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A function u : r0, T s Ñ X is Bochner measurable (or stron-

gly measurable) if there exists a sequence of simple functions

pun : r0, T s Ñ XqnPN such that for almost all t P p0, T q

lim
nÑ8

}unptq ´ uptq} “ 0.

A function u : r0, T s Ñ X is a simple function if there

exist finitely many pairwise disjoint Lebesgue measurable

sets pEi Ă r0, T sq
m
i“1 such that u takes constant values ui P X

on each of these sets, that is u “
řm
i“1 ui 1Ei . The ( Bochner)

integral of u is

ż T

0

uptqdt :“
m
ÿ

i“1

ui|Ei| P X.

A function u : r0, T s Ñ X is weakly Bochner measurable if

for all f P X˚ the map t ÞÑ x f, uptq y is Lebesgue measurable.

Since strong convergence implies weak convergence, Bochner

measurability implies weak Bochner measurability.

Let u : r0, T s Ñ X be Bochner measurable. Then }u} is Le-

besgue measurable on r0, T s.
As u is Bochner measurable, there exists a sequence of simple functions

pun : r0, T s Ñ XqnPN such that unptq Ñ uptq holds for almost all t P r0, T s.

For those t P r0, T s we thus have
ˇ

ˇ}unptq} ´ }uptq}
ˇ

ˇ ď }unptq ´ uptq}
nÑ8
ÝÝÝÝÑ 0.

The functions p}un} : r0, T s Ñ RqnPN are simple functions (and hence measu-

rable), because the functions un “
řmn
i“1 u

pnq
i 1

E
pnq
i

are simple:

}unptq} “

›

›

›

›

›

mn
ÿ

i“1

u
pnq
i 1

E
pnq
i

ptq

›

›

›

›

›

p‹q
“

mn
ÿ

i“1

}u
pnq
i } 1

E
pnq
i

ptq,

where in p‹q we use that the pE
pnq
i q

mn
i“1 are disjoint. Hence }u} is measurable

as the limit of the measurable functions }un}.

Let u : r0, T s Ñ X be Bochner measurable and punqnPN a

sequence of simple functions with unptq Ñ uptq inX for almost

all t P r0, T s. Then u is Bochner integrable if
şT

0
}unptq ´

uptq}dtÑ 0. We set

ż T

0

uptqdt :“ lim
nÑ8

ż T

0

unptqdt P X.

For a measurable subset B Ă r0, T s, we set

ż

B

uptqdt :“

ż T

0

uptq1Bptqdt.

A function u : r0, T s Ñ X is (essentially) separable valued if it

(up to a null set N Ă r0, T s) only takes values in a separable

subset of X.

A function u : r0, T s Ñ X is Bochner measurable if and only

if u is weakly Bochner measurable and essentially separable

valued.

Corollary: If X is separable, weak and strong Bochner mea-

surability coincide.

Subsets of separable spaces are separable.

Let u : r0, T s Ñ X be B-measurable. Then u is B-integrable if

and only if t ÞÑ }uptq} is L-integrable.

Let u : r0, T s Ñ X be B-integrable. For all measurable sub-

sets B Ă r0, T s and for all f P X˚ we have
›

›

ş

B
uptqdt

›

› ď
ş

B
}uptq}dt and

@

f,
ş

B
uptqdt

D

“
ş

B
xf, uptqydt.

Let pY, } ¨ }Y q be a Banach space, A P LpX,Y q a li-

near bounded operator and u : r0, T s Ñ X B-integrable.

Then Au : r0, T s Ñ Y is B-integrable with
şT

0
pAuqptqdt “

A
´

şT

0
uptqdt

¯

.

The limit is well defined as each un and u are Bochner measurable and

hence the function }un ´ u} is Lebesgue measurable by a Lemma.

