DEFINITION

BOCHNER integral of a simple function	BOCHNER measurability
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Lemma & Proof	Definition & Remark
LEBESGUE-measurability of $ u $	Weak BOCHNER measurability
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Definition, Theorem w/o proof & Corollary w/ proof	Definition
Essentially separable valued and PETTIS' Theorem	BOCHNER integral
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Remark	Theorem w/o proof
Well-definedness of the BOCHNER integral	Properties of the BOCHNER integral
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Lemma w/ proof	Theorem w/o proof
LEBESGUE points	Komura

A function $u: [0,T] \to X$ is **Bochner measurable** (or strongly measurable) if there exists a sequence of simple functions $(u_n: [0,T] \to X)_{n \in \mathbb{N}}$ such that for almost all $t \in (0,T)$

$$\lim_{n \to \infty} \|u_n(t) - u(t)\| = 0$$

A function $u: [0,T] \to X$ is weakly BOCHNER measurable if for all $f \in X^*$ the map $t \mapsto \langle f, u(t) \rangle$ is LEBESGUE measurable. Since strong convergence implies weak convergence, BOCHNER measurability implies weak BOCHNER measurability.

Let $u: [0,T] \to X$ be BOCHNER measurable and $(u_n)_{n \in \mathbb{N}}$ a sequence of simple functions with $u_n(t) \to u(t)$ in X for almost all $t \in [0,T]$. Then u is **Bochner integrable** if $\int_0^T ||u_n(t) - u(t)|| dt \to 0$. We set

$$\int_0^T u(t) \, \mathrm{d}t := \lim_{n \to \infty} \int_0^T u_n(t) \, \mathrm{d}t \in X$$

For a measurable subset $B \subset [0, T]$, we set

$$\int_B u(t) \, \mathrm{d}t \coloneqq \int_0^T u(t) \, \mathbb{1}_B(t) \, \mathrm{d}t.$$

Let $u: [0,T] \to X$ be B-measurable. Then u is B-integrable if and only if $t \mapsto ||u(t)||$ is *L*-integrable.

Let $u \colon [0,T] \to X$ be B-integrable. For all measurable subsets $B \subset [0,T]$ and for all $f \in X^*$ we have $\left\| \int_B u(t) \, \mathrm{d}t \right\| \leq \int_B \|u(t)\| \, \mathrm{d}t$ and $\langle f, \int_B u(t) \, \mathrm{d}t \rangle = \int_B \langle f, u(t) \rangle \, \mathrm{d}t$.

Let $(Y, \|\cdot\|_Y)$ be a BANACH space, $A \in L(X, Y)$ a linear bounded operator and $u: [0, T] \to X$ B-integrable. Then $Au: [0, T] \to Y$ is B-integrable with $\int_0^T (Au)(t) dt = A\left(\int_0^T u(t) dt\right)$.

Let X be reflexive and $u: [0,T] \to X$ be absolutely continuous. Then u is classically differentiable in (0,T), u' is BOCHNER integrable and

$$u(t) = u(t_0) + \int_{t_0}^t u'(s) \,\mathrm{d}s$$

for all $t, t_0 \in [0, T]$.

A function $u: [0,T] \to X$ is a **simple function** if there exist finitely many pairwise disjoint LEBESGUE measurable sets $(E_i \subset [0,T])_{i=1}^m$ such that u takes constant values $u_i \in X$ on each of these sets, that is $u = \sum_{i=1}^m u_i \mathbb{1}_{E_i}$. The (BOCHNER) integral of u is

$$\int_0^T u(t) \, \mathrm{d}t \coloneqq \sum_{i=1}^m u_i |E_i| \in X.$$

Let $u: [0,T] \to X$ be BOCHNER measurable. Then ||u|| is LE-BESGUE measurable on [0,T].

As u is BOCHNER measurable, there exists a sequence of simple functions $(u_n: [0,T] \to X)_{n \in \mathbb{N}}$ such that $u_n(t) \to u(t)$ holds for almost all $t \in [0,T]$. For those $t \in [0,T]$ we thus have $|||u_n(t)|| - ||u(t)||| \le ||u_n(t) - u(t)|| \xrightarrow{n \to \infty} 0$. The functions $(||u_n||: [0,T] \to \mathbb{R})_{n \in \mathbb{N}}$ are simple functions (and hence measurable), because the functions $u_n = \sum_{i=1}^{m_n} u_i^{(n)} \mathbbm{1}_{E_i^{(n)}}$ are simple:

$$\|u_{n}(t)\| = \left\|\sum_{i=1}^{m_{n}} u_{i}^{(n)} \mathbb{1}_{E_{i}^{(n)}}(t)\right\| \stackrel{(\star)}{=} \sum_{i=1}^{m_{n}} \|u_{i}^{(n)}\| \mathbb{1}_{E_{i}^{(n)}}(t),$$

where in (\star) we use that the $(E_i^{(n)})_{i=1}^{m_n}$ are disjoint. Hence ||u|| is measurable as the limit of the measurable functions $||u_n||$.

A function $u: [0,T] \to X$ is *(essentially) separable valued* if it (up to a null set $N \subset [0,T]$) only takes values in a separable subset of X.

