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CONTENTS

19.04.2022The aim and plan of this semester is the study of discrete / discretized topological objects
and their algorithmic processing. Some objects might be given to us in a discrete way (e.g.
through combinatorial problems), sometimes we have to discretise surfaces.

Example .0.1 (Discretizing surfaces)
One discretisation of the round sphere S2 :“ tx P R3 : }x}2 “ 1u (this is an algebraic, not a
topological description) is the tetrahedron, which is a discretized surface. This discretisation
yields a homeomorphism. Its inverse can be described using a radial projection.

Using this discretisation we can compute Euler characteristic of S2:

χpS2q “ #vertices ´ #edges ` #edges “ 4 ´ 6 ` 4 “ 2. ˛

Analogously, the Euler characteristic of the cube is 8 ´ 12 ` 6 “ 2.

Example .0.2 (Network design)
Given some sensor network (e.g. smoke detectors, tsunami buoys, or an intrusion detection
system), how "good" is the network?

Fig. 1: Two very different network designs.

How can we detect "holes" in the network to place extra sensors? Visually, we can imme-
diately detect the hole, but mathematically, this is not so easy. A mathematical procedure
would be to place around each sensor a disk of fixed small radius. If the disks intersect,
we connect the sensors to form a graph, from which we can extract more mathematical
information. ˛

This can be generalised: given some (finite) data set S Ă Rn,

1 associate to S a topological space KpSq (e.g. a simplicial or cubical complex),

2 compute (meaningful, computable) topological invariants IpKpSqq (e.g. algebraic ones
like (the fundamental group or) (persistent) homology or other ones like the Euler
characteristic) of KpSq,

3 use the results of 2 for the further analysis / understanding / interpretation of the
S, e.g. via visualizations.

Fig. 2: For the third step experience is helpful.
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Example .0.3 (Genome data for cancer research)
There are gene libraries available on the internet, the aim of the topological data scientist
being to find correlations, e.g. "if there are defects at genes A and B, then there is an
increased chance to develop a certain cancer". ˛

Example .0.4 (Image processing)
The data S can originate from a 2D or 3D scan, e.g. because a hand was placed on a scanner.
Aiming to reduce noise, we first have to distinguish between features and noise. pics missing

One approach is to thicken contour lines by some ε ą 0 so that small holes disappear. A
more sophisticated method is to compute the k-dimensional homology groups for different
choice of ε, along us to detect holes that go away quickly (noise) and holes that persist
(features).

Persistent homology can also be applied e.g. in for sensor networks (cf. above), genome
data, finance data or porosity of materials. ˛

Back to the discretisation of spaces / topological objects. The torus T 2 can be discretised
as a CW complex (one square with pairwise identified edges), a ∆ complex (consisting of
simplices) or as a finite simplicial complex. pics missing

Can every topological object be decomposed (nicely) into finitely many pieces, that can be
handles on a computer? No, this doesn’t even hold for compact manifolds.

Theorem .0.1: Rado (1925) [Rad25], Moise (1952) [Moi52]

Every compact surface and every compact 3-manifold can be triangulated by a finite
abstract simplicial complex.

Theorem .0.2: Freedman (1982) [Fre82], Perelman (2003) [Per03]

There are compact 4-manifolds that cannot be triangulated.

The following theorem is the disproof of the "triangulation conjecture".

Theorem .0.3: Manolescu (2013) [Man13]

For every d ě 5, there are compact d-manifolds that cannot be triangulated.
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Part I: Discrete Topology
The aim of this part is the study of discretizations of topological spaces.

Example I.0.1 (Common objects in topology)
Common objects in topology are the circle S1, the 2-dimensional sphere S2 ("2-sphere"), or,
more generally, the d-sphere Sd. Other common objects include the (2-)(dimensional) torus
T 2 “ S1 ˆ S1, the d-torus

T d :“ pS1qˆd :“ S1 ˆ . . . ˆ S1
loooooomoooooon

d times

and orientable surfaces of higher genus (double, triple, ... torus) and non-orientable surfaces
like RP2, which is obtained by identifying antipodal points on S2, and the Klein bottle.
Lastly, there are general compact spaces, the Euclidean plane E2 and higher-dimensional
manifolds with or without boundary.

[TODO: lots of pictures] ˛
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I.1 METRIC AND TOPOLOGICAL SPACES

I.1 Metric and topological spaces
Recall from you calculus or topology class:

Definition I.1.1 (Metric space)
Let X be a set. A map d : X ˆ X Ñ Rě0 is a metric if

1 dpx, yq “ 0 if and only if x “ y, (positive definite)

2 dpx, yq “ dpy, xq, (symmetry)

3 dpx, zq ď dpx, yq ` dpy, zq (triangle inequality)

for all x, y, z P X. The pair pX, dq is a metric space.

Example I.1.2 On X “ Rn there is the Euclidean metric

dEpx, yq :“

g

f

f

e

n
ÿ

k“1

pxk ´ ykq2 “
a

xx ´ y, x ´ y y “ }x ´ y}2

induced by the standard Euclidean norm } ¨ }2. ˛

Definition I.1.3 (Euclidean space)
The metric space En :“ pRn, dEq is the Euclidean n-space.

In the following, let pX, dq be a metric space.

Definition I.1.4 (Open disc / ball)
For x P X and r ě 0, the open ball with center x and radius r is

B̊rpxq :“ ty P X : dpx, yq ă ru.

Fig. 3: An open ball
with radius r and cen-
ter x and a y P B̊rpxq.

Definition I.1.5 (Open set)
A subset O Ă X is open if for every x P O there is a r ą 0 such that B̊rpxq Ă O.

Fig. 4: An open set
O Ă X and x P O with
B̊rpxq Ă O.

Theorem I.1.1: Open ball is open

An open ball is open.

Example I.1.6 (Open sets in E1) The open sets in E1 are H, E1 and unions and finite
intersections of open intervals. ˛

Theorem I.1.2: Properties of open sets

1
Ť

iPI Oi is open for any index set I if each Oi, i P I, is open.
2

Ş

iPI Oi is open for any finite index set I if each Oi, i P I, is open.
3 H, X are open.

4



I.1 METRIC AND TOPOLOGICAL SPACES

Proof. 1 Left as an exercise.

2 Let O :“
Şn

k“1 Oi, where each Ok Ă X is open, and x P O. Then for every k P

t1, . . . , nu, there exist a rk ą 0 such that B̊rkpxq Ă Oi. Let r :“ minpr1, . . . , rnq ą 0.
Then B̊rpxq Ă O.

3 Left as an exercise. l

Example I.1.7 The intersection of infinitely many open sets need not be open: for x P E1,

8
č

k“1

ˆ

x ´
1

k
, x `

1

k

˙

“ txu

is not open. ˛

Next, we generalise metric spaces by only requiring the properties from theorem I.1.2.

Definition I.1.8 (Topology, topological space; open, closed set)
Let X be a set. A collection O Ă 2X of subsets of X is a topology on X if

1 H, X P O,

2
Ť

iPI Oi P O for a index set I and pOiqiPI Ă O,

3
Ş

iPI Oi P O for a finite index set I and pOiqiPI Ă O.

A subset O P O is open and its complement XzO is closed. The pair pX,Oq is a topological
space.

Example I.1.9 (Topology) Let X be a set. Then O :“ tH, Xu is the indiscrete topology
on X and O :“ 2X is the discrete topology on X. ˛

26.04.2022Now we turn to the morphisms in the category of topological spaces: continuous maps.
In Analysis (when considering metric spaces), one has the ε-δ and the sequential definition
(which are equivalent), but here we use a different one not relying on a metric.

Definition I.1.10 (Continuous map)
Let pX,OXq and pY,OY q be topological spaces. A map f : X Ñ Y is continuous if f´1pOq P

OX for every O P OY , that is, if preimages of open sets are open.

Example I.1.11 The identity map id : pX, tH, Xuq Ñ pX, 2Xq is not continuous, whereas
id : pX, 2Xq Ñ pX, tH, Xuq is continuous. ˛

Remark I.1.12 (Notation) For a topological space pX,Oq we often simply write X if O
is clear. ˝

Definition I.1.13 (Homeomorphism)
Let X and Y be topological spaces. A bijective map f : X Ñ Y is a homeomorphism if f
and f´1 are continuous. Then X and Y are homeomorphic and we write X – Y .

Definition I.1.14 (Neighbourhood)
Let pX,Oq be a topological space and x P X. A subset N Ă X is a neighbourhood of x if
there is an O P O with x P O Ă N .
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I.1 METRIC AND TOPOLOGICAL SPACES

Fig. 5: A neighbour-
hood N of a point x P

X and an open set O Ă

N containing x.

Being Hausdorff is a particular separation property.

Definition I.1.15 (Hausdorff)
A topological space is Hausdorff Hausdorffif for any two points x, y P X there are open nonempty
disjoint neighbourhoods Ux of x and Uy of y.

Definition I.1.16 (Compact, open cover, subcover)
A topological space pX,Oq is compact if every open cover of X has a finite subcover, that
is, for every pOiqiPI Ă O with X “

Ť

iPI Oi there is a finite subfamily J Ă I such that
X “

Ť

jPJ Oj .

Definition I.1.17 (Base)
Let B be a collection of open sets in a topological space pX,Oq. If each open set in X is
the union of open sets in B, then B is a base baseof O on X.

Example I.1.18 (Base for En) The collection of open balls Brpxq in En is a base for the
Euclidean topology En. ˛

Definition I.1.19 (Second countable)
A topological space is second countable second countableif it has a countable base.

Example I.1.20 ((Not) second countable)
The line E1 is second countable since we can take as a base all open intervals with rational
endpoints.

If we paste together countably many copies of the half open unit interval p0, 1s, we obtain a
space still homeomorphic to a half line with countable base.

Glueing together uncountable many copies yields a space that is not second countable. ˛

Definition I.1.21 (Subspace topology)
Let Y Ă pX,Oq be a subset. Then

OY :“ tO X Y : O P Ou

is the subspace topology subspace topologyon Y induced by the topology on X.

6



I.2 SIMPLICIAL COMPLEXES

I.2 Simplicial complexes
26.04.2022Let V :“ tv0, . . . , vku Ă En be a set of k ` 1 vertices.

Definition I.2.1 (Affine hull)
The affine hull affine hullof V is

affpV q :“

#

k
ÿ

j“0

λjvj :
k
ÿ

j“0

λj “ 1, pλjqkj“0 Ă R

+

.

Fig. 6: The affine hull
of two points v0, v1 P

E2 is the line in E2

through them and the
affine hull of the three
vertices of a triangle in
the plane is the whole
plane.

Remark I.2.2 The affine hull of V is an affine subspace of En, that is, the solution set of a
system of dimpaffpV qq not necessarily homogeneous linear equations with k ` 1 variables. ˝

Definition I.2.3 (Dimension of affine hull)
If k ě 1, then the dimension of the affine hull is

dimpaffpV qq :“ dimpspanptv1 ´ v0, v2 ´ v0, . . . , vk ´ v0uqq ď k.

The dimension of affptv0uq “ tv0u is zero.
the dimension of
affpHq “ H is ´1?

Exercise: Prove the independence of the point v0.

Definition I.2.4 (Affine independence)
The set V is affinely independent if affpW q ⊊ affpV q for any W ⊊ V .

Definition I.2.5 (General position)
The set V is in general position general positionif no r P t2, . . . , n` 1u points lie in an pr ´ 2q-dimensional
affine subspace.

Fig. 7: The points on the left are not in general position, as the r “ 3 ď 2 ` 1 points v0, v1
and v3 lie in an 3 ´ 2 “ 1-dimensional affine subspace - a line - while the ones on the right
are in general position, as no r “ 2 resp. r “ 3 points lie in an zero- resp. one-dimensional
affine subspace.

Definition I.2.6 (Convex hull)
The convex hull convex hullof V is

convpV q :“

#

k
ÿ

j“0

λjvj :
k
ÿ

j“0

λj “ 1, λj ě 0 @j P t0, . . . , ku

+

.
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I.2 SIMPLICIAL COMPLEXES

Remark I.2.7 (Since V is compact and En is finite-dimensional,) convpV q is the compact
solution set of a system of not necessarily homogeneous linear inequalities. ˝

Example I.2.8 Consider a square as in figure 8, which is the convex hull of the points
p1, 1q, p´1, 1q, p1,´1q and p´1,´1q. It can also be described by the linear inequalities
px1,´x1, x2,´x2q ď 1 (to be understood componentwise), which yield a dual description. ˛

Fig. 8: The unit square
can be interpreted as
the convex hull of four
points or as the solu-
tion of a system of four
inequalities.

Remark I.2.9 (Since V is finite, ) the set convpV q is called a (convex) polytope. ˝

Generally, one can not assign (consistently) a dimension to arbitrary topological spaces.

Definition I.2.10 (Dimension of convpV q)
Let H ‰ W Ă V be affinely independent. If W is of maximal cardinality with this property,
then

dimpconvpV qq :“ dimpaffpW qq

is the dimension of convpV q. Lastly, dimpconvpHqq :“ ´1.

Exercise: Prove the independence of this notion from the choice of W . Is setting the
dimension of H to be ´1 consistent with the other part of the definition?

Fig. 9: The unit square
and a maximal subset
of its vertices, W , in
general position.

Example I.2.11 (Dimension of the square) Consider the subset W of the vertex set of
the square in figure 9. Then W has maximal cardinality with respect to being a affinely
independent vertex subset, so the cube convptp˘1,˘1q, p˘1,¯1quq has dimension equal to

dim
`

span
`

tp´1, 1q ´ p´1,´1q, p1, 1q ´ p´1,´1qu
˘˘

“ dim
`

span
`

p0, 2q, p2, 2q
˘˘

“ 2. ˛

Definition I.2.12 (k-simplex)
If V “ tv0, . . . , vku is affinely independent and k ď n, then convpV q is a k-(dimensional)
simplex.

doesn’t the affine in-
dependence imply
that k ď n?

Fig. 10: Examples of k-simplices for k P t0, 1, 2u. A 3-simplex is a tetrahedron.

Definition I.2.13 (Face)
Let σ :“ convpV q be a simplex. For a subset W Ă V , τ :“ convpW q is a simplex, called a
face faceof σ and we write τ ă σ.

Exercise. Prove that ă is reflexive, antisymmetric and transitive.

Example I.2.14 (Faces of a 2-simplex) For three affinely independent points v0, v1, v2

consider the planar triangle (a 2-simplex) σ :“ convpv0, v1, v2q :“ convptv0, v1, v2uq. It has
the faces

• σ,

• convpv0, v1q, convpv0, v2q, convpv1, v2q (the edges),

8



I.2 SIMPLICIAL COMPLEXES

• convpv0q, convpv1q, convpv2q (the vertices),

• convpHq “ H. ˛

Definition I.2.15 (Proper face)
A face τ ă σ is proper if dimpτq ă dimpσq.

Beware that in some texts, H is not considered to be a face (due to reasons involving reduced
homology).

Definition I.2.16 (Standard pn ´ 1q-simplex)
Then standard pn ´ 1q-simplex in En is ∆n´1 :“ convpe1, . . . , enq, where ek P En is the
k-th unit vector.

Fig. 11: The stan-
dard k-simplex for k P

t1, 2u.
Using ∆n instead of an arbitrary n-simplex can make constructions simpler.

I.2.1 Geometric simplicial complexes

Definition I.2.17 ((Finite) geometric simplicial complex)
A (finite) geometric simplicial complex geometric

simplicial complex
(GSC) K is a (finite) collection of (geometric)

simplices in some En such that

1 if σ P K and τ ă σ, then τ P K ,

2 if σ, τ P K , then pσ X τq ă τ and pσ X τq ă σ.

We will explain geometric simplices later. For now it suffices to know that k-simplices are when?

geometric simplices for any k P N0.

Fig. 12: The object of the left is a GSC, whereas all others are not, the second violating
the first condition(???) and the two on the right both violating the second condition. For
the rightmost one: intersecting the single vertex an the triangle yields that vertex, which
is not a face of the triangle. The one left to it is similar, as there are line segments on the
boundary of a triangle that are not faces of that triangle.

We want to make a (geometric) simplicial complex into a topological space.