For n,m ě Mε we have, as un ´ um is again a simple func-

tion and the triangle equality is an equality for simple functions,
›

›

›

şT
0 unptq dt´

şT
0 umptq dt

›

›

›

X
“

şT
0 }unptq ´ umptq}dt

4‰
ď

şT
0 }unptq ´

uptq} ` }uptq ´ umptq}dt ď 2ε. Hence
´

şT
0 unptq dt

¯

nPN
is a Cauchy

sequence in X and thus converges for nÑ8 as X is a Banach space.

The integral is independent of the approximating sequence of simple func-

tions, as
şT
0 }unptq´uptq}dtÑ 0 holds for all such sequences and thus the

procedure in the previous remark can be done with any such sequence.

Let X be reflexive and u : r0, T s Ñ X be absolutely conti-

nuous. Then u is classically differentiable in p0, T q, u1 is Boch-

ner integrable and

uptq “ upt0q `

ż t

t0

u1psqds

for all t, t0 P r0, T s.

Let u : R Ñ X be B-integrable, u|Rzr0,T s ” 0 Then a.e. in r0, T s 1.

limhÑ0
1
h

şt`h
t upsq ds “ uptq, and 2. limhÑ0

1
h

şt`h
t }upsq ´ uptq}ds “ 0,

1 follows from 2 : by the triangle inequality we have
›

›

›

1
h

şt`h
t

upsq ds´ uptq
›

›

›
“

›

›

›

1
h

şt`h
t

upsq ´ uptq ds
›

›

›
ď 1

h

şt`h
t

}upsq ´ uptq} ds.

2 : We can’t guarantee the measurability of }up¨q ´ uptq}, so we have to

use an approximation step. By Pettis’ Theorem, u is essentially separable

valued. Hence for almost all t P r0, T s there exists a sequence pxptqn qnPN Ă X

converging to uptq.

By the triangle inequality, we have 1
h

şt`h
t

}upsq ´ uptq} ds ď 1
h

şt`h
t

}upsq ´

xptqn } ds ` }uptq ´ xptqn }. Taking n Ñ 8 and then h Ñ 0 guarantees the

measurability s ÞÑ }upsq ´ xptqn }.
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For p P r1,8s, Lppp0, T q;Xq is a Banach space. For p P r1,8q, the

simple functions and Cpr0, T s;Xq are both dense in Lppp0, T q;Xq and

Lppp0, T q;Xq is separable if X is, too.

Let u P Lppp0, T q;Xq and v P Lqpp0, T q;X˚q where p, q P r1,8s are

Hölder conjugates. Then x vp¨q, up¨q y P L1pp0, T qq and the Hölder ine-

quality holds:
ˇ

ˇ

ˇ

şT
0 x vptq, uptq y dt

ˇ

ˇ

ˇ
ď }v}Lqpp0,T q;X˚q}u}Lppp0,T q;Xq.

For p P p1,8q, Lppp0, T q;Xq is reflexive if X is, too. If X is reflexive

or X˚ is separable, then pLppp0, T q;Xqq˚ – Lqpp0, T q;X˚q via the dual

pairing x v, u ypLppp0,T q;Xqq˚ˆLppp0,T q;Xq :“
şT
0 x vptq, uptq yX˚ˆX dt.

If X “ H is a Hilbert space, then L2pp0, T q;Hq is Hilbert space with

the inner product xu, v yL2pp0,T q;Hq :“
şT
0 xuptq, vptq yH dt.

If X ãÑ Y are Banach spaces, then Lppp0, T q;Xq ãÑ Lqpp0, T q;Y q for

all 1 ď q ď p ď 8.

For p P r1,8q, Lppp0, T q;Xq is the linear space of equivalence

classes of Bochner measurable functions u : r0, T s Ñ X with

}u}Lppp0,T q;Xq :“

˜

ż T

0

}uptq}p dt

¸
1
p

ă 8

and L8pp0, T q;Xq is the linear space of equivalence classes of

bounded Bochner measurable functions u : r0, T s Ñ X with

}u}L8pp0,T q;Xq :“ ess sup
tPp0,T q

}uptq} ă 8.

Let u, v P L1
locpp0, T q;Xq. Then the following are equivalent

1. v is a weak derivative of u

2. there exists a u0 P X such that

uptq “ u0 `

ż t

0

vpsqds

almost everywhere in p0, T q.