A function $u: [0,T] \to X$ is BOCHNER measurable if and only if u is weakly BOCHNER measurable and *essentially separable* valued.

Corollary: If X is *separable*, weak and strong BOCHNER measurability coincide.

Subsets of separable spaces are separable.

The limit is well defined as each u_n and u are BOCHNER measurable and hence the function $||u_n - u||$ is LEBESGUE measurable by a Lemma.

For $n,m \ge M_{\varepsilon}$ we have, as $u_n - u_m$ is again a simple function tion and the triangle equality is an equality for simple functions, $\left\|\int_0^T u_n(t) \, \mathrm{d}t - \int_0^T u_m(t) \, \mathrm{d}t\right\|_X = \int_0^T \|u_n(t) - u_m(t)\| \, \mathrm{d}t \stackrel{\Delta \neq}{\leqslant} \int_0^T \|u_n(t) - u_m(t)\| + \|u(t) - u_m(t)\| \, \mathrm{d}t \leqslant 2\varepsilon$. Hence $\left(\int_0^T u_n(t) \, \mathrm{d}t\right)_{n \in \mathbb{N}}$ is a CAUCHY sequence in X and thus converges for $n \to \infty$ as X is a BANACH space. The integral is independent of the approximating sequence of simple functions, as $\int_0^T \|u_n(t) - u(t)\| \, \mathrm{d}t \to 0$ holds for all such sequences and thus the procedure in the previous remark can be done with any such sequence.

Let $u \colon \mathbb{R} \to X$ be *B*-integrable, $u|_{\mathbb{R} \setminus [0,T]} \equiv 0$ Then a.e. in [0,T] 1. $\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} u(s) \, \mathrm{d}s = u(t)$, and 2. $\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} \|u(s) - u(t)\| \, \mathrm{d}s = 0$,

 $\begin{array}{c|c} \hline 1 & \text{follows from} & \hline 2 \end{tabular}: & \text{by the triangle inequality we have} \\ \left\| \frac{1}{h} \int_t^{t+h} u(s) \, \mathrm{d}s - u(t) \right\| = \left\| \frac{1}{h} \int_t^{t+h} u(s) - u(t) \, \mathrm{d}s \right\| \leqslant \frac{1}{h} \int_t^{t+h} \|u(s) - u(t)\| \, \mathrm{d}s. \end{array}$

^{(2):} We can't guarantee the measurability of $||u(\cdot) - u(t)||$, so we have to use an approximation step. By PETTIS' Theorem, u is essentially separable valued. Hence for almost all $t \in [0, T]$ there exists a sequence $(x_n^{(t)})_{n \in \mathbb{N}} \subset X$ converging to u(t).

By the triangle inequality, we have $\frac{1}{h}\int_t^{t+h} \|u(s) - u(t)\| ds \leq \frac{1}{h}\int_t^{t+h} \|u(s) - x_n^{(t)}\| ds + \|u(t) - x_n^{(t)}\|$. Taking $n \to \infty$ and then $h \to 0$ guarantees the measurability $s \mapsto \|u(s) - x_n^{(t)}\|$.

Theorem W/O proof

BOCHNER space $L^p((0,T);X)$	Properties of the BOCHNER spaces
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Definition & Remark	Theorem w/o proof
Weak time derivative	Characterisation of weak derivatives
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Definition, Theorem w/o proof	Definition & Remark
$W^{1,1}((0,T);X)$ and absolutely continuous functions	Gelfand triple
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
DEFINITION	Theorem w/o proof
The spaces $W(0,T)$ and $W_p(0,T)$	Properties of $W(0,T)$
DIFFERENTIAL EQUATIONS III	DIFFERENTIAL EQUATIONS III
Remark	Remark

Assumptions on the form a

DIFFERENTIAL EQUATIONS III

DIFFERENTIAL EQUATIONS III

Obtaining the operator ${\cal A}$ from the form a

For $p \in [1, \infty]$, $L^p((0, T); X)$ is a BANACH space. For $p \in [1, \infty)$, the simple functions and C([0, T]; X) are both dense in $L^p((0, T); X)$ and $L^p((0, T); X)$ is separable if X is, too.

Let $u \in L^p((0,T);X)$ and $v \in L^q((0,T);X^*)$ where $p, q \in [1,\infty]$ are Hölder conjugates. Then $\langle v(\cdot), u(\cdot) \rangle \in L^1((0,T))$ and the Hölder *ine-quality* holds: $\left| \int_0^T \langle v(t), u(t) \rangle dt \right| \leq \|v\|_{L^q((0,T);X^*)} \|u\|_{L^p((0,T);X)}.$

For $p \in (1, \infty)$, $L^p((0,T); X)$ is reflexive if X is, too. If X is reflexive or X* is separable, then $(L^p((0,T); X))^* \cong L^q((0,T); X^*)$ via the dual pairing $\langle v, u \rangle_{(L^p((0,T);X))^* \times L^p((0,T);X)} \coloneqq \int_0^T \langle v(t), u(t) \rangle_{X^* \times X} dt$. If X = H is a HILBERT space, then $L^2((0,T);H)$ is HILBERT space with

If X = H is a HILBERT space, then $L^2((0,T); H)$ is HILBERT space with the inner product $\langle u, v \rangle_{L^2((0,T);H)} \coloneqq \int_0^T \langle u(t), v(t) \rangle_H dt$.