Definition I.2.18 (Polyhedron)
The polyhedron polyhedronof a geometric simplicial complex K is

| K | :“
ď

σPK

σ.

Remark I.2.19 (Other definitions of polyhedra in other fields)
In polytope theory, polyhedra are finite intersections of half-spaces and are convex. ˝

9



I.2 SIMPLICIAL COMPLEXES

Fig. 13: A bounded
(polytope-theory-)
polytope and two
unbounded ones.

28.04.2022
Definition I.2.20 (Topology on polyhedra)
We equip a polyhedron | K | Ă En (as a set) with the subspace topology inherited from
En.

Fig. 14: Uniqueness of
topology on polyhedra.

Remark I.2.21 For a finite GSC, the inherited topology is "unique", that is, independent
of the dimension of the ambient Euclidean space. ˝

Why not for infinite
ones, too?

Fig. 15: An open set
in the polyhedron is
its intersection with an
open ball in the ambi-
ent Euclidean space.

Remark I.2.22 The topology on | K | is induced by the base of open balls in En. ˝

I.2.2 Abstract simplicial complexes

To store a GSC on a computer, we can store the coordinates of the vertex set V and the list
(or: collection) of the (maximal) faces, cf remark I.2.47.

In a way, abstract simplicial complexes are GSCs where we forgot the coordinates.

Definition I.2.23 (Abstract simplicial complex, simplex, face)
An (finite) abstract simplicial complex abstract simplicial

complex
(ASC for short) K Ă 2V on a (finite) vertex set V

is such that if σ P K and τ Ă σ, then τ P K. The elements σ P K (with finite cardinality)
are called simplices or faces of K. The dimension of σ P K is #σ ´ 1 and the dimension
d P NYt`8u of K is the maximum dimension of its facets (we then say K is a d-complex).

Definition I.2.24 (Subcomplex)
Let L and K be abstract simplicial complexes with L Ă K. Then L is a subcomplex subcomplexof K.

Remark I.2.25 (ASC underlying GSC) In this set-theoretic / combinatorial setting,
the second condition for GSCs is always fulfilled, as the intersection of two finite sets is
always a subset of both of them. Hence if we have a GSC K , then the set of its faces
(replacing actual coordinates by abstract vertex names) form an ASC K, its underlying
ASC. ˝

Remark I.2.26 We write V pKq for the vertex set of K. We often choose the vertex set
V :“ t1, . . . , ku. ˝

Example I.2.27 (Abstract simplicial complex) Consider the ASC

K :“
␣

H, t1u, t2u, t3u, t4u, t1, 3u, t1, 4u, t2, 3u, t2, 4u
(

˛

on the vertex set V :“ t1, . . . , 4u. How can we realise (cf. later) K in R2?

Fig. 16: The realisation on the left is bad because of the intersection of t2, 3u and t1, 4u,
while the other two realisations are without intersection.

10



I.2 SIMPLICIAL COMPLEXES

Example I.2.28 (Knots) The subdivided unknot (the circle) and the subdivided trefoil
knot (dt.: Kleeblattschlinge) are isomorphic as simplicial complexes (provided the number
of subdivision points is equal), homeomorphic as polyhedra, but their complements in E3

are not homeomorphic. ˛

What does the knot
example tell us?

Definition I.2.29 (Simplicial map)
Let K and L be (abstract) simplicial complexes with vertex sets V pKq and V pLq. A map

φ : V pKq Ñ V pLq

is a simplicial map simplicial mapif for all σ P K we have φ̃pσq P L, where φ̃pσq :“
␣

φpvi1q, . . . , φpvij q
(

for σ “
␣

vi1 , . . . , vij
(

(or σ “ conv
␣

vi1 , . . . , vij
(

in the case of GSCs).

Remark I.2.30 Simplicial maps preserve simplices. The map φ̃ on the faces of K is induced
by the vertex map φ. ˝

Example I.2.31 Consider the two (geometric realisations of abstract) simplicial complexes
in figure 17. The map V pKq Ñ V pLq, vk ÞÑ vk, k P t1, 2, 3u is simplicial, while V pLq Ñ

V pKq, vk ÞÑ vk, k P t1, 3u is not simplicial, as the edge tv1, v3u of L is not mapped to a
simplex in K.

Fig. 17: Geometric re-
alisation of K and L.

Definition I.2.32 (Combinatorial / simplicial isomorphism)
Two simplicial complexes K and L are combinatorially isomorphic combinatorially

isomorphic
if there is a bijective

simplicial map φ : V pKq Ñ V pLq such that φ´1 is also simplicial.

Counterexample I.2.33 (φ simplicial bijection, but φ´1 not simplicial)
Consider the simplicial complexes K and L in figure 18 Then φ : V pKq Ñ V pLq, vk ÞÑ vk is
a bijective simplicial map, but φ´1 is not simplicial. ˛

Fig. 18: Geometric re-
alisation of K and L.Remark I.2.34 (Graphs as simplicial complexes) Combinatorial isomorphisms are gen-

eralisations of graph isomorphisms (cf. e.g. CoMa), since graphs can be thought of as one-
dimensional simplicial complexes. Graph isomorphy is hard to test theoretically, but works
pretty fast in practice. Hard instances are regular graphs, while easy ones are trees. ˝

Geometric realisations

Definition I.2.35 (Geometric realisation of an ASC)
An ASC K has a GSC K as a geometric realisation, if K and the underlying ASC of K

are combinatorially isomorphic.

As the next lemma shows, every ASC can be embedded (that is, realised geometrically) in
a very high-dimensional space. One the other hand, deciding the lowest possible dimension
it can embedded in is an NP-hard problem.

Lemma I.2.36
Every finite ASC has a realisation as a GSC.

This is also possible for ASCs with infinite vertex set, but more complicated.

Proof. Let K be an ASC with V pKq “ tv1, . . . , vku. Define K to be the GSC in Ek (with
vertices e1, . . . , ek) such that K is a subcomplex of ∆k´1, where convpei1 , . . . , eij q is a face
of K whenever tvi1 , . . . , vij u is a face of K. l
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I.2 SIMPLICIAL COMPLEXES

I.2.3 Triangulations of spaces

Definition I.2.37 (Polyhedron of an ASC)
The polyhedron polyhedronof an ASC K is

|K| :“ | K | “ |φpKq|

for a combinatorial isomorphism φ : K Ñ K Ă ∆k´1.

Exercise: Prove that the polyhedron is independent of K resp. φ.

Definition I.2.38 (Triangulation)
An ASC K is a triangulation triangulationof a topological space X or: K triangulates X, if |K| – X.

Fig. 19: The torus T 2 as a topological space, an ASC triangulating it and one of its geometric
realisation in E3.

Infinite simplicial complexes
03.05.2022

Remark I.2.39 Not every topological space can be triangulated by a (finite) ASC, for
example there are compact d-manifolds for any d ě 4 that cannot be triangulated by theo-
rem .0.2 and theorem .0.3. ˝

We can generalise finite ASCs in order to triangulate non-compact spaces. For example, the
plane E2 can be triangulated like in figure 20 using a finite description. Fig. 20: A section of

an infinite triangula-
tion (more specifically:
a tiling or tessellation)
of E2.

12



I.2 SIMPLICIAL COMPLEXES

Definition I.2.40 (Finite-dimensional, locally finite, infinite SC)
An infinite ASC K is

• of finite dimension if the dimension of the simplices of K is bounded.

• locally finite if every vertex of K is contained in finitely many simplices.

Counterexample I.2.41 (Infinite simplicial complexes)
Figure 20 shows a realisation of a locally finite, infinite two-dimensional simplicial complex
of finite dimension. On the other hand, glueing a 2-simplex to a 1-simplex, then a 3-simplex
to that 2-simplex at a different vertex and so on, we get an infinite, locally finite simplicial
complex of unbounded dimension. If we instead use the same vertex, the complex is not
even locally finite anymore. ˛

Fig. 21: An infinite,
locally finite simplicial
complex of unbounded
dimension.

Remark I.2.42 All infinite simplicial complexes we consider are locally finite and of finite
dimension. ˝

Facet description of simplicial complexes

Definition I.2.43 (Facet)
A face σ of a geometric or abstract simplicial complex K is a facet facetof K if it is the unique
face of the complex it is contained in.

Remark I.2.44 Facets are faces that are maximal with respect to inclusion. ˝ Fig. 22: This simplicial
complex has the facets
t1, 2, 3u, t3, 4u, t4, 5u

and t5, 6u.

Remark I.2.45 As we can see in figure 22, facets can be of different dimension. ˝

Definition I.2.46 (Pure simplicial complex)
A geometric or abstract simplicial complex K is pure pureif the facets of K are all of the same
dimension.

Remark I.2.47 (Facet description) The list of facets of a geometric or abstract simpli-
cial complex contains all the information about it. Thus its facet description is a condensed
format useful for storing it on a computer. ˝
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I.3 REALISABILITY

I.3 Realisability

Definition I.3.1 (Interior, boundary)
Let X Ă En be a subset.

• A point x P X is an interior point interior pointof X if there is an open ball B̊rpxq centered at x

that is fully contained in X.

• A point x P X (or Xq is a boundary point boundary pointof X if x R X̊, where X is the closure of
X.

The interior interiorof X, X̊, is the set of all interior points of X and its boundary, BX, is the set
of all boundary points of X.

Definition I.3.2 (Hyperplane)
A hyperplane is an pn ´ 1q-dimensional affine subspace of En.

Definition I.3.3 (Supporting hyperplane)
Let X Ă En. A hyperplane H is supporting X if H bounds a half-space of En that contains
X.

Fig. 23: A supporting
hyperplane H for a set
X.Definition I.3.4 (Face, facet, boundary complex of a polytope)

An n-polytope polytopeP Ă En is the convex hull of finitely many points.

• A face of P is the intersection of P with a supporting hyperplane H.

• A facet of P is an pn ´ 1q-dimensional face.

• The boundary complex boundary complexBP is the collection/union (this is different, but it is often
clear from context which one is meant) of faces of P .

Fig. 24: An edge, a vertex and the empty face can all be obtained as intersection of the
planar polytope P with a supporting hyperplane H.

14



I.3 REALISABILITY

Definition I.3.5 (Simplicial / cubical polytope)
A polytope is

• simplicial simplicialif all of its faces are k-simplices for varying k P N .

• cubical cubicalif all of its faces are cubes (of varying dimension), which are simplicial com-
plexes, that are combinatorially isomorphic to the standard cube (having as vertices
the vectors with entries from 0 and 1).

Example I.3.6 (Simplicial and cubical polytopes)
Polygons (that is, 2-polytopes) are both simplicial and cubical be cause its faces are H,
its vertices and its edges, which are k-simplices and k-cubes for k P t0, 1u, respectively. A
tetrahedron is simplicial and not cubical, because its triangular faces are 2-simplices, but
not k-cubes for any k P N . ˛

Definition I.3.7 (Schlegel diagram)
A Schlegel diagram Schlegel diagramof a polytope P is the projection of P onto one of its facets through
a point that lies just outside the facet.

Remark I.3.8 The expression "just outside of the facet" above can be interpreted as:
choose as the projection point any point outside of the polytope but still inside the inter-
section of all halfspaces that arise from the supporting hyperplanes of all facets bordering
the facet that you project onto. ˝

Example I.3.9 (Schlegel diagram)
The Schlegel diagram of a two-polytope is a subdivided line segment.

Fig. 25: The Schlegel
diagram of a four-
dimensional cube. One
facet of such a cube
is a three-dimensional
cube (the larger one)
and the smaller cube is
the opposite facet.

Fig. 26: The Schlegel diagram of an octahedron, which is a simplicial 3-polytope.

Remark I.3.10 Let P be a simplicial 3-polytope, then

• BP is a simplicial complex triangulating S2,

• any Schlegel diagram of P along with the projection facet is combinatorially iso-
morphic BP (as an ASC). ˝

Theorem I.3.1: Steinitz (1916) [Ste16]

Every ASC triangulating S2 can be realised as the boundary complex BP of a sim-
plicial 3-polytope.

Any triangulation of S1 into line segments is the boundary of a simplicial 2-polytope. But
this theorem does not remain true in higher dimensions.
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Definition I.3.11 (Polytopal triangulation)
A triangulation K of Sn is polytopal polytopalif K can be realised as the boundary complex BP of
a simplicial pn ` 1q-polytope.

Altschuler combinatorially enumerated triangulations of S3.

Theorem I.3.2: Bokowski, Garms (1987) [BG87]

Altschuler’s 3-sphere M10
425 with ten vertices is not polytopal.

Corollary I.3.12
For n ě 3 there are non-polytopal triangulations of Sn.

Theorem I.3.3: [BS89, RG95, Mnë88]

It is NP-hard to decide whether a triangulation of Sn for n ě 3 is polytopal.

Proof. Use matroid theory to reduce this problem to the boolean satisfiability problem
3-SAT. l

Remark I.3.13 (Realising graphs in R2 or R3) Every one-dimensional simplicial com-
plex (graph) can be realised geometrically in R3. The graphs containing K5 or K3,3 as a
minor are exactly the non-planar graphs, that is, the ones that cannot be realised geomet-
rically in R2.

Testing planarity has linear running time in the number of vertices of the graph.
05.05.2022The reason for a non-planar graph to be not realisable in R2 is that non-planar graphs

are not embeddable in R2 (this is stronger!). Thus non-embeddability is an obstruction to
realisability. ˝

Definition I.3.14 (Embedding)
Let X and Y be topological spaces. An injective continuous map f : X Ñ Y is an em-
bedding if f is a homeomorphism between X and fpXq Ă Y , where the latter is equipped
with the subspace topology.

Theorem I.3.4: Whitney embedding theorem (1936) [Whi36]

A smooth d-manifold can be smoothly embedded in R2d.

Remark I.3.15 (Sharpness of the bound) The real projective space RPd cannot be em-
bedded in R2d´1 if d “ 2k for k P N. For example, for d “ 1, RP1

– S1 cannot be embedded
in R2¨1´1

“ R. ˝

By restricting the class of manifolds under consideration, one can obtain improved results.

Theorem I.3.5: [HH63] for d ą 4, Wall (1965) [Wal65] for d “ 3

A smooth d-manifold with d ‰ 2k can be smoothly embedded in R2d´1.
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Theorem I.3.6: Haefliger, Hirsch (1963) [HH63]

A compact orientable (smooth) d-manifold can be embedded in R2d´1.

Example I.3.16 (Embeddability of standard surfaces) Compact orientable surfaces
(e.g. T 2, S2) can be embedded in R3, whereas compact non-orientable surfaces (e.g. Klein
bottle) can only be embedded in R4. Clearly, Sd embeds in Rd`1. ˛

It is notoriously hard to determine the smallest dimension a d-manifold M embeds in.

Back to simplicial complexes

The following theorem improves upon theorem I.3.1. How so?

Theorem I.3.7: Archdeacon et al. (2007) [ABEM07]

Every triangulation of T 2 can be geometrically realised in R3.

This settled a conjecture by Duke / Grünbaum from 1970 / 1973.

Theorem I.3.8: Brehm, Schild (1995) [BS95]

Every triangulation of RP2 can be geometrically realised in R4.

Theorem I.3.9: Bokowski, Guedes de Oliveira (2000) [BGdO00]

There is a 12-vertex (vertex-minimal by theorem I.6.3) triangulation of the orientable
surface of genus 6 that is not realisable in R3.

The proof required 10 CPU years and makes use of oriented matroids (and thus computing
determinants). Nowadays there is a 3-SAT formulation, which can be checked in half an
hour.

Theorem I.3.10: Schewe (2007) [Sch07]

For every orientable surface of genus g ě 5, there is a triangulation that is not
realisable in R3.

Open problem: Can every triangulation of an orientable surface of genus g P t2, 3, 4u be
realised in R3?
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I.4 Manifolds and Triangulations
Generally speaking, manifolds are topological spaces that locally look like Euclidean space.
Physicists would say: the space is homogeneous - wherever we are, space looks the same for
us.

Definition I.4.1 (Topological d-manifold)
A topological space M is a d-dimensional (topological) manifold manifoldif M is Hausdorff and
second countable and if for every x P M there is an open neighbourhood Ux of x such that
Ux is homeomorphic to an open d-ball in Ed.

