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1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

1 Holomorphic functions (in one variable)

1.1 The complex numbers

13.04.2021
Definition 1.1.1 (Complex numbers C)
The complex plane C complex plane Cis the real vector space R2 with an additional operation. In R2, we
can add vectors and multiply them with real scalars. For x1, x2, y1, y2 P R we define the
multiplication

px1, y1q ¨ px2, y2q :“ px1x2 ´ y1y2, x1y2 ` x2y1q (1)

which turns C into a field containing the field tpx, 0q : x P Ru isomorphic the real numbers.

We write x P C for px, 0q and i ifor p0, 1q such that for x, y P R

px, yq “ x` iy.

Remark 1.1.2 (History) This is the end of the mathematisation of the concept of complex numbers. The
history was different: complex numbers came up in algebra, when people figured out how to solve algebraic
equations. For quadratic equations in one variable, there is a well-known formula, and one can live with
the fact that sometimes, a quadratic equation doesn’t have a solution, like x2 ` 1 “ 0. Then people figured
out how solve equations of degree 3 and something strange happened: you could solve equations of degree
3 by algebraic manipulation and get three real solutions, but in between you would have to calculate with
numbers whose square is negative. It took a long time until complex numbers were established as something
neither blasphemous nor mysterious. The whole discussion of "Yes, but does it exist?" ends with the above
Definition: a field which contains the real numbers and a number whose square is ´1. ˝

Definition 1.1.3 (Real and imaginary part)
The projections of R2 onto the entries are called real and imaginary parts, respectively:

< : CÑ R, px, yq ÞÑ x, = : CÑ R, px, yq ÞÑ y,

such that z “ <pzq ` i=pzq for z P C.

Definition 1.1.4 (Absolute value)
The Euclidean norm }px, yq} :“

a

x2 ` y2 defines a topology on C, and thus also the
notions of neighbourhood, convergence and continuity. We write |z| instead of }z} and call
it the absolute value, that is

|z| :“
a

p<pzqq2 ` p=pzqq2.

Every vector px, yq P R2 of length 1 can be represented in angle notation angle notationas

px, yq “ pcospϕq, sinpϕqq

with a ϕ P R, determined uniquely up to a multiple of 2π. Hence every complex number
z P C can be represented as

z “ |z|pcospϕq ` i sinpϕqq. (2)

The angle ϕ is the argument argumentof z. For z ‰ 0, the argument is only defined up to a multiple
of 2π, for z “ 0, the argument is either not defined or arbitrary.

Euler’s equation states
eiϕ “ cospϕq ` i sinpϕq

1



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

hence one can write the the polar representation (2) as

z “ |z|eiϕ.

Definition 1.1.5 (Complex conjugation)
Complex conjugation is the map

¨ : CÑ C, x` iy ÞÑ x` iy :“ x´ iy.

and x` iy is the complex conjugate of x` iy.

We have |z|2 “ zz̄ for all z P C and hence 1
z “

z̄
zz̄ “

z̄
|z|2 for all z P C zt0u. The latter

calculation shows that C is a field and not only a ring, as one can also divide by complex
numbers; the reciprocal of a complex number is again a complex number:

1

x` iy
“

x

x2 ` y2
´ i

y

x2 ` y2
.

Remark 1.1.6 (Complex multiplication as an R-linear map) Consider the complex
number w :“ a ` ib “ |w|eiϕ for a, b P R and ϕ P r0, 2πq. What is the effect of multiplying
with a complex number? For x, y P R we have (cf. (1)!)

pa` ibqpx` iyq “ ax´ by ` ipbx` ayq “

˜

ax´ by

bx` ay

¸

“

˜

a ´b

b a

¸˜

x

y

¸

“ |w|
loomoon

PR

˜

cospϕq ´ sinpϕq

sinpϕq cospϕq

¸

loooooooooooomoooooooooooon

rotation matrixPSOp2q

˜

x

y

¸

,

where SOp2q Ă R2ˆ2 is the special orthogonal group of two dimensions. Hence the map
z ÞÑ w ¨ z is a scale rotation scale rotationwith center 0, angle ϕ (which is the argument of w) and scale
factor |w|.

The map

CÑ R ¨SOp2q “

#˜

a ´b

b a

¸

: a, b P R

+

Ă R2ˆ2, a` ib ÞÑ

˜

a ´b

b a

¸

is a field isomorphism (Exercise!). ˝

1.2 Differentiability

Definition 1.2.1 (Complex differentiability, Holomorphy, Entire)
Let U Ă C be an open subset and z0 P U . A function f : U Ñ C is (complex) differentiable
on U if the limit

lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“: f 1pz0q P C .

exists. In that case, f 1pz0q is the derivative of f at z0. If f is differentiable for all z0 P U ,
then it is holomorphic holomorphicor (complex) analytic. A holomorphic function on C is an entire

entirefunction.

15.04.2021Remark 1.2.2 (Relation to real differentiability, computation rules)
The definition of the derivative is verbatim the same as in real analysis. Hence many of the
same rules and theorems also hold in the complex case: the derivative is linear, the product

2



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

and the chain rule hold and the proofs are the same. Hence polynomials ppzq :“
řn
k“0 akz

k

are entire and rational functions fpzq “ ppzq
qpzq , where p and q are polynomials, are defined

and holomorphic on the open set U :“ tz P C : qpzq ‰ 0u.

Not all theorems of real analysis hold in the complex case. For example, C is not an ordered
field, so there is no sensible way to define the relation ă on C such that it is compatible with
addition and multiplication. Hence all theorems which rely on greater- or smaller-relations
need not hold. For example, there is no such thing as the Mean Value Theorem (that is,
fpx1q ´ fpx0q “ f 1pξqpx1 ´ x0q for some ξ in between x0 and x1) in complex analysis. One
can however compare absolute values:

|fpz1q ´ fpz0q| ďM |z1 ´ z0|

holds for all z0, z1 P C if M is an upper bound for |f 1pzq| and suitable conditions hold. ˝

1.3 Power series

A large class of holomorphic functions are the power series. Power series are a more impor-
tant tool in Complex Analysis than in Real Analysis, because, as we will see later, every
holomorphic function is represented by a power series around every point of its domain of
definition. In Real Analysis, the function e´

1
x 1p0,8qpxq is smooth but not analytic, that is,

representable by a power series, in zero.

If a power series centered at zero, z ÞÑ
ř8

k“0 akz
k, converges for z1 P C, then it converges

for all z P C with |z| ă |z1| because for all but finitely many k P N we have

|akz
k| “ |akz

k
1 |

loomoon

ď1

ˇ

ˇ

ˇ

ˇ

zk

zk1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

z

z1

ˇ

ˇ

ˇ

ˇ

k

,

so
ř8

k“0 akz
k is majorised by the convergent geometric series

ř8

k“0 q
k with q :“ | zz1 | ă 1.

Hence there is an R P r0,8s :“ Rě0Yt8u so that
ř8

k“0 akz
k converges absolutely if |z| ă R

and diverges if |z| ą R. In the complex case, we cannot make a statement for |z| “ R,
anything can happen on parts of that circle. If r P p0, Rq, then the power series converges
uniformly on the disk

Fig. 1: Convergence ra-
dius of a power series.

Dr :“ tz P C : |z| ď ru

In particular, fpzq “
ř8

k“0 akz
k is continuous on DR :“ tz P C : |z| ă Ru. All of the above

works similarly for power series
ř8

k“0 akpz ´ cq
k with centre c ‰ 0.

Theorem 1.3.1: Power series may be differentiated termwise

Suppose the power series
ř8

k“0 akpz ´ z0q
k has radius of convergence R P p0,8s and

let

f : tz P C : |z ´ z0| ă Ru Ñ C, z ÞÑ
8
ÿ

k“0

akpz ´ z0q
k

be the function defined by it.
1 The power series

ř8

k“1 kakpz ´ z0q
k´1 has the same radius of convergence R

and therefore defines a function

g : tz P C : |z ´ z0| ă Ru Ñ C, z ÞÑ
8
ÿ

k“1

kakpz ´ z0q
k´1.

2 The function f is holomorphic.

3



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

Proof. 1 Use the formula for the radius of convergence (like in the real case)

1

R
:“ lim sup

kÑ8

k
a

|ak|

(with obvious modifications for 0 and 8).

2 see Jänich, Ferus’ notes, Ahlfors, or later in this course. l

Corollary 1.3.1 (Power series uniqueness theorem)
If f is given by a power series with positive radius of convergence, i.e.

fpzq “
8
ÿ

k“0

akpz ´ z0q
k,

then

ak “
f pkqpz0q

k!
.

In particular, two power series with centre z0 have the same coefficients, if they define the
same function in the neighbourhood of z0.

Proof. Repeated application of Theorem 1.3.1 yields

f pmqpzq “
8
ÿ

k“m

k ¨ pk ´ 1q ¨ . . . ¨ pk ´m` 1qakpz ´ z0q
k´m

and hence
f pmqpz0q “ m ¨ pm´ 1q ¨ . . . ¨ 1 ¨ am “ m! ¨ am. l

Example 1.3.2 (Well known entire functions)
All functions known from Real Analysis which are defined by power series are also defined
on disks in the complex plane. In particular, functions defined by power series that converge
everywhere on the real line also converge everywhere in the complex plane, for example

ez :“
8
ÿ

k“0

zk

k!
, cospzq :“

8
ÿ

k“0

p´1qk
z2k

p2kq!
, sinpzq :“

8
ÿ

k“0

p´1qk
z2k`1

p2k ` 1q!
,

coshpzq :“
8
ÿ

k“0

z2k

p2kq!
, and sinhpzq :“

8
ÿ

k“0

z2k`1

p2k ` 1q!

(3)

˛

Example 1.3.3 (Chebyshev polynomials (Tut I))
We show that there exists a sequence of polynomials pTn : CÑ CqnPN such that cospnxq “

Tnpcospxqq holds for all x P C.

We clearly have T1pzq “ z, cospxq “ 1
2

`

eix ` e´ix
˘

(by (3)) and thus

cosp2xq “
1

2

`

e2ix ` e´2ix
˘

“
1

2

`

eix ` e´ix
˘2
´ 1 “ 2 cos2pxq ´ 1

and hence T2pzq “ 2z2 ´ 1. We complete the proof by induction (details are left as an
exercise):

cospnxq “
1

2

`

einx ´ e´inx
˘

“
1

2

´

eipn´1qx ` e´ipn´1qx
¯

`

eix ` e´ix
˘

´
1

2

´

eipn´2qx ` e´ipn´2qx
¯

“ 2 cosppn´ 1qxq cospxq ´ cosppn´ 2qxq. ˛

4



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

1.4 Complex and real differentiability

Definition 1.4.1 ((Total) differentiability in R2)
Let U Ă C “ pR2,`, ¨q be an open set and f : U Ñ C. Then f is differentiable at z0 P U

in the real sense if there exists an R-linear map F : R2
Ñ R2 such that

fpzq “ fpz0q ` F pz ´ z0q ` αpzq with lim
zÑz0

αpzq

|z ´ z0|
“ 0.

An R-linear map on R2 is represented by a real p2ˆ 2q-matrix: for all x, y P R we have

F ¨

˜

x

y

¸

“

˜

a c

b d

¸

¨

˜

x

y

¸

(4)

for some a, b, c, d P R. The function f is differentiable in the complex sense if F is also
C-linear on C, that is F pλzq “ λF pzq for all λ P C (the additivity is the same as in the real
case). In particular F pzq “ F pz ¨1q “ zF p1q, so a C-linear map F on C is just multiplication
by the complex number F p1q. If F is C-linear, it is in particular R-linear, so by (4) we have

F p1q “

˜

a c

b d

¸

¨

˜

1

0

¸

“

˜

a

b

¸

“ a` ib.

On the other hand, we have seen in Remark 1.1.6 that multiplication with a complex number
has a particular matrix representation:

F ¨

˜

x

y

¸

“ pa` ibqpx` iyq “

˜

a ´b

b a

¸

¨

˜

x

y

¸

.

Hence f is complex differentiable if and only if the matrix representation of dz0f has the
form

`

a ´b
b a

˘

. If f : U Ñ R2 is an function and U Ă R2 is open, for z “ x ` iy we can
separate f into its real and imaginary components:

fpzq “ fpx, yq “ pupx, yq, vpx, yqq “ upx, yq ` ivpx, yq.

Hence

F ¨

˜

x

y

¸

“ dz0f ¨

˜

x

y

¸

“

˜

Bu
Bx

Bu
By

Bv
Bx

Bv
By

¸

ˇ

ˇ

ˇ

ˇ

z“px0,y0q

˜

x

y

¸

!
“

˜

a ´b

b a

¸˜

x

y

¸

or equivalently, the equations

Bu

Bx
“
Bv

By
and

Bv

Bx
“ ´

Bu

By
(5)

have to hold. We summarise our findings in a Theorem.

Theorem 1.4.1: Real and complex differentiability

A function f : U Ñ C is complex differentiable in z0 P C if it is differentiable in the
real sense and one (and hence both) of the following two conditions hold:

• The derivative dz0f : R2
Ñ R2 is C-linear as a map on C.

• The Cauchy-Riemann differential equations (5) hold in z0.

5



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

In this case we have
f 1pz0q “

Bu

Bx
pz0q ` i

Bv

Bx
pz0q.

This theorem allows us to transfer theorems from two dimensional Real Analysis to Complex
Analysis, in particular the Schrankensatz, as a complex differentiable function is a real
differentiable function on R2 with the additional condition that the Cauchy-Riemann
equations hold.

Example 1.4.2 (Complex differentiability)
• The function fpzq “ z is, in real terms,

f

˜˜

x

y

¸¸

“

˜

x

´y

¸

.

The Jacobi matrix is
`

1 0
0 ´1

˘

, so the Cauchy-Riemann equations are nowhere satis-
fied and hence f is nowhere differentiable in the complex sense.

Intuitively, this makes sense as complex conjugation is reflection on the real axis and
thus locally not well described by a scale rotation (multiplication with

`

a ´b
b a

˘

q.

(V:) We can also directly check Definition 1.2.1: let z0 P C. For z P C ztz0u we can
write z ´ z0 “ rze

iϕz for rz ą 0 and ϕz P R. Then

fpzq ´ fpz0q

z ´ z0
“
z ´ z0

z ´ z0
“
rze

´iϕz

rzeiϕz
“ e´2iϕz .

The limit limzÑz0 e
´2iϕz does not exist.

• Let gpzq :“ z2 “ px´ iyq2 “ x2 ´ y2 ´ 2ixy is, in real terms

g

˜˜

x

y

¸¸

“

˜

x2 ´ y2

´2xy

¸

.

The Jacobi matrix is 2
`

x ´y
´y ´x

˘

. The Cauchy-Riemann equations are only fulfilled
in p0, 0q. It is not a holomorphic function, as t0u is not an open subset of C. ˛

We want to given an example for a case where we use real differentiability for a complex
function. In Real Analysis one learns that if a function defined on an interval has zero
derivative, the function is constant. This was proven with the Mean Value Theorem and
that proof does not transfer the complex case, as there is no order relation in the complex
plane. But we can use the Theorem of Multivariate Real Analysis stating that if function
R2
Ą U Ñ R2, where U is connected, has zero derivative, it is constant.

Theorem 1.4.2: Constancy criterion

If f is holomorphic on the open and connected set U Ă C and f 1pzq “ 0 for all z P U ,
then f is constant.

Proof. This follows from the corresponding theorem of Multivariate Real Analysis, as in-
stead of the Mean Value Theorem we can use the Schrankensatz, with is still valid in C. l

Open and connected subsets of the complex plane play a crucial role in Complex Analysis.

6



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

Definition 1.4.3 (Domain)
A domain domain(in C) is an open and connected subset of C.

Corollary 1.4.4 (Real-valued Constancy criterion)
If f is holomorphic on a domain and real-valued, then f is constant.

Proof. If f “ u ` iv is real-valued, then v ” 0. By the Cauchy-Riemann equations we
have Bu

Bx “
Bv
By “ 0 and Bu

By “ ´
Bv
Bx “ 0, so u and therefore f are constant by Theorem 1.4.2.l

Hence there are no interesting real-valued holomorphic functions on a domain.

1.5 The argument function and the complex logarithm

21.04.2021We have defined the argument of a complex number z P C as the angle that z, viewed as a
position vector in R2, has with the positive real axis. This angle is only well defined up to a
multiple of 2π and in particular, there is no way to define arg as a single-valued function on
the whole plane without introducing discontinuities. The standard way to resolve this issue
is to cut the plane along the non-positive real axis.

Fig. 2: The argument
of a complex number
non lying on the non-
positive real axis is well
defined as the angle it
makes with the positive
real axis.

Definition 1.5.1 (Argument function)
On the complement of the non-positive real axis

U :“ C ztx P R : x ď 0u “ treiϕ : r ą 0, ϕ P p´π, πqu

one has a well-defined argument function argument function

arg : U Ñ p´π, πq, reiϕ ÞÑ ϕ.

Remark 1.5.2 (Continuity of arg) One cannot define the argument as a continuous
function on the whole complex plane as on the complement of U one can assign both π

and ´π as arguments of the complex numbers, but both choices yield a discontinuous argu-
ment function. ˝

One could choose a different slit, e.g. by cutting along the positive imaginary axis or
along any curve starting in zero and going to infinity. The definition we have chosen is the
"principal value" of the argument function.

It is not entirely obvious how to write an equation for argpzq with z P U . For example, this
works:

Remark 1.5.3 In
many computer
languages, there is the
function atan2py, xq,
which is defined for all
px, yq ‰ 0 and gives
argpx` iyq on U and
has the value π on the
nonpositive real axis,
which is exactly its set
of discontinuity points.˝

argpx` iyq “

$

’

’

’

&

’

’

’

%

arctan
`

y
x

˘

, for x ą 0,

π
2 ´ arctan

´

x
y

¯

, for y ą 0,

´π
2 ´ arctan

´

x
y

¯

, for y ă 0.

(6)

From (6), we can, for e.g. x ą 0, compute the partial derivatives

B argpx` iyq

Bx
“

1

1`
`

y
x

˘2 ¨

´

´
y

x2

¯

“ ´
y

x2 ` y2
and

B argpx` iyq

By
“

x

x2 ` y2
. (7)

It is left as an exercise that the partial derivatives are the same for y ą 0 and y ă 0.
The partial derivatives of arg are continuous (in fact, they can be continuously extended to

7



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

C zt0u). The function arg : U Ñ R is therefore differentiable in the real sesnse. But as a real
valued non-constant function, it is not holomorphic by corollary 1.4.4.

The complex exponential function (3) is not injective, as eiy “ ep2kπ`yqi holds for all y P R
and all k P Z. But we can define the complex logarithm as the inverse function of the
complex exponential restricted to the horizontal strip t% ` iξ P C : % P R, ξ P p´π, πqu: if
z “ reiϕ for r “ |z| ą 0 and ϕ P p´π, πq, then

logpzq :“ logp|z|q ` iϕ,

where logp|z|q is the natural log of the positive real number |z| “ r.

Definition 1.5.4 (Principal value logarithm)
The (principal value) logarithm logarithmfunction is

log : C ztx P R : x ď 0u Ñ C, z ÞÑ logp|z|q ` i argpzq.

Example 1.5.5 (The complex logarithm is holomorphic)
We check the Cauchy-Riemann equations for

upx, yq :“ < plogpx` iyqq “ logp
a

x2 ` y2q “
1

2
logpx2 ` y2q

and
vpx, yq :“ = plogpx` iyqq “ argpx` iyq.

We have
Bupx, yq

Bx
“

1

2

2x

x2 ` y2
“

x

x2 ` y2

(7)
“
B argpx` iyq

By
“
Bvpx, yq

By
,

Bupx, yq

By
“

1

2

2y

x2 ` y2
“

y

x2 ` y2

(7)
“ ´

B argpx` iyq

By
“ ´

Bvpx, yq

By
.

Hence by Theorem 1.4.1 the complex logarithm is holomorphic with derivative

log1pz “ x` iyq “
Bupx, yq

Bx
` i
Bvpx, yq

Bx
“

x´ iy

x2 ` y2
“

z̄

zz̄
“

1

z
.

˛

1.6 Harmonic functions

If we talk about real and complex differentiability, there is one further connection that is
important.

Suppose a holomorphic function f “ u ` iv is two times differentiable We will later see that
holomorphic functions
are infinitely often
differentiable in the
complex sense.

in the real sense.
Then the Cauchy-Riemann equations imply

B2u

Bx2
“
B

Bx

Bu

Bx

(5)
“

B

Bx

Bv

By
“
B2v

BxBy

and
B2u

By2
“
B

By

Bu

By

(5)
“ ´

B

By

Bv

Bx
“ ´

B2v

ByBx
.

By Schwarz’ theorem, we can interchange the order of differentiation to obtain

∆u :“
B2u

Bx2
`
B2u

By2
“ 0,

where ∆ is the Laplace operator. Analogously, we obtain ∆v “ 0.

8
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Definition 1.6.1 (Harmonic function)
A function f defined on an open subset U Ă C that satisfies the Laplace equation ∆f “ 0

is a harmonic harmonicfunction.

Remark 1.6.2 (Harmonic functions in other dimensions)
In one (real) dimension, the harmonic functions are the affine linear functions, but in higher dimensions,
they can be more complicated. Hence harmonic functions can be seen as a non-obvious generalisation of
affine linear functions to higher dimensions. ˝

By the above calculations, the real and imaginary parts of a holomorphic function are
harmonic functions.