If $X \hookrightarrow Y$ are BANACH spaces, then $L^p((0,T);X) \hookrightarrow L^q((0,T);Y)$ for all $1 \leq q \leq p \leq \infty$.

Let $u, v \in L^1_{loc}((0,T); X)$. Then the following are equivalent

1. v is a weak derivative of u

2. there exists a $u_0 \in X$ such that

$$u(t) = u_0 + \int_0^t v(s) \,\mathrm{d}s$$

almost everywhere in (0, T).

3. for all $f \in X^*$ the function $t \mapsto \langle f, u(t) \rangle$ has the weak derivative $t \mapsto \langle f, v(t) \rangle$.

Let $(V, \|\cdot\|)$ be a real reflexive separable BANACH space, $(H, |\cdot|)$ a real HILBERT space and $V \stackrel{d}{\hookrightarrow} H$. We identify $H \cong H^*$. Since V is reflexive, we get $H^* \stackrel{d}{\hookrightarrow} V^*$. We call $V \subset H \subset V^*$ a **Gelfand triple**.

The space H is called *pivot* space.

The norm on V will be denoted by $\|\cdot\|$, the norm on H will be $|\cdot|$ and the norm on V^* will be $\|\cdot\|_*$. The dual pairing will be $\langle\cdot,\cdot\rangle_{V^*\times V}$ and the scalar product on H is (\cdot,\cdot) such that we have $\langle g, v \rangle = (g, v)$ for all $g \in H$ and $v \in V$.

The space $(W(0,T); \|\cdot\|_{W(0,T)})$ is a BANACH space. $\mathcal{C}^{\infty}([0,T]; V) \subset W(0,T)$ is dense.

We have $W(0,T) \hookrightarrow \mathcal{C}([0,T];H)$.

The integration-by-parts formula holds: for $u, v \in W(0, T)$ and $0 \leq s \leq t \leq T$

$$\int_{s}^{t} \langle u'(\tau), v(\tau) \rangle + \langle v'(\tau), u(\tau) \rangle d\tau = (u(t), v(t)) - (u(s), v(s)).$$

For $u \in W(0,T)$ we have $\frac{1}{2} \frac{d}{dt} |u(t)|^2 = \langle u'(t), u(t) \rangle$ a. e. in (0,T).

For all $t \in [0,T]$ and all $v \in V$, the map $a(t,v,\cdot) \colon V \to \mathbb{R}$ is *linear* and *bounded*. We define $A(t)v := a(t,v,\cdot) \in V^*$ which fulfils $||A(t)v||_* \leq \beta ||v||$.

For all $t \in [0, T]$, $A(t) \in L(V, V^*)$ with $||A(t)||_{L(V, V^*)} \leq \beta$. Finally, define $A: [0, T] \to L(V, V^*), t \mapsto A(t)$.

The GÅRDING inequality now becomes $\langle (A(t) + \kappa I)v, v \rangle_{V^* \times V} \geq \mu ||v||^2$, where $I: V \to V^*$ is the embedding via $(\cdot, \cdot): \langle Iv, v \rangle_{V^* \times V} = (v, v) = |v|^2$. Hence A with a positive shift is strongly positive. For $p \in [1, \infty)$, $L^p((0,T); X)$ is the linear space of *equivalence* classes of BOCHNER measurable functions $u: [0,T] \to X$ with

$$\|u\|_{L^{p}((0,T);X)} \coloneqq \left(\int_{0}^{T} \|u(t)\|^{p} \,\mathrm{d}t\right)^{\frac{1}{p}} < \infty$$

and $L^{\infty}((0,T);X)$ is the linear space of equivalence classes of bounded BOCHNER measurable functions $u: [0,T] \to X$ with

$$||u||_{L^{\infty}((0,T);X)} := \operatorname{ess\,sup}_{t \in (0,T)} ||u(t)|| < \infty.$$

Let $u, v \in L^1_{loc}((0,T); X)$. Then v is the weak time derivative of u if

$$\int_0^T u(t)\varphi'(t)\,\mathrm{d}t = -\int_0^T v(t)\varphi(t)\,\mathrm{d}t \qquad \forall \varphi \in \mathcal{C}_0^\infty((0,T);\mathbb{R}).$$

or (dual characterisation) if for all $f \in X^*$

$$\left\langle f, \frac{u(t+h)-u(t)}{h}-v\right\rangle \xrightarrow{h\to 0} 0.$$

The FTOCOV and its corollary hold.