Counterexample I.4.2 (non-Hausdorff but locally – to a subset of E1)
Let X be a set consisting of three rays, two closed and one open:

As a basis for X we take all open intervals on the three rays plus open "intervals" that
connect the left rays with the right ray. Then X locally looks like R1, but a and b cannot
be separated by disjoint open sets and thus X is not Hausdorff. ˛

Remark I.4.3 Second countable not necessarily Hausdorff manifolds can be embedded
in finite dimensional Euclidean space. ˝

I.4.1 Combinatorial properties of triangulated
manifolds

Recall that by theorem .0.1, every compact surface is triangulable. We want to rule out
undesirable (that is, non-surface-like) behaviour of simplicial complexes by assuming certain
requirements.
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I.4 MANIFOLDS AND TRIANGULATIONS

Example I.4.4 (Simplicial complexes that do not triangulate manifolds)
The simplicial complex on the left is of mixed dimension and the one on the right is not
everywhere locally homeomorphic to R1.

First requirement. Any ASC triangulating a (compact) manifold needs to be pure.

10.05.2022Some part of a triangulation K of a surface hence will look like this:

Fig. 27: A part of a triangulation K of a surface and the three different position of a point
x P |K|.

Every point x P |K| has a neighbourhood homeomorphic to an open disc B̊2. In particular,
x can lie 1 in the interior of a triangle, 2 on an edge or is 3 a vertex. Let us see what
needs to be fulfilled in each three cases for this to happen.

1 Interior points of triangles have small discs around them.

2 For a point on an edge every incident triangle contributes a half-disc:

Fig. 28: The left picture resembles the case that the neighbourhood is locally homeomorphic
to R2, whereas on the right, this is not the case.

Second requirement. Every edge in an ASC triangulating a (compact) manifold needs
to be contained in exactly two triangles.

3 For a vertex x, the incident triangles have to form a disc:
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Definition I.4.5 (Open, closed star, link)
Let σ be a face of K. The open star open starof σ in K is

˚starpσq :“ tτ P K : σ Ă τu,

the closed star closed starof σ in K is

starpσq :“ tτ P K : σ Y τ P Ku,

the link linkof σ in K is

linkpσq :“ tτ P K : σ Y τ P K, σ X τ “ Hu.

Remark I.4.6 Both starpσq and linkpσq are subcomplexes of K (Exercise!), while ˚starpσq

for σ ‰ H is not, because it does not contain H.

Fig. 29: A vertex x with a neighbourhood homeomorphic to R2, its link and its open star.
(The incident edges of x and x itself are also part of its open star.)

Third requirement. The link of every vertex in an ASC triangulating a (compact)
surface needs to be combinatorically isomorphic to S1.

We often use starpσq to denote the closed star of σ.

Fig. 30
Example I.4.7 (Link, star)
Consider the simplicial complex in figure 30. We have linkpt1, 2uq “

␣

H, t3u, t4u
(

or in
facet-description: linkp12q “ t3, 4u, starp12q “ t123, 124u. ˛

Definition I.4.8 (Ridge)
A ridge ridgeis a pd ´ 1q-dimensional (or: codimension-1) face of a pure simplicial d-complex.

Fig. 31: Examples of
ridges.

Lemma I.4.9 (linkpridgeq – S0)
Let K be a triangulation of a (compact) d-manifold without boundary as a (finite) simplicial
complex and let r P K be a ridge. Then

| linkprq| – S0.
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Fig. 32: Examples for lemma I.4.9.

Remark I.4.10 In a triangulation of a manifold (without boundary) a ridge lies in exactly
two facets. ˝

Fig. 33: What do we know about links of vertices? For d P t1, . . . , 4u, we have | linkpvq| –

Sd´1, but for d ě 5 the link is more complicated.

Definition I.4.11 (Path-connected)
A topological space X is path-connected path-connectedif for any x, y P X there is a path connecting x

and y.

Theorem I.4.1: Connected manifolds

A connected manifold is path-connected.

Definition I.4.12 (Strongly connected)
A pure simplicial complex is strongly connected strongly connectedif for every pair of facets pσ, τq there is a
sequence

σ “ σ1v1,2σ2v2,3σ3 . . . vj´1,jσj “ τ

of facets σ1, . . . , σj and ridges v1,2, . . . , vj´1,j such that vi´1 i lies in zi´1 and zi, that is,
there is a path of facets from σ to τ going via ridges.

Fig. 34: A strongly
connected triangula-
tion.

Lemma I.4.13
Path-connected triangulations of closed manifolds are strongly connected.

Proof. (Idea) A path in X is a continuous map p : r0, 1s Ñ X. As I is compact and p is
continuous, X is compact. A polygonal path p can revisit a facet of X only finitely many
times.

Hence we can shorten resp. omit the revisits to obtain a path that goes via each facet only
once and accomodate it that it goes via ridges. l
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I.5 Classification of (closed) surfaces

In our zoo of surfaces (2-manifolds) we have e.g. S2, T 2, double-torus, triple-torus, . . . , RP2,
the Klein bottle, non-closed manifolds like E2 or E2

zB
2

– E2
ztptu, the doubly punctured

plane, . . . , the open cylinder – E2
ztptu, the closed cylinder, the closed disk and the open

disc – E2. As a model-space for manifolds with boundary we can take closed half spaces
in En.

Definition I.5.1 (Manifold with(out) boundary)
A (Hausdorff and second countable) space M is a d-manifold with or without boundary
if for every x P M there is an open neighbourhood that is homeomorphic to an open d-ball
in the closed half space Ed

` :“ Ed´1
ˆEě0 or to an open half-ball (“ intersection of the

half space with an open ball). In the first case, x is an interior point, in the latter, it is a
boundary point.

12.05.2022
Definition I.5.2 (Closed / open manifold)
A d-manifold without boundary is closed if it is compact and open else.

From now on, we assume a manifold to be closed and connected (unless we consider special
cases such as S0 or the boundary of a closed cylinder, S1 Y S1).

Fig. 35: The closed,
disconnected manifold
S1 Y S1.Theorem I.5.1: Rado (1925) [Rad25, § 4]

Closed 2-manifolds can be triangulated as finite ASCs.

From theorem I.4.1 and lemma I.4.13 we get the following theorem.

Theorem I.5.2: Triangulations of connected closed manifolds

Every triangulation of a connected closed manifold is strongly connected.

Example I.5.3 (Strongly connected SC not manifold-triangulation)
In figure 36 you can see two simplicial complexes that are strongly connected but not trian-
gulations of a manifold, as the (realisation of the) link of their pinch point is homeomorphic
to S1 \ S1. Such triangulations are called pseudo-manifolds, where e.g every link only has
to be a compact surface, not only a sphere. ˛ Fig. 36: Triangula-

tions of pseudomani-
folds. The link of
"pinch points" is not a
sphere.
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Definition I.5.4 (Dual graph of manifold triangulation)
The dual graph dual graphof a triangulated (connected and closed) d-manifold M has as vertices the
facets of M and edges whenever two facets have a common ridge.

Fig. 37: The dual
graph of a part of a
triangulation of a con-
nected and closed man-
ifold.

Remark I.5.5 The dual graph does not determine the triangulation, but the degree of a
vertex in the dual graph reveals the dimension of the manifold. Distinct triangulations could
have the same dual graph.

Find example.
Remark I.5.6 (Determining isomorphic triangulations)
How can we determine whether two triangulated d-manifolds are isomorphic? We can start
by checking if the number vertices and their degrees and the number of faces in each dimen-
sion are equal in both triangulations. By exhaustion, we can then check for each facet, if it
can be mapped to a facet of the other triangulation, for which there are # facets ¨pd`1q! pos-
sible choices for each facet (this determines all possibilities by strong connectivity). Finally,
neighbouring faces have to be mapped to neighbouring faces. ˝

Remark I.5.7 (The automorphism group of a triangulation)
Note that there might be more than one isomorphism, e.g. if both triangulations are iden-
tical, and in that case one recovers the combinatorial automorphism group AutpKq of the
triangulation K. For example, the automorphism group of the n-polygon is the dihedral
group Dn (which has order 2n for n ě 3). The automorphism group of B∆n is the symmetric
group Sn`1 (which has order pn ` 1q!). ˝

The following Classification procedure (algorithm) is due to [Bra21]. Its input is a
triangulation of a closed and connected surface, its output is the "type" of the surface.

1 Pick a spanning tree in the dual graph of the triangulation.
Remark I.5.8 The dual graph is a connected graph because the triangulation is
strongly connected by theorem I.5.2. ˝

2 Cut open all edges in the triangulation that are not crossed by an edge of
the spanning tree. Equivalently: for every node in the dual graph, take the triangle
it is contained in and also the neighbouring triangle if the dual graph crosses the edge
both have in common, producing a "tree of triangles".

We illustrate this procedure with a triangulation of the torus.

Fig. 38: Left: One spanning tree in red. The green edges are the ones not crossed by edges
of the dual graph.
Right: This triangulation (a tree of triangles) is a triangulation of a disk with the extra
property that the boundary edges are pairwise identified. Every edge on the "boundary" of
this triangulation appears twice.
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Definition I.5.9 (Polygonal decomposition / scheme)
A polygonal decomposition / scheme of a (closed and connected) surface is a decomposition
into a (finite) family of polygons with pairwise identified oriented edges.

Example I.5.10 (Polygonal decomposition / scheme)
Starting out with nine disjoint squares, we can make up pairwise identifications of edges like
in figure 39.

Fig. 39: Glueing together the squares according to their edge-identifications yields the com-
posite figure on the right with identified edges.

Remark I.5.11 Polygons of a decomposition can be glued together along edges to form a
single polygon with pairwise identified edges. ˝

Fig. 40: Both T2 and the Klein bottle have one vertex, while RP2 and S2 have two.
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3 For the previous tree of triangles, remove the internal edges to obtain a
single polygon with pairwise identified edges.

Fig. 41: Removing the
internal edges in the
right diagram of fig-
ure 38 of the tree of
triangles yields a sin-
gle polygon (with the
number of vertices re-
duced).

4 Reduce such a scheme to a scheme with only one (or two) vertices. This
yields a simplification of schemes.

17.05.2022
Lemma I.5.12 (Reducing the number of vertices)
Every scheme of a surface can be reduced to either the scheme aa´1 of S2 or to a scheme
with exactly one vertex.

Proof. Suppose the scheme has at least two different equivalence classes of identified ver-
tices.

Fig. 42: On the left, P and Q are different vertices with m elements in the equivalence class
of P .
On the right, there are now m´ 1 elements in the equivalence class of P , though the size of
the class of Q has increased.

Through this cutting-and-reglueing procedure, P will eventually appear only once on the
boundary of the (modified) scheme.

There are two cases (because edges are pairwise identified):

Fig. 43: Case 1: remove internal P and d. Case 2: there are only P and d.

Case 1 : after deletion of further equivalence classes we obtain a scheme dd´1 of S2 or a
scheme with only one vertex. l

5 Transformation into canonical form.

From now on the scheme has exactly one vertex. We simplify the scheme further by
cross-cap normalisation, handle normalisation, or transforming handles into cross-caps
(in the case that both are present).

A Cross-cap normalisation.

25



I.5 CLASSIFICATION OF (CLOSED) SURFACES

Lemma I.5.13 (Cross-cap normalisation)
We can transform . . . a . . . a . . . into . . . a1a1 . . ., that is, pairs of identified edges
with same orientation on the boundary of a scheme can be transformed into neigh-
bouring edges (cross-caps).

Notation: . . . a . . . a . . . is the sequence of edges we see when traversing the bound-
ary of the scheme.

Proof. Cutting and reglueing a1 yields the desired transformation:

B Handle normalisation.

Lemma I.5.14 (Handle normalisation)
After crosscap normalisation

1 pairs of oppositely oriented edges as crossed pairs . . . a . . . b . . . a´1 . . . b´1 . . .

2 and can be transformed into . . . cdc´1d´1 . . ..

Proof. 1 Let us assume that . . . a . . . a´1 . . . is not separated by a pair . . . b . . . b´1 . . ..
This is a contradiction to the assumption that we only have one equivalence
class of vertices:

2 We start with . . . a . . . b . . . a´1 . . . b´1 . . .. Consider the following double cutting-
and-reglueing procedure
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Fig. 44: RP2.

Fig. 45: A cross-cap.

Fig. 46: A combinato-
rial handle.

Special configurations include RP2 (cf. figure 44) a cross-cap (cf. figure 45) or a
handle (cf. figure 46), which gets its name from the following consideration:

Fig. 47: In the case
there is a cross-cap,
there is always a
Möbius band which
forces the surface to be
non-orientable (though
the handles themselves
are orientable).

C Transformation of handles into cross-caps in the presence of both han-
dles and cross-caps.

If there is at least one cross-cap and at least one handle, then the boundary of the
polygon of the scheme has a subsequence . . . aabcb´1c´1 . . . (otherwise we would
just have cross-caps or just handles - somewhere they need to be neighbours).
The following triple cutting-and-regluing procedure leaves the . . .-part untouched
and transforms the handle and cross-cap into three cross-caps.
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Fig. 48: First we re-glue along a, then along b, then along c.

This finishes the classification procedure.

Theorem I.5.3: Brahana (1921) [Bra21]

Every closed, connected surface can be transformed into one of the following schemes:
1 the sphere S2 (cf. figure 49), which is orientable,
2 the sphere with n handles (cf. figure 50), which is also orientable,
3 the sphere with n cross-caps (cf. figure 51), which is non-orientable.

Fig. 49: The scheme of
the sphere S2.

Fig. 50: The scheme of
the sphere with n han-
dles.

Fig. 51: The scheme
of the sphere with n

cross-caps.

Remark I.5.15 Such a scheme is the normal form of a surface. ˝

Fig. 52: Exercise:
transform this into
normal form.

Does theorem I.5.3 give us the classification of surfaces? Not yet! It could still be the case
that some of the normal forms represent the same surface. Hence we need to distinguish
between the different normal forms.

Definition I.5.16 (Topological invariant)
A topological invariant topological

invariant
is a map I from (a subclass of) the category of topological spaces

Top into e.g. the category or groups or R, which assigns to each topological space X P Top
some object, which can be a group or a number of something else. If a group resp. number
is assigned, then I is a algebraic resp. numerical invariant.

It is required that if X – Y , then IpXq » IpY q (where » denotes isomorphism).

Example I.5.17 (Topological invariants)
The dimension is numerical invariant for manifolds and genus is a numerical invariant for
surfaces. Connectivity and compactness can be modelled as maps from Top to t0, 1u. ˛

19.05.2022
Definition I.5.18 (Complete classification)
A complete classification complete

classification
of a family of topological spaces pXjqjPJ , where J is any index

set, is a partition into homeomorphic spaces, e.g. by specifying some list of topological
invariants I1, . . . , Ik that together allow to distinguish between non-homeomorphic spaces
in the family.

We will see that for surfaces

• Euler characteristic and orientability character (corollary I.5.22) or
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I.5 CLASSIFICATION OF (CLOSED) SURFACES

• homology

give a complete classification.

Definition I.5.19 ((Non-)orientable)
A triangulated surface is orientable orientableif the triangles of the triangulation can be orientable
coherently such that each ridge inherits opposite orientations from its two neighbouring
triangles. If a coherent orientation does not exist, the triangulated surface is non-orientable non-orientable.

Fig. 53: A ridge re-
ceiving opposite orien-
tations from its neigh-
bouring triangles.

Fig. 54: The Möbius strip we found in the triangulation of the Klein bottle on the right
is an obstruction to orientability.

Hence changing the the triangulation locally can make it non-orientable and we can detect
this by checking locally (in the right place).

I.5.1 The Euler characteristic of a surface

Definition I.5.20 (Euler characteristic)
The Euler characteristic Euler

characteristic
of a triangulation (or, more generally: polygonal decomposition)

of a surface is
χ :“ #vertices ´ #edges ` #faces.

Example I.5.21 (Euler characteristic)
The Euler characteristic of a tetrahedron is 4´6`5 “ 2 and of the cube it is 8´12`6 “ 2.˛

Schläfli gave a proof in ca. 1890, implicitly assuming ?, in 1971 by Bruggesser and
Mani found a rigorous proof in [BM71].