3. for all f P X˚ the function t ÞÑ x f, uptq y has the weak

derivative t ÞÑ x f, vptq y.

Let u, v P L1
locpp0, T q;Xq. Then v is the weak time deriva-

tive of u if

ż T

0

uptqϕ1ptqdt “ ´

ż T

0

vptqϕptqdt @ϕ P C80 pp0, T q;Rq.

or (dual characterisation) if for all f P X˚

B

f,
upt` hq ´ uptq

h
´ v

F

hÑ0
ÝÝÝÑ 0.

The FTOCOV and its corollary hold.

Let pV, }¨}q be a real reflexive separable Banach space, pH, |¨|q

a real Hilbert space and V
d

ãÑ H. We identify H – H˚.

Since V is reflexive, we get H˚
d

ãÑ V ˚. We call V Ă H Ă V ˚

a Gelfand triple.

The space H is called pivot space.

The norm on V will be denoted by } ¨ }, the norm on H will

be | ¨ | and the norm on V ˚ will be } ¨ }˚. The dual pairing will

be x ¨, ¨ yV ˚ˆV and the scalar product on H is p¨, ¨q such that

we have x g, v y “ pg, vq for all g P H and v P V .

The space

W 1,1pp0, T q;Xq :“ tu P L1pp0, T q;Xq : Du1 P L1pp0, T q;Xqu

equipped with }u}1,1 :“ }u}1 ` }u
1}1 is a Banach space. For

every function u P W 1,1pp0, T q;Xq we can find an absolute-

ly continuous function, which is almost equal to u, that is,

W 1,1pp0, T q;Xq ãÑ ACpr0, T s;Xq ãÑ Cpr0, T s;Xq.

The space pW p0, T q; } ¨ }W p0,T qq is a Banach space.

C8pr0, T s;V q ĂW p0, T q is dense.

We have W p0, T q ãÑ Cpr0, T s;Hq.
The integration-by-parts formula holds: for u, v PW p0, T q and

0 ď s ď t ď T

ż t

s

xu1pτq, vpτq y` x v1pτq, upτq ydτ “ puptq, vptqq´pupsq, vpsqq.

For u P W p0, T q we have 1
2

d
dt |uptq|

2 “ xu1ptq, uptq y a. e. in

p0, T q.

Let V Ă H Ă V ˚ be a Gelfand triple. We define

W p0, T q :“ tu P L2pp0, T q;V q : Du1 P L2pp0, T q;V ˚qu

and endow it with the norm

}u}W p0,T q :“
´

}u}2L2pp0,T q;V q ` }u
1}2L2pp0,T q;V ˚q

¯
1
2

and analogously for p P r1,8s and q :“ p
p´1 P r1,8s

Wpp0, T q :“ tv P Lppp0, T q;V q : Dv1 P Lqpp0, T q;V ˚qu.

For all t P r0, T s and all v P V , the map apt, v, ¨q : V Ñ R is

linear and bounded. We define Aptqv :“ apt, v, ¨q P V ˚ which

fulfils }Aptqv}˚ ď β}v}.

For all t P r0, T s, Aptq P LpV, V ˚q with }Aptq}LpV,V ˚q ď β.

Finally, define A : r0, T s Ñ LpV, V ˚q, t ÞÑ Aptq.

The Gårding inequality now becomes xpAptq `

κIqv, v yV ˚ˆV ě µ}v}2, where I : V Ñ V ˚ is the embed-

ding via p¨, ¨q: x Iv, v yV ˚ˆV “ pv, vq “ |v|2. Hence A with a

positive shift is strongly positive.

V Ă H Ă V ˚ Gelfand triple, a : r0, T s ˆ V ˆ V Ñ R s.t.

A1 ap¨, v, wq is Lebesgue measurable on r0, T s @v, w P V ,

A2 apt, ¨, ¨q is bilinear for all t P r0, T s,

A3 the form a is uniformly bounded with respect to the

first input variable, that is, there exists a β ą 0 such that

|apt, v, wq| ď β}v}}w} for all t P r0, T s and all v, w P V .