The space

$$W^{1,1}((0,T);X) := \{ u \in L^1((0,T);X) : \exists u' \in L^1((0,T);X) \}$$

equipped with $||u||_{1,1} := ||u||_1 + ||u'||_1$ is a BANACH space. For every function $u \in W^{1,1}((0,T);X)$ we can find an absolutely continuous function, which is almost equal to u, that is, $W^{1,1}((0,T);X) \hookrightarrow \operatorname{AC}([0,T];X) \hookrightarrow \mathcal{C}([0,T];X).$

Let $V \subset H \subset V^*$ be a GELFAND triple. We define

$$W(0,T) := \{ u \in L^2((0,T); V) : \exists u' \in L^2((0,T); V^*) \}$$

and endow it with the norm

$$||u||_{W(0,T)} := \left(||u||_{L^2((0,T);V)}^2 + ||u'||_{L^2((0,T);V^*)}^2 \right)^{\frac{1}{2}}$$

and analogously for $p \in [1, \infty]$ and $q := \frac{p}{p-1} \in [1, \infty]$

$$W_p(0,T) := \{ v \in L^p((0,T);V) : \exists v' \in L^q((0,T);V^*) \}.$$

$$\begin{split} V &\subset H \subset V^* \text{ GELFAND triple, } a \colon [0,T] \times V \times V \to \mathbb{R} \text{ s.t.} \\ \hline & (A1) \ a(\cdot,v,w) \text{ is LEBESGUE } measurable \text{ on } [0,T] \ \forall v,w \in V, \\ \hline & (A2) \ a(t,\cdot,\cdot) \text{ is } bilinear \text{ for all } t \in [0,T], \end{split}$$

(A3) the form a is uniformly bounded with respect to the first input variable, that is, there exists a $\beta > 0$ such that $|a(t, v, w)| \leq \beta ||v|| ||w||$ for all $t \in [0, T]$ and all $v, w \in V$.

(A4) the form a fulfills the GÅRDING *inequality*, that is, there exists a $\mu > 0$ and a $\kappa \ge 0$ such that $a(t, v, v) \ge \mu ||v||^2 - \kappa |v|^2$ for all $t \in [0, T]$ and all $v \in V$. (For $\kappa = 0$, $a(t, \cdot, \cdot)$ is strongly positive for all $t \in [0, T]$.)

Remark

The linear problem

DIFFERENTIAL EQUATIONS III

THEOREM W/O PROOF

LIONS

DIFFERENTIAL EQUATIONS III

PROOF OF LIONS' THEOREM

Existence via time discretisation: 1. Setup

DIFFERENTIAL EQUATIONS III

Proof of Lions' Theorem

Existence via time discretisation: 4. Constructing the approximate solution using the solutions of the time-discretised problems

DIFFERENTIAL EQUATIONS III

PROOF OF LIONS' THEOREM

Existence via time discretisation: 6. Extracting subsequences

DIFFERENTIAL EQUATIONS III

Weak formulation of the linear problem

DIFFERENTIAL EQUATIONS III

LEMMA W/O PROOF

Uniqueness and stability

DIFFERENTIAL EQUATIONS III

PROOF OF LIONS' THEOREM

Existence via time discretisation: 2. Unique solvability of the discretised problem

DIFFERENTIAL EQUATIONS III

PROOF OF LIONS' THEOREM

Existence via time discretisation: 5. Translating a priori estimates from before to for the approximate solutions

DIFFERENTIAL EQUATIONS III

Proof of Lions' Theorem

Existence via time discretisation: 9. Passing to the limit As $L^2((0,T); V^*) = (L^2((0,T); V))^*, u' + \mathcal{A}u = f$ is equivalent to $\int_0^T \langle u'(t), v(t) \rangle + \langle (\mathcal{A}u)(t), v(t) \rangle dt = \int_0^T \langle f(t), v(t) \rangle dt \ \forall v \in L^2((0,T); V).$

Since $C_0^{\infty}(0,T) \otimes V$ is dense in $\mathcal{C}_0^{\infty}((0,T);V) \stackrel{d}{\hookrightarrow} L^2((0,T);V)$ (Exercise!), we can restrict the test functions to $v(t) = \varphi(t)w$ with $\varphi \in \mathcal{C}_0^{\infty}(0,T)$ and $w \in V$. Hence (\star) is equivalent to

$$\int_0^T \left(\langle u'(t), w \rangle + \langle (\mathcal{A} u)(t), w \rangle \right) \varphi(t) \, \mathrm{d}t = \int_0^T \langle f(t), w \rangle \varphi(t) \, \mathrm{d}t$$

for all $\varphi\in \mathcal{C}^\infty_0(0,T),\, w\in V.$ The Fundamental Theorem now implies

$$\langle u'(t), w \rangle + a(t, u(t), w) = \langle f(t), w \rangle \forall w \in V$$
 a.e. in $(0, T)$.

Under the assumptions (A1) - (A4) the *a priori* estimate

$$|w(t)|^{2} + \mu \int_{0}^{t} \|w(s)\|^{2} \, \mathrm{d}s \leq c \left(|w_{0}|^{2} + \|g\|_{L^{2}((0,T);V^{*})}\right)$$

holds for every solution $w \in W(0,T)$ of

$$\begin{cases} w' + Aw = g & \text{in } L^2((0,T);V^*), \\ w(0) = w_0 & \text{in } H. \end{cases}$$

The approximate system is well defined. For every $n \in \{1, \ldots, N\}$ consider the problem in V^*

$$\left(\frac{1}{\tau}I + A\right)u^n = f^{(n)} + \frac{1}{\tau}Iu^{n-1}$$

The operator $\frac{1}{\tau}I + A$ is a linear, bounded and strongly positive operator: for the last property observe $\left\langle \left(\frac{1}{\tau}I + A\right)v, v\right\rangle = \frac{1}{\tau}|v|^2 + \left\langle Av, v\right\rangle \ge \frac{1}{\tau}|v|^2 + \mu \|v\|^2 \ge \mu \|v\|^2$. For $\kappa > 0$, choose τ small enough, i.e. $\tau < \frac{1}{\kappa}$, then $\frac{1}{\tau}I + A$ is strongly positive.