Suppose u : U Ñ R is a harmonic function on a domain U Ă R. Does there exists a harmonic
function v : U Ñ R such that f “ u` iv is holomorphic? For this to be the case, the partial
derivatives of v would have to fulfil the Cauchy-Riemann equations. In Real Analysis, one
learns that a necessary condition that for "given x- and y-derivatives, is there a function
with this x- and y-derivative?", is that

´
B2u

By2
“
B2u

Bx2

holds, which is satisfied because u is harmonic.

This condition is also sufficient if U is simply connected (or: diffeomorphic to R2 or convex
or star-shaped. In Analysis II one learns that a closed 1-form has an antiderivative (or:
a rotation-free vector field is a gradient field of a function) if U is simply connected. We
conclude:

Lemma 1.6.3 (Harmonic function is real part of holomorphic function)
On a simply connected domain U Ă C, every harmonic function is the real part of a holo-
morphic function.

Example 1.6.4 The function upx, yq “ logp
a

x2 ` y2q is harmonic on the punctured plane
punctured planeC˚ :“ C zt0u (which is not simply connected). So on the slit complex plane C ztx P R :

x ď 0u, which is simply connected, there is a harmonic function v such that f “ u ` iv is
holomorphic. The function v is only determined unique up to an additive real constant. If
we choose vp1, 0q “ 0, then vpx, yq “ argpx` iyq (and hence f “ log).

On C˚, there is no harmonic function yielding a well defined holomorphic function, because
that function would discontinuous on the slit. ˛

We close this section with a simple consequence of the fact that the real and imaginary parts
of holomorphic functions are harmonic.

Theorem 1.6.1: Composition of harmonic and holomorphic map

Let f : U Ñ C be holomorphic and h : fpUq Ñ R harmonic. Then h ˝ f is harmonic.

The idea of the proof is that we consider for h a second function H to make it the real part
of holomorphic function. But this doesn’t work globally. Being harmonic is a local property:
if you can show that it is true on every neighbourhood of every point, it is true globally. Fig. 3: Illustration

of the setup of Theo-
rem 1.6.1.

Proof. By lemma 1.6.3 for any point fpz0q P fpUq (which is open), the harmonic function
h is the real part of a holomorphic function H defined on a simply connected neighbourhood

9
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of fpz0q, e.g. an sufficiently small (such that it is contained in fpUq) open disk around
fpz0q. By the chain rule for differentiation, the composition H ˝ f is holomorphic on an
open neighbourhood of z0. So the real part of h ˝ f is harmonic on a neighbourhood of z0.

Since this is true for all z0 P U , h ˝ f is harmonic on U . l

1.7 Conformal maps

We will discuss the geometric properties of holomorphic functions.

Suppose f : U Ñ C is holomorphic on a domain U and let c : rt0, t1s Ñ U be a differentiable
curve in U , whose velocity 9c vanishes nowhere.

The image curve under f is f ˝ c and its velocity vector is, by the chain rule,

d

dt
pf ˝ cqptq “ f 1pcptqq ¨ c1ptq.

If f 1pcptqq “ reiϕ ‰ 0, then the velocity vector of c is rotated by an angle of ϕ and scaled
by a factor of r ą 0. If we take two curves c1 and c2, which intersect in some point
c1pt1q “ c2pt2q, then f rotates their velocity vectors by the same angle. Hence the angle of
intersection ^p 9c1pt1q, 9c2pt2qq remains the same after f is applied to both curves.

Definition 1.7.1 (Conformal map)
A map that preserves angles is conformal conformal.

We have just seen:

Theorem 1.7.1: Characterisation of conformal maps

Holomorphic functions with nonvanishing derivative are conformal.

10
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Example 1.7.2 The function fpzq “ z2 is entire, as it is a polynomial. It maps the straight
lines (that make an angle ϕ with the real axis) cϕptq :“ teiϕ to pf ˝ cϕqptq “ t2e2iϕ. The
function f doubles all angles at zero, in particular, it does not preserve angles.

Fig. 4: Straight line curves and their image curves under fpzq :“ z2.

This doesn’t contradict Theorem 1.7.1, as f 1p0q “ 0 and 0 is the point where all curves cϕ
intersect. As an exercise one checks that fpzq :“ zn for n ě 1 multiplies all angles at zero
with n. At all other points fpzq “ z2 preserves the angles, as z “ 0 is the only zero of f 1. ˛

21.04.2021We will now look at a sort of converse of Theorem 1.7.1. Let’s look at angle preserving linear
maps because a nonlinear map is conformal if its real derivative - a linear map - is conformal.
We only consider invertible maps, because this makes the discussion less complicated and
prohibit that nonzero vectors are mapped to the zero vector, which is tricky since the angle
between the zero vector and any other vector is not defined.

Lemma 1.7.3 (Characterisation of conformal maps)
For an invertible R-linear map F : R2

Ñ R2 the following statements are equivalent:

1 F preserves angles.

2 F preserves orthogonal angles: if z and w are orthogonal, then F pzq and F pwq are
also orthogonal.

3 F is C-linear (that is, F pizq “ iF pzq for all z P C) or F is C-antilinear (that is,
F pizq “ ´iF pzq).

Proof. " 1 ùñ 2 ": is obvious.

" 3 ùñ 1 ": is almost already known: we know that F is C linear if and only if

F

˜

x

y

¸

“

˜

a ´b

b a

¸˜

x

y

¸

,

i.e. if F is a scale rotation. If F is C-antilinear, then F is a scale-reflection in a line through
the origin.

" 2 ùñ 3 ": We write 1 “ p 1
0 q and i “ p 0

1 q. So 1 and i are orthogonal and so are
1 ` i “ p 1

1 q and 1 ´ i “
`

1
´1

˘

. By 2 F p1 ` iq and F p1 ´ iq are orthogonal and hence (by
the additivity of F )

0 “ xF p1` iq, F p1´ iq y “ xF p1q ` F piq, F p1q ´ F piq y

“ xF p1q, F p1q ´ F piq y` xF piq, F p1q ´ F piq y “ xF p1q, F p1q y´ xF piq, F piq y .

Hence F p1q and F piq have the same non-zero (as F is invertible) length and are orthogonal.
Hence (as we are in the plane) F piq “ iF p1q or F piq “ ´iF p1q, as a 90 degree rotation is
multiplication with ˘i in C. l

11



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

Addendum: How can we distinguish between the two cases in 3 : we look at the determi-
nant: we have

detpF p1q, F piqq “ detpF p1q,˘iF p1qq “ ˘ detpF p1q, iF p1qq “ |F p1q|2 ą 0

Hence if F also preserves orientation, F is C-linear.

We have essentially proved the following

Theorem 1.7.2: Geometric characterisation of holom. maps

A real differentiable map f : U Ñ C on a domain U Ă C is holomorphic if its
derivative in the real sense is everywhere angle and orientation preserving.

The zero function is holomorphic, but it doesn’t preserve angles, so the theorem can’t yield
an only-if statement.

Stereographic projection

Definition 1.7.4 (Stereographic projection)
The stereographic projection stereographic

projection
from the north pole e3 :“ p0, 0, 1q P R3 is

S2zte3u Ñ C,

¨

˚

˝

ξ

η

ζ

˛

‹

‚

ÞÑ
1

1´ ζ
pξ ` iηq

Its inverse is

Fig. 5: The stere-
ographic projection
from the north pole e3.

x` iy “: z ÞÑ
1

1` |z|2

¨

˚

˝

2x

2y

|z|2 ´ 1

˛

‹

‚

.

It is a bijective and conformal map (Exercise!).

Definition 1.7.5 (Riemann sphere)
The Riemann sphere (or: extended complex plane) Here,

CP 1
“ pC2

zt0uq{„ with
x „ y if there exists a
λ P C zt0u such that
x “ λy.

Ĉ :“ CP 1 “ CYt8u

is the complex plane C with the extra point 8 added.

The point 8 corresponds to the north pole of S2 under stereographic projection. The
stereographic projection is a bijective map from S2 to Ĉ. Since S2 has a topology induced
by the ambient R3, the stereographic projection induces a topology on Ĉ.

In the extended complex plane, it makes more concrete sense to say that a sequence of
complex numbers converges to8; it really means the sequence of complex numbers converges
to the point 8 P Ĉ in the topology on Ĉ, it is not only a short form for saying that this
sequence diverges properly.
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Fig. 6: The stereographic projection maps the meridians and circles of longitude (or latitude)
to straight lines through the origin and concentric circles around the origin. The complex
logarithm maps circles (all points with the same absolute value) to circles with the same
real part because the real part of the logarithm is the logarithm of the absolute value. The
orange rays in the middle picture are defined by all their points having the same argument.
As the imaginary part of the logarithm is the argument, they get mapped to horizontal lines.

Since the stereographic projection and the logarithm preserve angles, their composition is
an angle preserving map that maps circle of latitude and longitude to orthogonal families
of straight lines. This is known as Mercator’s projection. If one prints it correctly, one
gets a map of the earth which is uniquely determined by the fact that the directions of
the compass are exactly represented on the map: not only is north, south, east and west
always up, down, left and right, but also all angles between these principal directions are
represented correctly in the map. It turns out that this is the only map projection with this
property.

The stereographic projection is a even conformal homeomorphism between the S2 and Ĉ.

1.8 Möbius transformations

A Möbius transformation is an example of a holomorphic map, which is simple, but also
complicated enough to be interesting. Let us consider functions of the form

fpzq “
az ` b

cz ` d

for a, b, c, d P C, that is, rational functions with denominator and numerator being polyno-
mials of degree at most 1 (hence the name fractional linear transformations).

We want to exclude the case that the numerator and denominator are linearly independent -
that one is a multiple of the other - because then the function would be constant. If ad “ bc

and d ‰ 0, then

fpzq “
adz ` bd

cdz ` d2
“
bcz ` bd

cdz ` d2
“
b���

�
pcz ` dq

d���
�

pcz ` dq
“
b

d
.

Similarly, if ad “ bc and c ‰ 0, then fpzq is also constant.

Definition 1.8.1 (Möbius transformation (Preliminary Defintion))
A Möbius transformation is a function

f : CÑ C, z ÞÑ
az ` b

cz ` d
,

13
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where a, b, c, d P C are such that ad´ bc ‰ 0.

Note that the Möbius transformations with the coefficients a, b, c, d and λa, λb, λc, λd, where
λ P C˚, are the same function. Hence the coefficients determine the function, but the
function only determines the coefficients only up to a non-zero scale factor λ P C˚.

Hence we can (but do not need to) require that ad ´ bc “ 1. If we do, then the Möbius
transformation determines the coefficients up to a global sign change, i.e. a factor of ˘1.

A transformation is usually a bijective map. This is indeed the case for the Möbius trans-
formation: if w “ az`b

cz`d (which is not equal to a
c , as this would require b “ d “ 0, violating

ad´ bc ‰ 0), then cw ´ a ‰ 0 and thus

czw ` dw “ az ` b ðñ pcw ´ aqz “ ´dw ` b ðñ z “
dw ´ b

´cw ` a
.

Hence the Möbius transformation fpzq “ az`b
cz`d is injective (one-to-one) and its inverse is

f´1pwq “ dw´b
´cw`a .

There is something that is not nice: fpzq is not defined if the denominator vanishes, that
is z “ ´d

c . Furthermore, it doesn’t take the value a
c (because there the inverse is not well

defined). This is all presuming that c ‰ 0. If c “ 0, then f is a similarity transformation
(translation + scale rotation), it is just a

dz `
b
d , which is a polynomial - and hence boring.

Our way out of this is to consider the Möbius transformations as functions from Ĉ to Ĉ
instead of from C to C.

Definition 1.8.2 (Möbius transformation)
A Möbius transformation Möbius

transformation
is a function

f : ĈÑ Ĉ, z ÞÑ
az ` b

cz ` d
,

where
$

&

%

f
`

´d
c

˘

:“ 8 and fp8q “ a
c , if c ‰ 0,

fp8q “ 8, if c “ 0.

and a, b, c, d P C are such that ad´ bc ‰ 0.

Theorem 1.8.1: Möbius group

The Möbius transformations form a group of bijective functions under composition.

Proof. The only thing left to show is that the composition of two Möbius transformation
is again a Möbius transformation. Let fpzq :“ az`b

cz`d and gpzq :“ ãz`b̃
c̃z`d̃

, where ad´ bc ‰ 0 ‰

ãd̃´ b̃c̃. Then for z P Ĉ we have

pf ˝ gqpzq “
a ¨ ãz`b̃

c̃z`d̃
` b

c ¨ ãz`b̃
c̃z`d̃

` d
“
aãz ` ab̃` bc̃z ` bd̃

cãz ` cb̃` dc̃z ` dd̃
“
paã` bc̃qz ` ab̃` bd̃

pcã` dc̃qz ` cb̃` dd̃
“:

âz ` b̂

ĉz ` d̂
.

l

But this shows even more: consider
˜

a b

c d

¸˜

ã b̃

c̃ d̃

¸

“

˜

aã` bc̃ ab̃` bd̃

cã` dc̃ cb̃` dd̃

¸

“

˜

â b̂

ĉ d̂

¸

14
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Hence the map

Φ: SLp2,Cq ÞÑ Möb,

˜

a b

c d

¸

ÞÑ

ˆ

z ÞÑ
az ` b

cz ` d

˙

,

where Möb is the group of Möbius transformations, is group homomorphism with kernel
t˘ id2u Ă R2ˆ2 (so Φ is two-to-one). One can get an isomorphism between the projective
special linear group PSLp2,Cq :“ SLp2,Cq{ kerpΦq and Möb.

Example 1.8.3 (Affine transformations on C (Tut II))
Consider the affine transformation A : C Ñ C, z ÞÑ az ` b. It is bijective if and only if
a ‰ 0. The bijective affine transformations are a group with respect to composition. If
a “ 1, b “ 0, A has infinitely many fixed points, if a “ 1 and b ‰ 0, it has none and if
a ‰ 1, it has exactly one. One can view these transformations as Möbius transformations
A : ĈÑ Ĉ with Ap8q “ 8. ˛

27.04.2021We will now see an example of a particularly simple Möbius transformation, which is not
as simple as a rotations, translations or scalings.

Example 1.8.4 (Inversion as Möbius transform) Consider the Möbius transforma-
tion

fpzq :“
1

z
“

z̄

|z|2
“

ˆ

z

|z|2

˙

.

It can be written as a composition:

z
f1
ÞÝÑ

z

|z|2
f2
ÞÝÑ

ˆ

z

|z|2

˙

,

where f1 is the inversion in the unit circle and f2 is complex conjugation. The map f1 is
holomorphic on C˚. ˛ Fig. 7: The intersec-

tion of the ray connect-
ing z to the origin and
the segment connecting
the tangency points on
the unit sphere is z

|z|2
,

so 1
z
is its reflection at

the real axis.

Theorem 1.8.2: Images of circles and straight lines under in-
version in the unit circle

Inversion in the unit circle fpzq :“ 1
z maps

1 circles that do not pass through 0 to circles,
2 circles that do pass through 0 to straight lines,
3 straight lines that do not pass through 0 to circles,
4 straight lines that do pass through zero to straight lines.

Proof. 1 Consider a circle with centre c and radius r, that is

tz P C : |z ´ c|2 ´ r2 “ 0u. (8)

The points w “ 1
z of the image of the circle (8) satisfy

0 “

ˇ

ˇ

ˇ

ˇ

1

w
´ c

ˇ

ˇ

ˇ

ˇ

2

´ r2 “

ˆ

1

w
´ c

˙ˆ

1

w
´ c

˙

´ r2 “
1

|w|2
´ c

1

w
´ c̄

1

w
` |c|2 ´ r2.

If w ‰ 0, then this is equivalent to (by multiplying through with |w|2 “ wwq

0 “ 1´ cw ´ cw ` p|c|2 ´ r2q|w|2 (9)
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If |c| ‰ r (i.e. if the original circle does not pass through 0), then this is equivalent to
(by completing the square)

0 “
1

|c|2 ´ r2
´
cw ` cw

|c|2 ´ r2
` |w|2

“

ˆ

w ´
c̄

|c|2 ´ r2

˙ˆ

w ´
c

|c|2 ´ r2

˙

´
|c|2

p|c|2 ´ r2q2
`

1

|c|2 ´ r2

“

ˇ

ˇ

ˇ

ˇ

w ´
c̄

|c|2 ´ r2

ˇ

ˇ

ˇ

ˇ

2

´
r2

p|c|2 ´ r2q2
,

which is the equation of a circle with centre c̄
|c|2´r2 and radius r

|c|2´r2 .

2 If the original circle passes through 0, then |c|2 “ r2, so (9) becomes

1 “ cw ` c̄w,

which is the equation for a line. Let c “ c1 ` ic2 and w “ w1 ` iw2, then

cw ` c̄w “ 2pc1w1 ´ c2w2q

That is, a linear expression in w and w is a real linear expression in <pwq and =pwq.

3 and 4 follow from 1 and 2 as f´1 “ f . l

Definition 1.8.5 (Möbius circle)
A Möbius circle Möbius circleis either circle in C or the union of a straight line in C and t8u.

This definition makes sense as all points of a circle passing through zero are mapped to a
straight line, except 0, which is mapped to 8 by f .

Corollary 1.8.6 (Inverted Möbius circles in the unit circle are Möbius circles)
The map f maps Möbius circles to Möbius circles.

Warning: this maps does not map the centre of a circle to the centre of the image circle
(except when the centre is 0).

Lemma 1.8.7 (Unique Möbius transform with fpz1q “ 0, fpz2q “ 1, fpz3q “ 8)
For any three distinct points z1, z2, z3 P Ĉ, there is a unique f P Möb with

fpz1q “ 0, fpz2q “ 1, fpz3q “ 8. (10)

Proof. Existence. The map
fpzq “

z2 ´ z3

z2 ´ z1

z ´ z1

z ´ z3

fulfills the condition: we have fpz1q “
z2´z3
z2´z1

0
z1´z3

“ 0, fpz2q “
���z2´z3
���z2´z1

���z2´z1
���z2´z3

“ 1 and
fpz3q “ ” z2´z3z2´z1

z3´z1
0 ” “ 8 as well as a :“ z2´z3, b :“ z1pz3´z2q, c :“ z2´z1, d :“ z3pz1´z2q

and thus
ad´ bc “ pz2 ´ z3qz3pz1 ´ z2q ´ z1pz3 ´ z2qpz2 ´ z1q

“ pz2 ´ z3qz3pz1 ´ z2q ´ z1pz2 ´ z3qpz1 ´ z2q

“ pz3 ´ z1q
looomooon

‰0

pz1 ´ z2q
looomooon

‰0

pz2 ´ z3q
looomooon

‰0

as the zk are pairwisely distinct. Alternatively: if ad “ bc, then f were constant, but the
constructed f takes the values 0 and 1 so ad ‰ bc.

Uniqueness.
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1 Suppose fpzq :“ az`b
cz`d satisfies fp0q “ 0, fp1q “ 1 and fp8q “ 8. Then fp0q “ 0

implies that b “ 0, fp8q “ 8 implies that c “ 0 and fp1q “ a
d “ 1 implies a “ d.

So the only Möbius transformation that fixes 0, 1 and 8 is the identity (if a “ 0, then
fp1q ‰ 1).

2 Suppose f1, f2 are Möbius transformations satisfying (10). Then g “ f2 ˝ f
´1
1 fixes

0, 1 and 8, so g “ id by the previous step, so f1 “ f2. l

Now it is easy to prove the interesting theorem.

Theorem 1.8.3: 3 points + their images determine Möb uniquely

If z1, z2, z3 P Ĉ and w1, w2, w3 P Ĉ are each three points, then there is a unique
Möbius transformation f satisfying fpziq “ wi for i P t1, 2, 3u.

Proof. Existence. Let g and h be the Möbius transformations sending z1, z2, z3 and
w1, w2, w3 to 0, 1 and 8 respectively, which exist by lemma 1.8.7. Then f :“ h´1 ˝g satisfies
fpziq “ wi for i P t1, 2, 3u.

Uniqueness.

1 Suppose f P Möb and fpziq “ zi for i P t1, 2, 3u. Then f “ id. Indeed let g P Möb be
the map with gpz1q “ 0, gpz2q “ 1 and gpz3q “ 8. Then h :“ g˝f ˝g´1 P Möb satisfies
hp0q “ 0, hp1q “ 1, hp8q “ 8. By lemma 1.8.7, h “ id and thus f “ g´1 ˝ h ˝ g “ id.

2 Suppose f1 and f2 are Möbius transformations with fjpziq “ wi, i P t1, 2, 3u, j P
t1, 2u. Then f´1

2 ˝ f1 P Möb fixes z1, z2, z3, so by the previous step, f´1
2 ˝ f1 “ id,

hence f2 “ f1. l

Example 1.8.8 (The Möbius transformation fpzq :“ z´i
z`i

)
The Möbius transformation fpzq :“ z´i

z`i satisfies fpiq “ 0, fp´iq “ 8 and fp8q “ 1.
If z P R, then |fpzq| “ |z´i|

|z`i| “ 1, so f maps the RYt8u to the unit circle. We have
fp1q “ 1´i

1`i “
´2i
2 “ ´i and fp´1q “ ´1´i

´1´i “ i.

Fig. 8: The (pre)images of ˘1, ˘i and 8 of fpzq :“ z´i
z`i .

Before we show that all Möbius transformations map Möbius circles to Möbius circles,
we show a Lemma which makes the proof of that theorem very easy.

17



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

Lemma 1.8.9 (Decomposition of Möbius transformations)
Every Möbius transformation fpzq :“ az`b

cz`d is a composition of Möbius transformations
of the following form:

z ÞÑ z ` b, b P C

z ÞÑ az, a P C˚

z ÞÑ
1

z
.

(translation)

(scale-rotation)

(inversion)

Clearly the first two Möbius transformations map Möbius circles to Möbius circles and
for the third one, we have shown it in Theorem 1.8.2.