A4 the form a fulfills the Gårding inequality, that is, there

exists a µ ą 0 and a κ ě 0 such that apt, v, vq ě µ}v}2 ´ κ|v|2

for all t P r0, T s and all v P V . (For κ “ 0, apt, ¨, ¨q is strongly

positive for all t P r0, T s.)
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As L2pp0, T q;V ˚q “ pL2pp0, T q;V qq˚, u1 `Au “ f is equivalent to

ż T

0
xu1ptq, vptq y` xpAuqptq, vptq y dt “

ż T

0
x fptq, vptq ydt @v P L2pp0, T q;V q.

Since C80 p0, T qbV is dense in C80 pp0, T q;V q
d

ãÑ L2pp0, T q;V q (Exercise!),

we can restrict the test functions to vptq “ ϕptqw with ϕ P C80 p0, T q and

w P V . Hence p‹q is equivalent to

ż T

0

`

xu1ptq, w y` xpAuqptq, w y
˘

ϕptq dt “

ż T

0
x fptq, w yϕptqdt.

for all ϕ P C80 p0, T q, w P V . The Fundamental Theorem now implies

xu1ptq, w y`apt, uptq, wq “ x fptq, w y @w P V a.e. in p0, T q.

$

’

’

&

’

’

%

To u0 P H and f P L2pp0, T q, V ˚q find u PW p0, T q with

up0q “ u0 and

u1 `Au “ f in L2pp0, T q;V ˚q. p‹q

Since u P W p0, T q ãÑ Cpr0, T s;Hq, the initial condition has to be under-

stood to be attained in H.

For u PW p0, T q we find u1 P L2pp0, T q;V ˚q ãÑ L1pp0, T q;V ˚q. Since u P

W 1,1pp0, T q;Xq, u is an absolutely continuous function u : r0, T s Ñ V ˚.

Since V ˚ is reflexive, by Komura u is classically differentiable almost

everywhere. Hence p‹q is equivalent to u1ptq`Auptq “ fptq in V ˚ almost

everywhere in p0, T q.

Under the assumptions A1 - A4 the a priori estimate

|wptq|2 ` µ

ż t

0

}wpsq}2 ds ď c
`

|w0|
2 ` }g}L2pp0,T q;V ˚q

˘

holds for every solution w PW p0, T q of

$

&

%

w1 `Aw “ g in L2pp0, T q;V ˚q,

wp0q “ w0 in H.

Under the assumptions A1 - A4 , the problem (P) is well-

posed in the sense of Hadamard, that is, a unique solution

exists and we have continuous dependence on the right side f .

Generalisation by Tartar/Temam: in the above theorem we can allow

f P L2pp0, T q;V ˚q‘L1pp0, T q;Hq, i.e. f “ f1`f2 with f1 P L1pp0, T q;Hq

and f2 P L2pp0, T q;V ˚q.

The approximate system is well defined. For every n P t1, . . . , Nu consider

the problem in V ˚

ˆ

1

τ
I `A

˙

un “ f pnq `
1

τ
Iun´1

The operator 1
τ
I`A is a linear, bounded and strongly positive operator :

for the last property observe
@`

1
τ
I `A

˘

v, v
D

“ 1
τ
|v|2`xAv, v y ě 1

τ
|v|2`

µ}v}2 ě µ}v}2. For κ ą 0, choose τ small enough, i.e. τ ă 1
κ

, then 1
τ
I`A

is strongly positive.

We have u0 P H and un´1 P V and hence un´1 P V ˚. By the Theorem

of Lax-Milgram, there exists a unique un for every n P t1, . . . , Nu, that

is, a solution to the problem in V ˚.

In the following we identify Iun Ø un and don’t write the I anymore.