We have $u_0 \in H$ and $u^{n-1} \in V$ and hence $u^{n-1} \in V^*$. By the *Theorem* of LAX-MILGRAM, there exists a unique u^n for every $n \in \{1, \ldots, N\}$, that is, a solution to the problem in V^* .

In the following we identify $Iu^n \leftrightarrow u^n$ and don't write the I anymore.

Let $N_{\ell} \to \infty$ for $\ell \to \infty$ with $N_{\ell} \in \mathbb{N}$ and $\tau_{\ell} := \frac{T}{N_{\ell}}$ and $\{u_{\tau_{\ell}}\}_{\ell}$, $\{\hat{u}_{\tau_{\ell}}\}_{\ell}$ and $\{f_{\tau_{\ell}}\}_{\ell}$ be constructed as above. For $\ell \in \mathbb{N}$, we choose a sequence $\{u_{\ell}^{0}\}_{\ell} \subset H$ such that $u_{\ell}^{0} \to u_{0}$ as $\ell \to \infty$. We have $u_{\tau_{\ell}}^{0} \to u_{0}$ as $\ell \to \infty$ in H and $u_{\tau_{\ell}}(0) = u_{\ell}^{0}$. We want to show that $\{f_{\tau_{\ell}}\}_{\ell}$ converges to f in $L^{2}((0,T);V^{*})$. We have $\|f_{\tau_{\ell}}\|_{L^{2}((0,T);V^{*})}^{2} \leq \|f\|_{L^{2}((0,T);V^{*})}^{2}$. The a priori estimates are independent of ℓ and we may deduce

$$\begin{split} \|u_{\tau_{\ell}}\|_{L^{\infty}((0,T);H)}^{2} &= \max_{i=1}^{N_{\ell}} |u^{i}|^{2} \leq |u_{\ell}^{0}|^{2} + \frac{\tau_{\ell}}{\mu} \sum_{i=1}^{N} \|f^{i}\|_{*}^{2}, \\ \|u_{\tau_{\ell}}\|_{L^{2}((0,T);V)}^{2} &= \tau_{\ell} \sum_{i=1}^{N_{\ell}} \|u_{\tau_{\ell}}\|^{2} \leq \mu \left(|u_{\ell}^{0}|^{2} + \frac{\tau_{\ell}}{\mu} \sum_{i=1}^{N} \|f^{i}\|_{*}^{2} \right), \\ \|\widehat{u_{\tau_{\ell}}}\|_{L^{\infty}((0,T);H)}^{2} &= \max_{i=1}^{N_{\ell}} |u^{i}|^{2} \leq |u_{\ell}^{0}|^{2} + \frac{\tau_{\ell}}{\mu} \sum_{i=1}^{N} \|f^{i}\|_{*}^{2}. \end{split}$$

We have $f_{\tau_{\ell}} \to f$ in $L^2((0,T); V^*)$ (Exercise). We observe that $A: L^2((0,T); V) \to L^2((0,T); V^*)$ is linear and continuous. Hence A is weak-weak-continuous and thus $Au_{\tau_{\ell}} \to Au$ in $L^2((0,T); V^*)$. We find in $L^2((0,T); V^*)$

$$\hat{u}'_{\tau_{\ell}} + Au_{\tau_{\ell}} = f_{\tau_{\ell}} \quad \text{in } L^2((0,T);V^*).$$

The three terms above converge weakly to u', Au and f in $L^2((0,T); V^*)$, respectively. This implies that u is a solution to the abstract equation.

$$\begin{cases} \text{To } u_0 \in H \text{ and } f \in L^2((0,T), V^*) \text{ find } u \in W(0,T) \text{ with} \\ u(0) = u_0 \text{ and} \\ u' + \mathcal{A} u = f \text{ in } L^2((0,T); V^*). \end{cases}$$
(*)

Since $u \in W(0,T) \hookrightarrow \mathcal{C}([0,T];H)$, the initial condition has to be understood to be attained in H.

For $u \in W(0,T)$ we find $u' \in L^2((0,T); V^*) \hookrightarrow L^1((0,T); V^*)$. Since $u \in W^{1,1}((0,T); X)$, u is an absolutely continuous function $u: [0,T] \to V^*$. Since V^* is reflexive, by KOMURA u is classically differentiable almost everywhere. Hence (\star) is equivalent to u'(t) + Au(t) = f(t) in V^* almost everywhere in (0,T).

Under the assumptions (A1) - (A4), the problem (P) is wellposed in the sense of HADAMARD, that is, a unique solution exists and we have continuous dependence on the right side f.