Theorem 1.8.4: f PMöb maps M-circles to M-circles

Every Möbius transformation maps Möbius circles to Möbius circles.

Proof. (Of lemma 1.8.9) If c ‰ 0, then

az ` b

cz ` d
“ ´

ad´ bc

c

1

cz ` d
`
a

c

by polynomial division. So f is the composition of the following maps

z ÞÝÑ cz “: z1, z1 ÞÝÑ z1 ` d “: z2, z2 ÞÝÑ
1

z2
“: z3,

z3 ÞÝÑ ´
ad´ bc

c
looomooon

‰0

z3 “: z4, z4 ÞÝÑ z4 `
a

c
.

The case c “ 0 is clear. l

We have seen that Möbius transformations have simple forms and are flexible; they map
any three points to any other three points, and they map Möbius circles to Möbius circles,
but they do not preserve lengths, they are not isometries. But is there any other quantity
that is preserved? The answer is yes:

Definition 1.8.10 (Cross ratio)
The cross-ratio cross-ratioof four points z1, z2, z3, z4 P Ĉ is

crpz1, z2, z3, z4q :“
z1 ´ z2

z2 ´ z3

z3 ´ z4

z4 ´ z1
.

If one of the points is 8, this is supposed to be evaluated by cancelling infinities.

For example,

crpz1, z2,8, z4q “ ”
z1 ´ z2

���
�z2 ´8

��
��8´ z4

z4 ´ z1
” :“ ´

z1 ´ z3

z4 ´ z1
“
z3 ´ z1

z4 ´ z1

Theorem 1.8.5: When is crpz1, z2, z3, z4q P R?

The cross-ratio of four points z1, z2, z3, z4 P Ĉ is real if and only if the four points lie
on a Möbius circle.

18
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Theorem 1.8.6: Möbius transformations preserve cross ratio

1 For any f P Möb and any four points z1, z2, z3, z4 P Ĉ we have

crpz1, z2, z3, z4q “ crpfpz1q, fpz2q, fpz3q, fpz4qq.

2 Conversely, Möbius are the only transformation that preserves the cross ra-
tio: if crpz1, z2, z3, z4q “ crpw1, w2, w3, w4q, there there exists a f P Möb with
fpzjq “ wj for j P t1, . . . , 4u.

So in summary: for two points, their distance is not changed under isometries (so, Eu-
clidean motions), so this is the only invariant for Möbius transformations. For three
points, there is no invariant, as one can map any three points to any three other points and
for four points, there is only one invariant, which is the cross-ratio.

One can prove both theorems by a straightforward and lengthy calculation, but one can
also prove both theorems without preforming hardly any calculations by using the following
observation:

Lemma 1.8.11 (Characterisation of the cross-ratio in terms of Möb)
The number crpz1, z2, z3, z4q is the value hpz1q of the Möbius transformation h with hpz2q “

0, hpz3q “ 1, hpz4q “ 8.

28.04.2021
Proof. Consider the map

hpzq “
z3 ´ z4

z3 ´ z2

z ´ z2

z ´ z4

from lemma 1.8.7. Then

hpz1q “
z3 ´ z4

z3 ´ z2

z1 ´ z2

z1 ´ z4
“
z1 ´ z2

z2 ´ z3

z3 ´ z4

z4 ´ z1
“ crpz1, z2, z3, z4q.

l

Proof. (of Theorem 1.8.5) Let h P Möb be the map satisfying hpz2q “ 0, hpz3q “ 1 and
hpz4q “ 8 and let w :“ hpz1q “ crpz1, z2, z3, z4q, where the last equality is by lemma 1.8.11.
Consider the Möbius circle through z2, z3, z4 (three points in the complex plane always
determine a circle). If either point is equal to 8, the Möbius circle is a line, otherwise it
is a circle. As Möbius transformations map Möbius circles to circles, the Möbius circle is
mapped to the extended real line (the line through the images of z2, z3, z4, which are 0, 1

and 8 respectively).

Clearly, the point z1 is on the Möbius circle through z2, z3, z4 if and only if its image w is
contained in the image of that Möbius circle, that is, if and only if it is real. l

Corollary 1.8.12
The points z1, z2, z3, z4 are on a Möbius circle in clockwise or anticlockwise order if and
only if crpz1, z2, z3, z4q ă 0.

19
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Fig. 9: Four points z1,
z2, z3, z4 on a Möbius
circle in clockwise or
anticlockwise order.

Proof. Left to the reader. l

Proof. (of Theorem 1.8.6) 1 Let h P Möb be the map with hpz2q “ 0, hpz3q “ 1

and hpz4q “ 8, which exists by lemma 1.8.7. By lemma 1.8.11 we have hpz1q “

crpz1, z2, z3, z4q. The map h̃ :“ h ˝ f´1 is a Möbius transformation by Theorem 1.8.1
and satisfies h̃pfpz2qq “ 0, h̃pfpz3qq “ 1 and h̃pfpz4qq “ 8. By lemma 1.8.11 we have

crpfpz1q, fpz2q, fpz3q, fpz4qq “ h̃pfpz1qq “ ph ˝ f
´1qpfpz1qq “ hpz1q “ crpz1, z2, z3, z4q.

2 Let h, h̃ P Möb be maps with hpz2q “ h̃pw2q “ 0, hpz3q “ h̃pw3q “ 1 and hpz4q “

h̃pw4q “ 8. By assumption p‹q we have

hpz1q
1.8.11
“ crpz1, z2, z3, z4q

p‹q
“ crpw1, w2, w3, w4q

1.8.11
“ h̃pw1q.

Hence f :“ h̃´1 ˝ h P Möb satisfies fpzjq “ wj for j P t1, . . . , 4u. l

The following theorem will be important later and we will not prove it completely, for now.

Theorem 1.8.7: Möbius transformations preserving D

The Möbius transformations that map the unit disk

D :“ tz P C : |z| ă 1u

onto itself are precisely the Möbius transformations of the form

fpzq “ eiϕ
z ´ z0

1´ z0z
,

where z0 P D and ϕ P R {2π Z.

Proof. "ðù ": We first show f maps D to D.

1 We show that fpS1q “ S1 :“ tz P C : |z| “ 1u. For z P S1 we have

|fpzq|2 “ |eiϕ|
loomoon

“1

pz ´ z0qpz̄ ´ z0q

p1´ z0zqp1´ z̄z0q
“
|z|2 ´ z0z ´ z0z̄ ` |z0|

2

1´ z0z ´ z0z̄ ´ |z0|
2|z|2

“
1´ z0z ´ z0z̄ ` |z0|

2

1´ z0z ´ z0z̄ ´ |z0|
2
“ 1.

2 Since f is continuous on Ĉ and fpS1q “ S1 and fpz0 P Dq “ 0 P D, f maps the
connected component of ĈzS1 containing z0 to the connected component containing
0, which is, fpDq “ D.

" ùñ ": See Dirk Ferus’ script or wait until later in this course. l

Theorem 1.8.8: Möbius transformations preserving H (Tut)

The Möbius transformations fpzq “ az`b
cz`d with fpHq “ H are characterised by

a, b, c, d P R and ad´ bc ą 0.
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Proof. " ùñ ": One solution is a computational one: we know that f̃pzq :“ eiϕ z´z0
1´z0z

obeys
f̃pDq “ D and we know a map g with gpHq “ D from example 1.8.14. We can thus obtain
the maps H Ñ H as f “ g´1 ˝ f̃ ˝ g.

Another approach is as follows. As ad ´ bc ‰ 0, we can assume that at least one of the
coefficients a, b, c, d is nonzero. As the coefficients λa, λb, λc, λd for any λ P C˚ give the same
Möbius transform, we can assume that nonzero coefficient to be real. If fpR̂q “ R̂, then all
the numbers fp0q “ b

d , fp8q “
a
c , f

´1p0q “ ´ b
a and f´1p8q “ ´d

c must be in R̂ :“ RYt8u.
Since the ratios must be real and one of the coefficients is real, we can assume a, b, c, d P R.
(One might have to be careful if 8 is a fixed point of f .)

As fpHq “ H, we must have =pfpiqq ą 0. We have

=
ˆ

ai` b

ci` d

˙

“ =
ˆ

pai` bqp´ci` dq

pci` dqp´ci` dq

˙

“
=pac` bd` ipad´ bcqq

c2 ` d2
“
ad´ bc

c2 ` d2
,

and as c2 ` d2 ą 0, we must have ad´ bc ą 0.

" ðù ": If a, b, c, d P R, then fpR̂q “ R̂. With the above calculation we have fpiq P H as
ad´ bc ą 0 and thus fpHq “ H by connectedness. l

Example 1.8.13 (Möbius transformation f with fp0q “ i, fpiq “ 8, fp8q “ 1)
We know that the Möbius transformation f1 with f1p0q “ 0, f1piq “ 1, f1p8q “ 8 is
f1pzq “ crpz, 0, i,8q “ ´iz. Furthermore, the Möbius transformation f´1

2 with f´1
2 piq “ 0,

f´1
2 p8q “ 1, f´1

2 p1q “ 8 is f´1
2 pzq “ crpz, i,8, 1q “ z´i

z´1 . Then f “ f1 ˝ f2 “
z`1
z´i . ˛

Example 1.8.14 (Find Möbius transformation with fpHq “ D (Tut II))
We find the Möbius transformation f with fp0q “ ´1, fpiq “ 0 and fp8q “ 1 and show that
fpHq “ D, where H :“ tz P C : =pzq ą 0u is the upper half plane and D :“ tz P C : |z| ă 1u

is the open unit disk.
As before f1pzq “ ´iz and f´1

2 pzq “ pz`1qp0´1q
p´1´0qp1´zq “

z`1
1´z and thus f2pzq “

z´1
z`1 and hence

fpzq “ z´i
z`i . Möbius transformations map generalised circles to generalised circles. The

"circle" through 0, 1,8 (that is R̂ :“ tx P C : x P Ru Y t8u) is mapped to the unit circle,
as fp0q “ ´1, fp1q “ ´i and fp8q “ 1 (three points uniquely determine a circle). The
extended real line R̂ separates Ĉ into two connected components, H and ĈzH. Similarly,
the unit circle separates Ĉ into two connected components, D and ĈzD. As f is a homeo-
morphism, we either have fpHq “ D or fpHq “ ĈzD by connectedness. As fpiq “ 0 P D, we
conclude fpHq “ D. ˛

Remark 1.8.15 (Connection to hyperbolic geometry) H is one of the models of the hyperbolic plane with

the metric ds2 “ dx2`dy2

y . Geodesics are circle perpendicular to the real axis or lines parallel to the imaginary
axis. As geodesics are mapped to geodesics, the isometries in this model are exactly the Möbius transforms. ˝

We conclude this chapter of Möbius applications with one mathematical application.

Example 1.8.16
We first show: For any pair of non intersecting circles, there is a Möbius transformation
that maps these circles to concentric circles (circles with the same centre).

Step 1. We consider two cases.
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Fig. 10: One can make it such that the small circle has the centre 0 and has radius 1. We
can make the centre of the larger circle to be on the real axis. Both circles are perpendicular
to the real axis.

Step 2. We want to find a number q P R zt˘1, 0u (or |q| ą 1?) such that

c :“ crpa, b,´1, 1q
!
“ crpq,´q,´1, 1q “

2qp´2q

p´q ´ 1qp1´ qq
“

4q

1´ q2
.

Solving for q we obtain

1´ q2 “
4q

c
ðñ q2 `

4q

c
´ 1 “ 0 ðñ q˘ “ ´

2

c
˘

c

4

c2
` 1.

Let q :“ q` be the positive solution.

Step 3. Let f be the Möbius transformation with

fpaq “ q, fpbq “ ´q, fp´1q “ ´1, fp1q “ 1. ˛

Then f maps the circles to concentric circles.

Fig. 11: As Möbius transformations are holomorphic, they preserve angles, so the centres
are real, and therefore 0.

This can be use to prove a weird theorem of Steiner: Start with two circles with one being
contained in the other. One can start to draw circles between them that touch both circles
like in the figure on the right and then continue drawing such circles that also touch the
previous circle. Either one new circle overlaps the others, or the circle again touches the
first circle, in which case the procedure repeats.

Theorem. (Steiner) Given the blue circles, whether or not the sequence of green circles
"closes up", that is the n-th green circle touches the first, depends only on the blue circles
and not on the choice of the first circle.

Proof. Apply a suitable Möbius transformation: if we make the two blue circles concentric,
it is obvious. l
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2 Complex integration and Cauchy’s integral
theorem

We now switch over to
Jähnich’s textbook.2.1 Contour integrals / Integrals along curves

We will consider complex functions f defined on open subsets U Ă C and curves γ in the
domain of definition U , which are represented as maps from a closed interval to the space.
We don’t have to worry about the parametrisation of the curve as we will see that the
integral of a function over a curve is independent of the parametrisation of the curve.

Fig. 12: A curve in a
domain.

Definition 2.1.1 (Complex integral)
Let U Ă C be any subset, f : U Ñ C be continuous and γ : rt0, t1s Ñ U be a continuously
differentiable curve. Then

ż

γ

fpzqdz :“

ż t1

t0

fpγptqqγ1ptqdt

is the integral integralof f along γ.

We can consider complex-valued functions as R2-valued functions, which we integrate com-
ponentwise, as we know how to integrate real valued functions of a real variable. Note that
γ1ptq P C.

The substitution rule implies that the integral does not depend on the parametrisation of
γ (only on the orientation, i.e. on the direction that it is traced in); if τ : rs0, s1s Ñ rt0, t1s

is a continuously differentiable reparametrisation of γ with τpskq “ tk for k P t0, 1u, Note that τ doesn’t
need to be bijective
(that is, monotonic).

then
γ̃ :“ γ ˝ τ : rs0, s1s Ñ U is the reparametrised curve and

ż

γ̃

fpzqdz “

ż s1

s0

fppγ ˝ τqpsqqγ1pτpsqqτ 1psqds “

ż t1

t0

fpγptqqγ1ptqdt “

ż

γ

fpzqdz

by the substitution rule (aka the change of variables formula).

But if τ reverses the orientation, that is, τps0q “ t1 and τps1q “ t0, we get (by an analogous
calculation)

ż

γ̃

fpzqdz “ ´

ż

γ

fpzqdz.

Definition 2.1.2 (Contour integral (Extended Definition))
If γ : rt0, t1s Ñ U is only piecewise continuously differentiable, i.e. if there is a subdivision

t0 “ τ0 ă τ1 ă . . . ă τn “ t1

such that γ P Cprt0, t1sq is continuously differentiable on rτj , τj`1s for j P t0, . . . , n ´ 1u,
then

ż

γ

fpzqdz :“
n´1
ÿ

j“0

ż

γ|rτj,τj`1s

fpzqdz.

Fig. 13: A piecewise
continuously differen-
tiable curve.
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Theorem 2.1.1: Triangle inequality for complex integrals (Tut
IV)

Let f : C Ą U Ñ C be continuous and γ : rt0, t1s Ñ U be a C1 curve such that
|pf ˝ γqptq| ďM for all t P rt0, t1s. Then

ˇ

ˇ

ˇ

ˇ

ż

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ďM

ż t1

t0

|γ1ptq| dt “: M lenpγq.

Proof. (from Ferus’ lecture notes) Let J :“
ş

γ
fpzqdz. If J “ 0, then the statement is

clear. Let J ‰ 0. Then

1 “

ş

γ
fpzqdz

J
“ <

˜
ş

γ
fpzqdz

J

¸

“ <
ˆ
ż

γ

fpzq

J
dz

˙

“ <
ˆ
ż t1

t0

fpγptqqγ1ptq

J
dt

˙

“

ż t1

t0

<
ˆ

fpγptqqγ1ptq

J

˙

dt ď

ż t1

t0

|fpγptqq||γ1ptq|

|J |
dt ď

M

|J |

ż t1

t0

|γ1ptq| dt.
l

For anyone with a background in vector calculus (either over divgrad or differential forms),
there is a little excursion.

Excursion. Consider fpx` iyq “ upx, yq ` ivpx, yq and γptq “ ξptq ` iηptq. Then (ignoring
the argument t)

ż

γ

fpzqdz “

ż t1

t0

pupξ, ηq ` ivpξ, ηqq ¨ pξ1 ` iη1qdt

“

ż t1

t0

``

upξ, ηq ¨ ξ1 ´ vpξ, ηq ¨ η1
˘

` i
`

vpξ, ηq ` upξ, ηqη1
˘˘

dt

“

ż

γ

ω ` i

ż

γ

˚ω

“

ż t1

t0

C˜

u

´v

¸

, γ1

G

dt

loooooooooooomoooooooooooon

curve integral of vector
field p u´v q“f

`i

ż t1

t0

C˜

v

u

¸

, γ1

G

dt

looooooooooomooooooooooon

curve integral of
vector field p vu q

,

where ω :“ udx´ v dy and ˚ω :“ v dx` udy are differential forms. We have
˜

v

u

¸

“

˜

0 ´1

1 0

¸˜

u

´v

¸

and
`

0 ´1
1 0

˘

is 90 degree rotation.
04.05.2021

Example 2.1.3 (Integrals of z ÞÑ zk for k P Z) Consider the inversion

f : C˚ Ñ C, z ÞÑ
1

z

and the curve
γ : r0, 2πs Ñ C˚, t ÞÑ Reit

which traces a circle of radius R ą 0 centred at the origin. Then

Fig. 14: The curve γ.

ż

γ

fpzqdz “

ż 2π

0

fpγptqqγ1ptqdz “

ż 2π

0 �
��
1

Reit
i��
�Reit dt “

ż 2π

0

i dt “ 2πi.
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For k P Z zt´1u and R “ 1 we have

ż

|z|“1

zk dz “

ż 1

0

eiktieit dt “ i

ż 1

0

eipk`1qt dt “ �i

„

eipk`1qt

pk ` 1q�i

2π

t“0

“
e2πipk`1q ´ 1

k ` 1
“

1´ 1

k ` 1
“ 0.

˛

Example 2.1.4 (Tut II) The integral of the identity over the path γ going from the origin
to i and then to 1` i via straight lines can be split into the straight line paths

γ1 : r0, 1s Ñ C, t ÞÑ ti, and γ2 : r0, 1s Ñ C, t ÞÑ t` i,

so
ż

γ

fpzqdz “

ż 1

0

ti ¨ idt`

ż 1

0

pt` iq ¨ 1 dt “

ż 1

0

´tdt`

ż 1

0

tdt` i “ i.
˛

Excursion into vector analysis (cont.) If fpx ` iyq “ upx, yq ` ivpx, yq, then we have
seen that

ż

γ

fpzqdz “

ż

γ

pudx´ v dyq ` i

ż

γ

pv dx` udyq .

You may know the general Stokes theorem for differential forms or the special case called
Green’s theorem.

Theorem 2.1.2: Green’s Theorem

Let B Ă R2 be a compact set with a piecewise C1 boundary BB and let P,Q be
functions of class C1 on a domain containing B. Then

ż

BB

P dx`Qdy “

ż

B

´
BP

By
`
BQ

dx
dx dy.

Applying Green’s Theorem (or any other formulation) to
ş

γ
fpzqdz we obtain

Theorem 2.1.3: Cauchy’s integral theorem (Vector Analysis version)

If f is holomorphic on U with continuous derivative, and if γ is a piecewise C1 curve
bounding a compact set B Ă U , then

ż

γ

fpzqdz “ 0. (11)

Proof. With Green’s Theorem we have
ż

γ

fpzqdz “

ż

γ

pudx´ v dyq ` i

ż

γ

pv dx` udyq

2.1.2
“

ż

B

ˆ

´
Bu

By
´
Bv

Bx

˙

looooooomooooooon

(5)
“ 0

dx dy ` i

ż

B

ˆ

´
Bv

By
`
Bu

Bx

˙

looooooomooooooon

(5)
“ 0

dx dy “ 0

by the Cauchy-Riemann equations. l

In this lecture we will see a completely different proof a stronger version. It can be stronger
because we don’t really need Green’s theorem in full generality, we only need the case
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where integrand is zero. In particular we will see that it is enough that f is differentiable
and we do not require continuity of its derivatives.

2.2 Cauchy’s Integral Theorem of a Rectangle

In this lecture we will state more and more general forms of Cauchy’s integral theorem.
We start with a toy version.

Fig. 15: A rectangu-
lar region as in Theo-
rem 2.2.1

Theorem 2.2.1: Cauchy’s Integral Theorem of a Rectangle

Let Q Ă C be a closed rectangular region with sides parallel to the real and imaginary
axes and let γ be a piecewise C1 parametrisation of the boundary ofQ with orientation
as shown in figure 15. If f is holomorphic on a domain containing Q, then (11).

Before we prove this, we consider complex functions possessing antiderivatives.

Lemma 2.2.1 (Cauchy’s Theorem for functions with holomorphic antiderivative)
Let f : U Ñ C be continuous and have a holomorphic antiderivative F on U , that is, F 1 “ f .
Then, for any C1-curve γ : rt0, t1s Ñ U we have

ż

γ

fpzqdz “ F pγpt1qq ´ F pγpt0qq.

If in particular γ is a closed curve, that is, γpt0q “ γpt1q, we have (11).

Proof. This is just the Fundamental Theorem Of Calculus since

d

dt
F pγptqq “ dFγptqpγ

1ptqq “ F 1pγptqqγ1ptq “ fpγptqqγ1ptq.
l

Proof. (of Theorem 2.2.1) 1 We will prove that, for any ε ą 0,
ˇ

ˇ

ˇ

ş

γ
fpzqdz

ˇ

ˇ

ˇ
ă ε.

