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MOTIVATION I: GOING TO THE DOCTOR

Fic. 1: We strive to eliminate noise while keeping important
information. [6]
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MOTIVATION II: WHY DOES THIS WORK

— In data relevant information is sparse
~» data storage, transmission, denoising, feature extraction,
classification ...
— Our visual system takes in 107 bits/sec only processes 50
bits/sec.

“Neuroscientists have identified edge processing neurons in the earliest
and most fundamental stages of the processing pipeline upon which
visual processing is built.”

— Candés and Donoho in [2| summarising the work of nobel
prize winning neurophysiologist David Hubel.
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SPARSE APPROXIMATION

OR: THE ABC OF HARMONIC ANALYSIS

— represent complicated objects well by few objects

— construct analysing elements {¢;} which can best capture
most relevant information of data
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SPARSE APPROXIMATION

OR: THE ABC OF HARMONIC ANALYSIS

— represent complicated objects well by few objects

— construct analysing elements {¢;} which can best capture
most relevant information of data
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Sparse Components of

--..."l---.-.--. Naturally-Occurring Image
EENSRNZYNENEMEMMEEN Data learned by unsupervised
ANNNERN -=.-l-. algorithm. [5]
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DIRECTIONAL REPRESENTATION SYSTEMS

FroMm BAsSeEs To FRAMES

@leen vectors {¢y }r in a HILBERT space V' we want to ex-
press all v € V as v = ), vy efficiently.
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DIRECTIONAL REPRESENTATION SYSTEMS

FroMm BAsSeEs To FRAMES

@leen vectors {¢y }r in a HILBERT space V' we want to ex-
press all v € V as v = ), vy efficiently.

&Problem

Possibly (¢ )x not linearly independent
= (vk )k not unique.
¢ Solution
It suffices if there exists B > A > 0 such that for allv € V

Alloll* < Y 1w, ou)* < Bllol.

(Frame condition)
keN
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DIRECTIONAL REPRESENTATION SYSTEMS

FroMm BAsSeEs To FRAMES

@leen vectors {¢y }r in a HILBERT space V' we want to ex-
press all v € V as v =), vipy, efficiently.

&Problem

Possibly (¢ )x not linearly independent
= (vk )k not unique.

—‘@’-solution

It suffices if there exists B > A > 0 such that for allv € V

Alloll* < Y 1w, ou)* < Bllol.

(Frame condition)
keN

— The set (g )k might be "overcomplete"
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FRAME THEORY

Analysis operator: T : V — o, v — {v = (v, ok) }-

~ Frame condition: Aljv||> < [|Tw|7, < Bllv|*

— Synthesis operator: T* : 2 =V, {vp}p — v = kagpk
k

— Define S =TT*:V =V, v, (v, o) k.

~ With {@r = Sl }r we have

v = Z(v, k) Pk = Z(U, k) Pk

k k
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OPTIMAL SPARSITY OF A DIRECTIONAL

REPRESENTATION SYSTEMS

"Quality" of a directional representation system (¢);er is
measured by asymptotic (N — oo) behaviour of its
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OPTIMAL SPARSITY OF A DIRECTIONAL

REPRESENTATION SYSTEMS

"Quality" of a directional representation system (¢);er is
measured by asymptotic (N — oo) behaviour of its

DEFINITION (BEST N-TERM (NON-LINEAR) APPROXIMATION)

The N-term approximation of f € £2(v) is given by

If = fall3,  where fi =) (f, i)

i€,

and ((f, ¢i))icry are the N largest coefficients in magnitude.
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THE CARTOON-LIKE MODEL I

Images are governed by anisotropic features.
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THE CARTOON-LIKE MODEL II

DEFINITION (S?(v) AND CARTOON-LIKE IMAGES)

For v > 0, S%(v) is the set of B C [0, 1|? being translates of
A= {z eR?:|z| < p(9), z = (r,0)},

with a radius function p : [0, 27) — [0, 1] with sup |p”(0)| < v.

£%(v) = {fo + filp : for € C*(R?), supp(fo,1) C [0,1]%, B € $*(v)}

with || fo + filg||c2 < 1 is the class of cartoon-like functions.