Generalisation by TARTAR/TEMAM: in the above theorem we can allow $f \in L^2((0,T); V^*) \oplus L^1((0,T); H)$, i.e. $f = f_1 + f_2$ with $f_1 \in L^1((0,T); H)$ and $f_2 \in L^2((0,T); V^*)$.

Let $N \in \mathbb{N}$, $\tau := \frac{T}{N}$ be the step size and $t_n := n\tau$ be equidistant time step for $n \in \{1, \ldots, N\}$. Then we consider the *implicit* EULER scheme: for $n \in \{1, \ldots, N\}$ let $u^n := u(t_n), u'(t_n) \approx \frac{u^n - u^{n-1}}{\tau}$ and for the right hand side use $f^n := \frac{1}{\tau} \int_{t_{n-1}}^{t_n} f(t) dt \in V^*$. We consider the problem

$$\begin{cases} \text{To } u^{n-1} \text{ find } u^n \in V \text{ such that} \\ \frac{Iu^n - Iu^{n-1}}{\tau} + A(t_n)u^n = f^n, \qquad n \in \{1, \dots, N\} \end{cases}$$

In the following we only consider $\kappa = 0$ and assume that A is independent of t (time), otherwise we would have to set $A(t_n) = \frac{1}{\tau} \int_{t_{n-1}}^{t_n} a(t, \cdot, \cdot) \, \mathrm{d}t$.

For $t \in (t_{n-1}, t_n]$ define $u_{\tau}(t) \coloneqq u^n$ and $u_{\tau}(0) = u^0$. Hence u_{τ} is piecewise constant. Let $\hat{u}_{\tau}(t) \coloneqq u^{n-1} + (t - t_{n-1})\frac{u^n - u^{n-1}}{\tau}$ and $f_{\tau}(t) \coloneqq f^n$ for $t \in (t_{n-1}, t_n]$. As \hat{u}_{τ} is piecewise linear, it is LIPSCHITZ continuous and hence weakly differentiable almost everywhere with derivative $\hat{u}'_{\tau}(t) = \frac{u^n - u^{n-1}}{\tau}$ for $t \in (t_{n-1}, t_n]$. Hence we can interpret the implicit EULER scheme via these functions: we may write $\hat{u}'_{\tau}(t) + Au_{\tau} = f_{\tau}$.

As $(u_{\tau_{\ell}})_{\ell}$ is bd in $L^{\infty}((0,T);H) \cap L^{2}((0,T);V)$ and $(\hat{u}_{\tau_{\ell}})_{\ell}$ is bd in $L^{\infty}((0,T);H)$, $\exists u \in L^{\infty}((0,T);H) \cap L^{2}((0,T);V)$ such that $u_{\tau_{\ell}} \stackrel{*}{\rightharpoonup} u$ in $L^{\infty}((0,T);H) \cap L^{2}((0,T);V)$ and there exists a $\hat{u} \in L^{\infty}((0,T);H)$ such that $\hat{u}_{\tau_{\ell}} \stackrel{*}{\rightharpoonup} \hat{u}$. One has to observe that one can do this steps one after the other to infer that this holds afterwards for *one* subsequence. Since $L^{2}((0,T);V)$ is *reflexive* and $L^{\infty}((0,T);H) \cong (L^{1}((0,T);H))^{*}$ is the *dual* of a separable BANACH space, this follows from the *Theorem* of BANACH ALAOGLU. Existence via time discretisation: 10. Identify the initial condition.

DIFFERENTIAL EQUATIONS III

THEOREM W/O PROOF

Additional regularity $u \in W^{1,\infty}((0,T);H) \cap W^{1,2}((0,T);V)$

DIFFERENTIAL EQUATIONS III

Lemma w/o proof

Properties of $W_p(0, T)$: completeness, IBP rule, embedding

DIFFERENTIAL EQUATIONS III

Lemma & Proof

Uniqueness in the nonlinear case

DIFFERENTIAL EQUATIONS III

THEOREM W/O PROOF

Continuity of solution operator if \mathcal{A} is "g-monotone" Theorem W/O proof

Error estimates

DIFFERENTIAL EQUATIONS III

Remark

Hypothesis for the nonlinear case

DIFFERENTIAL EQUATIONS III

THEOREM W/O PROOF

Main Theorem on Monotone nonlinear PDEs

DIFFERENTIAL EQUATIONS III

LEMMA W/O PROOF

Continuity of solution operator if B = 0

DIFFERENTIAL EQUATIONS III

THEOREM W/O PROOF

Continuity of solution operator if \mathcal{A} is *p*-monotone

DIFFERENTIAL EQUATIONS III

Let $u \in W(0,T)$ be the solution of (P) with $f \in L^2((0,T); V^*)$ and let additionally $(f - u')' \in L^2((0,T); V^*)$. Then the *error estimate*

$$|u(t_n) - u^n|^2 - \mu \tau \sum_{j=1}^n ||u(t_j) - u^j||^2$$

$$\leq |u_0 - u^0|^2 + \frac{\tau^2}{3\mu} ||(f - u')'||^2_{L^2((0,T);V^*)}$$

for all $n \in \{1, ..., N\}$ holds for the implicit EULER time discretisation given in the previous proof.

