' in L7((0,7); H),
—' in L*((0,T); V).

Let p € (1,0). Then W,(0,T) equipped with the norm

lulw, o, = lulzeomyvy + WL omr)v*) is a BANACH
space. We have W, (0,T) — C([0,T]; H) and the rule of inte-
gration by parts:

f (ol (7),0(r) )+ (o (7), u(r) YT = (u(t), o(t)) — (u(s), o(s))

for all v,w € Wp(0,T) and all s,¢t € [0,7]. Finally,
C([0. T V) <5 W,(0.7).

Assuming the standard assumptions and B = 0, the solution of the
nonlinear problem is unique and the whole sequence of approximate

solutions converges to u.
Let u,v € Wjp(0, T') be two solutions to the problems

W + A(u) = £, in LP' ((0,T); V*), |v' + A(w)=# in LP' ((0,T);V*),
u(0) = ug in H - v(0) = ugp in H
As A is monotone we have
1d 5 . , .
——Ju—v]* = =V, u—v)
2c
< —vu—v)+{Au—Av,u—v)y={f—fu—v)=0

and hence (by integration) |u(t) —v(t)|? < |up —uo|?> = 0 for all t € [0, T].

Let the standard assumptions be fulfilled. Additionally, we
require that A: [0,T] x V' — V* fulfills

(A = Aw, v —w) = —g(t)|v — w|*

for v,w € V and g € LY0,7). The operator

A: LP((0,T); V) — L¥'((0,T); V*) is then given by (Au)(t) =

Au(t). Then the solution operator of the nonlinear problem
L*((0,T); H) x H = C([0, T} H),  (f,u0) = u

is LIPSCHITZ-continuous.
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We consider a bounded LipScHITZ domain Q < RY with d € {2,3} and
the incompressible NAVIER-STOKES equation

otu—vAu+ (u-V)u+Vp=f, inQx(0,7T),

V-u=0 in Q x (0,7),
u=0 on 092 x (0,7,
u(0) =0 in Q,

where u: Q x [0,T] — R? is the velocity field, p: Q x [0,T] — R is the
pressure and v is the viscosity. The time derivative of the velocity is the
acceleration, the second (dissipative) term vAu described how friction
behaves in the fluid.

Let Q < R? be a bounded LIPSCHITZ domain. Assume that
0 < B < pB'(r)<pB <ooand by,by > 0. Assume additionally
that ¢71: R — R is a monotone function with |(¢71)| < C.

Then there exists a weak solution to

ou+Vpu)=g in Q x (0,7),
n-VA(u) + (b1 + bzl (uw)]?)é " (u) =h on 0Q x (0,T),
U(O) = Ug in Qa

As test functions we take V :i= {p € C¥ (Q;R?) | V-9 = 0in Q }.

Since this is to regular for our purposes, we will take the closure

with respect to the Hj-norm. Now the spaces V := CIOSMH1 V and
0

H = closML2 V form a Gelfand-triple (compact embedding follows from

RELLICH-KONDRACHOV). V <% H =~ H* < V* where V is equipped
with ||« | = - HH% and the scalar-product ((u,v)) := {, Vu : Vodz and
H with |- | := | - 2 and the scalar-product (u,v) := {gu - vdz. One
can show the characterisations V = {u € H}()? | V-u=0in Q } and
H={ueLl??|V-u=0inQ, n-u=0ondQ }, where the condi-
tion of zero divergence means {o, u - Vo = 0 for a.a. ¢ € C(Q2) and the
vanishing on the boundary is to be understood in the sense of a certain
trace.