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 10 / 3
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SHEARING

— scaling via parabolic scaling law length? ~ width
— directionality via parameterising slope

20 . 25 0 (1 k
AQJ — O 2% ) A2J — 0 2] ) Sk —

Fi1c. 4: The shearing matrix Sy leaves the integer grid 7?2 invariant.
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THE CONE-ADAPTED SHEARLET SYSTEM

Definition For some sampling constant ¢ > 0 the cone-adapted
shearlet system generated by a scaling function g € L?(R?) and
generators hi, hy € L*(R?) is

S(g, h1, ha;c) == G(g;¢c) U Hi(hy;¢) U Hy(hosc),
where
G(g;c) = {gm =g(- —c-m) : m € Z°},
Hi(gsc) = {h{),, -5 > 0,1k < [27/%],m € 2%}, i € {1,2}

and

h(lk): = 93i/4p, (SpAg;-—c-m), h@]zm = 23j/4h2(SZA2j -—com).

j7 7m' VELD
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CONES

C=0

Cy

Ci

Fic. 5: Partitioning the frequency plane in four cones C; and a
rectangle R. [1]
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WHAT ARE ¢, hy AND ho?

.

Fic. 6: Display of compactly supported shearlets hélzmo in the spatial
domain for |k| <2

A

[

| |
‘ "
/ [V 4\\/ : |

Fia. 7: Scaling function of a DAUBECHIES Wavelet and the wavelet
itself
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ADVANTAGES OF SHEARLETS

+ —_
sparse approximations non-tight frame
unified treatment of continuum | ~» inverse transform difficult

and digital
fast algorithm

N

i

A
P
F
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THE MAIN RESULT

THEOREM (COMPACTLY SUPPORTED SHEARLETS ARE
OPTIMALLY SPARSE)

Let ¢ > 0 and g, hy, ho € L*(R?) be compactly supported and hy
and hy satisfy the weak directional vanishing moment conditions.
If S(g, h1, ha; c) forms a frame for L*(R?), for any v > 0 the
shearlet frame S(g, hi, he;c) provides optimally space
approzimations of functions f € £2(v); there exists some C > 0
such that

If — fnl3 < CN"2(log(N))®  as N — oo,

where fn is the nonlinear N-term approximation obtained by
choosing the N largest shearlet coefficients of f.

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 18 / 38



Main theorem
ooe

DIRECTIONAL VANISHING MOMENT CONDITIONS (DC)

For all z € R? the shearlet hy satisfies

() [ (@)] < €1 - m(la|*) mles|~7) m(Jaz ) ()
(i) (Db ()] < Jt(a)| - (1+ f2f)

where m(x) := min(1,7), « > 5, v >4, t € L'(R) and C; is a
constant. Furthermore, the shearlet hy satisfies (i) and (ii) with
the roles of z; reversed.

F1G. 9: The LHS of (i) for @« = 6 and v = 4 and the LHS of (ii) for ¢ = id.

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 19
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PROOF STRATEGY

Splitting SH(g, h1, ho; c) in two cases:
(i) int(supp(h{")) N OB =0
(i) int(supp(h{")) N OB # 0
For shearlets interacting with the discontinuity curve (ii):
e partition R? into cubes
e for any cube @) examine shearlets intersecting 0B in Q)

e analyse slope of tangent to 0B in @) and use it to bound N°
of intersecting shearlets

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 20
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PROOF OF THE MAIN THEOREM

PREPARATION

— WLOG only consider Hy(g;c¢) and ||h1]| < 1.
~J < %10g2(5_1)

— suffices to show that
Z 0(f)|2<C-N"2 (logN)® as N — o0,
n>N

as

1F = il < & S 1R

n>N

by the frame condition.