Let N P N, τ :“ T
N

be the step size and tn :“ nτ be equidistant

time step for n P t1, . . . , Nu. Then we consider the implicit Euler

scheme: for n P t1, . . . , Nu let un :“ uptnq, u
1
ptnq «

un´un´1

τ
and

for the right hand side use fn :“ 1
τ

ştn
tn´1

fptq dt P V ˚. We consider

the problem

$

&

%

To un´1 find un P V such that

Iun´Iun´1

τ
`Aptnqu

n
“ fn, n P t1, . . . , Nu.

In the following we only consider κ “ 0 and assume that A is

independent of t (time), otherwise we would have to set Aptnq “
1
τ

ştn
tn´1

apt, ¨, ¨q dt.

Let N` Ñ 8 for ` Ñ 8 with N` P N and τ` :“ T
N`

and tuτ`u`, tûτ`u` and

tfτ`u` be constructed as above. For ` P N, we choose a sequence tu0
`u` Ă H

such that u0
` Ñ u0 as `Ñ 8. We have u0

τ`
Ñ u0 as `Ñ 8 in H and uτ` p0q “

u0
` . We want to show that tfτ`u` converges to f in L2

pp0, T q;V ˚q. We have

}fτ`}
2
L2pp0,T q;V˚q

ď }f}2
L2pp0,T q;V˚

. The a priori estimates are independent

of ` and we may deduce

}uτ`}
2
L8pp0,T q;Hq “

N`
max
i“1

|u
i
|
2
ď |u

0
` |

2
`
τ`

µ

N
ÿ

i“1

}f
i
}
2
˚,

}uτ`}
2
L2pp0,T q;V q

“ τ`

N
ÿ̀

i“1

}uτ`}
2
ď µ

˜

|u
0
` |

2
`
τ`

µ

N
ÿ

i“1

}f
i
}
2
˚

¸

,

}yuτ`}
2
L8pp0,T q;Hq “

N`
max
i“1

|u
i
|
2
ď |u

0
` |

2
`
τ`

µ

N
ÿ

i“1

}f
i
}
2
˚.

For t P ptn´1, tns define uτ ptq :“ un and uτ p0q “ u0. Hence uτ

is piecewise constant. Let ûτ ptq :“ un´1 ` pt ´ tn´1q
un´un´1

τ

and fτ ptq :“ fn for t P ptn´1, tns. As ûτ is piecewise linear, it is

Lipschitz continuous and hence weakly differentiable almost

everywhere with derivative û1τ ptq “
un´un´1

τ for t P ptn´1, tns.

Hence we can interpret the implicit Euler scheme via these

functions: we may write û1τ ptq `Auτ “ fτ .

We have fτ` Ñ f in L2pp0, T q;V ˚q (Exercise). We observe that

A : L2pp0, T q;V q Ñ L2pp0, T q;V ˚q is linear and continuous.

Hence A is weak-weak-continuous and thus Auτ` á Au in

L2pp0, T q;V ˚q. We find in L2pp0, T q;V ˚q

û1τ` `Auτ` “ fτ` in L2pp0, T q;V ˚q.

The three terms above converge weakly to u1, Au and f in

L2pp0, T q;V ˚q, respectively. This implies that u is a solution

to the abstract equation.

As puτ`q` is bd in L8pp0, T q;Hq X L2pp0, T q;V q and pûτ`q` is

bd in L8pp0, T q;Hq, Du P L8pp0, T q;Hq X L2pp0, T q;V q such

that uτ`
˚
á u in L8pp0, T q;HqXL2pp0, T q;V q and there exists

a û P L8pp0, T q;Hq such that ûτ`
˚
á û. One has to observe

that one can do this steps one after the other to infer that

this holds afterwards for one subsequence. Since L2pp0, T q;V q

is reflexive and L8pp0, T q;Hq – pL1pp0, T q;Hqq˚ is the dual

of a separable Banach space, this follows from the Theorem

of Banach Alaoglu.
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Let u PW p0, T q be the solution of (P) with f P L2pp0, T q;V ˚q

and let additionally pf ´ u1q1 P L2pp0, T q;V ˚q. Then the error

estimate

|uptnq ´ u
n|2 ´ µτ

n
ÿ

j“1

}uptjq ´ u
j}2

ď |u0 ´ u
0|2 `

τ2

3µ
}pf ´ u1q1}2L2pp0,T q;V ˚q

for all n P t1, . . . , Nu holds for the implicit Euler time dis-

cretisation given in the previous proof.