Theorem I.5.4: Euler’s polyhedron formula

A 3-polytope has Euler characteristic 2.

Let a surface M have triangulations K and K 1. Do we have χpKq “ χpK 1q, that is, is χ a
topological invariant?

Theorem I.5.5: Kerékjartó (1923) [Ker23]

Let K and K 1 be triangulations of a (closed, connected) surface M . Then K and
K 1 have a common subdivision K2 obtained from K respectively K 1 by sequences of
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I.5 CLASSIFICATION OF (CLOSED) SURFACES

face of edge subdivisions.

Using that the Euler characteristic is invariant under subdivision, this shows that the
Euler characteristic is an topological invariant.

This theorem is true for d “ 3, but not for d ě 4. There are topological d-manifolds for
d ě 4 for which there are non-equivalent PL (piecewise-linear) structures.

Open question (Smooth Poincaré conjecture in dimension 4). Does S4 have exotic
structures?

Fig. 55: Subdivision of edges and faces does not change the Euler characteristic. It should
be χ ` 1 ´ 2 ` 1 ´ 4 ` 4 “ χ in the second part.

Furthermore, subdivision does not change the orientability character of a surface.

Corollary I.5.22 (of theorem I.5.5)
The orientability character and the Euler characteristic are topological invariants for sur-
faces.

From topology we know the (non-reduced integral) homology

H˚pM ;Zq “
`

H0pM ;Zq, H1pM ;Zq, H2pM ;Zq
˘

“

´

Zβ0 ,Zβ1 ‘T,Zβ2

¯

,

where βpMq :“ pβ0, β1, β2q is the Betti vector containing the Betti number Betti numbers βj and T is
a torsion group. The number of connected components of M is β0. If β0 “ 1, then β1 is
related to the genus of M and β2 “ 0 if M is non-orientable and 1 else.
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Theorem I.5.6: Classification of surface

Every closed connected surface is one of the following types:
1 S2 (cf. figure 49), which is orientable, with χ “ 2´1`1 “ 2 and H˚ “ pZ, 0,Zq,
2 S2 with n handles (cf. figure 50), which is also orientable, with χ “ 1´2n`1 “

2 ´ 2n and H˚ “
`

Z,Z2n,Z
˘

and
3 S2 with n cross-caps (cf. figure 51), which is non-orientable, with χ “ 1´n`1 “

2 ´ n and H˚ “
`

Z,Zn´1
‘Z2, 0

˘

.

In case 3 , we have H˚pZ2q “ pZ2,Zn
2 ,Z2q and H˚pZ3q “ pZ3,Zn´1

3 , 0q (cf. universal
coefficient theorem), so we can’t read from it the orientation for Z2. This shows what is
enough for complete classification and what is not.
Remark I.5.23 Hence the Euler characteristic and orientability character give a complete
classification of closed connected surfaces. Alternatively, we can use homology with χ “

β0 ´ β1 ` β2. ˝

Example I.5.24
The projective plane RP2 (cf. figure 44) has χ “ 1 ´ 1 ` 1 “ 1 and H˚ “ pZ,Z2, 0q.

The torus T 2 has χ “ 1 ´ 2 ` 1 “ 0 and H˚ “ pZ,Z2,Zq.

The Klein bottle has χ “ 1 ´ 2 ` 1 “ 0 and H˚ “
`

Z,Z‘Z2, 0
˘

.

Fig. 56: Top left: The polygonal decomposition of the double torus and Top right: its
geometric realisation. Bottom: Similarly, we can get a triple torus.

Definition I.5.25 (Genus)
For orientable resp. non-orientable surfaces with Euler characteristic χ “ 2 ´ 2n resp.
2 ´ n the genus is n.
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Remark I.5.26 (Classifying surfaces in Differential Geometry) In Differential Geometry there are three
types of surfaces:

• spherical surfaces (with χ ą 0): S2, RP2 (as quotients of S2),

• flat surfaces (with χ “ 0): T 2, Klein bottle (as quotients of E2),

• hyperbolic surfaces (with χ ă 0): all others (as quotients of the hyperbolic space H2).

For 2-manifolds there are three model geometries: S2, E2 and H2 (where the last two both are R2 as a set,
but equipped with a different metric). For 4-manifolds there are eight model geometries: S3, E3, H3, . . . .
The geometrisation of 3-manifolds is due to Thurston and Perelman. ˝
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I.6 Vertex-minimal triangulations of surfaces
24.05.2022How many vertices do we need to triangulate a surface (as a simplicial complex)?

Example I.6.1 (How many vertices needed to decompose S2?)
For S2 we need at most four vertices if we triangulate it as the tetrahedron.

We only need three vertices if we also allow pseudo-simplicial complexes, where all faces are
simplices, cf. figure 57.

Fig. 57: A pseudo-
simplicial-complex-
triangulation of S2

with three vertices.

We only need two vertices if we also allow schemes, like in figure 58.

Fig. 58: A polygonal
scheme of S2 with two
vertices.

We only need one vertex if we also allow CW-complexes, like in figure 59.

Fig. 59: A decompo-
sition of S2 as a CW
complex.

Fig. 60: Here, the identification of vertices induces identification of edges. For polygonal
schemes, identification of edges induces an identification of vertices.

Definition I.6.2 (f(ace)-vector, Euler characteristic)
The f -vector (or face vector) of a simplicial d-complex K is

f “ pf0, f1, . . . , fdq,

where fk for k P t0, . . . , du is the number of k-dimensional faces of K. The Euler charac-
teristic of K is

χpKq :“
d
ÿ

k“0

p´1qkfk.

From Topology we know that χ is a topological invariant. Furthermore, if M is an odd-
dimensional manifold, then χpMq “ 0, so the Euler characteristic is not helpful for studying
e.g. 3-manifolds.
Remark I.6.3 (f-vector of a surface) If K triangulates a surfaces with n vertices, then
its f -vector is

pV,E, F q “

ˆ

n, f1,
2

3
f1

˙

.

But since V ´ E ` F “ χ, given a surface, we can’t choose n and f1 freely, but only one of
them. ˝

Definition I.6.4 (Hasse diagram)
The Hasse diagram Hasse diagramis the (layered) graph consisting of

• the faces of K as its vertices,
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• edges whenever an pk ´ 1q-face is contained in an k-face.

Fig. 61: The Hasse diagram for S2 with the convention that the only ´1-dimensional face
is the empty set. In every layer, we get a bipartite graph.

As every edge is contained in exactly two triangles and every triangles has exactly three
edges, there are two ways to count the edges of the red graph: "from below" and "from
above". This yields 2f1 “ 3f2.

For surfaces we have
$

&

%

χ “ n ´ f1 ` f2,

2f1 “ 3f2,

which are two equations for the three unknowns n, f1, f2.

They yield f2 “ 2
3f1 and thus

χ “ n ´ f1 ` f2 “ n ´ f1 `
2

3
f1 “ n ´

1

3
f1.

Thus
pf1, f2q “ p3n ´ 3χ, 2n ´ 2χq,

so the f -vector is
f “ pn, 3n ´ 3χ, 2n ´ 2χq.

Example I.6.5 For a 9-vertex-triangulation of T 2 we have f “ p9, 27, 18q and thus χ “ 0,
as expected. (The seven-vertex triangulation can be achieved using bi-stellar flips.) ˛

Let K be a triangulation of a surface M with Euler characteristic χpMq on n vertices. We
have just shown that then

fpKq “
`

n, 2n ´ χpMq, 2n ´ 2χpMq
˘

.

If the surface can be triangulated with n vertices, then it can also be triangulated with n`1

vertices, as illustrated in figure 62. The new triangulation then has the f -vector
Fig. 62: By subdivid-
ing one face of a tri-
angulation, we obtain a
triangulation with one
additional vertex.

f “
`

n ` 1, 3n ´ 3pχ ´ 1q, 2n ´ 2pχ ´ 1q
˘

“
`

pn ` 1q, 3pn ` 1q ´ 3χ, 2pn ` 1q ´ 2χ
˘

. (1)

Thus if we know the minimal number nmin of vertices to triangulate a surface M , this
completely determines the set of f -vectors of M . (This is harder in higher dimensions.)
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What kind of bounds do we know for n, f1 or f2? A graph with n vertices can have at most
`

n
2

˘

edges, so we get

3n ´ 3χ “ f1 ď

ˆ

n

2

˙

“
npn ´ 1q

2
,

which we can reformulate as
n2 ´ 7n ` 6χ ě 0.

In the case of equality we have

n˘ “
1

2

`

7 ˘
a

49 ´ 24χ
˘

.

Note that as χ ď 2, we have 49 ´ 24χ ě 1. Furthermore,

n´ “
1

2

´

7 ´
a

49 ´ 24χ
¯

ď 3.

We can discard this solution, since at least 4 vertices are needed to triangulate a surface
(we need at least one triangle, which gives three vertices, and since every edge needs to
be contained in two triangles, we need another vertex). We have just proven the following
theorem.

Theorem I.6.1: Headwood’s bound (1890) [Hea90]

Let M be a surface with Euler characteristic χpMq. Then a triangulation of M

needs at least
R

1

2

`

7 `
a

49 ´ 24χ
˘

V

vertices.

Remark I.6.6 (How good is Headwood’s bound?)
If χ “ 2 (and thus M – S2), we need at least four vertices, so the bound is sharp. If χ “ 1,
then n ě 6. Identifying antipodal vertices on the icosahedron (which as 12 vertices) yields
a six-vertex triangulation of RP2 (cf. figure 89), so the bound is again optimal.

If χ “ 0, then (M – T 2) and Headwood’s bound is n ě 7. You can see the unique (that
is, up to relabelling of the vertices1) seven-vertex triangulation of T 2 in figure 63. ˝

Fig. 63: The unique
seven-vertex triangula-
tion of T 2.

However, for the Klein bottle, which also has χ “ 0, Headwood’s bound is not sharp (the
only other surfaces being the orientable surface of genus 2 and the non-orientable surface of
genus 3 by theorem I.6.3):

Theorem I.6.2: Franklin (1934) [Fra34]

There is no 7-vertex triangulation of the Klein bottle.

Fig. 64: An eight-
vertex triangulation of
the Klein bottle.

1The triangulation of S2 and RP2 shown here are unique as well.
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An alternative way to write Headwood’s bound is

ðñ

ˆ

n

2

˙

ě 3n ´ 3χ “ f2

ðñ
npn ´ 1q

2
´ 3n ` 6 ě 6 ´ 3χ

ðñ
n2 ´ 7n ` 12

2
ě 3p2 ´ χq

ðñ

ˆ

n ´ 3

2

˙

ě 3p2 ´ χq,

which equality if and only if f1 “
`

n
2

˘

.

Definition I.6.7 (Neighbourly surface)
A triangulated surface with f1 “

`

n
2

˘

is neighbourly.

Example I.6.8 (Neighbourly triangulations)
The edges of the following triangulations form complete graphs Kn:

The following theorem was proven in [Rin55] for non-orientable surfaces and in [JR80] for
orientable surfaces. The last sentence is due to [Hun78].

Theorem I.6.3: Vertex-minimal triangulations of surfaces

Let M be a surface that is not a orientable surface of genus 2, the Klein bottle or a
non-orientable surface of genus 3. Then there is a triangulation of M with n vertices
if and only if

ˆ

n ´ 3

2

˙

ě 3
`

2 ´ χpMq
˘

(2)

with equality if and only if the triangulation is neighbourly.
For the three omitted cases, n ´ 3 has to be replaced by n ´ 4, that is, one extra
vertex is needed.

Characterising neighbourly triangulations of surfaces
31.05.2022Equality in (2) can be characterised as

ˆ

n ´ 3

2

˙

“ 3
`

2 ´ χpMq
˘

ðñ χ “ 2 ´
1

3

ˆ

n ´ 3

2

˙

“ 2 ´
pn ´ 3qpn ´ 4q

6
. (3)

As χ and 2 are integers, so is pn´3qpn´4q

6 P N0. This means we have n ” 0, 1, 3, 4 mod 6,
that is, n ” 0, 1 mod 3 for n ě 4.

For orientable surfaces χ is even, so pn´3qpn´4q

6 must be even by the same reasoning as above
and thus n ” 0, 3, 4, 7 mod 12 for n ě 4.
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Corollary I.6.9 (Neighbourly triangulations)
The following are equivalent for a triangulated surface M with n vertices:

1 M is neighbourly.

2
`

n´3
2

˘

“ 3
`

2 ´ χpMq
˘

.

3 χpMq “
np7´nq

6 .

4 n “ 1
2

´

7 `
a

49 ´ 24χpMq

¯

.

Existence: If M is a surface and not the Klein bottle and n is a number satisfying 2 ,
3 or 4 , then M has a neighbourly triangulation with n vertices.

Proof. 2 ðñ 3 is precisely (3) and the rest follows from theorem I.6.3. l

Further literature on this topic includes [Sti93, Küh06, Rin12].
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I.7 Map colouring
This chapter follows [Rin55, Chp. 2].

In 1852 Francis Guthrie posed the "four colour problem": "Can every map be coloured
with four colours [such that neighbouring countries have different colour]?". Do we only consider

connected closed sur-
faces here?

Fig. 65: In this "map",
three colours suffice,
but two do not due to
the presence of a cycle
with an odd number of
faces.

Fig. 66: The number of
different colours is not
bounded if the coun-
tries are not required
to be connected (that
is, if exclaves are al-
lowed). As every coun-
try borders every other
country, the number
of colours required is
equal to the number of
countries.

Definition I.7.1 (Map of a surface (first definition))
A map on a surface M is a decomposition of M into a finite collection of cells (i.e. a
cell complex) consisting of vertices (0-cells), edges (1-cells), polygons (2-cells).

Fig. 67: A decom-
position of S2 into
eight vertices, seven
edges and one 14-gon
with pairwise identified
edges (ignore the ar-
row).

Definition I.7.2 (Map of a surface (refined definition))
A map on a surface map on a surfaceM is a decomposition of M into polygons (a finite cell complex) via a
graph G “ pV ;Eq such that

• degpvq ě 3 for all vertices v P V ,

• every vertex v P V with degpvq “ k is incident with k different polygons.

The polygons of a map are its countries (in particular, they are connected) and two coun-
tries are adjacent if they share an edge.

Counterexample I.7.3 (Map of a surface)
The following decompositions are excluded by Definition I.7.2:

Fig. 68: For the first two decompositions, vertices of degree one or two can be removed
to yields a simplified map and for the other two decompositions (which violate the second
condition), if a country touches itself, this splits the surface into independent parts.

Example I.7.4 (Map of a surface)
The following decompositions are maps on a surface in the sense of Definition I.7.2:

Fig. 69: Two neighbouring countries can share multiple edges (rightmost example).

I.7.1 The chromatic number of a surface

Let P be a map on a surface M .
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Definition I.7.5 (Colouring of a map, Country graph)
The colouring of a map colouring of a mapis a a colouring of the countries of a map such that adjacent
countries have different colours.

A country graph country graphGP is the graph with a vertex for every country and an edge if two
countries are adjacent.

Fig. 70: The country graph of the Schlegel diagram of the cube is the Schlegel diagram
of the octahedron.

Definition I.7.6 (Chromatic number of a map / surface)
The chromatic number chromatic numberχCHpP q of a map P is the minimal number of colours that are
needed to colour P . The chromatic number of a surface M is

χCHpMq :“ max
P :P map on M

χCHpP q

The maximum exists and the chromatic number is known for all surfaces.

For S2, a computer proof of the four colour theorem was done in [AH76] with 1476 cases
and in [RSST96] with 633 cases.

For surfaces M ‰ S2, [RY68] proved the map colour theorem.
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Our aim is to prove the map colour theorem, which will take several steps.

Theorem I.7.1: GP ãÑ M

The (polyhedron of the) country graph GP of a map P on a surface M can be
embedded on M .

Proof. First, place capitals inside countries. Then subdivide the edges by placing one
subdivision node on each edge. Then connect the capitals with the subdivision nodes of the
adjacent edges and remove the subdivision nodes, that is, the make one edge out of an edge
going from a capital via a subdivision node to another capital. Then GP is a subgraph of
the resulting (multi-)graph, because there is a one-to-one correspondence between capitals
and countries and in the country graph adjacent countries share an edge, which is also the
case the in constructed (multi-)graph. l

Fig. 71: Two examples of the procedure used in the proof of theorem I.7.1.