Since f is holomorphic on U , for any z P U we have

fpzq “ fpz0q ` f
1pz0q ¨ pz ´ z0q `Rz0pzq,

where the error function Rz0 : U Ñ C satisfies

lim
zÑz0

Rz0pzq

|z ´ z0|
“ 0. (12)

Since z ÞÑ fpz0q`f
1pz0q¨pz´z0q is a polynomial of degree one - hence entire - and thus

has a global antiderivative, its integral along the closed curve γ is zero by lemma 2.2.1.
Therefore

ż

γ

fpzqdz “

ż

γ

Rz0pzqdz. (13)

2 We will choose the point z0 later. In the vicinity of z0, Rz0 vanishes fast. The problem
is that the rectangle is not in the vicinity of z0 so the idea is to divide up the rectangle.

Let ε ą 0. Divide Q into four equal subrectangles Q1, Q2, Q3, Q4 and let Q1 be that
subrectangle for which the integral along the boundary, γ1, is largest in absolute value.
When we integrate over all curves, on the interior edges of the rectangle we go once

Fig. 16: Division of the
rectangular region Q.

in one direction and once in the other direction, so those integrals cancel each other
out and we are left with the integrals over the boundary of Q. Then

ˇ

ˇ

ˇ

ˇ

ż

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď 4

ˇ

ˇ

ˇ

ˇ

ż

γ1

fpzqdz

ˇ

ˇ

ˇ

ˇ

.
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

Now subdivide the rectangle Q1 into four equal subrectangles and let Q2 be the rect-
angle for which the integral along its boundary curve, γ2, is the largest. Continuing
this process we obtain a infinite sequence of rectangles Qk and boundary curves γk
such that

Fig. 17: The nested
rectangles pQkqkPN.

ˇ

ˇ

ˇ

ˇ

ż

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď 4k
ˇ

ˇ

ˇ

ˇ

ż

γk

fpzqdz

ˇ

ˇ

ˇ

ˇ

(13)
“ 4k

ˇ

ˇ

ˇ

ˇ

ż

γk

Rz0pzqdz

ˇ

ˇ

ˇ

ˇ

The intersection of all rectanglesQk contains a single point z0, that is,
Ş8

k“1Qk “ tz0u.
The x- and y-intervals of the rectangles form two sequences of nested intervals, whose
lengths tend to zero.

3 We have by Theorem 2.1.1
ˇ

ˇ

ˇ

ˇ

ż

γk

Rz0pzqdz

ˇ

ˇ

ˇ

ˇ

ď lenpγkq ¨ sup
zPQk

|Rz0pzq|.

We have lenpγkq “ 2´k lenpγq. By (12) there is a δ ą 0 such that |Rz0pzq| ă ε̃|z ´ z0|

for all z with |z ´ z0| ă δ, where

ε̃ :“
ε

lenpγqdiampQq
.

Choose k P N so large that diampQkq “ 2´k diampQq ă δ, then

sup
zPQk

|Rz0pzq| ď ε sup
zPQk

|z ´ z0| ď εdiampQkq “ ε ¨ 2´k diampQq.

Altogether, we have
ˇ

ˇ

ˇ

ˇ

ż

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď��
�

4k2´k ¨ lenpγq ¨ ε̃ ¨��2´k ¨ diampQq “ lenpγq ¨ ε̃ ¨ diampQq “ ε.
l

Remark 2.2.2 We did not need to assume that f 1 is continuous (as in Theorem 2.1.3). ˝

This version of Cauchy’s integral theorem is fairly useless as in most cases we are not
interested in integrating only over rectangular curves. But all analytical ideas are already
in the proof.

2.3 Cauchy’s Theorem of C1 images of rectangles

Now let us consider a version of Cauchy’s Theorem that is actually useful.

Theorem 2.3.1: Cauchy’s integral theorem for C1 images of
rectangles

Let f be a holomorphic function on U Ă C, let Q Ă C be a closed rectangular region,
let γ be a C1 parametrisation of its boundary and let Φ: W Ñ C be a continuously
differentiable (in the real sense) map on some set W Ą Q with ΦpQq Ă U . Then

ż

Φ˝γ

fpzqdz “ 0.
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

Fig. 18: The setup of Theorem 2.3.1.

Proof. We construct a sequence of rectangles Q Ą Q1 Ą Q2 Ą . . . as before with

ˇ

ˇ

ˇ

ˇ

ż

Φ˝γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď 4k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Φ˝γk

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(14)

with γk :“ BQk and γ :“ BQ. But now we need to estimate diampΦpQkqq and lenpΦ ˝ γkq.
To this end, we observe that since Φ is a C1 function, dΦ is continuous on the compact set
Q, so there exists a C ą 0 such that } dΦz} ď C for all z P Q. Hence

diampΦpQkqq ď C diampQkq “ C2´k diampQq and lenpΦ ˝ γkq ď C lenpγkq “ C2´k.

Let ε ą 0 and let z0 :“ Φ p
Ş

kPNQkq. Choose δ ą 0 so small that |Rz0pzq| ă ε|z ´ z0| holds
for all z with |z ´ z0| ă δ. Now choose k P N large enough that C2´k diampQq ď δ holds.
Then we have

ˇ

ˇ

ˇ

ˇ

ż

Φ˝γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

(14)
ď 4k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Φ˝γk

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď(((
(((

4k2´k ¨ 2´kC2 lenpγqdiampQq ¨ ε.

l

This was the worst analysis we will do in this course. From now on, the proofs will only be simple applications.

Differentiable images of rectangles are also not really what one needs, but it is easy to adapt
Theorem 2.3.1 to different situations.

Theorem 2.3.2: Cauchy’s theorem for triangles

If f is holomorphic on U and γ is the boundary curve of a triangular region that is
contained in U , then (11).

Fig. 19: A triangular
region bounded by γ

with vertices A,B and
C contained in a do-
main U .

Proof. Apply Theorem 2.3.1 to the function

Φ: r0, 1s2 Ñ U, ps, tq ÞÑ p1´ tq pp1´ sqA` sBq
looooooooomooooooooon

straight line segment
connecting A and B

`t pp1´ sqA` sCq
looooooooomooooooooon

straight line segment
connecting A and C

.

l

Fig. 20: The action of Φ, which maps the unit square to the triangle ABC.
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

Theorem 2.3.3: Cauchy’s theorem for disk

If f is holomorphic on U and γ is the boundary circle of a closed disk that is contained
in U , then (11).

Proof. Let z0 P U be the centre and r ą 0 the radius of the closed disk. Apply Theo-
rem 2.3.1 to the function

Φ: r0, 2πs ˆ r0, rs Ñ U, ps, tq ÞÑ z0 ` te
is

Fig. 21: The action of the map Φ. The bottom edge of the rectangle is mapped to the point z0.
The left edge is mapped to a radius of the circle. The remaining two segments are mapped to the
boundary circle and the inverse of the first path.

Only the integral along the pink curve matters, as a single point does not contribute to the
integral and the other two paths cancel each other out. The integral along the pink line is
zero. l

Fig. 22: For this theorem it is important that the disk is contained in U , for the red circle in the
above drawing Cauchy’s theorem does not hold.

Notation. Integrals along circles are very common, thus there is a special notation for this:
ż

|z´z0|“r

fpzqdz :“

ż

γ

fpzqdz,
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

where γ : r0, 2πs Ñ C, t ÞÑ z0 ` reit. By convention, the circle |z ´ z0| “ r is traversed in
the counterclockwise direction.

Cauchy’s integral theorem for C1-homotopic curves

Definition 2.3.1 (C1-homotopic)
Two curves α, β : r0, 1s Ñ C are C1-homotopic in U Ă C if there exists a C1-function
H : r0, 1s2 Ñ U , called homotopy, such that

• Hp0, ¨q “ α and Hp1, ¨q “ β,

• Hp¨, 0q “ αp0q “ βp0q and Hp¨, 1q “ αp1q “ βp1q.

Fig. 23: Two C1-
homotopic curves α

and β.

The parameter domain rt0, t1s of both curves can be chosen to be r0, 1s without loss of
generality as we can always reparametrise accordingly.

Theorem 2.3.4: Cauchy’s theorem for C1-homotopic curves

If α, β : r0, 1s Ñ C are C1-homotopic curves in U and f is holomorphic on U , then
ż

α

fpzqdz “

ż

β

fpzqdz. (15)

Proof. Choosing Φ “ H, Theorem 2.3.1 implies
ż

α

fpzqdz ´

ż

β

fpzqdz “ 0.
l

Remark 2.3.2 Jähnich, at this point, only considers the case where all straight segments
connecting αptq and βptq are in U . ˝

Fig. 24: Our case (be-
low) is more general, as
we can see in the both
pictures above

C1 homotopy is more general, but it is also not the most general case possible. We will see
later that it suffices if H is continuous, and that is why C1 homotopy is not a well known
concept, as it can be replaced by something even more general.

Cauchy’s theorem for freely C1 homotopic closed curves

Definition 2.3.3 (freely C1-homotopic)
Two closed curves α, β : r0, 1s Ñ C are freely C1-homotopic in U Ă C U only needs to be a

subset.
if there is a C1-

function H : r0, 1s ˆ r0, 1s Ñ U such that

• Hp0, ¨q “ α and Hp1, ¨q “ β,

• Hp¨, 0q “ Hp¨, 1q.

Fig. 25: Two closed
freely C1 homotopic
curves α and β.

Theorem 2.3.5: Cauchy’s theorem for closed freely C1 homo-
topic curves

If α, β : r0, 1s Ñ C are closed freely C1-homotopic curves in U and f is holomorphic
on U , then (15).

Fig. 26: Visualisation
of the free homotopy.
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Proof. We apply Theorem 2.3.1. The image of the boundary of r0, 1s2 under H is the curve
α traced in the opposite direction, a segment connecting it to β, the curve β and the segment
traced in the other direction. l

An important special case is the

Theorem 2.3.6: Cauchy’s integral theorem for annuli

If two nested (that is, one is contained in the other and they don’t intersect) circles
with centres z0 and z1 and radii r0 and r1 are contained in U together with the region
between them, then for all holomorphic functions f on U we have

ż

|z´z0|“r0

fpzqdz “

ż

|z´z1|“r1

fpzqdz.

A special case occurs if z0 “ z1, and then the concentric circles in U bound an annulus in
U .

Fig. 27: The setup of Theorem 2.3.6

Let us now consider two example applications of Cauchy’s theorem.

Example 2.3.4 (
ş

R e
´px´iaq2 dx “

?
π for all a P R) Define

I : RÑ C, a ÞÑ

ż

R
e´px´iaq

2

dx.

Then we have Ipaq “ Ip0q for all a P R.

For R ą 0 consider the contour given by the C1 curves

γ1 : r´R,Rs Ñ R Ă C, t ÞÑ t, γ2 : r0, as Ñ C, t ÞÑ R` it,

γ3 : r´R,Rs Ñ R Ă C, t ÞÑ ia´ t, γ4 : r0, as Ñ C, t ÞÑ R` ia´ it.

We then have
ż

γ1

e´z
2

dz “

ż R

´R

e´t
2 RÑ8
ÝÝÝÝÑ Ip0q.

and
ˇ

ˇ

ˇ

ˇ

ż

γ2

e´z
2

dz

ˇ

ˇ

ˇ

ˇ

ď

ż a

0

et
2
´R2

dt ď aea
2
´R2 RÑ8

ÝÝÝÝÑ 0

and analogously for γ3. By Cauchy’s Theorem

0 “

ż

γ1`γ2`γ3`γ4

e´z
2

dz
RÑ8
ÝÝÝÝÑ Ip0q ´

ż

R
e´pt´iaq

2

dz.

˛

31
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Example 2.3.5 (Todo (Tut IV)) For a, b ą 0 we have
ż 2π

0

1

a2 cos2ptq ` b2 sin2
ptq

dt “
2π

ab
.

Take γptq : r0, 2πs Ñ C, t ÞÑ a cosptq ` ib sinptq, which is homotopic to t ÞÑ eit in C˚. Hence
ż

γ

1

z
dz “

ż

|z|“1

1

z
dz “ 2πi.

Hence

2π “ =
ˆ
ż

γ

1

z
dz

˙

“ =
ˆ
ż 2π

0

´a sinptq ` ib cosptq

a cosptq ` ib sinptq
dt

˙

“

ż 2π

0

=
ˆ

´a sinptq ` ib cosptq

a cosptq ` ib sinptq

˙

dt

“

ż 2π

0

=
ˆ

´pa2 ` b2q cosptq sinptq ` iabpsin2
ptq ` cos2ptqq

a2 cos2ptq ` b2 sin2
ptq

˙

dt

“

ż 2π

0

ab

a2 cos2ptq ` b2 sin2
ptq

dt.
˛
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3 First consequences of Cauchy’s theorem
After we adapted the Cauchy integral theorem for images of rectangles to particular useful
cases, we can now reap the rewards in this section. This section is not called "Consequences
of Cauchy’s theorem" because ultimately, everything in Complex Analysis is a consequence
of Cauchy’s theorem.

3.1 Cauchy’s Integral Formula

Theorem 3.1.1: Cauchy’s integral formula for disks

Let f be holomorphic on the (open) set U Ă C, with Brpz0q Ă U for z0 P C. Then
for every a P Brpz0q we have

fpaq “
1

2πi

ż

|z´z0|“r

fpzq

z ´ a
dz.

Fig. 28: By Theo-
rem 3.1.1, the values
of f in the interior of
the disk are determined
by the values on its
boundary.

Proof. Choose ε ą 0 so small that Bεpaq Ă Brpz0q. By Theorem 2.3.6,
ż

|z´z0|“r

fpzq

z ´ a
dz “

ż

|z´a|“ε

fpzq

z ´ a
dz, (16)

because the integrand (which is not defined at a) is nevertheless holomorphic on the annulus
(not containing a) bounded by the circles |z ´ z0| “ r and |z ´ a| “ ε as it is the quotient
of two holomorphic functions. We have

ż

|z´a|“ε

fpzq

z ´ a
dz “

ż

|z´a|“ε

fpaq ` fpzq ´ fpaq

z ´ a
dz

“

ż

|z´a|“ε

fpaq

z ´ a
dz

looooooooomooooooooon

“:A

`

ż

|z´a|“ε

fpzq ´ fpaq

z ´ a
dz

loooooooooooooomoooooooooooooon

“:B

.

We have

A “ fpaq

ż

|z´a|“ε

1

z ´ a
dz “ fpaq

ż 2π

0

1

�a`�
�εeit��́a

i��εeit dt “ fpaq

ż 2π

0

idt “ 2πifpaq.

using the parametrisation γptq “ a ` εeit. It remains to show that B “ 0. Note that B
does not depend on ε as long as ε ą 0 is small enough: one can immediately see this from
Cauchy’s theorem for annuli with concentric circles because if we change ε then we get the
same result. Hence it is enough to show that

lim
εŒ0

ż

|z´a|“ε

fpzq ´ fpaq

z ´ a
dz “ 0.

We have
ż

|z´a|“ε

fpzq ´ fpaq

z ´ a
dz “

ż 2π

0

fpa` εeitq ´ fpaq

�a`�
�εeit��́a

i��εeit dt “ i

ż 2π

0

fpa` εeitq ´ fpaq
loooooooooomoooooooooon

“:hεptq

dt.

Since f is continuous at a, limεŒ0 hεptq “ 0 uniformly in t P r0, 2πs, because continuous
functions on compact sets are uniformly continuous. Hence

lim
εŒ0

ż 2π

0

hεptqdt “ 0.
l
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Example 3.1.1 (Tut IV) As sin and cos are entire we have
ż

|z|“1

sinpzq

z
dz “

1

2πi

ż

|z´0|“1

2πi sinpzq

z ´ 0
dz “ 2πi sinp0q “ 0

by Theorem 3.1.1 and analogously
ż

|z|“1

cospzq

z
dz “

1

2πi

ż

|z´0|“1

2πi cospzq

z ´ 0
dz “ 2πi cosp0q “ 2πi.

˛

Example 3.1.2 (Calculating
ş fpzq
pz´z1qpz´z2q

dz (Tut IV)) How can we calculate

ż

|z|“R

fpzq

pz ´ z1qpz ´ z2q
dz,

where z1 ‰ z2 are complex numbers with maxp|z1|, |z2|q ă R?

We want to find constants A,B P C such that

1

pz ´ z1qpz ´ z2q
“

A

z ´ z1
`

B

z ´ z2
,

which can be rewritten as
1 “ z ¨

`

A`B
˘

´ z2A´ z1B.

Assuming A “ ´B (to eliminate the z term), we get

1 “ ´z2A´ z1B “ ´z2A` z1A

and thus
A “

1

z1 ´ z2
and B “

1

z2 ´ z1

We found the partial fraction decomposition:

1

pz ´ z1qpz ´ z2q
“

A

z ´ z1
`

B

z ´ z2
“

1

pz ´ z1qpz1 ´ z2q
`

1

pz ´ z2qpz2 ´ z1q

and thus, by the Cauchy integral formula we have
ż

|z|“R

fpzq

pz ´ z1qpz ´ z2q
dz “

ż

|z|“R

fpzq

pz ´ z1qpz1 ´ z2q
´

fpzq

pz ´ z2qpz1 ´ z2q
dz

“ 2πi

ˆ

fpz1q

z1 ´ z2
´

fpz2q

z1 ´ z2

˙

“ 2πi ¨
fpz1q ´ fpz2q

z1 ´ z2
.

Alternatively we can consider the path tracing a circle around z1 of a sufficiently small ε ą 0,
the straight line segment connecting this circle to a small circle around z2 with radius ε ą 0

and the closing the curve up with a segment back to the first circle. The contributions of
the connecting segments in the curve cancel each other out. Hence
ż

|z|“R

fpzq

pz ´ z1qpz ´ z2q
dz “

ż

|z´z1|“ε

fpzq

pz ´ z1qpz ´ z2q
dz `

ż

|z´z2|“ε

fpzq

pz ´ z1qpz ´ z2q
dz

3.1.1
“ 2πi

ˆ

fpz1q

z1 ´ z2
`

fpz2q

z2 ´ z1

˙

.
˛

In particular we get the following corollary by choosing a “ z0.

Corollary 3.1.3 (Mean value property of holomorphic functions)
If f is holomorphic on a domain containing Brpz0q, then

fpz0q “
1

2π

ż 2π

0

fpz0 ` re
itqdt.
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Fig. 29: A circle with
centre z0 and the ori-
entation (counterclock-
wise) of its boundary
curve.

Proof. With the parametrisation z “ z0 ` reit for t P r0, 2πs and using Theorem 3.1.1 for
a “ z0 we obtain

fpz0q “
1

2πi

ż

|z´z0|“r

fpzq

z ´ z0
dz “

1

2π �i

ż 2π

0

fpz0 ` re
itq

��z0 `�
�reit��´z0

¨ �i ¨�
�reit dz “

1

2π

ż 2π

0

fpz0 ` re
itq.

l

The Real Analysis version of Cauchy’s Integral Formula would be: the values of a differ-
entiable function f : ra, bs Ñ R at the endpoints determine all values in between, which is
certainly not true.

3.2 The power series expansion theorem

11.05.2021Digression (from Jähnich’s book)

We consider another consequence of Cauchy’s theorem that is not strictly necessary, but
it is a nice example of ways to think and also a way to show that power series can be
differentiated term by term - by showing that they can be integrated term by term.

Theorem 3.2.1: Complex Version of the Fundamental Theorem
of Calculus

Let f be holomorphic on a convex domain U The convexity is not
necessary, it suffices
that U is star-shaped
with respect to z0.

and z0 P U . Define

F : U Ñ C, z ÞÑ

ż z

z0

fpuqdu, (17)

where we write
şb

a
for the integral along the straight line segment from a to b

parametrised by γptq “ a ` tpb ´ aq for t P r0, 1s. Then F is an antiderivative of
f , that is, F is holomorphic and F 1 “ f .

In the real case we only require continuity of f . Here we need holomorphicity, because then
Cauchy’s integral theorem holds and the integral in the definition of F should not depend
on the path from z0 to z (we take a straight line segment anyway, but it should also work
for arbitrary paths).

Proof. For z1 P U , we have to show that F is differentiable at z1 and F 1pz1q “ fpz1q, that
is

Fig. 30: The closed
triangular region with
vertices z0, z1 and
z2 :“ z1 ` h.

lim
hÑ0

F pz1 ` hq ´ F pz1q

h
“ fpz1q.

Because U is convex, the closed triangular region with vertices z0, z1 and z2 :“ z1 ` h is
contained in U as long as h is small enough. By Cauchy’s Integral Theorem,

ż z1

z0

fpzqdz `

ż z2

z1

fpzqdz `

ż z0

z2

fpzqdz “ 0. (18)

Hence,

F pz2q ´ F pz1q
(17)
“

ż z2

z0

fpzqdz ´

ż z1

z0

fpzqdz
(18)
“

ż z2

z1

fpzqdz “

ż 1

0

fpz1 ` thqhdt (19)
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by using the parametrisation γ : r0, 1s Ñ C, t ÞÑ z1 ` th of the line segment rz1, z2s. By the
Mean Value Theorem of Real Analysis, there exists τ, τ 1 P r0, 1s such that

1

h
pF pz2q ´ F pz1qq

(19)
“

ż 1

0

fpz1 ` thqdt
p‹q
“ <pfpz1 ` τhqq ` i=pfpz1 ` τ

1hqq
hÑ0
ÝÝÝÑ fpz1q

where the limit is due to the continuity of f . l

It is easier to prove that power series can be integrated term-by-term than that they can be
differentiated term-by-term, because integration makes function "nicer" and differentiation
makes them "worse". Using Theorem 3.2.1, we can prove the second statement using the
first. Why is this not usually taught like this? Because power series and differentiation is
treated very early on and integration is treated much later.