We have to show that up0q “ u0 in H. We have ûτ` á u in

W p0, T q ãÑ Cpr0, T s;Hq. The embedding is linear and conti-

nuous and hence weak-weak-continuous, so the weak conver-

gence is translated to a pointwise weak convergence on H.

There exists a linear continuous trace operator Γ: W p0, T q Ñ

H, Γpuq :“ Γu :“ up0q in H. Hence ûτ` á u in W p0, T q

and so ûτ`p0q á up0q in H. We had the condition that

ûτ`p0q “ u0` Ñ u0 in H. Hence the weak and strong limits

have to coincide.

Let p ą 1, 1
p `

1
p1 “ 1 and V Ă H Ă V ˚ a Gel-

fand triple. Let A0, B : V Ñ V ˚ and A :“ A0 ` B with

pA0 vqptq :“ A0vptq, pBvqptq :“ Bvptq for v : r0, T s Ñ V and

A :“ A0`B with A0 : Lppp0, T q;V q Ñ Lp
1

pp0, T q;V ˚q mo-

notone, hemi-continuous, B : Lppp0, T q;V q Ñ Lp
1

pp0, T q;V ˚q

strongly continuous, A : Lppp0, T q;V q Ñ Lp
1

pp0, T q;V ˚q coer-

cive with µ ą 0, λ ě 0 s.t. xA v, v y “
şT

0
xA vptq, vptq ydt ě

µ}v}pLppp0,T q;V q ´ λ for all v P Lppp0, T q;V q and bounded with

β ě 0 such that }A v}Lp1 pp0,T q;V ˚q ď βp1 ` }v}p´1
Lppp0,T q;V qq for

all v P Lppp0, T q;V q.

Let u0 P V and f P W 1,2pp0, T q;V ˚q and the operator

A1ptq : V Ñ V ˚ be continuous and linear for all t P p0, T q. If

the compatibility condition Apu0q ´ fp0q P H holds, then the

solution u P W p0, T q to (P) admits the additional regularity

u PW 1,8pp0, T q;Hq XW 1,2pp0, T q;V q. Especially, it holds

û1n á u1 in L8pp0, T q;Hq,

û1n á u1 in L2pp0, T q;V q.

Assuming the standard assumptions, for every u0 P H and

f P Lp
1

pp0, T q, V ˚q, there exists a solution u PWpp0, T q with

$

&

%

u1 `Apuq “ f in Lp
1

pp0, T q;V ˚q,

up0q “ u0, in H.

Let p P p1,8q. Then Wpp0, T q equipped with the norm

}u}Wpp0,T q :“ }u}Lppp0,T q;V q ` }u
1}Lp1 pp0,T q;V ˚q is a Banach

space. We have Wpp0, T q ãÑ Cpr0, T s;Hq and the rule of inte-

gration by parts:

ż t

s

xu1pτq, vpτq y` x v1pτq, upτq ydτ “ puptq, vptqq´ pupsq, vpsqq

for all v, w P Wpp0, T q and all s, t P r0, T s. Finally,

C8pr0, T s;V q d
ãÑWpp0, T q.

Assuming the standard assumptions and B “ 0, the solution

operator of the nonlinear problem

Lp
1

pp0, T q;V ˚q ˆH Ñ Cpr0, T s;Hq, pf, u0q ÞÑ u

is continuous on bounded sets.

Assuming the standard assumptions and B “ 0, the solution of the

nonlinear problem is unique and the whole sequence of approximate

solutions converges to u.