Remark I.7.7 In case two adjacent countries of P share exactly one edge, the resulting
multi-graph is simple and isomorphic to GP . In this case, the embedding of GP on M defines
the dual map to P . ˝

02.06.2022Embeddings of a graph into a surface can be very wild. The following theorem simplifies
the situation.

Theorem I.7.2: DP such that G – GP

Let G be a graph that can be embedded on a surface M . Then there is a map P on
M such that G is isomorphic to a subgraph of GP .

Proof. First, thicken (this is the imprecise part of the proof) the graph G on M . Then
cut each thickened edge. The resulting patches around the nodes of G on M yield countries
with country graph G. Lastly, divide the rest of the surface into further countries yielding
GP . l

Fig. 72: The proof of
theorem I.7.2 exempli-
fied.

For every map P on M the country graph GP can be embedded on M by theorem I.7.1
and χCHpP q “ χCHpGP q (the chromatic number of a graph is defined analogously via vertex
colourings). Thus

χCHpMq “ max
P :P map on M

χCHpP q ď max
GãÑM

χCHpGq

under the assumption that the maxima exist, which we will prove by giving an upper bound
on the right hand side.
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If conversely G ãÑ M , then there is a map P on M such that G is isomorphic to a subgraph
of GP by theorem I.7.2, that is, χCHpGq ď χCHpP q.

Together we get

χCHpMq “ max
P :P map on M

χCHpP q “ max
GãÑM

χCHpGq (4)

still under the assumption that both maxima exist.

I.7.2 Some results from (topological) graph theory

Definition I.7.8 (Critical graph)
A graph G is critical criticalif every proper subgraph has smaller chromatic number.

Example I.7.9 (Critical graph) A triangle is a critical graph. More generally, the com-
plete graphs Kn yield an infinite sequence of critical graphs, as do the odd cycles C2n`1. ˛

Theorem I.7.3: degpvq ě χCHpGq ´ 1 for G critical

If G is critical, then degpvq ě χCHpGq ´ 1 for all vertices v of G.

Proof. Let v be a vertex with degpvq ă χCHpGq ´ 1.

Then the subgraph of G consisting of all vertices and edges of G except v and the edges
containing v, called Gzv, is colourable with χCHpGq ´ 1 colours, as G is critical.

The vertex v has at most χCHpGq ´ 2 neighbours (as degpvq ă χCHpGq ´ 1 by assumption),
so that one of the χCHpGq ´ 1 colours is free for v, which is contradiction. l

For colourings, vertices of degree zero or one are not interesting, since they can be coloured
as one wants, so they can be removed in preprocessing.

Theorem I.7.4: Topological bound

Let G be a graph with α0 vertices and α1 vertices such that degpvq ě 2 for every
vertex v. If G can be embedded on a surface M , then

α1 ď 3α0 ´ 3χpMq.

Remark I.7.10 Recall that for the 1-skeleton of a triangulation we proved α1 “ 3α0 ´

3χpMq, so this is a generalisation of this result for graphs embeddable in a surface. ˝

Proof. If G ãÑ M , then by theorem I.7.2 G is isomorphic to a subgraph G1 of the 1-skeleton
Skel1pP q of a map P on M which has the f-vector fpP q “ pf0, f1, f2q.

Let P be cut via G1 into r partial polyhehdra (partial map) P1, . . . , Pr with f-vectors f pkq “
`

f
pkq

0 , f
pkq

1 , f
pkq

2

˘

for k P t1, . . . , ru.
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Fig. 73: The map on the torus is the grid consisting of nine squares. The partial maps have
f-vectors f p1q “ p8, 12, 4q, f p2q “ p6, 8, 3q and f p3q “ p6, 7, 2q.

For P we have

f2 “

r
ÿ

k“1

f
pkq

2

since every face of P is contained in exactly one of the Pk and

f1 “

r
ÿ

k“1

f
pkq

1 ´ α1
1,

since the α1
1 edges of G1 are counted twice. Lastly,

f0 “

r
ÿ

k“1

f
pkq

0 ´
ÿ

vPG1

degpvq ` α1
0

since a vertex v of P that is not in G1 is counted exactly one in
řr

k“0 f
pkq

0 and a vertex of
P that is in G1 is counted degpvq times in

řr
k“0 f

pkq

0 and there are α1
0 vertices in G1.

For G1 we have by double counting

ÿ

vPG1

degpvq “ 2α1
1. (5)

Hence the Euler characteristic of M is

χpMq “ χpP q “ f0 ´ f1 ` f2 “

r
ÿ

k“1

f
pkq

0 ´
ÿ

vPG1

degpvq ` α1
0 ´

r
ÿ

k“1

f
pkq

1 ` α1
1 `

r
ÿ

k“1

f
pkq

2

(5)
“

r
ÿ

k“1

`

f
pkq

0 ´ f
pkq

1 ` f
pkq

2

˘

´ α1
1 ` α1

0 ď r ´ α1
1 ` α1

0,

since for any polyhedron we have χpPkq ď 1 (Exercise, corollary of χ ď 2!). Since G1 has no
nodes of degree at most 1, each Pk has at least three edges. Further, every edge of G1 lies
in either one or two of the Pk, so 3r ď 2α1

1.

Fig. 74: TODO

In summary,
3χpMq ď 3r ´ 3α1

1 ` 3α1
0 ď 3α1

0 ´ α1
1. l

For the case of equality we get a triangulation.
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Theorem I.7.5: α1 “ 3α0 ´ 3χpMq

Let G be a graph with α0 vertices and α1 edges such that degpvq ě 2 for every vertex
v of G. If G can be embedded on a surface M and α1 “ 3α0 ´ 3χpMq, then there is
a map P on M such that G – Skel1pP q (isomorphic) and all faces of P are triangles.

The converse is also true.

Theorem I.7.6

If a graph G has a triangular embedding (that is, each face is a triangle) on a surface
M , then α1 “ 3α0 ´ 3χpMq.

Our aim now is to show that
max
GãÑM

χCHpGq

exists.

Let G be a graph embedded on a surface M with f0 “ n vertices and f1 edges. Then by
theorem I.7.4

f1 ď 3n ´ 3χpMq. (6)

Theorem I.7.7: χCH in terms of n and f1

If G is critical, then
`

χCHpGq ´ 1
˘

n ď 2f1. (7)

Proof. As G is critical, every vertex v of G has degpvq ě χpGq ´ 1 by theorem I.7.3. Hence

`

χCHpGq ´ 1
˘

n
(5)
ď

n
ÿ

k“1

degpvkq “ 2f1,

where the second equality is the degree-sum formula (sometime referred to as handsking
lemma). l

Lastly, combining both results yields

`

χCHpGq ´ 1
˘

n
(7)
ď 2f1

(6)
ď 6n ´ 6χpMq,

that is,

χCHpGq ´ 1 ď 6 ´
6

n
χpMq. (8)

07.06.2022Case 1. χpMq ď 0. Since χCHpGq ď n (the upper bound is e.g. attained for complete
graphs), we obtain from (8)

χCHpGq2 ´ χCHpGq ď 6χCHpGq ´ 6χpMq,

which is equivalent to
˜

χCHpGq ´
7 `

a

49 ´ 24χpMq

2

¸ ˜

χCHpGq ´
7 ´

a

49 ´ 24χpMq

2

¸

loooooooooooooooooooooomoooooooooooooooooooooon

ě0 as χpMqď0,χCHpGqě1, so
?

49´24χpMqě7

ď 0.
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Hence the first factor has to be nonpositive, so

χCHpGq ď
7 `

a

49 ´ 24χpMq

2
.

This also shows that the maximum in (4) above exists.

Case 2: χpMq “ 1. Then M – RP2. From (8) we get

χCHpGq ´ 1 ď 6 ´
6

n
ă 6.

As χCHpGq has to be an integer, this implies that

χCHpGq ď 6 “
7 `

?
49 ´ 24 ¨ 1

2
,

so we get the same bound as before.

Case 3: χpMq “ 2. Then M – S2. From (8) we obtain

χCHpGq ´ 1 ď 6 ´
12

n
ă 6,

so χCHpGq ď 6. This is the six colour theorem for maps on the sphere or the plane.

Case 1 and 2: χpMq ď 1. Since

χCHpGq ď
7 `

a

49 ´ 24χpMq

2
,

holds for every critical graph embedded on M , this bounds holds for all G ãÑ M . Thus

χCHpMq “ max
P :P map on M

χCHpP q “ max
GãÑM

χCHpGq

is well-defined.

Theorem I.7.8: Heawood’s bound for colourings (1890) [Hea90]

Let M be a surface with χpMq ‰ 2 (that is, M ≇ S2). Then

χCHpMq ď

[

7 `
a

49 ´ 24χpMq

2

_

.

Heawood conjectured that this bound was optimal, but couldn’t prove it ("Heawood’s
conjecture").

We have also proved the following theorem.

Theorem I.7.9: Six colour theorem

We have χCHpS2q ď 6.

But we can do even better.

Theorem I.7.10: Five colour theorem

We have χCHpS2q ď 5, that is, every planar graph G can be coloured with five colours.
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I.7 MAP COLOURING

Proof. Let G be a planar graph, without loss of generality we can assume that G is con-
nected has at least n ě 5 vertices.

Proceeding by induction, we assume that every planar graph with fewer than n vertices can
be coloured with five colours.

For the average vertex-degree of G we have

dpGq “
2f1
n

I.7.4
ď

2p3n ´ 6q

n
“ 6 ´

12

n
ă 6.

Hence there exists a vertex v of G with degree at most five. Then H :“ G ´ v has a
five-colouring c : V pHq Ñ t1, . . . , 5u by the induction hypothesis.

Case 1: The neighbours of v are coloured with at most four colours. We can use
the free colour to colour v.

Case 2: v has five neighbours pviq
5
i“1 that are coloured differently. For i, j P

Fig. 75: In case 2, there
is a vertex v in the pla-
nar connected graph G

with degree five.

t1, . . . , 5u, let Hi,j be the subgraph induced by the colours i and j (that is, the subgraph
of H containing all vertices coloured i or j and the edges connecting them). Let C1 be the
component of H1,3 than contains v1.

Case 2.1. v3 R C1. Then we can swap colours 1 and 3 in the component C1. Then v1 and
v3 have colour 3 and v can be coloured with 1.

Case 2.2. v3 P C1. As H1,3 contains some v1-v3-path P . By Jordan’s curve theorem, the
circle vv1Pv3v separates v2 and v4; they lie in different components of H24. As in Case 2.1,
we can now swap colours in one of the components. l

How good is theorem I.7.8 for a surface M ≇ S2? It is the best possible, except for the
Klein bottle.

For what kind of critical graphs? For complete graphs Kn.

The thread problem thread problem(dt. Fadenproblem) is: given n, what is the smallest number γpnq

such that on an (orientable) surface of genus γpnq there are n points that can pairwisely be
projected by curves that do not intersect each other. A reformulation is: what is γpnq so
that Kn embeds on the (orientable) surface of genus γpnq.

Fig. 76: We have γp4q “ 0, as K4 ãÑ S2 and S2 has genus zero. The bottom image shows
that K7 ãÑ T 2 and this configuration induces the unique minimal triangulation of T 2.
(In the bottom right image, the interior, non-diagonal edges are not included, for sake of
readability.)
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Theorem I.7.11: Ringel, Youngs (1968) [RY68]

We have
γpnq “

R

pn ´ 3qpn ´ 4q

12

V

for n ě 3.

For example, γp5q “ γp6q “ 1 and γp4q “ γp3q “ 0.

Theorem I.7.12: Map colour theorem (1968) [RY68]

For any surfaces M R tS2,Klein bottleu the following are equivalent
1 There is an embedding Kn ãÑ M .
2 χpMq ď

np7´nq

6 .

3 n ď
7`

?
49´24χpMq

2 .
4

`

n´3
2

˘

ď 3
`

2 ´ χpMq
˘

.
(For the Klein bottle, 1 is equivalent to n ď 6.) If equality holds in the above,
then the embedding Kn ãÑ M defines a neighbourly triangulation of M .

In summary: we have two Heawood bounds, one for vertex-minimal triangulations: n ě
R

7`
?

49´24χpMq

2

V

and one for colourings of surfaces: χCHpMq ď

Z

7`
?

49´24χpMq

2

^

(for M ‰

S2; it also holds for M “ S2 by the Four Colour Theorem), which more generally holds for
embeddings Kn ãÑ M .

In the case of equality we have

n “
7 `

a

49 ´ 24χpMq

2
ðñ χpMq “

np7 ´ nq

6
.

We have neighbourly triangulations with

Case 1: M is orientable. n ” 0, 3, 4, 7 mod 12

Case 2: M is non-orientable. n ” 0, 1 mod 3.
09.06.2022How can we obtain (an infinite series of) vertex-minimal triangulations?

• Enumeration.

• Local modification.

• Construction.

One type of local modification is bistellar flips bistellar flips(or: bistellar moves).

Bistellar flips

Bistellar flips is a tool to locally "improve" a triangulation, e.g. to get rid of flat tetrahedra
or non-stable triangles. They are also relevant in physics (quantum gravity), because if What are those?

the number of triangulations of the sphere is exponential or higher than exponential, it is
relevant for the convergence of some methods. It can also be interesting to consider if a
sequence of bistellar flips gives a "path" in the space of triangulations from one to another.

Bistellar flips are local modifications of a surface that do not change the topological type:
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Fig. 77: Top: Adding a midpoint of a triangle is a bistellar operation, but removing it is not
possible if the surface is a tetrahedron. Bottom: Flipping a diagonal is a bistellar move,
provided the dotted edge does not already exist in the surface.

Fig. 78: For the nine-vertex triangulation we can preform flips to obtain Möbius’ seven-
vertex triangulations. Our aim is to reduce the degree of some vertex from six to three, so
we can perform the first step from above.

which vertex has de-
gree 3?

There was a competition of the Paris Academy in 1858 on "perfectionner en quelque point
impontant la théoremé géometricuqe des polyèdres" (perfect the geometric theory of poly-
hedra).

Möbius’ contribution on surfaces and polyhedra from 1861 contains the seven-vertex trian-
gulation of the torus, which is combinatorially more symmetric than the nine-vertex triangu-
lation: while the nine-vertex triangulation can be drawn on a square grid, the seven-vertex
triangulation can be drawn on the triangular grid:
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Fig. 79: This triangulation is invariant under the cyclic shift p1, 2, 3, 4, 5, 6, 7q, e.g.
p1, 2, 3, 4, 5, 6, 7q¨r1, 2, 4s “ r2, 3, 5s, where r1, 2, 4s and r2, 3, 5s are triangles, p1, 2, 3, 4, 5, 6, 7q¨

r2, 3, 5s “ r3, 4, 6s and so on. The actual combinatorial automorphism group of the triangu-
lation has size 42.

An infinite series of vertex-minimal triangulations for n ” 7 mod 12

This subsection follows [Rin55, Sec. 2.3].

Our aim is to find examples for which the vertex-stars are mapped onto each other by a
cyclic shift. (This is possible if and only if n ” 7 mod 12.) why?

Construction principle. Start with a digraph (“ directed graph with oriented edges
("arcs")) with oriented nodes.

The first diagram fully characterises the seven-vertex triangulation of the torus. Note that
every vertex has degree three. Starting at the white node and following the turning direc-
tions, we obtain an induced cycle (in red). Every element 1, 2, . . . , 6k ` 3 of Z7`12k is used
as flow capacity for one of the arcs (in particular, there are 6k ` 3 arcs and 2 ` 4k nodes).
Kirchhoff’s law (flow conservation) holds: the sum of incoming flows (2+1 for the black
one) is equal to the sum of the outgoing flows (3 for the black one).
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Fig. 80: Ladder-like graphs for n P t7, 19, 31, 43u, that is, k P t0, 1, 2, 3u. Note the alternating
pattern of the arrows between the top black nodes and the white bottom nodes. The
enumeration of the arrows follows a "leave one out" method, first traversing the lower part
back and forth and then the top part.