Let p > 1, $\frac{1}{p} + \frac{1}{p'} = 1$ and $V \subset H \subset V^*$ a GEL-FAND triple. Let $A_0, B: V \to V^*$ and $A := A_0 + B$ with $(\mathcal{A}_0 v)(t) := A_0 v(t), (\mathcal{B}v)(t) := Bv(t)$ for $v: [0,T] \to V$ and $\mathcal{A} := \mathcal{A}_0 + \mathcal{B}$ with $\mathcal{A}_0: L^p((0,T);V) \to L^{p'}((0,T);V^*)$ monotone, hemi-continuous, $\mathcal{B}: L^p((0,T);V) \to L^{p'}((0,T);V^*)$ strongly continuous, $\mathcal{A}: L^p((0,T);V) \to L^{p'}((0,T);V^*)$ coercive with $\mu > 0, \lambda \ge 0$ s.t. $\langle \mathcal{A}v, v \rangle = \int_0^T \langle \mathcal{A}v(t), v(t) \rangle dt \ge \mu \|v\|_{L^p((0,T);V)}^p - \lambda$ for all $v \in L^p((0,T);V)$ and bounded with $\beta \ge 0$ such that $\|\mathcal{A}v\|_{L^{p'}((0,T);V^*)} \le \beta(1+\|v\|_{L^p((0,T);V)}^{p-1})$ for all $v \in L^p((0,T);V)$.

Assuming the standard assumptions, for every $u_0 \in H$ and $f \in L^{p'}((0,T), V^*)$, there exists a solution $u \in W_p(0,T)$ with

$$\begin{cases} u' + A(u) = f & \text{in } L^{p'}((0,T); V^*), \\ u(0) = u_0, & \text{in } H. \end{cases}$$

Assuming the standard assumptions and B = 0, the solution operator of the nonlinear problem

$$L^{p'}((0,T);V^*) \times H \to \mathcal{C}([0,T];H), \qquad (f,u_0) \mapsto u$$

is continuous on bounded sets.

Let the standard assumptions be fulfilled with $A = A_0 : V \rightarrow V^*$ being *p*-monotone, that is, there exists a $\tilde{\mu} > 0$ such that

$$\langle \mathcal{A} v - \mathcal{A} w, v - w \rangle \ge \tilde{\mu} \| v - w \|^p \qquad \forall v, w \in V.$$

Then the solution operator of the nonlinear problem

$$L^{p'}((0,T);V^*) \times H \to \mathcal{C}([0,T];H) \cap L^p((0,T);V), \ (f,u_0) \mapsto u$$

is *continuous*.

We have to show that $u(0) = u_0$ in H. We have $\hat{u}_{\tau_\ell} \to u$ in $W(0,T) \hookrightarrow \mathcal{C}([0,T];H)$. The embedding is linear and continuous and hence *weak-weak-continuous*, so the weak convergence is translated to a pointwise weak convergence on H. There exists a linear continuous trace operator $\Gamma: W(0,T) \to H$, $\Gamma(u) := \Gamma_u := u(0)$ in H. Hence $\hat{u}_{\tau_\ell} \to u$ in W(0,T) and so $\hat{u}_{\tau_\ell}(0) \to u(0)$ in H. We had the condition that $\hat{u}_{\tau_\ell}(0) = u_\ell^0 \to u_0$ in H. Hence the weak and strong limits have to coincide.

Let $u_0 \in V$ and $f \in W^{1,2}((0,T);V^*)$ and the operator $A'(t): V \to V^*$ be continuous and linear for all $t \in (0,T)$. If the compatibility condition $A(u_0) - f(0) \in H$ holds, then the solution $u \in W(0,T)$ to (P) admits the additional regularity $u \in W^{1,\infty}((0,T);H) \cap W^{1,2}((0,T);V)$. Especially, it holds

$$\hat{u}'_n \to u' \qquad \text{in } L^{\infty}((0,T);H), \\ \hat{u}'_n \to u' \qquad \text{in } L^2((0,T);V).$$

Let $p \in (1, \infty)$. Then $W_p(0, T)$ equipped with the norm $||u||_{W_p(0,T)} := ||u||_{L^p((0,T);V)} + ||u'||_{L^{p'}((0,T);V^*)}$ is a BANACH space. We have $W_p(0,T) \hookrightarrow \mathcal{C}([0,T];H)$ and the rule of integration by parts:

$$\int_{s}^{t} \langle u'(\tau), v(\tau) \rangle + \langle v'(\tau), u(\tau) \rangle d\tau = (u(t), v(t)) - (u(s), v(s))$$

for all $v, w \in W_p(0,T)$ and all $s, t \in [0,T]$. Finally, $\mathcal{C}^{\infty}([0,T]; V) \xrightarrow{d} W_p(0,T)$.

Assuming the standard assumptions and B = 0, the solution of the nonlinear problem is *unique* and the *whole sequence of approximate* solutions converges to u.

Let $u, v \in W_p(0, T)$ be two solutions to the problems

$$\begin{cases} u' + \mathcal{A}(u) = f, & \text{in } L^{p'}((0,T); V^*), \\ u(0) = u_0 & \text{in } H \end{cases}, \begin{cases} v' + \mathcal{A}(v) = f, & \text{in } L^{p'}((0,T); V^*) \\ v(0) = u_0 & \text{in } H \end{cases}$$

As \mathcal{A} is *monotone* we have

1 d .