Let u, v PWpp0, T q be two solutions to the problems
$

&

%

u1 `Apuq “ f, in Lp
1
pp0, T q;V ˚q,

up0q “ u0 in H
,

$

&

%

v1 `Apvq “ f, in Lp
1
pp0, T q;V ˚q,

vp0q “ u0 in H

As A is monotone we have

1

2

d

dt
|u´ v|2 “ xu1 ´ v1, u´ v y

ď xu1 ´ v1, u´ v y` xAu´A v, u´ v y “ x f ´ f, u´ v y “ 0

and hence (by integration) |uptq´vptq|2 ď |u0´u0|
2 “ 0 for all t P r0, T s.

Let the standard assumptions be fulfilled with A “ A0 : V Ñ

V ˚ being p-monotone, that is, there exists a µ̃ ą 0 such that

xA v ´Aw, v ´ w y ě µ̃}v ´ w}p @v, w P V.

Then the solution operator of the nonlinear problem

Lp
1

pp0, T q;V ˚qˆH Ñ Cpr0, T s;HqXLppp0, T q;V q, pf, u0q ÞÑ u

is continuous.

Let the standard assumptions be fulfilled. Additionally, we

require that A : r0, T s ˆ V Ñ V ˚ fulfills

xAptqv ´Aptqw, v ´ w y ě ´gptq|v ´ w|2

for v, w P V and g P L1p0, T q. The operator

A : Lppp0, T q;V q Ñ Lp
1

pp0, T q;V ˚q is then given by pAuqptq “

Auptq. Then the solution operator of the nonlinear problem

L2pp0, T q;Hq ˆH Ñ Cpr0, T s;Hq, pf, u0q ÞÑ u

is Lipschitz-continuous.
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We consider a bounded Lipschitz domain Ω Ă Rd with d P t2, 3u and

the incompressible Navier-Stokes equation
$

’

’

’

’

’

&

’

’

’

’

’

%

Btu´ ν∆u` pu ¨∇qu`∇p “ f, in Ωˆ p0, T q,

∇ ¨ u “ 0 in Ωˆ p0, T q,

u “ 0 on BΩˆ p0, T q,

up0q “ 0 in Ω,

where u : Ω ˆ r0, T s Ñ Rd is the velocity field, p : Ω ˆ r0, T s Ñ R is the

pressure and ν is the viscosity. The time derivative of the velocity is the

acceleration, the second (dissipative) term ν∆u described how friction

behaves in the fluid.

Let Ω Ă R3 be a bounded Lipschitz domain. Assume that

0 ă β ă β1prq ď β̄ ă 8 and b1, b2 ą 0. Assume additionally

that ĉ´1 : R Ñ R is a monotone function with |pĉ´1q1| ď C.

Then there exists a weak solution to

$

’

’

&

’

’

%

Btu`∇βpuq “ g in Ωˆ p0, T q,

n ¨∇βpuq ` pb1 ` b2|ĉ´1puq|3qĉ´1puq “ h on BΩˆ p0, T q,

up0q “ u0 in Ω,

As test functions we take V :“
 

ϕ P C8c
`

Ω;Rd
˘

| ∇ ¨ ϕ ” 0 in Ω
(

.

Since this is to regular for our purposes, we will take the closure

with respect to the H1-norm. Now the spaces V :“ clos}¨}
H1

0

V and

H :“ clos}¨}
L2

V form a Gelfand-triple (compact embedding follows from

Rellich-Kondrachov). V
c

ãÑ H – H˚ ãÑ V ˚, where V is equipped

with } ¨ } :“ } ¨ }H1
0

and the scalar-product ppu, vqq :“
ş

Ω ∇u : ∇v dx and

H with | ¨ | :“ } ¨ }L2 and the scalar-product pu, vq :“
ş

Ω u ¨ v dx. One

can show the characterisations V “
 

u P H1
0 pΩq

d | ∇ ¨ u ” 0 in Ω
(

and

H “
 

u P L2pΩqd | ∇ ¨ u ” 0 in Ω, n ¨ u ” 0 on BΩ
(

, where the condi-

tion of zero divergence means
ş

Ω u ¨∇ϕ “ 0 for a.a. ϕ P C8c pΩq and the

vanishing on the boundary is to be understood in the sense of a certain

trace.