Each diagram records/encodes the star of vertex 0 for a triangulated surface via the arc
labellings of the induced red cycle. By the cyclic-shift property, knowing one star gives the
entire triangulation.

For n “ 7, the star of vertex zero can be deduced from the diagram. The red cycle traverse
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the edges in the order (up to cyclic permutation) 1 3 2 1, 3, 2, where j records a red arc
that has opposite direction with respect to the underlying black arc. We interpret j as the
the group inverse element of j P Z7`12k. We then obtain the stars

0 : 1 3 2 6 4 5

1 : 2 4 3 0 5 6

2 : 3 5 4 1 6 0

3 : 4 6 5 2 0 1

4 : 5 0 6 3 1 2

5 : 6 1 0 4 2 3

6 : 0 2 1 5 3 4

Notice that the rows are cyclic shifts of each other and thus result in the seven-vertex How?

triangulation

Fig. 81: The star of the vertex one in red.

but it is not...

Theorem I.7.13

This produces an infinite series of (n ” 7 mod 12)-vertex triangulations of the torus.
of the torus??

The next simplest series uses Z2 ˆZ2`6k as symmetry group.
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II.1 THE NERVE OF A COVERING

Part II: Computational
Topology

II.1 The nerve of a covering
16.06.2022Let S be a finite (or discrete) set of points in some metric space pX, dq. Our aim is to

associate a simplicial complex KpSq with S.

Fig. 82: We could for example place closed balls Brpskq with radius r ą 0 around each of
the points sk P S and connect si with sj if Brpsiq X Brpsjq ‰ H, to obtain a simplicial
complex KpSq.

In the following, let pX,T q be a topological space. We associate a collection of open sets U

with the nerve complex NpUq, an ASC.

Definition II.1.1 (Nerve [Ale28])
The nerve (complex) nerve (complex)of an open cover U :“ pUiqiPI is the ASC

NpUq :“

#

J Ă I : |J | ă 8,
č

jPJ

Uj ‰ H

+

.

Remark II.1.2 (Finiteness of NpUq)
The nerve complex of a finite open cover is a finite ASC. Generally, NpUq need not be a
finite simplicial complex.

Fig. 83: The open cover
`

pk ´ ε, k ` 1 ` εq
˘

kPN of R for some ε P p0, 1
2 q and the resulting

nerve complex.

51



II.1 THE NERVE OF A COVERING

Remark II.1.3 (Topology of |NpUq|)
The topology of |NpUq| can be different from the topology of X “

Ť

iPI Ui.

Fig. 84: If X “ S1 and tU1, U2u is the open cover shown here (left), then its nerve is
NpUq “ tH, t1u, t2u, t1, 2uu (right).

Remark II.1.4 The nerve construction can be generalised to an arbitrary family of sets
pUiqiPI not necessarily open. ˝

We want NpUq to "capture" the topology of U .

Definition II.1.5 (Homotopy (relative to a set))
Let f, g : X Ñ Y be continuous maps. If there is a continuous map

F : X ˆ r0, 1s Ñ Y

with F p¨, 0q “ f and F p¨, 1q “ g, then f is homotopic to g and we write f »F g and call
F a homotopy homotopybetween f and g.

If A Ă X and F pa, ¨q ” fpaq “ gpaq for all a P A, then F is a homotopy relative to homotopy relative
to

A and
we write f »F g rel A.

Fig. 85: A continuous
deformation of curves
α » β relative to a
point.

Fig. 86: The curves α

and β are not homo-
topic relative to their
shared start- and end
point, due to the hole
in X.

Definition II.1.6 (Homotopy equivalent)
Topological spaces X and Y are homotopy equivalent homotopy

equivalent
and we write X » Y if there are

continuous maps f : X Ñ Y and g : Y Ñ X such that f ˝ g » idY and g ˝ f » idX .

Example II.1.7 (Homotopy equivalent spaces)
A disk is homotopy equivalent to a point and an annulus is homotopy equivalent to S1. ˛

Definition II.1.8 (Contractible)
A space X is contractible contractibleif X » t‚u.

Definition II.1.9 (Good cover)
A cover tUiuiPI is good if for every J Ă I the intersection

Ş

jPJ Uj is either empty or
contractible.

Theorem II.1.1: Nerve lemma / theorem

Let U be a good open cover of X. Then |NpUq| » X.
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Fig. 87: A good open cover tU1, U2, U3u of S1 and the corresponding nerve complex
NptU1, U2, U3uq.

The version for simplicial complexes of this theorem is as follows.

Theorem II.1.2: Discrete nerve theorem (1948) [Bor48]

Let K1, . . . ,Kn be finite abstract simplicial complexes and K :“
Ťn

k“1 Kk. Let
Ak :“ |Kk| be their realisations for k P t1, . . . , nu. If the intersection

Ş

jPJ Aj is
either empty or contractible for every J Ă t1, . . . , nu, then

|NptA1, . . . , Anuq| » |K|.

Fig. 88: Two examples for theorem II.1.2: subcomplexes pKjqnj“1 and the corresponding
nerve complex NptK1, . . . ,Knuq.

Definition II.1.10 (Standard cover)
Let K be a simplicial complex. The standard cover standard coverof K is the cover F “ pFiqiPJ of K by
its facets. We write NpKq :“ NpFq.

By theorem II.1.2 we obtain

Corollary II.1.11 (Discrete nerve theorem)
We have |NpKq| » |K|.

Example II.1.12 (RP2
6)

Consider the six-vertex triangulation of RP2 in figure 89. Its facets are

Then NpRP2
6q is a four-dimensional simplicial complex on 10 vertices with the following six

facets
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Fig. 89: A six-vertex
triangulation of RP2.

Remark II.1.13 The nerve NpKq can have larger dimension than K. ˝

Repeated application of N

Fig. 90: Applying the nerve complex to a good cover of a simplicial complex over and over
again simplifies a given complex, but progress can be slow and at a high computational cost.

21.06.2022
Definition II.1.14 (Taut complex (1970) [Grü70, p. 64, 70])
A simplicial complex is taut tautif every vertex is the intersection of the facets containing it.

Fig. 91: A taut complex and a non-taut complex.

Lemma II.1.15 (Duality [Grü70, Thm. 4])
If K is taut, then NpKq is taut and

K – N
`

NpKq
˘

,

where – indicates (combinatorial?) isomorphy.
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Hence if K is taut, then K and NpKq are in duality in the sense that each is isomorphic to
the the nerve of the other.

Proof. Let F “ pFjqjPJ be the standard cover of K. The nerve N :“ NpKq has one vertex
j for every facet Fj of K, for j P J .

For a vertex v P V pKq, let ∆v “ tj P J : v P Fju. By the tautness of K we have
č

jP∆v

Fj “ tvu

and ∆v is a facet of N . On the other hand let j P J be a facet index. Then j P
Ş

vPV,jP∆v
∆v.

Fig. 92: Facets Fj con-
taining a vertex v in
a part of a simplicial
complex, which is taut
at v.

Suppose there is some j1 P Jztju such that j1 P
Ş

vPV,jP∆v
∆v. Then Fj ⊊ Fj1 , contradicting

the maximality of Fj . Therefore,
Ş

vPV,jP∆v
∆v “ tju, so the nerve N is taut and thus

N
`

NpKqq “ K. l
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II.2 The Čech complex
21.06.2022Let S Ă X be a finite (discrete) set in some metric space pX, dq. Our aim is to associate a

simplicial complex KpSq to S.

Definition II.2.1 (Čech complex)
For S Ă X and r ą 0 let

`

Brpsjq
˘

jPJ
be the collection of closed balls with radius r around

the points sj P S. The Čech complex Čech complexof S with radius r is

ČechrpSq :“

#

σ Ă S :
č

sPσ

Brpsq ‰ H

+

.

Fig. 93: The Čech complexes for two sets S.

Remark II.2.2 The Čech complex is the nerve complex of the cover
`

Brpsjq
˘

jPJ
by closed

balls of their union
Ť

jPJ Brpsjq. ˝

Lemma II.2.3
We have

Ş

sPσ Brpsq ‰ H if and only if σ Ă S lies in a ball of radius r.

Proof. " ùñ ": Let x P
Ş

sPσ Brpsq ‰ H. Then dps, xq ď r for all s P σ, so s P Brpxq for
all s P σ.

" ðù ": If there exists a x P X such that σ Ă Brpxq, then dps, xq ď r for all s P σ and thus
x P

Ş

sPσ Brpsq, so
Ş

sPσ Brpsq ‰ H. l

Remark II.2.4 We have Čechr1pSq ď Čechr2pSq for 0 ă r1 ď r2. ˝

Remark II.2.5 For sufficiently large r ą 0 we have ČechrpSq “ ∆|S|´1. In particular, for
S Ă Rd, dimpČechrpSqq can be larger than d. ˝

Remark II.2.6 If we continuously increase r from 0 to 8, then we get a discrete family of
nested Čech complexes. ˝

II.2.1 Algorithmic construction of ČechrpSq

The inputs are S Ă Rd and r ą 0 and the output should by ČechrpSq, where we call the
decision problem

Data: S Ă Rd, r ą 0, σ Ă S

Result: yes or no (depending on whether σ P ČechrpSq).
Algorithm 1: Memberpσ,ČechrpSqq
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As σ P ČechrpSq if and only if σ is contained in a ball of radius r by lemma II.2.3, we need

Data: Finite set of points σ Ă Rd

Result: Smallest ball B enclosing σ.
Algorithm 2: Miniballpσq [Wel91]

Remark II.2.7 (Some first observations) The boundary of B, BB, contains at least
two points of σ:

• If BB X σ “ H, then one can shrink the radius.

• If BB X σ “ tsiu, then we can move the centre and then shrink that radius.

For d “ 2 we have two cases:

1 if the boundary contains two antipodal points, we cannot shrink the ball any further.

2 if the boundary contains two non-antipodal points, we can move the balls centre such
that those two points become antipodal and stay on the boundary and shrink the ball
until the boundary contains a third point (three points uniquely determine a circle).

Hence Miniball is determined by the k P t2, . . . , d ` 1u points that lie on the boundary. In
the case that |σ| " d, only few of the points of σ belong to the determining subset of k

points, thus most of the points can be discarded. ˝

First idea: obtain Miniball by randomised incremental construction

Here, incremental means that one adds points one by one and random means that one adds
points in a random order, say, in the order s1, . . . , sm.

Let Bk be the smallest enclosing ball for s1, . . . , sk. Suppose we know Bk´1 and we want to
add sk.

• If sk P Bk´1, then we set Bk :“ Bk´1.

• If sk R Bk´1, then Bk must have sk on its boundary.

The problem is that we can not just use the earlier boundary points to update, the points
could look like in the rightmost picture below.

Fig. 94: The two cases.

As a solution, Miniball is randomised and recursive, taking two disjoint subset τ and v of
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σ and returning the smallest enclosing ball containing all points of τ to be discarded and
all points of τ to be discarded and all points of v as defining points on the boundary. It is
initialised by calling Miniballpσ,Hq.

if τ ‰ H then
compute the miniball B of v directly from the k P t2, . . . , d ` 1u points of v;

else
choose random point u P τ ;
B “Miniballpτztuu, vq;
if u R B then

B “Miniball(τztuu, v Y tuuq

end
end
return B

Algorithm 3: Miniballpτ, vq [Wel91]

The expected run time is Opnq.

Example II.2.8 Consider the following data points and ball.

We start by calling Miniballpts1, . . . , s5u,Hq. As s1 R Miniballpts2, . . . , s5u,Hq “ H, we
call Miniballpts2, . . . , s5u, ts1uq. As s2 R Miniballpts3, s4, s5u, ts1uq “ ts1u, we call Mini-
ballpts3, s4, s5u, ts1, s2uq, which is the ball with s1 and s2 on the boundary, the correct
solution.
As s3 PMiniballpts4, s5u, ts1, s2uq, we call Miniballpts4, s5u, ts1, s2uq. Since s4 PMiniballpts5u, ts1, s2uq,
we call Miniballpts5u, ts1, s2uq. As s5 PMiniballpH, ts1, s2uq, we call MiniballptHu, ts1, s2uq.˛

Bernd Gärtner’s implementation of this algorithm in CGAL (the computational geometry
algorithms library) takes 0.05 seconds for 106 points in E5.

Given r ą 0, we have to decide which subsets σ P 2S belong to ČechrpSq.

Fig. 95: ?? TODO

If we want to compute ČechrpSq for all r ą 0, then we compute Miniballpσ,Hq for all σ Ă S

and then order the face by the radii of their miniballs to obtain a discrete family of nested
complexes.

If we want to compute ČechrpSq for some fixed radius of for a bounded range of radii r ď R,
then we proceed incrementally by first deciding 2-element subsets, 3-element subsets, . . ..
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II.3 Vietoris-Rips complex
28.06.2022Leopold Vietoris (04.06.1891 - 09.04.2002) was the oldest living person in Austria (110

years and 10 months).

Let S Ă Rd be a finite set of data points and σ Ă S.

Definition II.3.1 (Diameter)
The diameter of σ is

diampσq “ maxt|σ1 ´ σ2| : σ1, σ2 P σu.

Example II.3.2 (Diameter)
The diameter of a set of three points is the length of the longest side of the triangle formed
by these points. ˛

Definition II.3.3 (Vietoris-Rips complex)
Let S Ă Rd and r ą 0. The Vietoris-Rips complex Vietoris-Rips

complex
of S with respect to r is

VRrpSq :“ tσ Ă S : diampσq ď 2ru .

We can compute VRrpSq as follows: for n :“ |S| first compute all
`

n
2

˘

distances for pairs of
vertices and then add two- and higher-dimensional simplices whenever diampσq ď 2r. (One
can compute the list of facets in Opn2q.)
Remark II.3.4 For sufficiently large r ą 0, we have VRrpSq “ ∆|S|´1, which is high-
dimensional with with 2|S| faces. ˝

Definition II.3.5 (Minimal non-face)
Let K be an ASC. A subset σ Ă VertpKq with #σ ě 2 is a minimal non-face / empty face
/ missing face of K if Bσ Ă K but σ R K, where Bσ :“ tµ Ă σ : dimpµq ` 1 “ dimpσqu (or
Bσ is the ASC with those facets).

Example II.3.6
Consider a triangle (as an ASC K) without the “face”. This face is a missing triangle of K.˛

Definition II.3.7 (Flag complex)
An ASC is a flag complex flag complexif the minimal non-faces of K have only two elements, i.e. if
σ Ă VertpKq with #σ ě 3 such that Bσ Ă K, then σ P K.

Fig. 96: The only non-edges on the left are edges, so the complex is flag. On the right, faces
ares missing, so this complex is not flag.
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Definition II.3.8 (Clique)
Let G “ pV,Eq be a graph. A clique cliqueof G is a complete (every pair of distinct vertices is
connected by a unique edge) subgraph of G.

Definition II.3.9 (Clique complex)
The clique complex clique complexCpGq of a graph G “ pV,Eq is the ASC on V consisting of all subsets
of V that are cliques of G.

Since a subgraph of a clique is a clique, the clique complex is indeed an ASC.

Fig. 97: Let G be the above graph. The facets of CpGq are he maximal cliques of G,
r1, 2, 3, 4s, r5, 6, 7s, r4, 5s and r6, 8s.

It is not known whether finding maximal cliques has polynomial run time.

Lemma II.3.10
The clique complex of a graph is flag.

Proof. Let G “ pV,Eq be a graph and K :“ CpGq its clique complex. Let σ Ă VertpKq “ V

with k :“ #σ ě 3 such that Bσ Ă K. If all subsets µ Ă σ with #µ “ k ´ 1 are contained in
K, that is, cliques of G, then also their union σ “

Ť

µĂσ,dimpµqăk µ is a clique, so σ P K. l

Lemma II.3.11
A Vietoris-Rips complex is flag.

Proof. For a finite set S Ă Rd and r ą 0, let K :“ VRrpSq. Take σ Ă VertpKq “ S

with #σ ě 3 and Bσ P K. Then every proper subset µ ⊊ σ has diampµq ď 2r. Hence
|µ1 ´ µ2| ď 2r for all µ1, µ2 P σ, so diampσq ď 2r, so σ P K. l

Remark II.3.12 All information of a flag complex is already contained in its 1-skeleton.˝

Lemma II.3.13 (Čech ď VR)
We have ČechrpSq ď VRrpSq.