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 21
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ANALYSIS OF COEFFICIENTS ASSOCIATED WITH THE
SMOOTH REGIONS

LEMMA (OPTIMAL SPARSITY AWAY FROM DISCONTINUITIES)

Let g € C*(R?) with supp(g) C [0,1]% and h € L*(R?) compactly
supported with

(@, y)] < CLm(|2|*) m(j] ) m(jy| ™) V(z,y) €R?, (%)

where v > 3, a > v+ 2 and C} is a constant.
Then there exists a C > 0 such that

> 16(9) <CN? N — oo,

n>N

where |0(f)|, denotes the n-th largest shearlet coefficient (f, hy)
in absolute value.
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AUXILIARY COROLLARY

CoROLLARY (KiTTIPOOM, KUTYNIOK, LIM, 2010)

For a shearlet generator h € L*(R?) satisfying (x) there exists
some C > 0, such that for all g € C*(R?) with supp(g) C [0, 1]

DI SE I e

=0 kel:
|k|<(2]/21

2

holds.
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PROOF OF LEMMA 1

Let
¢ = {X € A;j : supp(hy) Nsupp(g) # 0}.
We have

J—-1 J—-1 J—-1 ‘ ‘
=0 =0

J=0 position shear

as supp(hy) is contained in a rectangle of dimensions 27 x 27/2
and |k| < [27/7].

Here aj ~ b; <= dcp,cg such that cia; < b; < caaj.

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin
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PROOF OF LEMMA 1

There exists some C > 0 such that

Z24j Z 6(g)|? < CZZZQ4j (g, hegem)]?

JEN n>Nj 3j=0 ¢=j km
=CY N 2 (g, by | D20
=0 k,m Jj=1
o
<CiY Y 2" (g hepm)|
£=0 k,m
2 2
< Oy 29| < oo. (Auxillary Corollary)
Ox1” |,

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin
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PROOF OF LEMMA 1

Hence for all j > 0,

ST 10(g)2 < 01279 = 01(2%) 72 < CN2

For N > 0 there exists a jg € Nsg such that

N ~ Nj, ~ 2%0,

haupt and Glombik Compactly supp earlets are optimally sparse TU Berlin



Main theorem
900000000

TABLE OF CONTENTS

I. INTRODUCTION

II. MAIN THEOREM

e Proof of the main theorem

I1I. REFERENCES

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin



Main theorem
0e000000

PROOF OF THE MAIN THEOREM

NOTATION

— For 7 >0 let
Qjo = [-27772, 27777,
Aj ={X € Aj:int(supp(hy)) Nint(Q;) N OB # 0},
Aj(e) ={A e Ay [{f,ha)] > €})

— parameterize OB by either (z1, E(z1)) or (E(x2),z2).

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 29



Main theorem

VISUALISATION
Tr1 = ST2
4 T2
~ 277
/_/H
p
~ 273/24
x1
L supp(¥jk,0)
discontinuity
curve 0B
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PROOF OF THE MAIN THEOREM

— number of indices bounded by number of shearlets
intersecting tangent curve (up to constants)

— If mqo # 0, there’s no intersection ~» suffices to estimate
number of possible m;.

~ Jma| < |k] or my =1if k=0.

— estimate independent of choice of Z.
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PROOF OF THE MAIN THEOREM

in case |s| < 2 by lemma 2 we have
‘<fa h)\>| > e = ‘]%| < C. 6_1/3 . 2_]'/4
and in turn

A& <C- S (k| +1) < C- (73 279/ 4 1y?
k
— additionally, in case |s| > 2 by lemma 2 it suffices to consider

9
j < zlogQ(s_l) +C

and we have

A0 <C-2

Weiffhaupt and Glombik Compactly supported shearlets are optimally sparse TU Berlin 32
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PROOF OF THE MAIN THEOREM

COMBINING EVERYTHING

A #@) < [ D 1861+ D 1A | - #(Q))
J |s|<2 |s|>2
|5 loga (1))
<Cc Y YP(eVE.mifp)
j=0

~e=2/3.logy (1)

|5 loga (e 1) +C|
+ 0 Z 9i/2 . 9J
=0

< Che B logy(e7h).
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PROOF OF THE MAIN THEOREM

THE END

Setting N := ‘U] Aj(e)

, this yields
e < CN732. (log(N))3/?

implying
0(F)[3 < CN72 - (log(N))°.
Hence, as N — oo

D 10(f)I2 < CN~*(log(N))?.

n>N
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OUTLOOK

FURTHER RELATED TOPICS

— 3D-Shearlets,

— Discontinuous shearlets
|[Kutyniok, Lim, 2015]

— algorithmic implementation.
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