 $\frac{1}{2} dt$

$$\begin{aligned} |u-v|^2 &= \langle u'-v', u-v \rangle \\ &\leq \langle u'-v', u-v \rangle + \langle \mathcal{A}u - \mathcal{A}v, u-v \rangle = \langle f-f, u-v \rangle = 0 \end{aligned}$$

and hence (by integration) $|u(t) - v(t)|^2 \leq |u_0 - u_0|^2 = 0$ for all $t \in [0, T]$.

Let the standard assumptions be fulfilled. Additionally, we require that $A: [0, T] \times V \to V^*$ fulfills

$$\langle \mathcal{A}(t)v - \mathcal{A}(t)w, v - w \rangle \ge -g(t)|v - w|^2$$

for $v, w \in V$ and $g \in L^1(0,T)$. The operator $\mathcal{A}: L^p((0,T); V) \to L^{p'}((0,T); V^*)$ is then given by $(\mathcal{A}u)(t) = Au(t)$. Then the solution operator of the nonlinear problem

$$L^2((0,T);H) \times H \to \mathcal{C}([0,T];H), \qquad (f,u_0) \mapsto u$$

is LIPSCHITZ-continuous.

THEOREM W/O PROOF

Solution of the heat equation

DIFFERENTIAL EQUATIONS III

Definitions & Remarks

Solenoidal spaces

DIFFERENTIAL EQUATIONS III

NAVIER-Stokes equation

DIFFERENTIAL EQUATIONS III

Weak formulation of NAVIER STOKES

DIFFERENTIAL EQUATIONS III

Remark

We consider a bounded LIPSCHITZ domain $\Omega \subset \mathbb{R}^d$ with $d \in \{2,3\}$ and the incompressible NAVIER-STOKES equation

$$\begin{cases} \partial_t \mathbf{u} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = f, & \text{in } \Omega \times (0, T), \\ \nabla \cdot u = 0 & \text{in } \Omega \times (0, T), \\ u = 0 & \text{on } \partial \Omega \times (0, T), \\ u(0) = 0 & \text{in } \Omega, \end{cases}$$

where $u: \overline{\Omega} \times [0,T] \to \mathbb{R}^d$ is the velocity field, $p: \overline{\Omega} \times [0,T] \to \mathbb{R}$ is the pressure and ν is the viscosity. The time derivative of the velocity is the acceleration, the second (dissipative) term $\nu \Delta \mathbf{u}$ described how friction behaves in the fluid.

Let $\Omega \subset \mathbb{R}^3$ be a bounded LIPSCHITZ domain. Assume that $0 < \beta < \beta'(r) \leq \overline{\beta} < \infty$ and $b_1, b_2 > 0$. Assume additionally that $\hat{c}^{-1} \colon \overline{\mathbb{R}} \to \mathbb{R}$ is a monotone function with $|(\hat{c}^{-1})'| \leq C$. Then there exists a weak solution to

$$\begin{cases} \partial_t u + \nabla \beta(u) = g & \text{in } \Omega \times (0, T), \\ \mathbf{n} \cdot \nabla \beta(u) + (b_1 + b_2 |\hat{c}^{-1}(u)|^3) \hat{c}^{-1}(u) = h & \text{on } \partial \Omega \times (0, T), \\ u(0) = u_0 & \text{in } \Omega, \end{cases}$$

As test functions we take $\mathbb{V} := \left\{ \varphi \in \mathcal{C}^\infty_c\left(\Omega; \mathbb{R}^d\right) \mid \nabla \cdot \varphi \equiv 0 \text{ in } \Omega \right\}.$ Since this is to regular for our purposes, we will take the closure with respect to the H_1 -norm. Now the spaces $V := \operatorname{clos}_{\|\cdot\|_{H^1_0}} \mathbb{V}$ and $H := \operatorname{clos}_{\|\cdot\|_{L^2}} \mathbb{V}$ form a Gelfand-triple (compact embedding follows from RELLICH-KONDRACHOV). $V \stackrel{c}{\hookrightarrow} H \cong H^* \hookrightarrow V^*$, where V is equipped with $\|\cdot\| := \|\cdot\|_{H^1_0}$ and the scalar-product $((u,v)) := \int_\Omega \nabla u : \nabla v \, dx$ and H with $|\cdot| := \|\cdot\|_{L^2}$ and the scalar-product $(u,v) := \int_\Omega u \cdot v \, dx$. One can show the characterisations $V = \left\{ u \in H^1_0(\Omega)^d \mid \nabla \cdot u \equiv 0 \text{ in } \Omega \right\}$ and $H = \left\{ u \in L^2(\Omega)^d \mid \nabla \cdot u \equiv 0 \text{ in } \Omega, \ n \cdot u \equiv 0 \text{ on } \partial\Omega \right\}$, where the condition of zero divergence means $\int_\Omega u \cdot \nabla \varphi = 0$ for a.a. $\varphi \in \mathcal{C}^\infty_c(\Omega)$ and the vanishing on the boundary is to be understood in the sense of a certain trace.