Proof. The complexes ČechrpSq and VRrpSq have the same 1-skeleton because there is
an edge between v1 and v2 in ČechrpSq if and only if Brpv1q X Brpv2q ‰ H, that is,
|v1 ´ v2| ď 2r. Due to the flag property of VRrpSq, the latter contains all possible faces,
yielding the statement. l

Fig. 98: The three balls
intersect pairwise, but
not all, so the face is a
missing triangle. Since
the sidelengths of the
triangle are 2r, this
triangle is included in
VRrpSq.
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Lemma II.3.14 (Vietoris-Rips-Lemma)
We have VRrpSq ď Čech?

2rpSq.

Proof. Consider the standard d-simplex ∆d in Rd`1. The edges of ∆d have length
?
2. Its

barycentre b :“ 1
d`1 p1, . . . , 1q P Rd`1 has }b}2 “ 1?

d`1
. The smallest d-sphere enclosing ∆d

is centred at b and has radius rd with r2d “ 1 ´ }b}22 “ d
d`1 . Hence rd “

b

d
d`1 ă 1 (with

rd
dÑ8

ÝÝÝÑ 1).

Fig. 99: Left: The barycentre b of the triangle e1e2e3 and a circle in red with centre b and
radius rd. Right: The same situation in two dimensions.

Any set σ Ă S of d`1 or fewer points for which a d-ball of radius rd is the smallest enclosing
ball, has a pair of points of distance

?
2 or larger, that is, diampσq ě

?
2.

Fig. 100: If the triangle
were equilateral, we get
?
2, otherwise it will be

larger.

Every σ Ă S with diampσq ď
?
2 has an enclosing ball with radius r̃ ď rd, so σ P ČechrdpSq

by lemma II.2.3, which we can write as VR 1?
2

pSq ď ČechrdpSq. By multiplying with
?
2r

we get that VRrpSq ď Čech?
2rrd

pSq ď Čech?
2rpSq, where the last ď is due to rd ă 1 and

remark II.2.4. l

Together we get

ČechrpSq ď VRrpSq ď Čech?
2rpSq.

ČechrpSq is a nerve complex. VRrpSq is flag and it is the clique complex of the 1-skeleton
of ČechrpSq, that is

VRrpSq “ C
`

Skel1
`

ČechrpSq
˘˘

, (9)

so empty faces of ČechrpSq are filled in to yield VRrpSq.

By lemma II.3.14, both complex types roughly contain the same topological information
about S.

The computational bottleneck is: for sufficiently large r ą 0 both complex types become
high-dimensional with up to 2|S| faces, which makes it infeasible to set up the complexes
and also to further compute topological invariants.
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II.4 Voronoi diagrams and Delaunay triangulations
30.06.2022Let S Ă Rd be a finite or discrete set of points.

Definition II.4.1 (Voronoi cell)
The Voronoi cell Voronoi cellof a point si P S is the set of points x P Rd closer to si that to any
sj ‰ si:

Vsi :“ tx P Rd : }x ´ si} ď }x ´ sj}, sj P Su

Due to the continuity of the norm, Vs is closed for any s P S. Furthermore, it is convex as
the intersection of (convex) halfspaces, whose boundary perpendicular to the bisector of s
with any other s0 P S.

Definition II.4.2 (Voronoi diagram)
The Voronoi diagram Voronoi diagramof S is pVsqsPS , the collection of Voronoi cells of its points.

Fig. 101: Top: Voronoi diagram of finitely many points. Bottom: Voronoi diagram of
a countable set of points.

Definition II.4.3 (Delaunay complex)
The Delaunay complex Delaunay

complex
of S is the nerve complex of the Voronoi diagram of S:

DelpSq “

#

σ Ă S :
č

sPσ

Vs ‰ H

+

.

Voronoi cells are polyhedra (and thus convex) and thus their intersection is (convex and
thus) contractible. Hence this is a good cover.

Fig. 102: Delaunay
triangulation dual to
the Voronoi diagram
of four points consists
of two triangles inter-
secting in an edge.

If four points lie on one circle, then all their Voronoi cells intersect and hence the resulting
Voronoi graph is the complete graph K4, which is not planar.
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Fig. 103: Four points that line on a common circle.

We want to exclude this case (also in higher dimensions).

Definition II.4.4 (General position)
The set S Ă Rd is in general position general positionif no d`2 of its points lie on a common pd´1q-sphere
(or in a hyperplane).

For d “ 2 this means that no four points are allowed to lie on a circle or on a line.

Lemma II.4.5 (General position ùñ dimpDelpSqq ď d)
If S is in general position, then dimpDelpSqq ď d.

Definition II.4.6 (Delaunay triangulation)
If S is in general position, then the Delaunay triangulation Delaunay

triangulation
of S is the geometric realisation

of DelpSq as the GSC on the points S Ă Rd consisting of the simplices of DelpSq.

In this case, we have an embedding in the ambient Rd.
Remark II.4.7 For a finite set S Ă Rd in general position, the Delaunay triangulation
of S is a triangulation of convpSq. ˝

The number of different triangulations of n-polygons (without adding new points) is Cn, the
n-th Catalan number.

II.4.1 Weighted Voronoi diagrams

We can modify the model to describe varying strengths of influence. One model is additively
weighted Voronoi diagram: instead of }x ´ s} we use dspxq :“ }x ´ s} ´ w with positive
weights w ą 0. For points x of the boundary of two regions we have dsipxq “ dsj pxq, that is
}x´ si} ´ }x´ sj} “ wi ´wj . For wi ‰ wj this is the equation of a hyperbola as "bisector"
between regions.
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Fig. 104: For the weights w1 :“ 5 and w2 :“ 1 at the points s1 :“ p0, 0q and s2 :“ p0, 10q, we
have ds1pxq “ ds2pxq if and only if }x ´ s1} ´ }x ´ s2} “ w1 ´ w2 “ 4, that is

a

x2
1 ` x2

2 ´
a

x2
1 ` px2 ´ 10q2 “ 4, which describes the hyperbola with x-axis intersection at p0, x2q,

where x2 fulfills |x2| ´ |x2 ´ 10| “ 4, so x2 “ 7.

Remark II.4.8 If all weights are equal, then the additively weighted Voronoi diagram
coincides with the standard Voronoi diagram. ˝

The power distance is dspxq :“ }x´s}2´w for positive weights w ą 0 and the corresponding
weighted Voronoi diagram is called power diagram or Laguerre-Voronoi diagram.

Example II.4.9 The weighted point si can be interpreted as a d-ball with radius
?
wi.

Fig. 105: Examples for where the bisector can lie.

We can also do explicit computations:

solving }x´0}2 ´1 “ }x´2}2 ´ 1
4 yields x “ 19

16 (left) and solving }x´0}2 ´1 “ }x´ 1
2}2 ´ 1

4

yields x “ 1 (right). ˛

For multiplicative weighted Voronoi diagrams we define dsipxq :“ 1
wi

}x ´ si} for wi ą 0.
Then, bisectors are circular arcs (or line segments in the case that the two weights coincide).

Definition II.4.10 (Weighted Voronoi diagram, Delaunay complex)
The weighted Voronoi cell of a point s P S is the set of points x P Rd closest to s,

Vs :“
␣

x P Rd : dspxq ď dsj pxq, sj P S
(

.

The weighted Voronoi diagram of S is the collection of weighted Voronoi cells of its
points.

The weighted Delaunay complex of S is the nerve complex of the weighted Voronoi
diagram of S.
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Remark II.4.11 In the case the all weights coincide, the multiplicatively weighted Voronoi
diagram coincides with the standard one. ˝

II.4.2 Alpha complexes

05.07.2022Alpha complexes are a nested family of subcomplexes of the Delaunay complex. They
are similar to Čech complexes but they are bounded in dimension and have a canonical
realisation if S is in general position.

Definition II.4.12 (Alpha complex)
For s P S and r ą 0 let Rrpsq “ Brpsq X Vs. For r ą 0, the r-alpha complex alpha complexof S is
AlpharpSq :“ N

`

pRrpsqqsPS

˘

.

Fig. 106: An alpha complex and the balls Rrpsq.

Remark II.4.13 (Topological properties of alpha complexes) We have Rrpsq Ă Brpsq.
Hence AlpharpSq ď ČechrpSq. Furthermore,

`

R̊rpsq
˘

sPS
is a good open cover of its union.

Furthermore,
Ť

sPS Brpsq » |AlpharpSq| » | ČechrpSq| by the nerve theorem (and since the
`

Rrpsq
˘

sPS
are closed and convex as intersection of closed convex sets and cover the same

region as pBrpsqqsPS). don’t we have to take
the interiors of both
Vs and Brpsq such
that the sets are open
and we can apply the
theorem to this good
*open* cover?

Remark II.4.14 We can also set up weighted alpha complexes: as before for weighted
Voronoi diagrams we use balls of radius r2si “ wsi . An application is the modelling of
biomolecules, where the atoms are modelled as balls and their radius describes the range of
the van der Waals interaction. ˝

65



II.5 SIMPLICIAL HOMOLOGY

II.5 Simplicial homology

Recall from figure 2 that for a finite set S Ă Rd we wanted to compute invariants I
`

KpSq
˘

for associated simplicial complexes KpSq.

There are numerical invariants I : tsimplicial complexesu Ñ R like the Euler character-
istic and algebraic invariants I : tsimplicial complexesu Ñ tgroupsu like homology and the
fundamental group.

Let K be a (finite, abstract) simplicial complex with ordered vertex set V “ tv1, . . . , vnu,
in particular we can without loss of generality choose V “ rns :“ t1, . . . , nu. Further let R

be a commutative ring with 1.

Definition II.5.1 (Chain module)
The j-th chain module chain moduleCjpK;Rq of K is the set of formal linear combinations of j-faces of
K with coefficients in R.

The chain module is a free R-module. Here we need the 1 of R to define the linear combi-
nations.

Fig. 107Example II.5.2 (Chain modules) Consider the ASC K realised in figure 107. Its chain
modules are

C0pK;Rq “ tα ¨ v1 ` βv2 ` γv3 : α, β, γ P Ru,

where e.g. v1 means tv1u, and

C1pK;Rq “ tδ ¨ v1v2 ` ε ¨ v2v3 : δ, ε P Ru,

where e.g. v1v2 means tv1, v2u. ˛

The j-faces of K form an R-basis of CjpK;Rq. Hence (for j ě 1)

Bjpv0 . . . vjq :“
j
ÿ

k“0

p´1qkv0 . . . vk´1vk`1 . . . vj “:
j
ÿ

k“0

p´1qkv0 . . . pvk . . . vj , (10)

where v0 . . . vj (should rather be vk0
. . . vkj

with k0 ă . . . ă kj) is an ordered j-simplex and
the hat signifies omission, defines (by linear extension) an R-linear map from CjpK;Rq to
Cj´1pK;Rq.

Definition II.5.3 (Boundary map)
The j-th boundary map boundary mapof K is

Bj : CjpK;Rq Ñ Cj´1pK;Rq

defined by (10).

Remark II.5.4 (Special choices of R) When R is a field, then CjpK;Rq is a vector
space (where one can use Gauss elimination to simplify matrices). The choice R “ Z2

is widely used in computational topology. The universal case is R “ Z, as the universal
coefficient theorem from Topology tells us that results for other rings can be deduced from
this case. ˝
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Example II.5.5 Let σ :“ v0v1v2 “ tv0, v1, v2u be an oriented / ordered triangle with
v0 ă v1 ă v2. Then

B2pσq “ v1v2 ´ v0v2 ` v0v1.

Further,

Fig. 108: An edge vivj

receives a plus if vi ă

vj and a minus else.

B1pB2pσqq “ B1pv1v2 ´ v0v2 ` v0v1q “ B1pv1v2q ´ B1pv0v2q ` B1pv0v1q

“ pv2 ´ v1q ´ pv2 ´ v0q ` pv1 ´ v0q “ 0. ˛

Definition II.5.6 (B0)
Let B0 :“ 0 by setting C´1pK;Rq :“ R ¨ 0 and B0pvq “ 0 for any vertex v of K.

Lemma II.5.7 (Most important lemma: B2 “ 0)
We have BqBq`1 “ 0 for all q ě 0.

Proof. Consider q ` 2 vertices v0, . . . , vq`1 of a pq ` 1q-dimensional simplex. Then

B2pv0 . . . vq`1q “ B

˜

q`1
ÿ

k“0

p´1qkv0 . . . pvk . . . vq`1

¸

(L)
“

q`1
ÿ

k“0

p´1qkB pv0 . . . pvk . . . vq`1q

“

q`1
ÿ

k“0

p´1qk

˜

q`1
ÿ

j“k`1

p´1qj´1v0 . . . pvk . . . pvj . . . . . . vq`1

`

q`1
ÿ

k“0

p´1qk
k´1
ÿ

j“0

p´1qjv0 . . . pvj . . . pvk . . . . . . vq`1

¸

“ 0,

where we use that B is linear in (L). Each ordered q-simplex occurs twice, but with opposite
sign, hence the overall result is zero. l

Definition II.5.8 (Boundary module, module of cycles)
The j-th boundary module boundary moduleis BjpK;Rq :“ impBj`1q Ă CjpK;Rq.
The j-th cycle module cycle moduleis ZjpK;Rq :“ kerpBjq Ă CjpK;Rq.

Since Bj`1 and Bj are R-linear, BjpK;Rq and ZjpK;Rq are free R-submodules of the R-
module CjpK;Rq. By lemma II.5.7,

BjpK;Rq ď ZjpK;Rq,

so we can take the quotient (do we need commutativity of R for this?).

Definition II.5.9 (Simplicial homology module)
The j-th homology module homology moduleis

HjpK;Rq :“ ZjpK;Rq{BjpK;Rq.
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Remark II.5.10 (Special choices of R) If R “ Z, then Hj is an abelian group and if R
is a field, then Hj is a vector space. ˝

Remark II.5.11 Each finitely generated abelian group G has two uniquely determined
subgroups F and T , where F is free and T (the torsion subgroup) is finite. ˝

Definition II.5.12 (Betty number)
The q-th Betty number Betty numberβq of K is the free rank of HqpK;Zq.

The Betty numbers are topological invariants.

Example II.5.13 For example, a homology group could be HjpK;Zq – Z104
‘pZ2 ‘Z5q.

In this case βj “ 104, F “ Z104 and T “ Z2 ‘Z5. ˛

Theorem II.5.1: Euler characteristic and Betty numbers

For an n-dimensional simplicial complex K we have

χpKq “

n
ÿ

k“0

p´1qkfkpKq “

n
ÿ

k“0

p´1qkβk.

Definition II.5.14 (Homology class, homologous)
The homology class homology classof c P ZjpK;Rq is rcs :“ c ` BjpK;Rq P HjpK;Rq. Two cycles
c, d P ZjpK;Rq are homologous and we write c „ d if they belong to the same homology
class: c P rds.

Hence a homology class is represented by a cycle, which is not a boundary ("non-bounding
cycle"), which one could see as a "hole" in the complex.

Example II.5.15 We have B∆3 – S2, that is, the boundary of the 3-simplex (the tetrahe-
dron with vertices 1, . . . , 4) is homeomorphic to S2.

Fig. 109: The tetrahedron with ordered triangles as faces.

We have
δ3p1234q “ ´123 ` 124 ´ 134 ` 234

To compute H2pB∆3;Zq we write

B3 123 124 134 234
12 1 1 0 0
13 ´1 0 1 0
14 0 ´1 ´1 0
23 1 0 0 1
24 0 1 0 ´1

34 0 0 1 1
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Adding the second and third row to the first one eliminates it. The first three rows can be
eliminated, so (this is nonsense)

Z3pB∆3;Zq “ kerpδ3q “

$

’

’

’

&

’

’

’

%

s

¨

˚

˚

˚

˝

´1

1

´1

1

˛

‹

‹

‹

‚

: s P Z

,

/

/

/

.

/

/

/

-

We interpret p´1, 1,´1, 1qT as a linear combination of triangles ´123 ` 124 ´ 134 ` 234.