Theorem 3.2.2: Power series can be integrated term-by-term

If the power series fpzq “
ř8

k“0 akz
k has radius of convergence R ą 0, then the

power series F pzq–
ř8

k“0
1
k`1akz

k also has radius of convergence R and F 1 “ f .

The idea of this proof is that we can interchange limit and integral if the convergence is
uniform.

Proof. On compact subsets of the disk tz P C : |z| ă Ru, the power series
ř8

k“0 akz
k

converges uniformly, so we may interchange integration and this limit. If we set fnpzq :“
řn
k“0 akz

k, then Fnpzq :“
řn
k“0

1
k`1akz

k`1 is the uniquely determined antiderivative of fn
with Fnp0q “ 0 (the last condition is needed for the uniqueness). By Theorem 3.2.1 for z in
the disk we have

Fnpzq “

ż z

0

fnpuqdu,

so by the uniform convergence (UC) of pfnqnPN on the closed line segment from 0 to z,

F pzq “ lim
nÑ8

Fnpzq “ lim
nÑ8

ż z

0

fnpuqdu
UC
“

ż z

0

lim
nÑ8

fnpuqdu “

ż z

0

fpuqdu.

By Theorem 3.2.1, F is an antiderivative of f . l

We can now prove the second part of Theorem 1.3.1.

Theorem 3.2.3: Differentiating power series term-by-term

If the power series fpzq “
ř8

k“0 akz
k has radius of convergence R ą 0, then the

power series gpzq–
ř8

k“1 kakz
k´1 also has radius of convergence R and g1 “ f .

Proof. Integrate g term-by-term and use Theorem 3.2.2 to see that fpzq ´ fpz0q is an
antiderivative of g, so f 1 “ g. l

End of digression.

Theorem 3.2.4: Power series expansion

Let f be a holomorphic function on U . For z0 P U there exists a unique power series

fpzq “
8
ÿ

k“0

ckpz ´ z0q
k
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with positive convergence radius representing f in some neighbourhood of z0. The
coefficients ck are determined by Cauchy’s coefficient formula

ck “
1

2πi

ż

|z´z0|“r

fpzq

pz ´ z0q
k`1

dz,

where the only condition on r is to be small enough such that Brpz0q Ă U .
The radius of convergence is not smaller than the radius of the largest open disk
around z0 contained in U .

In other words: "Holomorphic functions can be represented by power series". Since power
series are differentiable and their derivatives are again power series, we get the Theorem of
Goursat.
Corollary 3.2.1 (Goursat)
Every holomorphic function is arbitrarily often complex differentiable. In particular it is C8

in the real sense.

Proof. (of Theorem 3.2.4) Uniqueness. Since power series are differentiable by Theo-

rem 3.2.3, fpzq “
ř8

k“0 ckpz´z0q
k implies f pkqpz0q “ k!ck, so the coefficients are ck “

fpkqpz0q
k!

are determined by f in any neighbourhood of z0 and there can be at most one power series
representing f .

Existence. Let r ą 0 be small enough such that Brpz0q Ă U . By Theorem 3.1.1 for z P Brpz0q

fpzq “
1

2πi

ż

|u´z0|“r

fpuq

u´ z
du “

1

2πi

ż

|u´z0|“r

fpuq

pu´ z0q ´ pz ´ z0q
du

“
1

2πi

ż

|u´z0|“r

fpuq

u´ z0

1

1´ z´z0
u´z0

du “: p‹q.

Note that z´z0
u´z0

“ z´z0
r ă 1, so we can apply the formula for the geometric series 1

1´q “
ř8

k“0 q
k to q :“ z´z0

u´z0
:

1

1´ z´z0
u´z0

“

8
ÿ

k“0

pz ´ z0q
k

pu´ z0q
k
.

Hence

p‹q “
1

2πi

ż

|u´z0|“r

fpuq

u´ z0

8
ÿ

k“0

pz ´ z0q
k

pu´ z0q
k

du “
1

2πi

ż

|u´z0|“r

8
ÿ

k“0

fpuq

pu´ z0q
k`1

pz ´ z0q
k du.

As the series converges uniformly (as the geometric series converges uniformly) in u with
|u´ z0| “ r, so the above term is equal to

1

2πi

8
ÿ

k“0

ż

|u´z0|“r

fpuq

pu´ z0q
k`1

pz ´ z0q
k du “

1

2πi

8
ÿ

k“0

ż

|u´z0|“r

fpuq

pu´ z0q
k`1

du
looooooooooooooomooooooooooooooon

“:ck

pz ´ z0q
k

“
1

2πi

8
ÿ

k“0

ckpz ´ z0q
k.

l

Corollary 3.2.2 (Cauchy estimate for Taylor coefficients)
Let f be holomorphic on U and suppose r ą 0 such that Brpz0q Ă U . Assume that |fpzq| ď
M for all z with |z ´ z0| “ r for some M ą 0 and let

fpzq “
8
ÿ

k“0

ckpz ´ z0q
k
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be the power series expansion of f around z0. Then

|ck| ďM ¨ r´k @k P N .

Proof. By theorem 3.2.4 we have

|ck| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

|z´z0|“r

|fpzq|

|z ´ z0|
k`1

dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2π
¨ p2πrq

M

rk`1
“
M

rk

because |fpzq|
|z´z0|k`1 ď

M
rk`1 and the length of the curve is 2πr. l

Theorem 3.2.5: Liouville (Cauchy, 1844)

A bounded entire function (that is, f is holomorphic on C and |fpzq| ď M for all
z P C) is constant.

Proof. The function f is represented by a power series by Theorem 3.2.4 and we can choose
0 as its centre: for all z P C we have

fpzq “
8
ÿ

k“0

ckz
k.

By corollary 3.2.2 we have

|ck| ď
M

rk
,

for all r ą 0, so ck “ 0 unless k “ 0. l

Corollary 3.2.3 (Entire functions bounded away from zero (Tut V))
Let f be entire such that there exists a c ą 0 with |fpzq| ě c for all z P C. Then f is
constant.

Proof. As fpzq is never zero, 1
f is well defined and holomorphic as composition of the

holomorphic maps f : C Ñ C˚ and 1
¨
: C˚ Ñ C. The inequality implies 1

|fpzq| ď
1
c , so

1
f is

constant by Theorem 3.2.5 and thus so is f . l

Corollary 3.2.4
Let f be entire and let A,R ą 0 and m P N be constants such that fpzq ď A|z|m for all
z P C with |z| ą R. Then f is a polynomial of degree at most m.

Proof. Homework 5.2. l

Corollary 3.2.5 (Fundamental Theorem of Algebra)
A polynomial p P Cnrzs of degree n ě 1 has at least one zero in C.

Proof. (By contradiction) Suppose the polynomial ppzq :“
řn
k“0 akz

k with an ‰ 0 and
n ě 1 has no zeros. As p is also holomorphic, so is f :“ 1

p . Also

|fpzq| “
1

|a0 ` a1z ` . . .` anzn|
“

1

|zn|
ˇ

ˇ

a0
zn `

a1
zn´1 ` . . .` an

ˇ

ˇ

zÑ8
ÝÝÝÑ 0.

So there is an R ą 0 such that |fpzq| ă 1 for all z P C with |z| ą R. As f is continuous on the
compact disk with radius R, it is bounded there, so f is bounded on C. By Theorem 3.2.5,
so f is constant and so is p, which is a contradiction to n ě 1 and an ‰ 0. l

12.05.2021
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Theorem 3.2.6: Cauchy’s Integral Formula for Derivatives

Under the same conditions as in Cauchy’s Integral Formula for fpaq, we have

f pkqpaq “
k!

2πi

ż

|z´z0|“r

fpzq

pz ´ aqk`1
dz.

Proof. By Theorem 3.2.4,

fpzq “
8
ÿ

k“0

ckpz ´ z0q
k

in some open disk around z0 and we have two equations for the coefficients:

ck “
f pkqpz0q

k!
“

1

2πi

ż

|z´z0|“r

fpzq

pz ´ z0q
k`1

dz.

l

This is another explanation for the fact that complex differentiable functions are so much
nicer behaved than real differentiable functions. In Real Analysis, integrating makes func-
tions smoother, while differentiating makes them rougher. In Complex Analysis, however,
derivatives are also obtained by an integration process.

Example 3.2.6 (Bounding f pnqp0q when fpzq ď 1
1´|z|

on the open unit disk)

Let D :“ tz P C : |z| ă 1u and f : D Ñ C holomorphic such that |fpzq| ď 1
1´|z| for all z P D.

How can we upper bound |f pnqp0q| in a sensible way?

For r P p0, 1q we have by Theorem 3.2.6 and Theorem 2.1.1

|f pnqp0q| “

ˇ

ˇ

ˇ

ˇ

ˇ

n!

2πi

ż

|z|“r

fpzq

pz ´ 0qn`1
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď
n!

��2π
¨��2πrmax

|z|“r

|fpzq|

|z|n`1
ď n!

r

1´ r

1

rn`1
“ n!

1

p1´ rqrn
.

Standard real analysis shows that, given n P N, p1 ´ rqrn is minimised for r “ n
n`1 , so we

have

|f pnqp0q| ď n!
1

1´ n
n`1

1
´

n
n`1

¯n “ n!
pn` 1qn`1

nn
“ pn` 1q!

ˆ

1`
1

n

˙n

ď epn` 1q! .

˛

3.3 Morera’s Theorem and Schwarz’s reflection
principle

Theorem 3.3.1: Morera (Holomorphicity criterion / Converse
of Cauchy’s Theorem)

Let U Ă C be an open subset, f : U Ñ C be a continuous function and suppose that
for each curve γ that bounds a closed triangular region contained in U we have (11).
Then f is holomorphic.
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Proof. Remember the digression, where we showed that a holomorphic function on a convex
domain has a holomorphic antiderivative. The proof works also if we only assume that
ş

γ
fpzqdz “ 0 for boundary curve of triangles contained in the domain (instead of f being

holomorphic).

So for any z0 P U let U0 be an open disk around z0 that is contained in U . Then f |U0
has

an holomorphic antiderivative, which is infinitely often differentiable by corollary 3.2.1, so
f |U0 is holomorphic. Hence f is holomorphic. l

Remark 3.3.1 (Motivation of the Schwarz reflection principle)
Suppose f is a holomorphic function defined on a domain U that intersects the real axis and
suppose that fpRq Ă R. This is not an unusual set up: the standard functions from Real
Analysis such as polynomials or the exponential functions can also take complex arguments
but take real values on the real axis.

Fig. 31: TODO
If we represent f as a power series

fpzq “
8
ÿ

k“0

ckpz ´ x0q
k

around a point x0 P U X R, then the coefficients

ck “
f pkqpx0q

k!

are real. Hence, if z is contained in a disk around z0 that is contained in U , then

fpzq “
8
ÿ

k“0

ckpz ´ x0q
k “

8
ÿ

k“0

ckpz̄ ´ x0q
k “ fpz̄q.

˝

Fig. 32: U is open in
the subspace topology
of the closed upper half
plane.

Theorem 3.3.2: Schwarz reflection principle

Let
H :“ tz P C : Impzq ě 0u

be the closed upper half plane and let U Ă C be open in the subspace topology of
H. This means there is an

open set Û Ă C such
that U “ Û XH.

Suppose f : U Ñ C is continuous and holomorphic on UzR and fpRq Ă R. Then
the function

f̃ : U Y U Ñ C, z ÞÑ

$

&

%

fpzq, if z P U,

fpz̄q, if z P U,

where U :“ tz P C : z̄ P Uu (the bar denotes complex conjugation, NOT closure) is
holomorphic.

Fig. 33: A set U and
its corresponding re-
flection U .

Proof. 1 The function f̃ is holomorphic on UzR because complex conjugation is the R
linear map

τ :

˜

x

y

¸

ÞÑ

˜

x

´y

¸

“

˜

1 0

0 ´1

¸˜

x

y

¸

,

it is differentiable in the real sense with derivative dτz “
`

1 0
0 ´1

˘

. Now on UzR,
f̃ “ τ ˝ f ˝ τ is R-differentiable and for any point z P UzR,

df̃z “ dτfpz̄q ˝ dfz̄ ˝ dτz “

˜

1 0

0 ´1

¸˜

a ´b

b a

¸˜

1 0

0 ´1

¸

“

˜

a b

´b a

¸

.

Hence f̃ is C-differentiable at z and f̃ 1pzq “ f 1pzq.
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2 To prove that f is holomorphic on U X U , we apply Theorem 3.3.1. For a boundary
curve γ of a closed triangular region contained completely in UzR or UzR we know
that

ż

γ

f̃pzqdz “ 0,

because f̃ is holomorphic on these domains by step 1 .

3 Consider a closed triangular region T that intersects R. Let T` :“ tz P T : =pzq ě 0u

and T´ analogously. Let γ, γ` and γ´ be the boundary curve (oriented counterclock-
wise) of T , T` and T´, respectively. Then

ż

γ

fpzqdz “

ż

γ`
fpzqdz `

ż

γ´
fpzqdz

because the contributions of the segments of γ` and γ´ on the real axis cancel. It
remains to show that

ş

γ`
fpzqdz “

ş

γ´
fpzqdz “ 0.

4 Let T`ε :“ tz P T : =pzq ě εu for ε ą 0 and let γ`ε be its boundary curve. Then by the
continuity of f

ż

γ`
fpzqdz “ lim

εŒ0

ż

γ`ε

fpzqdz “ 0,

where the second equality is by Cauchy’s integral theorem of C1-images of rectangles.
Analogously

ş

γ´
fpzqdz “ 0. l

Fig. 34: Different
closed triangular
regions in the union of
U with its reflection U .

3.4 Zeros of holomorphic functions

The term holomorphic comes from the Greek "holo" (meaning "whole") and "morphic"
(meaning "shape of" or "similar to"). Hence holomorphic functions are, in a sense, like
polynomials. We know that holomorphic functions can be represented as a power series,
which are a sort of like polynomials of infinite degree.

By corollary 3.2.5, any polynomial can be decomposed in a product of linear factors, which
enables us to define the multiplicity of its zeros. A very similar concept can be defined for
holomorphic functions using that they can be represented as a power series.

In the following let U Ă C be an open subset and f : U Ñ C be a holomorphic function.

Definition 3.4.1 (Order / Multiplicity of a zero)
The order orderor multiplicity of a zero z0 P U of f is

ordpf, z0q :“ mintk P N : f pkqpz0q ‰ 0u

or ordpf, z0q :“ 8 if f pkqpz0q “ 0 for all k P N.

Example 3.4.2 (Order of zeros of entire functions) We will find the zeros and their
multiplicities of the entire functions

fpzq :“ cospzq, gpzq :“ cospzq ´ 1, hpzq :“ ez
2

´ 1.

1 We have

fpzq “ 0 ðñ 0 “ eiz ´ e´iz “ eiz
loomoon

‰0

pe2iz ` 1q ðñ e2iz “ ´1

ðñ 2z “ π ` 2πk, k P Z
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Hence the zeros of f are tzk :“ π
2 `kπ : k P Zu. We have f 1pzkq “ ´ sinpzkq “ ˘1 ‰ 0,

so ordpf, zkq “ 1.

2 Similarly, cospzq “ 1, is equivalent to eiz ` e´iz “ 2, that is pe´i
z
2 ´ e´i

z
2 q2 “ 0, so

e´i
z
2 ´ e´i

z
2 “ 1, that is eiz “ 1, so z P 2π Z. We have f 1p2π Zq “ ´ sinp2π Zq “ 0 but

f2p2π Zq “ ´ cosp2π Zq ‰ 0, so ordpg, 2πkq “ 2.

3 We have hp0q “ 0, h1pzq “ 2zez
2

and h2pzq “ 2p2z2` 1qez
2

. Hence ordph, 0q “ 2. The
other zeros zpkq0 , z

pkq
1 of h are implicitly defined by pzpkq0,1 q

2 “ 2πik for k P Z. We have

h1pzq “ 2z
pkq
0,1e

pz
pkq
0,1 q

2

“ 2z
pkq
0,1e

2πik “ 2z
pkq
0,1 ‰ 0

so ordph, z
pkq
0,1 q “ 1 for all k P Z. ˛

Theorem 3.4.1: Isolated singularities

Let U be a domain and let z0 P U be a zero of order k P NYt8u. Then either
1 k “ 8 and f “ 0

or
2 there is a holomorphic function g : U Ñ C such that gpz0q ‰ 0 and

fpzq “ pz ´ z0q
kgpzq.

In particular, zeros of finite order are isolated x P S is isolated in
S Ă C if there exists a
neighbourhood of x in C
that doesn’t contain any
other points of S.

.

Proof. In a disk around z0, f is represented by a power series due to Theorem 3.2.4:

fpzq “
8
ÿ

n“0

anpz ´ z0q
n

for all z P BRpz0q.

1 If k “ 8, then an “
fpnqpz0q

n! “ 0 by Definition 3.4.1, so fpzq “ 0 for all z P BRpz0q.
All these z are zeros of infinite order. Hence the set of zeros of infinite order is open.
Because f is continuous, the set of all zeros is closed in U . We will see in 2 that the
set of zeros of finite order is discrete. Hence the set of zeros of infinite order is closed,
as the set of finite order zeros is discrete, so the singletons of that set are open, so
taking them away from the set of zeros doesn’t change its closedness. Since the set of
zeros of infinite order is nonempty, open and closed in U and U since is connected, it
is equal to U .

2 If k ă 8, then fpzq “
ř8

n“k anpz´ z0q
n “ pz´ z0q

k
ř8

m“0 ak`mpz´ z0q
m and ak ‰ 0.

Now we can define

gpzq :“

$

&

%

ř8

k“0 ak`mpz ´ z0q
k, if |z ´ z0| ă R,

fpzq
pz´z0qk

, if z ‰ z0.

(The definitions agree on the overlap tz P C : 0 ă |z ´ z0| ă Ru of both cases.)
The function g is holomorphic because it is either a power series or a quotient of two
holomorphic functions with nonvanishing denominator. l
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Theorem 3.4.2: Identity Theorem for Holomorphic Functions

Let U be a domain and f1 and f2 be holomorphic on U . If the set

M :“ tz P U : f1pzq “ f2pzqu

has an accumulation point in U , then f1 “ f2.

Proof. The set M is the set of zeros of the holomorphic function f1 ´ f2. If it has an
accumulation point z P U , that means that if there is a sequence pzjqjPN Ă M with limit
z P U , then z is a zero of infinite order, as the set of finite order zeros is isolated by
Theorem 3.4.1. Hence f1 ´ f2 “ 0 by Theorem 3.4.1 1 . l

Counterexample 3.4.3 The function fpzq :“ sin
`

1
z

˘

is holomorphic on U :“ C˚. It, like
the zero function, has zeros at the points 1

jπ for j P Z zt0u. This set has 0 as a accumulation
point, but f is not equal to the zero function. This is not a contradiction to Theorem 3.4.2
because the limit point is not in U . ˛

Local behaviour of holomorphic functions near zeros
18.05.2021We will now try to understand the local behaviour of a holomorphic function near one of its

zeros. For a motivation, we investigate the simplest function with a zero of order n.

Example 3.4.4 For n P N, the function fpzq :“ zn has only one zero, z “ 0, which has
order n (as f pnq ” n! ‰ 0). This function is globally as easy as it is locally. Consider the
disk in Brp0q Ă C. Then fpBrp0qq “ Brnp0q. Writing z “ %eiϕ in polar form, we have
fpzq “ %neinϕ. Hence the argument of all points is multiplied by n when applying f . So
as we wrap around zero one time in the domain of f , the image point walks around zero n
times. Or if we cut the disk |z| “ rn along the negative real axis, then the preimage is the
disk |z| “ r with n cuts.

Fig. 35: Caption

In particular, every point except zero in the image of f has exactly n preimages. ˛

We will see that all holomorphic functions show distorted versions of this behaviour.

Let us back up a little and get to gather some more basic theorems.
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Theorem 3.4.3: Inverse Function Theorem (Real Version)

If U Ă Rn is open and f : U Ñ Rn is C1, x0 P U and dfx0
: Rn Ñ Rn is an invertible

linear map, then there is an open neighbourhood U0 of x0 such that fpU0q is also
open and f |U0

is invertible with continuously differentiable inverse df´1|U0fpx0q
“

pdfx0
q´1.

This implies the complex version:

Theorem 3.4.4: Inverse Function Theorem

If f is holomorphic on U and f 1pz0q ‰ 0 for some z0 P U , then there is an open
neighbourhood W of fpz0q on which an holomorphic inverse function g : W Ñ C
exists. We have g1 “ 1

f 1˝g .

Proof. The function f is differentiable in the real sense and dfz0 is the R-linear map
v ÞÑ f 1pz0qv (multiplication with a complex number is a R-linear map), which is non-singular
(if f 1pz0qv “ 0, then v “ 0, so kerpf 1pz0qq “ t0u). The inverse R-linear map v ÞÑ f 1pzqv is
v ÞÑ 1

f 1pzqv. So the complex version follows from the real one. l

Let us apply the previous theorem to a particular function. Consider again example 3.4.4.
For the function fpzq “ zn there is no well-defined inverse function locally around 0, because
the function is not injective. Start with a point w in the image and pick on of its preimages.
If we move around zero in the clockwise direction, we move from one preimage to another,
so there has to be some discontinuity.

Theorem 3.4.5: Locally defined n-root function

For w0 P C˚ and n P N0 Check that this is also
true for real exponents
n ą 0

there exists an open neighbourhood W0 of w0 and a
holomorphic function R on W0 such that

pRpwqqn “ w

for all w PW0.

Proof. Let z0 ‰ 0 be one of the n-th roots of w0 apply Theorem 3.4.4 to the function
fpzq “ zn around z0. l

We will need this in a more specialised context.

Lemma 3.4.5
Let f be a holomorphic function on U , let z0 P U and assume fpz0q ‰ 0. For n P Ną0, there
exists an open neighbourhood U0 of z0 and a holomorphic function g (the locally defined n-th
root of f) such that

gn “ f |U0
.

Proof. Let R be the n-th root function defined in a neighbourhoodW of fpz0q, which exists
by Theorem 3.4.5. Let U0 :“ f´1pW q, which is open as f is continuous and we are done.l
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Definition 3.4.6 (Biholomorphic)
A holomorphic function f : U Ñ C that has a holomorphic inverse f´1 : fpUq Ñ C is
biholomorphic biholomorphic.

The following theorem states in the neighbourhood of a n-th order zero, f behaves like the
n-th power function up to a biholomorphic deformation.

Theorem 3.4.6: Local behaviour of a holo. function near a 0

Let f be a holomorphic function on U , let fpz0q “ 0 and n :“ ordpf, z0q ă 8. Then
there is an open neighbourhood U0 of z0 and an biholomorphic function h on U0 such
that hpz0q “ 0 and f |U0 “ hn.
In particular, f takes any non-zero value w P fpU0q exactly n times in U0.

Proof. Since z0 is an n-th order zero of f ,

fpzq “ pz ´ z0q
ngpzq

for some holomorphic function g on U with gpz0q ‰ 0 by Theorem 3.4.1 2 . By lemma 3.4.5
there is an open neighbourhood U0 of z0 and a holomorphic function H on Ũ0 such that
Hn “ g|Ũ0

. Let hpzq :“ pz ´ z0qHpzq on Ũ0. Then hn “ f |Ũ0
.

Since h1pz0q “ Hpz0q ‰ 0 (by the chain rule), the function h is invertible with holomorphic
inverse in a neighbourhood U0 by Theorem 3.4.4. l

Corollary 3.4.7 (Biholomorphy)
A injective holomorphic function is biholomorphic.

Counterexample 3.4.8 (Real Analysis) The function x ÞÑ x3 is injective on R with
inverse x ÞÑ 3

?
x which is differentiable at 0 (the graph has a vertical tangent). ˛

Proof. Suppose f is holomorphic on U . We first show that if f 1 has no zeros, then f is
injective. If f 1pz0q “ 0 for some z0 P U , then the function

gpzq :“ fpzq ´ fpz0q

has a zero of order at least two at z0, as gpz0q “ 0 and g1pz0q “ f 1pz0q ‰ 0. So g takes any
nonzero value in neighbourhood of zero at least twice by Theorem 3.4.6. So f takes any
value in a neighbourhood of fpz0q except for fpz0q at least twice. So f is not injective.

The inverse of f , which exists as f is injective, is differentiable with derivative pf´1q1 “

1
f 1˝f´1 . l

45



3 FIRST CONSEQUENCES OF CAUCHY’S THEOREM

3.5 Preservation of Domain, Maximum Principle,
Schwarz’s Lemma

Theorem 3.5.1: Preservation of Domain

If f is holomorphic and not constant on a domain U , then fpUq is also a domain.

Proof. The image fpUq is connected because it is the image of the connected set U under
the continuous function f .

Suppose w0 “ fpz0q P fpUq. We have to show that fpUq contains an open neighbourhood
of w0. Since f is not constant, the function gpzq :“ fpzq ´ fpz0q has a zero of finite order
at z0 by Theorem 3.4.1. Hence there is an open neighbourhood W of 0 such that g takes
any nonzero value in W at least once by Theorem 3.4.6. So f takes any value in the open
neighbourhood fpz0q `W at least once. l

If we forget about connectedness, we get the following corollary:

Theorem 3.5.2: Open mapping theorem

The image fpUq of a holomorphic function on U (this implies that U is open in C)
is open.

Counterexample 3.5.1 (Real Analysis) Theorem 3.5.2 is not true for real differentiable
functions: the function x ÞÑ x2 is differentiable on R, but the image r0,8q is not open. ˛

Theorem 3.5.3: Maximum Principle

If f is holomorphic and nonconstant on a domain U , then |f | does not attain a
supremum on U .

Proof. Let z0 P U and w0 :“ fpz0q. As fpUq is open by Theorem 3.5.2, it contains an open
disk of radius ε ą 0 around w0 which is not contained in the closed disk B|w0|p0q. Hence
the ε-disk contains the point w1 “ fpz1q with |fpz1q| “ |w1| ą |w0|. l

Fig. 36: Illustration
of the proof of The-
orem 3.5.3, the point
in the lower left corner
representing the origin.

Similarly, one can prove

Theorem 3.5.4: Maximum principle for <pfq, =pfq

For a non-constant holomorphic function f on a domain both <pfq and =pfq do
neither attain a infimum nor a maximum on U .

Proof. We only show that if f a holomorphic function on a domain U Ă C that is non
vanishing and not constant and if |f | attains its infimum in U , then f is constant.

Consider the function gpzq :“ 1
f , which is holomorphic on U and well-defined as f does not

vanish. If |f | attains its infimum, then |g| attains it supremum, so g has to be constant, so
f has to be constant, which is a contradiction. l
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19.05.2021An equivalent formulation of Theorem 3.5.3, which better illustrates its name is

Theorem 3.5.5: Maximum Principle (Version 2)

If f is holomorphic and not constant on U and K Ă U is compact, then |f |K | attains
its maximum on the boundary of K, BK.

Fig. 37: A compact
connected subset of a
domain U Ă C and a
function f : U Ñ C.

Proof. Since |f |K | is continuous, it attains its supremum on the compact set K by a
Theorem of Weiertrass. Suppose |f |K | attains its maximum at a point z0 in the interior
K̊ of K, which is an open set. By Theorem 3.5.3, this implies f is constant on the connected
component of K̊ containing z0. Hence |f |K | attains its supremum on BK. l

One can also deduce Theorem 3.5.3 from Theorem 3.5.5 (Exercise!).

Theorem 3.5.6: Schwarz’s Lemma

Let f : D Ñ D be holomorphic with fp0q “ 0. Then
1 |f 1p0q| ď 1,
2 |fpzq| ď |z|.

If we have |f 1p0q| “ 1 or there is a point z0 P D where |fpz0q| “ |z0|, then f is a
rotation, that is fpzq “ az for some a P C with |a| “ 1.

Fig. 38: A holomorphic
map f : D Ñ D.

Remark 3.5.2 (Rigidity of holomorphic functions) In Real Analysis, the correspond-
ing statement would be: for a differentiable function f : r0, 1q Ñ r0, 1q we have |f 1p0q| ď 1

and |fpxq| ď |x| and if |f 1p0q| “ 1, then either fpxq “ x or fpxq “ ´x. ˝

Proof. 2 Since f has a zero of order at least one at zero, there exists a holomorphic
function g on D such that fpzq “ zgpzq by Theorem 3.4.1. For all z P D we have
|fpzq| “ |z||gpzq| ă 1 because fpDq Ă D. For r P p0, 1q and z P C with |z| “ r we have

|fpzq| “ r|gpzq| ă 1

and so
|gpzq| ă

1

r
.

By Theorem 3.5.5 the function |g| attains its supremum in the compact set K :“ Brp0q

on the boundary BK “ tz P C : |z| “ ru. So |gpzq| ă 1
r if |z| ď r. This implies

|gpzq| ď 1 for all z P D: given z P D, we find a r ą |z| ě 0 such that |gpzq| ď 1
r

rÕ1
ÝÝÝÑ 1.

Therefore, |fpzq| ď |z||gpzq| ď |z|.

1 We have

|f 1p0q| “

ˇ

ˇ

ˇ

ˇ

lim
zÑ0

fpzq ´ fp0q

z ´ 0

ˇ

ˇ

ˇ

ˇ

“ lim
zÑ0

ˇ

ˇ

ˇ

ˇ

fpzq

z

ˇ

ˇ

ˇ

ˇ

loomoon

ď1

ď 1.

Now suppose there exists a z0 P D with |fpz0q| “ |z0||gpz0q| “ |z0|. Then we have |gpz0q| “ 1.
Since |gpzq| ď 1 for all z P D, |g| attains its supremum inD. By Theorem 3.5.3, g is constant,
that is, there exists a a P C with |a| “ 1 such that gpzq “ a. Hence fpzq “ az.

Finally, suppose |f 1p0q| “ 1. Note that f 1pzq “ gpzq ` zg1pzq and hence f 1p0q “ gp0q. So |g|
attains its supremum in zero and is thus constant as before. l
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Corollary 3.5.3 (ordp0, fq “ n ùñ |fpzq| ď |z|n (Tut VI))
Let f : D Ñ D be holomorphic and let 0 be a zero of n-th order, where n ě 1. Then
|fpzq| ď |z|n for all z P D.

Proof. Consider the holomorphic function gpzq :“ fpzq
zn´1 on D. Then g has a zero of order

1 at zero. We show that gpDq Ă D. Consider gkpzq :“ z´kfpzq for k P N. By Schwarz’s
lemma, we have |fpzq| ď |z| and thus

ˇ

ˇ

ˇ

fpzq
z

ˇ

ˇ

ˇ
ď 1 and thus g1pDq Ă D and g1 is holomorphic.

Applying this iteratively we get |gn´2| ď |z| and thus |gn´1| ď 1 and thus gn´1pDq “ gpDq Ă

D. Applying Schwarz’s lemma to gn´1 yields the claim. l

In the last theorem we dealt with functions mapping the unit disk into the unit. Now let us
consider a stronger assumption.

Theorem 3.5.7: Holomorphic mappings D Ñ D

Let f : D Ñ D be holomorphic and injective Then there is a ϕ P R and a z0 P D such
that

fpzq “ eiϕ
z ´ z0

1´ z0z
.

In particular, f then is the restriction to D of a rotated Möbius transformation.

Proof. By corollary 3.4.7, f is biholomorphic.

Case 1. Assume that fp0q “ 0. Then Theorem 3.5.6 1 implies that |f 1p0q| ď 1. As
f´1p0q “ 0, we also have

1

|f 1p0q|
“ |pf´1q1p0q| ď 1

by Theorem 3.5.6 and Theorem 3.4.4 and hence |f 1p0q| “ 1. By Theorem 3.5.6, there exists
a a “ eiϕ P C with |a| “ 1 for some ϕ P R such that fpzq “ az “ eiϕz. This proves the
theorem with z0 “ 0.

Case 2. Assume that z0 – f´1p0q ‰ 0. We will show that the Möbius transformation

gpzq :“
z ´ z0

1´ z0z

maps D bijectively onto D.

Fig. 39: TODO
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Since f ˝ g´1 is a biholomorphic map D Ñ D preserving the origin, we have f ˝ g´1 “ eiϕw

by Case 1. Then fpzq “ eiϕgpzq, which proves the theorem.

It suffices to show gpDq “ D, as Möbius transformations are bijective maps from Ĉ to Ĉ.
First we show that gpS1q “ S1. If |z| “ 1, then 1

z “ z and thus

gpzq “
z̄ ´ z0

1´ z0z̄
“

1
z ´ z0

1´ z0
1
z

“
1´ z0z

z ´ z0
“

1

gpzq

and so |gpzq| “ gpzqgpzq “ 1.

So g´1 also maps S1 to S1. As a Möbius transformation, g´1 either maps the connected
components of C zS1 to themselves or to each other. Since g´1pz0q “ 0 P D, g´1 maps D to
D and hence so does g. l

Remark 3.5.4 The injective holomorphic maps mapping D onto D are the Möbius trans-
formations mapping D onto D (cf. Theorem 1.8.7). ˝

Remark 3.5.5 Using a Möbius transformation mapping D to the upper half plane H, we
see that the Möbius transformations z ÞÑ az`b

cz`d with real coefficients fulfilling ad ´ bc ą 0

are not only all Möbius transformations mapping H to itself (cf. Theorem 1.8.8), but they
are all injective holomorphic maps from H to H. ˝

The set tz ÞÑ eiϕ z´z0
1´z0z

u forms a three-dimensional manifold of transformations, as there are
three real parameters ϕ, <pz0q and =pz0q, while in general, spaces of holomorphic functions
are infinite-dimensional.
There is a very close connecting between Complex Analysis and 2D Hyperbolic Geometry.
Remark 3.5.6 (Geometric interpretation of Schwarz’s Lemma) If we consider D as the hyperbolic plane
in the Poincaré disk model. Then Schwarz’s Lemma says that any holomorphic function f on D with fpDq Ă D

is a contraction mapping in the hyperbolic metric:

dhyppfpz1q, fpz2qq ď dhyppz1, z2q.

The maps z ÞÑ eiϕ
z´z0
1´z0z

are exactly the orientation preserving isometries of the hyperbolic plane in the Poincaré
disk model. ˝
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4 Isolated singularities

4.1 Three types of isolated singularities

Definition 4.1.1 (Isolated singularity)
Let f be holomorphic on U . A point z0 P C zU is a isolated singularity isolated singularityof f if there is an
open neighbourhood U0 of z0 such that U0 X U “ U0ztz0u, that is, there is an ε ą 0 such
that

tz P C : 0 ă |z ´ z0| ă εu Ă U.

An isolated singularity is "point-shaped hole" in the domain of definition. As with real
numbers, where we have continuous completion, there are isolated singularities that are not
really singularities and are thus called removable.

Definition 4.1.2 (Removable isolated singularity)
An isolated singularity z0 of f : U Ñ C is removable removableif there is a holomorphic function f̃
on U Y tz0u (still open!) such that f “ f̃ |U .

Hence removable singularities are that isolated singularities z0 of f that can easily be "fixed"
by assigning the "appropriate value" to f at z0.

Theorem 4.1.1: Riemann’scher Hebbarkeitssatz

If z0 P C zU is an isolated singularity of a holomorphic function f : U Ñ C, then the
following statements are equivalent.

1 The singularity z0 is removable.
2 f is bounded in a neighbourhood of z0: there is a ε ą 0 and a M ě 0 such that

|fpzq| ďM for all z P U XBεpz0q.

3 We have lim
zÑz0

pz ´ z0qfpzq “ 0.

Proof. " 1 ùñ 2 ": If z0 is removable, then by Definition 4.1.2 there exists a holomorphic
continuation f̃ , which is bounded in a neighbourhood of z0 because it is continuous. As
f “ f̃ |U , the statement follows.

" 2 ùñ 3 ": is clear by the normal rules of doing limits.

" 3 ùñ 1 ": Suppose limzÑz0pz ´ z0qfpzq “ 0. Consider the function

gpzq :“

$

&

%

pz ´ z0q
2fpzq, if z ‰ z0,

0, if z “ z0.

Then g is holomorphic on U . But g is also differentiable in z0: for z ‰ z0 we have

gpzq ´ gpz0q

z ´ z0
“

gpzq

z ´ z0
“
pz ´ z0q

2fpzq

z ´ z0
“ pz ´ z0qfpzq

zÑz0
ÝÝÝÑ

3
0.

So g1pz0q “ 0 and so g has a zero of order of at least two at z0. Around z0, g is represented
by a power series of the form

gpzq “
8
ÿ

k“2

akpz ´ z0q
k
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for all z in a neighbourhood of z0 by Theorem 3.2.4. Hence the holomorphic function

gpzq

pz ´ z0q
2
“

8
ÿ

k“0

ak`2pz ´ z0q
k

has a removable singularity at z0. Defining f̃pzq “ gpzq
pz´z0q2

concludes the proof. l

Corollary 4.1.3 (Dominating function (Tut VI))
Let f and g be entire functions such that |fpzq| ď |gpzq| for all z P C. Then there exists a
a P C such that f “ ag.

Proof. Case 1. If g is bounded, then it is constant by Theorem 3.2.5 and hence so is f .
So we can choose a “ gpz0q

fpz0q
for any z0 P C.

Case 2. If g is not bounded, consider the holomorphic function h :“ f
g : C zM Ñ D, where

M :“ tz P C : gpzq “ 0u is the zero set of g (all zeros (of finite order) are isolated by Theo-
rem 3.4.1). If z P M , then h has a removable singularity at z, so h can be holomorphically
continued onto C and is bounded by 1, as h is bounded by 1 on C zM . By Theorem 3.2.5,
h is constant and thus the statement follows. l

25.05.2021

Theorem 4.1.2: 3 types of singularities

Let z0 be an isolated singularity of a holomorphic function f . There are three possi-
bilities:

1 f is bounded in a neighbourhood of z0 and hence z0 is removable.
2 limzÑz0 |fpzq| “ 8. Then z0 is a pole poleof f and there exist a number m P N

such that z ÞÑ pz ´ z0q
mfpzq has a removable singularity at z0. The smallest

such exponent m is the order of the pole.
3 If none of the above holds, z0 is an essential singularity essential

singularity
.

Proof. We only have to prove that only at most one of the possibilities can hold, since by
construction of 3 , every isolated singularity must fall in one of the three categories.

1 holds by Theorem 4.1.1.

2 Suppose limzÑz0 |fpzq| “ 8. By Theorem 4.1.1, 1
f is bounded in a neighbourhood of

z0, as limzÑz0
1

|fpzq| “ 0. Hence z0 is a removable singularity of 1
f . After removing

the singularity, one obtains a holomorphic function g :“ 1
f with gpz0q “ 0. If m is

the order of the zero, gpzq “ pz ´ z0q
mhpzq, where h is a holomorphic function with

hpz0q ‰ 0 by Theorem 3.4.1 2 . Hence pz ´ z0q
mfpzq “ pz ´ z0q

m 1
pz´z0qmhpzq

“ 1
hpzq

for z ‰ z0, so p¨´ z0q
mf has a removable singularity at z0. (We also see that the order

of the pole is the order of the zero of 1
f after the singularity has been removed.) l

Corollary 4.1.4 (TODO (Tut VI))
There does not exists an entire function such that fp 1

n q “
n

2n´1 for all n P Ną0.

Proof. Suppose there exists such a function f Define gpzq “
1
z

2 1
z´1

“ 1
2´z for z P C zt2u.

Then fpzq “ gpzq for all z P t 1
n : n P Ną0u. As p 1

n qnPNą0
has a limit point, by Theorem 3.4.2,

we must have f “ g. But as limzÑ2 |gpzq| “ 8, so z “ 2 is not a removable singularity of g,
so it cannot be continued to a holomorphic function f , which is a contradiction to f being
entire. l
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We prove a theorem about the behaviour of a function at an essential singularity, the most
mysterious type of singularity.

Theorem 4.1.3: Casorati-Weierstrass

If z0 is an essential singularity of a holomorphic function f on U , then the set of
values that f takes on any open punctured neighbourhood of z0 is dense in C.

Whereas for poles, where the function values tend to infinity when approaching a singularity,
near an essential singularity, the set of values of the function is dense, that is, no matter
how small a neighbourhood of the singularity we choose, we can come arbitrarily close to
any complex number.

Proof. We will show: if there is a neighbourhood U0 of z0 such that fpU0ztz0uq is not dense
in C, then z0 is a removable singularity or a pole of f . By assumption, there is a complex
number w0 P C that is not a a limit point of fpU0ztz0uq. Hence there is a ε ą 0 such that
|fpzq ´ w0| ą ε for all z P U0ztz0u. This implies that

Fig. 40: According to
Theorem 4.1.3, any
small neighbourhood
of the essential singu-
larity gets "splatted"
over the whole complex
plane.

gpzq :“
1

fpzq ´ w0

is holomorphic on U0ztz0u and bounded. Hence g has a removable singularity at z0 by
Theorem 4.1.1. Hence

fpzq “
1

gpzq
` w0

has a removable singularity at z0 or a pole by Theorem 4.1.2, depending on whether
limzÑz0 gpzq ‰ 0 (then z0 is removable) or not (then z0 is a pole). l

In fact, an even stronger statement is true, whose proof is more complicated and hence
omitted.

Theorem 4.1.4: Great Picard’s Theorem

In any neighbourhood of an essential singularity, a holomorphic function takes all
values in C or all values in C except for one.

We have already defined the order of a zero. It makes sense to extend this definition of the
order of a zero to poles and assign poles negative numbers.

Definition 4.1.5 (Order of any point)
Let f be holomorphic on U and let z0 be an isolated singularity of f or a just z0 P U . The
order of f at z0 is

ordpf, z0q :“ sup

"

m P Z : z ÞÑ
fpzq

pz ´ z0q
m

has a removable sing. at z0

*

P ZYt˘8u

with the convention suppZq “ 8 and suppHq “ ´8.

Remark 4.1.6 (Consistency of the Definition of the order) This Definition agrees with
the previous Definition: if ordpf, z0q “ m ě 0, then f has at most a removable singularity
at z0. After removing the singularity (if necessary), f has a zero of order m at z0.

If ordpf, z0q “ m ă 0 and m ‰ ´8, then f has a pole of order ´m ą 0.

If ordpf, z0q “ ´8, then f has an essential singularity at z0. ˝
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Remark 4.1.7 For holomorphic functions f and g we have ordpf ¨ g, z0q “ ordpf, z0q `

ordpg, z0q, where 8` p´8q :“ 8 (as if f has a zero of infinite order and g has a essential
singularity, then f is zero in a neighbourhood of z0 and thus so is f ¨ g). We also have
ordp 1

f , z0q “ ´ ordpf, z0q and hence ordp fg , z0q “ ordpf, z0q ´ ordpg, z0q.

In particular: if f has a pole of order n at z0 and g has a zero of order m at z0, then there
are three cases:

• if n ą m, then f ¨ g has a pole of order n´m at z0.

• if n ă m, then f ¨ g has a zero of order m´ n.