We have B2pB∆3;Zq “

To compute H1 we observe that the k-th column in the boundary matrix δ2 is a linear
combination of the first three columns, that is

B1 “ impδ2q “ xpqy
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We have four vertices, six edges, four triangles and one 2-simplex, so C0pB∆3;Zq – Z4,
C1pB∆3;Zq – Z6, C2pB∆3;Zq – Z4 and C3pB∆3;Zq – Z.

To compute the 0-th homology we write

H0pB∆3;Zq “ Z0pB∆3;Zq{B0pB∆3;Zq “ kerpδ0q{ impδ1q.

Since δ0 : C0 Ñ C´1 “ R ¨ 0, we have kerpδ0q “ C0pB∆3;Zq – Z4.

We have δ1p12q “ 2´1, δ1p13q “ 3´1 etc. We have p4´3q`p3´2q “ 4´2, p3´1q´p2´1q “

3 ´ 2 and p4 ´ 3q ` p3 ´ 1q “ 4 ´ 1, so impδ1q – Z3, implying H0pB∆3;Zq – Z4
{Z3

– Z.

Alternatively, we can write

B1 “

¨

˚

˚

˚

˝

´1 ´1 ´1 0 0 0

1 0 0 ´1 0 ´1

0 1 0 1 ´1 0

0 0 1 0 1 1

˛

‹

‹

‹

‚

and calculate that both its kernel and image have dimension 3 over Z.

To compute the first homology we write

H1pB∆3;Zq “ Z1pB∆3;Zq{B1pB∆3;Zq “ kerpδ1q{ impδ2q.

finish this!

Together we get the homology vector

H˚pB∆3;Zq :“
`

H0pB∆3;Zq, H1pB∆3;Zq, H2pB∆3;Zq
˘

“ pZ, 0,Zq. ˛
another Homology
calculation exam-
ple for the ASC with
facets 12, 14 and 234.

Example II.5.16 Let pG,Eq be a graph with C connected components. Then

H˚pG;Zq “
`

Z;Z|E|´p|V |´Cq
˘

, ˛

because in each connected component Gj “ pEj , Vjq, j P t1, . . . , Cu the number of edges
which are in the graph, but not in a spanning tree of Gj is zj :“ |Ej | ´ p|Vj | ´ 1q. Hence
for the whole graph this number is

řC
j“1 zj “ |E| ´ p|V | ´ Cq, as |E| “

řC
j“1 |Ej | and

similarly for |V |. The edges of the spanning tree can be contracted and this contraction
gives a homotopy equivalence.

For example,

Fig. 110: Contracting the edges of a spanning tree gives a homotopy equivalence to a regular
CW complex, from which one can determine the first homology of that graph.

Example II.5.17 (Homology of the sphere)
We have H˚pSd;Zq “ pZ, 0, . . . , 0,Zq. ˛
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II.6 Smith Normal Form
12.07.2022If R is a field, then Bk “ impδk`1q and Zk “ kerpδkq and thus Hk can be computed via

Gaußian elimination. But Gaußian elimination might fail (if the space has torsion) for
R “ Z in case multiplicative inverses are needed for the elimination.

Instead of multiplicative inverses (it suffices if we can cancel rows) we can instead utilise the

Lemma II.6.1 (Lemma of Bézout)
For all a, b P Z there exist s, t P Z such that gcdpa, bq “ s ¨ a ` t ¨ b.

Remark II.6.2 If d is a common divisor of a and b, that is, there exist x, y P R with
d “ a ¨ x and d “ b ¨ y and every common divisor of a and b divides d, then d is called a
greatest common divisor of a and b and we write d “ gcdpa, bq. In general rings, the gcd of
two elements may not exist. ˝

Definition II.6.3 (Principal ideal domain)
Let R be a commutative ring with 1 ‰ 0. Then R is a principal ideal domain principal ideal

domain
(PID) if

• a ¨ b ‰ 0 for a, b P Rzt0u (all elements of R are regular),

• every ideal I Ă R is generated by some x P R, written as I “ R ¨ x.

Remark II.6.4 An ideal is a subset of a ring containing 0, which is closed with respect to
addition and multiplication with elements from the ring. ˝

Remark II.6.5 The ring of matrices is not a PID, because e.g. there exist nilpotent ma-
trices and so the first condition in Definition II.6.3 is not fulfilled. ˝

Example II.6.6 (PID)
The integers Z form a PID. ˛

Remark II.6.7 The Lemma of Bézout holds in every PID. ˝

II.6.1 Homology computation via the Smith Normal
Form

Let R be a PID, e.g R “ Z and A P Rmˆn, e.g. A “ δk. Then there is (we will prove this
by using an algorithm to construct them) a regular m ˆ m matrix S and a regular n ˆ n

matrix T such that

SAT “

¨

˚

˚

˚

˚

˝

α1 0 0

0
. . . 0

0 0 αr

0

0 0

˛

‹

‹

‹

‹

‚

P Rmˆn (11)

with αj | αj`1 for all j P t1, . . . , r ´ 1u and αk ‰ 0 for all k P t1, . . . , ru. This is the Smith
normal form Smith normal

form
(SNF) of A.

Remark II.6.8 (Invariant factors) The αk are the invariant factors of A. We have αk “
dkpAq

dk´1pAq
, where dkpAq is the gcd of all k ˆ k-minors (subdeterminants) of A and d0pAq :“ 1

(here we need that R has a unit elements 1 ‰ 0). For computation, this structural result is
useless, because the computation of dk has exponential running time in k. ˝
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Remark II.6.9 (How SNF determines the homology)
Let (11) be the SNF of δk`1 : Ck`1pK;Zq Ñ CkpK;Zq and s :“ rank

`

CkpK;Zq
˘

´ rankpδkq,
where rank

`

CkpK;Zq
˘

is the number of basis elements of CkpK;Zq and rankpδkq can be
read off from the SNF of δk, then

HkpK;Zq “ Zr´s
‘

r
à

j“1

Zαj
.

˝

Remark II.6.10 The largest torsion coefficient of a simplicial complex grows as Θp2n
2

q, even though the
SNF can be computed in polynomial time (so it is not strongly polynomial). The proof uses randomised
methods, but there is a construction using Hadamard matrices (which have entries ˘1 and determinant
n

n
2 P Θp2n logpnqq) such that the greatest torsion coefficient is in Θp2n logpnqq. ˝

II.6.2 Algorithm for SNF computation

Input: A P Rmˆn.
Output: S, T regular matrices such that SAT is in SNF.

We modify A successively by row and column operations (in mixed order) implemented by
regular square matrices S1, . . . , Sk and T1, . . . , Tℓ such that S “ Sk . . . S1 and T “ T1 . . . Tℓ.

Initialise: S “ idm, T “ idn, SAT “ A.

Step 1: Proceed recursively and choose pivot. Suppose

where jt ě t is the smallest column index with a non-zero entry.

If the entry at,jt “ 0, then there is a smallest k ą t with ak,jt ‰ 0 (the red entry above).
We then exchange the t-th and k-th row.

Then

Step 2: Improve the pivot (should be the smallest possible). If for at,jt ‰ 0 there is
an entry ak,jt ‰ 0 with with (not at,jt | ak,jt), then let β :“ gcdpat,jt , ak,jtq. By lemma II.6.1
there exist σ, τ P R such that β “ at,jtσ ` ak,jtτ . Via row operations (by left multiplication
by a regular matrix Si) we replace the t-th row by σ ¨ pt-th rowq ` τ ¨ pk-th rowq.
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II.6 SMITH NORMAL FORM

For α “
at,jt

β and γ “
ak,jt

β we have σ ¨ α ` τ ¨ γ “ 1. The matrix

is invertible with inverse

and

We repeat this step until no further improvement is possible. Since β|at,jt , ak,jt , the proce-
dure terminates.

Step 3: Eliminate further non-zero entries in row t and column jt via row and
column operations.

For row entries: add multiples of row t to remaining rows. For column entries: repeat step
2 for columns instead of rows.
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Warning: Column operations might cause new row entries in column jt and we possibly
have to repeat row operations. However, since β has only finitely many prime factors, the
process eventually becomes stationary (e.g β becomes 1).

Step 4: Move zero-columns to the right. We obtain the block matrix
˜

diagpα1, . . . , αtq 0

0 ‹

¸

We still have to take care that αt´1 | αt.

First of all, an example.

Example II.6.11 Consider A “ p 6 1
4 3 q. Let β “ gcdp6, 4q “ 2 “ 6 ¨ 1 ` 4 ¨ p´1q. With

α “ 6
2 “ 3 and γ “ 4

2 “ 2 we get

S1 “

˜

σ τ

´γ α

¸

“

˜

1 ´1

´2 3

¸

and thus

S1A “

˜

2 ´2

0 7

¸

.

Adding the first to the second column via T1 “ p 1 1
0 1 q we get S1AT1 “ diagp2, 7q. ˛

Step 5: ensure divisibility. If αi  |αi`1, we add the pi` 1q-th column to the i-th column
and apply row operations to "repair" αi by replacing it with β “ gcdpαi, αi`1q.

Example II.6.12 (Continued) Recall that S1AT1 “ diagp2, 7q. Adding the second col-
umn to the first via T2 “ p 1 0

1 1 q yields S1AT1T2 “ p 2 0
7 7 q. Let β “ gcdp2, 7q “ 1 “ 2¨p´3q`7¨1.

Hence α “ 2
1 “ 2 and γ “ 7

1 “ 7. Hence S2 “
`

´3 ´1
´7 2

˘

and we get S2S1AT1T2 “ p 1 7
0 14 q.

Finally, with T3 “
`

1 ´7
0 1

˘

we get S2S1AT1T2T3 “ diagp1, 14q, which is the SNF of A. ˛

14.07.2022Example II.6.13 (Homology of RP2 via SNF)
Consider RP2 as a cell complex (CW complex) with one vertex (0-cell), one edge (1-cell)
and one disk (2-cell). We have δ2pthis diskq “ 2 ¨ pthis edgeq and the (1-)boundary of C1 is

Fig. 111: A CW-
complex representation
of RP2.

0 ¨ C0.

Hence Z2pRP2;Rq “ kerpδ2q “ t0u and B2pRP2;Rq “ impδ3q “ t0u (since there are no
3-faces) and thus H2pRP2;Rq “ t0u. Further Z0pRP2;Rq “ kerpδ0q “ R and B0pRP2;Rq “

t0u and thus H0 “ R. In the case of R “ Z from the Smith Normal Form we get H1 “

Zp1´0q´1
‘
À1

j“1 Z2 “ Z2 since δ2 is already in SNF. Alternatively, H1pRP2;Zq “ Z {Z2 “

Z2. ˛
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II.7 Persistent homology

Definition II.7.1 (Filtration)
A filtration filtrationof a (e.g. simplicial) complex K is a nested sequence of subcomplexes pKjqmj“0

with
H “ K0 Ă K1 Ă K2 Ă . . . Ă Km “ K.

A complex K together with a filtration pKjqmj“0 is a filtered complex.

Example II.7.2 (Filtration)
The Čech complex ČechrpSq, the Vietoris-Rips complex VRrpSq and the alpha complex
AlpharpSq (for all r) are filtrations. Another example is filtration by dimension, that is
Kb :“ Skelb`1pKq with K0 “ Skel´1pKq :“ H. One can also consider randomised filtrations,
where we uniformly randomly choose whether to add one simplex or the other. ˛

Definition II.7.3 (Homology of a filtration)
Let Kℓ be the ℓ-th intermediate complex of a filtered complex.

Let Zℓ
k :“ ZkpKℓq be the k-th cycles of Kℓ, Bℓ

k :“ BkpKℓq be the k-th boundaries of Kℓ,
Hℓ

k :“ ZkpKℓq{BkpKℓq be the k-th homology of Kℓ and βℓ
k :“ rankpHℓ

kq the k-th Betti
number of Kℓ.

Over time steps ℓ, βℓ
1 records the one-dimensional holes. We call β¨

1 the signature function signature function.

Fig. 112: An example for a data set S and for a plot of the corresponding signature function.
If ℓ depends on e.g. a radius r, then βℓ

1 Ñ 0 for ℓ Ñ 8.

It is hard to distinguish between features and noise (e.g. spin glasses in material science).
We want to identify features as substructures that persist over (a longer period of) time, e.g.
find the non-bounding cycles that remain non-boundaries for at least the next p intermediate
complexes of the filtration.
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Definition II.7.4 (Persistent homology)
Let pKℓqmℓ“0 be a filtration, k P N, ℓ P t0, . . . ,mu and p P t0, . . . ,m ´ ℓu. The p-persistent
k-th homology group of Kℓ is

Hℓ,p
k :“ Zℓ

kz
`

Bℓ`p
k X Zℓ

k

˘

and the p-persistent k-th Betti number of Kℓ is

βℓ,p
k :“ rank

`

Hℓ,p
k

˘

.

Note that Hℓ,0
k “ Hℓ

k by lemma II.5.7.
Remark II.7.5 (Welldefinedness) The module Hℓ,p

k is well-defined because Bℓ`p
k XZℓ

k is
the intersection of two submodules of Cℓ`p

k (because pKℓq
m
ℓ“0 is a filtration) and thus itself

a module and because it is a submodule of Zℓ
k. ˝

Remark II.7.6 (Functorial way to define persistent homology groups)
It two cycles are homologous in Kℓ, then they also exist and are homologous in Kℓ`p

(because the inclusion Kℓ Ă Kℓ`p induces an injective simplicial map Kℓ ãÑ Kℓ`p). For
the map ηℓ,pk : Hℓ

k Ñ Hℓ`p
k , which maps a homology class in Hℓ

k to one containing it in Hℓ`p
k ,

we set Hℓ,p
k :“ impηℓ,pk q. ˝

Example II.7.7 (Creating, destroying simplices)
If the dotted triangle σ (we could also instead choose σ to be the new outer edge of this
triangle) is added first together with the two edges (τ is not yet added), then the outer
boundary cycle Z of the whole complex is homologous to the boundary Z 1 of τ , so Z „ Z 1.
We say that a cycle is created by adding σ and killed by adding τ . ˛

Definition II.7.8 (Persistence, creator, destroyer)
Let Z be a non-bounding k-cycle that is created at time i by the addition of the simplex
σ, and let Z 1 „ Z be a homologous k-cycle that is turned into a boundary at time j by
the simplex τ . Then the persistence persistenceof σ (and of its homology class rZs) is j ´ i.

We say that σ is the creator creatorof rZs and τ is the destroyer destroyerof rZs. In particular we say that
σ is a positive simplex and τ is a negative simplex.

The persistence is the time σ "survives".
Example II.7.9
A creation at time i and death at time i ` k yields a persistence of k.

II.7.1 Visualisation of persistence

19.07.2022
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Suppose that the filtration pKℓqmℓ“0 of a simplicial complex K does not have torsion, e.g.
by choosing R “ Z2. Then for any bounding k-cycle z P Bk in the terminal complex K

there is a representing pair of simplices pσ, τq that create and destroy rzs at times i and j,
respectively.
Remark II.7.10 We can have τ “ σ, though. In figure 113 we have β1 “ 0 for all times.˝

Fig. 113

Example II.7.11 (Barcode diagram)
Every pair pσ, τq with σ ‰ τ is visualised by an half-open interval ri, jq, the k-interval of the
k-cycle z P Zk. Non-bounding cycles (that is, z P ZkzBk) in K are represented by intervals
ri,8q.

Fig. 114: This representation of persistence is called hierarchy of barcodes for H˚.

What is this shape
above the barcode?

Note that the vertical axis doesn’t carry any meaning in the bar code diagram. ˛

Example II.7.12 (Persistence diagram)
Every point in the persistence diagram persistence

diagram
below represents a pair pσ, τq, plotted at the coordi-

nates pi, jq, where i is the time of birth and j is the time of death of the pair.

Fig. 115: The black dots represent 0-dimensional homology, the red ones 1-dimensional
homology.

Important. All points close to the diagonal (most likely) represent noise, while points far
away from the diagonal represent persistent information of the filtration.

An application is to spin glasses, which look very similar to the human at different points
in time:
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But, with some luck, the persistence diagrams differ visibly and one can conclude that
something changed between those two points in time. ˛
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