• if n “ m, then f ¨ g has a removable singularity at z0 and limzÑz0 fpzq ¨ gpzq ‰ 0. ˝

Example 4.1.8 (Three types of singularities)
The function fpzq :“ 1

1´z2 “ 1
2

´

1
1´z `

1
1`z

¯

has poles of order 1 and z0 “ ˘1, as if
we multiply f by 1 ˘ z, then this product can be bounded, so the singularity ¯1 can be
removed.

The function fpzq :“ 1
sinpzq has poles of order 1 at the points zk :“ 2πk for k P Z, as

z

sinpzq
“

z
ř8

k“0p´1qk 1
p2k`1q!z

2k`1
“

1
ř8

k“0p´1qk 1
p2k`1q!z

2k

zÑ0
ÝÝÝÑ“

1

1´ 0
“ 1.

For the other singularities we use that sinpz ` kπq “ p´1qk sinpzq for all k P Z, which can
be deduced from the power series of sin.

The function gpzq :“ e
1
z has an essential singularity at z0 :“ 0, as

lim
zÑ0
zą0

e
1
z “ 8 ‰ 0 “ lim

zÑ0
ză0

e
1
z

and, even worse, if <pzq “ 0, then |e
1
z | “ 1, so lim

zÑ0
<pzq“0

e
1
z does not exist. ˛

Example 4.1.9 (Singularities and their orders (Tut VII))
For n P Z we find the singularities and their order for the following functions: fpzq :“ cospzq

zn ,
gpzq :“ sinpzq

zn and hpzq :“ 1´cospzq
sinpzq .

• We have ordpf, 0q “ ordpcos, 0q´ordpp¨qn, 0q “ 0´n “ ´n and 0 is the only singularity,
as p¨qn is holomorphic on C˚.

• We have ordpg, 0q “ ordpsin, 0q ´ ordpp¨qn, 0q “ 1´ n and 0 is the only singularity, as
p¨qn is holomorphic on C˚.

• We have sinpzq “ 0 if and only if z “ zk :“ kπ. Hence ordph, z2kq “ ordp1´ cos, z2kq´

ordpsin, z2kq “ 0´ 1 “ ´1 and ordph, z2k`1q “ ordp1´ cos, z2k`1q ´ ordpsin, z2k`1q “

2´ 1 “ 1 for k P Z. ˛

4.2 Meromorphic functions

A meromorphic function is a function which is holomorphic except for poles.

Definition 4.2.1 (Meromorphic / holomorphic except for ...)
Let U Ă C be an open subset. A function f is holomorphic on U except for isolated
singularities if f is holomorphic on UzS for some subset S Ă U and all points in S are
isolated singularities of f . If all points in S are removable singularities or poles, then f is
holomorphic on U except for poles or meromorphic meromorphic.
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Meromorphic is Greek and means "fraction-like". We know that holomorphic function be-
have similar to polynomials (power series expansion, infinitely often differentiable, ...) and
we will see that meromorphic functions behave similarly to rational functions.

Lemma 4.2.2 (Quotient of holomorphic functions is meromorphic)
If f and g are holomorphic on a domain U Ă C and h ı 0, then f

g is meromorphic on U .

This is the generalisation of the statement "if f and g are polynomials and g ı 0, then f
g is

a rational function".

Proof. The function h :“ f
g is holomorphic on tz P U : gpzq ‰ 0u. Since the zeros of g are

isolated by Theorem 3.4.1 (here we need the connectedness of U : otherwise g could be zero
on one connected component and nonzero on the other but then the quotient will not be
meromorphic on the first connected component. Hence h is holomorphic on U except for
isolated singularities. If z0 is a zero of g of order m and also a zero of f if order n, then z0

is a removable singularity of h if n ě 0 and a pole of order m´ n of h otherwise. l

Corollary 4.2.3 (Meromorphic functions on a domain are a field)
If U Ă C is a domain, then the set of meromorphic functions on U is a field (depending on
U), where the operators are defined pointwise (after removing the removable singularities).

This shows that there is a close connection between Complex Analysis and Algebra. Before
we show another such connection, let us define zeros and isolated singularities of a function
at z “ 8 P Ĉ.

We had this idea that we can map the complex plane to the sphere and then we get all
points except 8. So 8 is one point in Ĉ and it makes sense to say that 8 is an isolated
singularity of a holomorphic function on some domain.

Definition 4.2.4 (Isolated singularity at 8)
Let f be holomorphic on some domain U . Then 8 P Ĉ is an isolated singularity of f if
there is a number R ě 0 such that tz P C : |z| ą Ru Ă U equivalently: if C zU is

bounded and hence
compact

.

Motivation. To classify the isolated singularities at 8, note the following. If z0 P C˚

is a removable singularity, a pole of order m or a essential singularity of f , then 1
z0

is a
singularity of the same type of the function gpzq :“ f

`

1
z

˘

.

Definition 4.2.5 (Singularity at 8)
If 8 is an isolated singularity of a holomorphic f , then we say that f has a

• removable singularity at 8 if z ÞÑ f
`

1
z

˘

has a removable singularity at 0.

• pole of order m at 8 if z ÞÑ f
`

1
z

˘

has a pole of order m at 0.

• essential singularity at 8 if z ÞÑ f
`

1
z

˘

has a essential singularity at 0.

Using the results about isolated singularities in C obtained before we obtain the following
characterisation of isolated singularities at 8: The function f has a removable singularity
at 8 if f is defined and bounded on tz P C : |z| ą Ru for some R ě 0 and f has a pole at 8
if limzÑ8 |fpzq| “ 8. This is case, there is a m P Zą0 such that z ÞÑ z´mfpzq is bounded
on tz P C : |z| ą Ru for some R ě 0. The smallest such m is the order of the pole at 8.
Otherwise, an isolated singularity at 8 is essential.
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Example 4.2.6 (Singularity at 8)
The entire functions exp, sin and cos have essential singularities at 8. Any polynomial of
degree d has a pole of order d at 8. (Check for yourselves!) ˛

Lemma 4.2.7 (8 is 1st-order pole of bijective f (Tut VIII))
Let f be a bijective entire function. Then the isolated singularity at 8 is a pole of order
one.

Proof. 1 We first show that if f is injective and z0 is an isolated singularity of f , then z0

is not essential. Assume that z0 is essential, then by Theorem 4.1.3 A :“ fpBrpz0qq Ă C
is dense. The set BRpz0qzBrpz0q is open and by Theorem 3.5.2 B :“ fpBRpz0qzBrpz0qq

is open, too. As A is dense and B is open, there exists a y P A X B and thus there
exist x1 P A and x2 P B such that fpx1q “ y “ fpx2q, which is contradiction to the
injectivity of f .

2 We now show that if f : C˚ Ñ C is holomorphic and injective, then the isolated
singularity z0 “ 0 is removable or a pole of first order. If z0 is not removable, consider
the injective map gpzq :“ 1

fpzq . If ordpf, 0q “ ´k for k P N, then ordpg, 0q “ k, that
is 0 is a k-th order zero of g. By lemma 3.4.5 there exists a holomorphic function
h on some neighbourhood of 0 such that hk “ g and ordph, 0q “ 1. There exists a
ε ą 0 such that Bεp0q Ă hpC˚q. We have ẽk :“ ε

2ek P Bεp0q for k P t1, . . . , ku, where
e1, . . . , ek are the k-th roots of unity. But we have ẽkk “

εk

2k
, so g cannot be injective

and hence f can’t be injective provided k ě 2.

3 We now show that for an entire bijective function f , 8 is a pole of order 1. Consider
gpzq :“ f

`

1
z

˘

on C˚, which is injective and has an isolated singularity at 0. From 2
we know that 0 is either removable or a pole of first order of g. If 0 were removable for
g, then g would be bounded in a neighbourhood of 0, but then f would be bounded.
If f is bounded, then it is constant by Theorem 3.2.5, which is a contradiction to the
bijectivity of f . Hence 0 is a pole of first order of g and thus 8 is a pole of first order
of f . l

The following Theorem also illustrates the close connection between Algebra and Complex
Analysis as rational functions are essentially algebraically defined: rational functions are
exactly the functions of one variable that can be defined in terms of finitely many elementary
operators (`, ´, ¨, {).

Theorem 4.2.1: Meromorphic on Ĉ ðñ rational

The meromorphic functions on Ĉ are precisely the rational functions. The rational functions
are of the form f “ p

q ,
where p and q are
polynomials and q ı 0.26.05.2021Proof. "ðù ": We show that rational functions are meromorphic on Ĉ. On C, a rational

function has only removable singularities and poles. For z Ñ8, a rational function f either
has a finite limit or limzÑ8 |fpzq| “ 8. Hence 8 is a removable singularity or a pole.

" ùñ ":

1 Assume that f is meromorphic on Ĉ. So f has a pole or a removable singularity at
8. In the first case let m ą 0 be the order of the pole at 8, in the second case, let
m “ 0. In either case, there are numbers R,M ě 0 such that

|z´mfpzq| ďM @z P C with |z| ą R. (20)
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In particular, there are no further poles in the region tz P C : |z| ą Ru. All poles, if
any, lie in the closed disk tz P C : |z| ď Ru. Since the poles are isolated, they cannot
have a limit point, the function f can only have finitely many poles z1, . . . , zn P C.
Let m1, . . . ,mn be their orders.

2 Then the function

gpzq :“ fpzq
n
ź

k“1

pz ´ zkq
mk

has only removable singularities in C. After removal, we obtain an entire function ĝ.
We want to apply corollary 3.2.4 to ĝ, as then ĝ is a polynomial of degree at most m
and hence fpzq “ ĝpzq

pz´z1qm1 ¨...¨pz´znqmn
is a rational function.

3 By (20) we have that |fpzq| ďM |z|m for all z P C with |z| ą R. Thus

|ĝ| ďM |z ´ z1|
m1 ¨ . . . ¨ |z ´ zn|

mn |z|k

for all z P C with |z| ą R. Note that |z| ą R and |zj | ď R implies

|z ´ zj | ď |z| ` |zj | ď |z| `R ď 2|z|.

So
|ĝ| ďM2m̃|z|m`m̃,

where m̃ :“
řn
k“1mk. l

4.3 Laurent series

Laurent series are not power series.

Definition 4.3.1 (Laurent series)
A Laurent series Laurent serieswith centre z0 is a series of the form

8
ÿ

k“´8

akpz ´ z0q
k. (21)

More precisely, a Laurent series is composed of two ordinary series:

8
ÿ

k“0

akpz ´ z0q
k

8
ÿ

k“1

a´kpz ´ z0q
´k “

´1
ÿ

k“´8

akpz ´ z0q
k.

(nonsingular part)

(principal part)

If both series converge, then the expression (21) also denotes the sum of the limits.

The nonsingular part of a Laurent series is an ordinary power series centred in z0, so it has a
radius of convergence R P Rě0Yt8u. The principal part is a power series in w :“ 1

z´z0
with

centre zero. Let its radius of convergence be 1
r P Rě0Yt8u (if the radius is 0, then r “ 8

and if the radius is 8, then r “ 0). Hence the nonsingular part diverges for |z´z0| ă R and
diverges for |z ´ z0| ą R and the principal part converges for (|w| “ 1

|z´z0|
ă 1

r and thus)
|z´ z0| ą r and diverges for |z´ z0| ă r. If r ă R, then both parts and hence the Laurent
series converges on the domain tz P C : r ă |z ´ z0| ă Ru. This domain is an annulus if
0 ă r ă R ă 8. This domain can also be the complement of a closed disk in C (if r ą 0

Fig. 41: A definition
domain of a Laurent
series can be an annu-
lus.
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4 ISOLATED SINGULARITIES

and R “ 8) or a punctured disk pr “ 0 ă R ă 8q or the punctured plane (r “ 0, R “ 8).
But these are somewhat degenerate cases, in general, one should think of an annulus.

Theorem 4.3.1: Differentiating and integrating Laurent series
term by term

If the Laurent series

fpzq :“
8
ÿ

k“´8

akpz ´ z0q
k

converges on the nonempty domain U :“ tz P C : r ă |z ´ z0| ă Ru for r,R P

Rě0Yt8u, then it can be differentiated and integrate term-wise. More precisely

f 1pzq “
8
ÿ

k“´8

kakpz ´ z0q
k´1 and

ż

γ

fpzqdz “
8
ÿ

k“´8

ak

ż

γ

pz ´ z0q
k dz

for any piecewise C1 curve γ : rt0, t1s Ñ U .

Proof. The statement about differentiation follows from the corresponding statement for
the power series

ř8

k“0 akpz ´ z0q
k and

ř8

k“1 a´kw
k together with the chain rule for z “ 1

w .
The statement about integration follows similarly from the fact that power series convergence
uniformly on compact subset of the open disks of convergence. l

Lemma 4.3.2 (Cauchy formula for Laurent coefficients)
If the Laurent series

ř8

k“´8 akpz´z0q
k converges on the domain tz P C : r ă |z´z0| ă Ru

and represents a holomorphic function f there, then

an “
1

2πi

ż

|z´z0|“%

fpzq

pz ´ z0q
n`1

dz

for all n P N and any % P pr,Rq.

Proof. For simplicity let us assume z0 “ 0. Then by Theorem 4.3.1 for ξ P p0, Rq we get

ż

|z|“ξ

fpzq

zn`1
dz “

ż

|z|“ξ

8
ÿ

k“´8

ak
zk

zn`1
dz “

8
ÿ

k“´8

ak

ż

|z|“ξ

zk´n´1 dz,

In example 2.1.3 we showed that

ż

|z|“ξ

zk´n´1 dz “

$

&

%

0, if k ´ n´ 1 ‰ ´1,

2πi, if k ´ n´ 1 “ ´1,

so every summand except the n-th one vanishes and we get
ż

|z|“ξ

fpzq

zn`1
dz “ 2πian.

l

We can now state the Laurent series equivalent of Theorem 3.2.4.
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Theorem 4.3.2: Laurent series theorem

Let f be holomorphic on the domain U :“ tz P C : r ă |z ´ z0| ă Ru. Then for all
z P U we have

fpzq “
8
ÿ

k“´8

anpz ´ z0q
k,

where The value of the
integral in (22) does not
depend on the choice of
% by Cauchy’s Theorem
for Annuli.

an “
1

2πi

ż

|z´z0|“%

fpzq

pz ´ z0q
n`1

dz (22)

for all n P Z and any % P pr,Rq.

01.06.2021The proof is similar to the proof of Theorem 3.2.4 but requires a few more steps. First, we
prove Cauchy’s Integral Formula for Annuli and then prove the above theorem. First, a
warm-up.

Let us consider two concentric circles, the inner one being centred at 0 and a circle tangent
to both circles, centred at 1, with radius r P p0, 1q. Now consider the region enclosed by the
largest circle without the area enclosed by the two smaller circles

Fig. 42: The setup de-
scribed above.

U :“ tz P C : 1´ r ă |z| ă 1` r, |z ´ 1| ą ru.

We claim that the closure Ū of U is the C1-image of a closed rectangle. One way to do
this is the following. Consider the angles α and β as in figure 43. Then tanpβq “ r sinpαq

1´r cospαq

and thus βpαq “ arctan
´

r sinpαq
1´r cospαq

¯

. Furthermore, %pαq “
a

pr sinpαq2 ` p1´ r cospαqq2 “
a

1´ 2r cospαq ` r2. Define

Φ: r0, πs ˆ r0, 1s Ñ C, pα, tq ÞÑ %pαq “ eiθpα,tq,

where

Fig. 43: TODO

θpα, tq :“ βpαq ` p2π ´ 2βpαqqt

is a linear interpolation.

We can now easily prove Cauchy’s Integral Formula for Annuli.

Theorem 4.3.3: Cauchy’s Integral Formula for Annuli

Let z0 P C and let f be holomorphic on the annulus

A :“ tz P C : r ă |z ´ z0| ă Ru

for 0 ď r ă R ď 8. If z P C is such that r ă %1 ă |z ´ z0| ă %2 ă R, then

fpzq “
1

2πi

¨

˚

˝

ż

|z´z0|“%2

fpuq

u´ z
du´

ż

|z´z0|“%1

fpuq

u´ z
du

˛

‹

‚

So again, we can represent the value of f anywhere between the two circles tz P C : |z´z0| “

%iu, i P t1, 2u, by integrating the function along those circles, so the values of f between the
two circles are completely determined by the values of f along the two circles.

Fig. 44: The setup of
Theorem 4.3.3.58
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Proof. Choose ε ą 0 small enough such that the closed ε-disk around z lies completely
between the two circles, that is |z ´ z0| ` ε ă %2 and |z ´ z0| ´ ε ą %1. By Theorem 3.1.1
we have

fpzq “
1

2πi

ż

|u´z|“ε

fpuq

u´ z
du. (23)

Now consider two circles centred at z0 which touch the disk around z as in figure 45. Since
the closed region bounded between the pink circles and outside the blue circle is the C1-image
of a rectangle (see warm-up), Theorem 2.3.1 implies

´

ż

|u´z|“r

fpuq

u´ z
du`

ż

|u´z0|“|z´z0|`ε

fpuq

u´ z
du´

ż

|u´z0|“|z´z0|´ε

fpuq

u´ z
du “ 0.

Hence we get

fpzq
(23)
“

1

2πi

ż

|u´z|“ε

fpuq

u´ z
du “

1

2πi

¨

˚

˝

ż

|u´z0|“|z´z0|`ε

fpuq

u´ z
du´

ż

|u´z0|“|z´z0|´ε

fpuq

u´ z
du

˛

‹

‚

.

Finally, by Cauchy’s Integral Theorem for Annuli, we have
Fig. 45: The orange ar-
rows indicate the ori-
entation of the rectan-
gle, whose C1-image is
the region bounded be-
tween the pink circles
and outside the blue
circle.

ż

|u´z0|“|z´z0|`ε

fpuq

u´ z
du “

ż

|u´z0|“%2

fpuq

u´ z
du

and
ż

|u´z0|“|z´z0|´ε

fpuq

u´ z
du “

ż

|u´z0|“%1

fpuq

u´ z
du.

l

Proof. (of Theorem 4.3.2) Assume that r ă %1 ă |z ´ z0| ă %2 ă R. By Theorem 4.3.3
we have

fpzq “
1

2πi

ż

|u´z0|“%2

fpuq

u´ z
du´

1

2πi

ż

|u´z0|“%1

fpuq

u´ z
du “: I1 ´ I2.

We have

1

u´ z
“

1

pu´ z0q ´ pz ´ z0q
“

1

u´ z0

1

1´ z´z0
u´z0

“
1

u´ z0

8
ÿ

k“0

ˆ

z ´ z0

u´ z0

˙k

,

by the properties of the geometric series as on the larger circle we have |u´z0| “ %2 ą |z´z0|

and thus
ˇ

ˇ

ˇ

z´z0
u´z0

ˇ

ˇ

ˇ
ă 1. Using the uniform convergence of power series on compact domains

inside the domain of convergence (U) we get

I1 “
1

2πi

ż

|u´z0|“%2

fpuq
1

u´ z
du “

1

2πi

ż

|u´z0|“%2

fpuq

u´ z0

8
ÿ

k“0

ˆ

z ´ z0

u´ z0

˙k

du

(U)
“

1

2πi

8
ÿ

k“0

¨

˚

˝

ż

|u´z0|“%2

fpuq

pu´ z0q
k`1

du

˛

‹

‚

pz ´ z0q
k

“

8
ÿ

k“0

1

2πi

¨

˚

˝

ż

|u´z0|“%

fpuq

pu´ z0q
k`1

du

˛

‹

‚

looooooooooooooooooomooooooooooooooooooon

“ak, kě0

pz ´ z0q
k

for any % P pr,Rq.
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Similarly, we have

´
1

u´ z
“

1

pz ´ z0q ´ up´z0q
“

1

z ´ z0

1

1´ u´z0
z´z0

“
1

z ´ z0

8
ÿ

m“0

ˆ

u´ z0

z ´ z0

˙m

,

as on the smaller circle we have |u ´ z0| “ %1 ă |z ´ z0| and thus
ˇ

ˇ

ˇ

u´z0
z´z0

ˇ

ˇ

ˇ
ă 1. Hence (with

k “ ´m´ 1)

´I2 “ ´
1

2πi

ż

|u´z0|“%1

fpuq

u´ z
du “

1

2πi

ż

|u´z0|“%1

fpuq

z ´ z0

8
ÿ

m“0

ˆ

u´ z0

z ´ z0

˙m

du

“

8
ÿ

m“0

1

2πi

¨

˚

˝

ż

|u´z0|“%1

fpuqpu´ z0q
m du

˛

‹

‚

1

pz ´ z0q
m`1

“

´1
ÿ

k“´8

¨

˚

˝

1

2πi

ż

|u´z0|“%

fpuq

pu´ z0q
k`1

du

˛

‹

‚

looooooooooooooooooomooooooooooooooooooon

“ak, kă0

pz ´ z0q
k.

l

Remark 4.3.3 (Principal part of f at an isolated singularity; classification)
If f is holomorphic except for an isolated singularity at z0, then for small enough r ą 0, one
can represent f on the punctured disk tz P C : 0 ă |z´ z0| ă Ru by a Laurent series. The
principal part of it,

ř´1
k“´8pz´ z0q

k is the principal part of f at the isolated singularity z0.
The principal part of the Laurent series describes the singular behaviour of f at z0. There
are three possibilities:

1 ak “ 0 for all k ă 0. Then z0 is a removable singularity and the Laurent series is a
power series because the principal part vanishes.

2 ak ‰ 0 for at least one but finitely many k ă 0. Then z0 is a pole of order n :“

maxtm P Z : a´m ‰ 0u.

3 ak ‰ 0 for infinitely many k ă 0 (that is, for all m ă 0 there exists a k ă m such that
ak ‰ 0). Then z0 is an essential singularity. ˝

Example 4.3.4 (Laurent series expansion of 1
1´z

)
Let us consider the Laurent series of the function fpzq :“ 1

1´z around z0 :“ 0. The function
f has a pole of first order at 1, so it is holomorphic on C zt1u. The function f is holomorphic
on the annuli

A1 :“ tz P C : 0 ă |z| ă 1u and A2 :“ tz P C : 1 ă |z|u.

For z P A1 we have

fpzq “
8
ÿ

k“0

zk,

so the Laurent series on A1 is the geometric series. The principal part vanishes.

For z P A2 we have

fpzq “
1

1´ z
“ ´

1

z

1

1´ 1
z

“ ´
1

z

8
ÿ

k“0

1

zk
“

´1
ÿ

n“´8

p´1qzn

and the nonsingular part vanishes.

Let now z0 “ 1. Then the Laurent series around z0 is

fpzq “ ´
1

z ´ 1
“ p´1qpz ´ 1q´1.

˛
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Example 4.3.5 (Laurent series of exppz´2q)
The function gpzq :“ e

1
z2 is holomorphic on C˚ and we have

gpzq “
8
ÿ

k“0

1

k!
z´2k “

0
ÿ

n“´8

anz
n

for all z P C˚, where an “ 1

p´n2 q!
if n is nonpositive and even and 0 if n ą 0 or n is odd. ˛

Example 4.3.6 (Singularities of Laurent series and their orders (Tut VII))
We characterise the singularities of fpzq :“ cosp 1

z q. The only singularity of f is 0. We can
write

fpzq “
8
ÿ

k“0

p´1qk

p2kq!
z´2k “

0
ÿ

k“´8

p´1qk

p´2kq!
z2k,

so for all m P Z there exists a k ă m such that ak ‰ 0 and hence ordpf, 0q “ ´8. ˛

Example 4.3.7 (Laurent series of 2z
1´z2 (Tut VII))

Consider the function fpzq :“ 2z
p1`zqp1´zq . Partial fraction decomposition yields 1

1´z ´
1

1`z .
For |z ´ 1| P p0, 2q we want to find the Laurent series of f . We have (as

ˇ

ˇ

z´1
2

ˇ

ˇ ă 1)

1

z ` 1
“

1

2` z ´ 1
“

1

2

1

1´
`

´ z´1
2

˘ “
1

2

8
ÿ

k“0

ˆ

1´ z

2

˙k

and thus

fpzq “
1

1´ z
´

1

2

8
ÿ

k“0

ˆ

1´ z

2

˙k

.

˛
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5 Analytic continuation

5.0 Motivation and History

02.06.2021Any mathematical theory should solve some (not necessarily mathematically defined) prob-
lem. In this case, the problem is: many holomorphic functions are in a natural way multi-
valued. Technically, any

function is single-valued
by definition.

In the case of z ÞÑ n
?
z or the logarithm, both functions are the inverse function of

some other function (z ÞÑ zn or exp) and the logarithm is an antiderivative of the completely
innocuous function z ÞÑ 1

z . There are n n-th roots of any number and also the real part of
the complex logarithm is the logarithm of the absolute value, but the imaginary part of the
logarithm is the argument and there is no sensible way to define that globally in a unique
way. So far, we have stuck to the pragmatic (and somewhat simple-minded) solution to only
ever consider such functions on domains U Ă C, where one can pick at each point z P U one
of the values in a consistent way to obtain a holomorphic function on U .

This pragmatic solution can always be done. But the problem with this solution is that it
involves arbitrary choices, like the choice of U and the choice of the value. The different
functions one obtains this way belong together somehow as different "branches" (will be
defined later) of one "function". Wouldn’t it be important to have a theory for this to make
all these concept and notions precise? This is what analytic continuation is for.

Remark 5.0.1 (Analytic continuation according to Weierstrass)
Consider the power series

z ÞÑ
8
ÿ

k“0

akpz ´ z0q
k

with positive radius of convergence R :“ plim supnÑ8 n
?
anq

´1 ą 0. Then this power series
defines a holomorphic function on a disk with radius R and centre z0. Now consider the
power series expansion of this function around some z1 P C with |z1 ´ z0| ă R. We know
that the radius of convergence of that new power series (which is said to be a direct analytic
continuation) is at least the radius of the largest disk that is contained in the disk of con-
vergence of the power series around z0. But it can happen that we get a power series that
converges in a disk that reaches outside the previous domain. In this case, we can extend
the domain, on which the first function is defined, onto the union of the two disks by the
Identity Theorem for Holomorphic Functions because both power series must agree on the
intersection of the two disks. After performing some iterations of this procedure, it may
happen that we obtain a power series that converges on a disk that overlaps with the first
disk. Then it may or may not happen that the power series agree on the intersection of both
disks.

Fig. 46: Iterated direct
analytic continuation.

The idea of Weierstrass and then Riemann was to take a power series and its disk of
convergence and then consider all the power series and their disks of convergence that
can be obtained by this iterated process of direct analytic continuation. According to
Weierstrass, all these power series together describe one "global analytic function global analytic

function
".

One can imagine cutting out these disks of convergence out of paper and gluing them to-
gether. When the power series agree on the intersection, then we can image getting back to
the same point where we already were. If the power series don’t agree on the intersection,
we don’t glue them together. We hence obtain a multiple covering of a part of the complex
plane by this process by glued-together disks, called the Riemann surface of the global
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5 ANALYTIC CONTINUATION

analytic function. ˝

What is nice about this approach is that the power series representations always exist and
they give canonical domains for these "function elements". However, always dealing with
power series makes some things more complicated and unnecessarily so. For example: the
power series around z1 is a direct analytic continuation of the power series around z0 but
the converse is not true because z0 is not contained in the disk centred around z1. So just
showing that the equivalence relation f „ g if f is a direct analytic continuation of g is
symmetric requires some work which we don’t want to do.

There are different ways not to use power series and we follow a compromise between the
book of Jähnich and Alfohrs.

5.1 Analytic Continuation of Function Elements

Instead of power series we will consider holomorphic functions defined on domains. Let us
begin with some definitions.

Definition 5.1.1 (Function element)
A function element function elementis a pair pf, Uq consisting of a domain U Ă C and a holomorphic
function f on U .

Every function already determines its domain but it is useful to have a notation where
we have the function and its domain indicated. Furthermore, it is important that U is
connected.

Definition 5.1.2 (Direct analytic continuation)
Function elements pf, Uq and pf̃ , Ũq are direct analytic continuation direct analytic

continuation
s of each other if U X

Ũ ‰ H and f ” f̃ on U X Ũ .

This definition of direct analytic continuation is inherently symmetric.

Remark 5.1.3 (Existence/Uniqueness of direct analytic continuation)
If pf, Uq is a function element and Ũ is a domain, then there may not exist a direct analytic
continuation pf̃ , Ũq because U X Ũ may be empty or because U X Ũ ‰ H but there exists
no holomorphic function f̃ on Ũ such that f̃ “ f on U X Ũ . If Ũ Ă U , then there exists a
direct analytic continuation pf |Ũ , Ũq. Beyond that, not much can be said.

In any case, if there is a direct analytic continuation pf̃ , Ũq, then it is unique because if
pg, Ũq is also a direct continuation of pf, Uq, then

f̃ |ŨXU “ f |ŨXU “ g|ŨXU ,

so f̃ “ g by the Identity Theorem for Holomorphic Functions. Note that here we use that
Ũ is connected. ˝

Having defined direct analytic continuation, we can define analytic continuation.

Definition 5.1.4 (Analytic continuation along a sequence of domains)

Function elements pf, Uq and pf̃ , Uq are analytic continuation analytic
continuation

s of each other, if there exists
a finite sequence

pf, Uq “ pf1, U1q, pf2, U2q, . . . , pfn, Unq “ pf̃ , Ũnq
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of function elements such that pfj , Ujq and pfj , Uj`1q are direct analytic continuations of
each other for all j P t1, . . . , n´ 1u.

In this case we say that pf̃ , Ũq is an analytic continuation of pf, Uq along the sequence of
domains U1, . . . , Un.

This defines an equivalence relation on the set of function elements, where pf, Uq „ pf̃ , Ũq
if and only if pf, Uq and pf̃ , Ũq are analytic continuations of each other.

Definition 5.1.5 (Global analytic function, branch)
An equivalence class of „ as described above is a global analytic function. A function
element of an equivalence class is a branch branchof the global analytic function.

5.2 Example: The Complex Logarithm

In Definition 1.5.4, we defined the principal branch of the complex logarithm function as
the holomorphic function

log : C zRď0 Ñ C, z ÞÑ logp|z|q ` i argpzq,

where the log on the left side is the real logarithm and argpzq P p´π, πq. We will now define
some other branches of the complex logarithm function.

The principal value logarithm is a locally defined inverse of the exponential function. The
exponential function is 2πi-periodic and therefore the inverse is not uniquely defined.

Definition 5.2.1 (Non-principal branches of the logarithm)
For k P Z, let

logk : C zRď0 Ñ C, z ÞÑ logpzq ` 2πik.

and
logk` 1

2
: C zRě0 Ñ C, z ÞÑ logkp´zq ` iπ,

where we slit the complex plane along the nonnegative axis.

Fig. 47: The domains
of logk and logk` 1

2
,

where k P Z.

The function =plogkq takes values in the open interval p´π ` 2πk, π ` 2πkq and =plogk` 1
2
q

takes values in the open interval p2πk, 2πpk ` 1qq. For all k P Z, logk and logk` 1
2
agree on

the upper half plane H` :“ tz P C : =pzq ą 0u and logk and logk´ 1
2
agree on the lower half

plane H´ :“ tz P C : =pzq ă 0u. In particular, logk and logk`1 agree nowhere and their
difference is everywhere 2πik.

So plogk,C zRď0q and plogk` 1
2
|H` , H

`q are direct continuations of each other and so are
plogk` 1

2
|H` , H

`q and plogk` 1
2
,C zRď0q. Hence plogk,C zRď0q and plogk` 1

2
,C zRď0q are

only indirect analytic continuations of each other. So we can go from the slit complex plane
C zRď0 to the top half plane and then from the top half plane to the other slit plane C zRě0

(and vice versa).

Hence all function elements plogk,C zRď0q and plogk` 1
2
,C zRď0q are different branches of a

global analytic function, the global complex logarithm.

Motivated by this example, we add some remarks.
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5 ANALYTIC CONTINUATION

The exponential function is not injective. The global complex logarithm function (sort of
the inverse of the exponential function) is not a normal (i.e. single-valued) function. But
for each z P C˚ (C˚ is the image of the exponential function), there is a branch of the global
logarithm defined at z0. (In fact, there are infinitely many branches on different domains.)

We will now see that if a function element is a local inverse of some function f , then any
analytic continuation is also a local inverse of f .

Lemma 5.2.2 (Analytic continuation of local inverse of a holomorphic function)
Let f be an entire function and pg, Uq be a function element such that fpgpzqq “ z for all
z P U . If pg̃, Ũq is a analytic continuation of pg, Uq, then fpg̃pzqq “ z for all z P Ũ .

Proof. The general case follows directly from the special case that pg̃, Ũq is a direct analytic
continuation of pg, Uq, because any non-direct analytic continuation is a sequence of direct
analytic continuations and if the property of being a local inverse of f is preserved from
one direct continuation to the other, then it is preserved for all steps. So assume pg̃, Ũq is a
direct analytic continuation of pg, Uq, that is U X Ũ ‰ H and g ” g̃ on U X Ũ .

Hence for z P U X Ũ we have fpg̃pzqq “ fpgpzqq “ z. So f ˝ g and the identity function
z ÞÑ z agree on U X Ũ Ă Ũ . By Identity Theorem for Holomorphic Functions f ˝ g̃ and
z ÞÑ z agree of the domain Ũ . l

Hence if f is holomorphic on U Ă C, z0 P U is a point and f 1pz0q ‰ 0, then by the Inverse
Function Theorem, there exists a small neighbourhood U0 of z0 and a local inverse function
g. We can now analytically continue this local inverse function to a global analytic function
and all the branches of this global analytic function will be local inverse functions of f .

In the same way we can prove the following statements:

Lemma 5.2.3 (Analytic continuation and algebraic or differential equations)
Suppose the coefficient functions a0, . . . , an, b are entire and that the function elements pf, Uq
and pf̃ , Ũq are analytic continuations of each other.

• If f satisfies the pointwise polynomial equation

anf
n ` an´1f

n´1 ` a1f ` a0 “ b

on U , then f̃ satisfies the pointwise polynomial equation

anf̃
n ` an´1f̃

n´1 ` a1f̃ ` a0 “ b

on Ũ .

• If f satisfies the linear differential equation

any
pnq ` an´1y

pn´1q ` . . . a1y “ b

on U , then f̃ satisfies the same differential equation on Ũ .

Proof. Homework 8.2 l

Hence if we define a function locally implicitly by a polynomial equation, where the coef-
ficients are functions of z and continue this function analytically, then the other branches
also satisfy this polynomial equation and something similar holds for differential equations.

08.06.2021
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5 ANALYTIC CONTINUATION

Lemma 5.2.4 (??)
Let pf, Uq and pg,W q be function elements. The following statements are equivalent:

1 f ” g on U XW .

2 There exists a holomorphic function h on U YW such that h|U “ f and h|W “ g.

Proof. " 2 ùñ 1 ": For z P U XW we have fpzq “ hpzq “ gpzq.

1 ùñ 2 ": Define

h : U YW Ñ C, z ÞÑ

$

&

%

fpzq, if z P U,

gpzq, if z PW,

which is well-defined by 1 and holomorphic as f and g are. l

5.3 Analytic continuation along curves

We discussed the direct analytic continuation of function elements and we discussed the
indirect analytic continuation, which is just the repeated process. But we need to put some
order into the function elements that can be obtained by analytic continuation and it turns
out that it is important to have the notion of continuation along curves to get a grip on this.

Definition 5.3.1 (Analytic continuation along curves)
Let γ : rt0, t1s Ñ C be a continuous curve. A function element pf̃ , Ũq is an analytic con-
tinuation of a function element pf, Uq along γ if there is a family of function elements
ppft, UtqqtPrt0,t1s such that

1 pft0 , Ut0q “ pf, Uq and pft1 , Ut1q “ pf̃ , Ũq,

2 γptq P Ut for all t P rt0, t1s and there exists a ε ą 0 such that for each t1 P rt0, t1s with
|t´ t1| ă ε we have γpt1q P Ut and ft1 agrees with ft on Ut X Ut1 .

In contrast to analytic continuation, the family of function elements is a continuous and not
a discrete set.

Lemma 5.3.2 (From direct continuation to continuation along a curve)
Suppose there is a finite family

pf, Uq “ pf p0q, U p0qq, pf p1q, U p1qq . . . pf pnq, U pnqq “ pf̃ , Ũq

such that

1 pf pjq, U pjqq and pf pj`1q, U pj`1qq are direct analytic continuations of each other for every
j P t0, . . . , n´ 1u,

2 there is a subdivision
t0 “ τ0 ă τ1 ă . . . ă τn “ t1

such that γpτjq P U pjq for all j P t0, . . . , nu and γprτj , τj`1sq Ă U pjq Y U pj`1q for all
j P t0, . . . , n´ 1u.

Then pf̃ , Ũq is an analytic continuation of pf, Uq along γ.

66



5 ANALYTIC CONTINUATION

Fig. 48: An analytic continuation along a curve via a finite family of domains (left: simple
version, right: more complicated transition from U pjq to U pj`1q).

Proof. Define the family of function elements ppft, UtqqtPrt0,t1s as follows

• If t “ τj for some j P t0, . . . , nu, then pft, Utq “ pf pjq, U pjqq.

• If t P pτj , τj`1q for some j P t0, . . . , n ´ 1u, let Ut “ U pjq Y U pj`1q and let ft be the
holomorphic function on Ut that is equal to f pjq on U pjq and equal to f pj`1q on U pj`1q.
l

So what we really do is to chose the ft and Ut to be "piecewise constant": in the open
intervals between the subdivision points they remain constant, in the end point the domain
becomes smaller and then it becomes constant again.

We have defined what it means to continue a function element analytically along a curve and
now we talk about what happens if we continue essentially the same function element. The
following lemma roughly states that analytic continuation along curves is uniquely deter-
mined - it depends only on the curve - but we have to be satisfied with only neighbourhoods
around the starting and endpoint.

Lemma 5.3.3 (If function elements agree, their continuations do, too)
Let γ : rt0, t1s Ñ C be a continuous curve, let pf̃ , Ũq be an analytic continuation of pf, Uq
along γ and let pg̃, W̃ q also be an analytic continuation of pg,W q along γ. If f and g agree
on some open neighbourhood V0 Ă U XW of γpt0q, then f̃ and g̃ are equal on some open
neighbourhood V1 Ă Ũ X W̃ of γpt1q.

Fig. 49: We have
extended the function
from (some neighbour-
hood of) the starting
point to (some neigh-
bourhood of) the end-
ing point.

Proof. 1 By assumption, there exists families of function elements ppft, UtqqtPrt0,t1s and
ppgt,WtqqtPrt0,t1s such that

• pft, Ut0q “ pf, Uq, pft1 , Ut1q “ pf̃ , Ũq, pgt,Wt0q “ pg,W q, and pgt1 ,Wt1q “ pg̃, W̃ q,

• γptq P Ut XWt for all t P rt0, t1s,

• for each t P rt0, t1s there is a number ε ą 0 We actually have two
εs, one for each f and g,
but we can just take ε
as their minimum.

such that for all t1 P rt0, t1s with
|t´ t1| ă ε we have γpt1q P Ut XWt and also ft1 ” ft on Ut X Ut1 and gt1 ” gt on
Wt XWt1 .

2 Let

A :“ tt P rt0, t1s : ft and gt agree on some open neighbourhood of γptq.u

We want to show that t1 P A by showing that A “ rt0, t1s.
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5 ANALYTIC CONTINUATION

1 It is A ‰ H because t0 P A by assumption.

2 A is open in rt0, t1s, that is, for each t P A there is a number ε ą 0 such that
t1 P A if t1 P rt0, t1s and |t´ t1| ă ε.

3 A is closed.

Together, these three imply that A “ rt0, t1s. We have to show 2 and 3 .

2 : Suppose t P A. Then ft and gt agree in some open neighbourhood Vt of γptq.
Also, there is a number ε ą 0 such that the following holds for all t1 P rt0, t1s with
|t´ t1| ă ε:

• γpt1q P Vt (because γ is continuous and Vt is an open set),

• ft1 and ft1 agree on Ut X Ut1 ,

• gt and gt1 agree for all Wt XWt1 .

Then ft1 and gt1 agree on Vt X Ut X Ut1 XWt XWt1 , which is an open neighbourhood
of γpt1q. So t1 P A.

3 : Suppose t P rt0, t1s is a limit point of A. Let D be an open disk around γptq that
is contained in Ut XWt.

Fig. 50: The pink circle
is the disk D.

By assumption, there is a sequence pskqkPN Ă AXD with limit t. Hence gsk and fsk
agree in some open neighbourhood of γpskq for all k P N. If k is large enough, then gsk
agrees with gt on Wsk XWt and fsk agrees with ft on Usk X Ut (local compatibility
condition). So for k large enough, the following functions agree on some neighbourhood
of γpskq: gsk , gt, fsk , ft. Since the holomorphic functions gt and ft agree on a nonempty
open subset of the domainD, they are equal on the whole ofD by the Identity Theorem
for Holomorphic Functions. Hence t P A. l

Back to something more concrete and less technical, we will look at what kind of non-obvious
things can happen with analytic continuation.

Example 5.3.4 (The dilogarithm function)
Start with the geometric series

1` z ` z2 ` z3 ` . . . “
1

1´ z

for |z| ă 1. If we continue this function on the unit disk analytically along arbitrary paths,
then we get (restrictions of) the holomorphic function z ÞÑ 1

1´z on C zt1u.

Integrating this power series (and setting the constant of integration to zero), we obtain

z `
1

2
z2 `

1

3
z3 ` . . . “ ´ logp1´ zq

for |z| ă 1. Dividing by z yields

1`
1

2
z `

1

3
z2 ` . . . “ ´

logp1´ zq

z

for |z| ă 1. This is also holomorphic on the unit disk because the singularity at z “ 0 is
removable.

Integrating again, we obtain the dilogarithm dilogarithmfunction:

z `
z2

22
`
z3

32
` . . . “

8
ÿ

k“1

zk

k2
“ ´

ż z

0

logp1´ uq

u
du “: Li2pzq
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5 ANALYTIC CONTINUATION

for |z| ă 1.

What happens to these function if we continue them analytically? The domain of logp1´ zq

can be extended to C zr1,8q. The singularity of logp1´zq
z at 0 is removable, s the domain

of logp1´zq
z can also be extended to C zr1,8q. And this is also the domain of the principal

branch of the dilogarithm function.

If we continue ´ logp1´zq
z along γ as in figure 51, we go to another branch of the logarithm,

which does not have a zero a 1 anymore (the value is ˘2πi). So the analytic continuation
of ´ logp1´zq

z has a singularity at 0, which is not removable but a pole of order 1.

Fig. 51: TODO
So the picture of the global dilogarithm is this: the principal branch is defined on C zr1,8q.
The next branches are obtained by analytic continuation along curves that cross the cut.

Fig. 52: C zr1,8q.

These can be defined on a doubly slit plane. Each side of one of the cuts is glued to cuts
of other branches.

In particular, if we take the principal branch of the dilogarithm and continue it analytically
around zero, then nothing happens because the function is well defined at 0. If we continue
around γ, we go to a different branch, which cannot be continued around zero anymore. ˛

09.06.2021
Sometimes, Mathematics is difficult because there are contradicting objectives. For one thing, we need absolutely

precise definitions. If our concepts are not precisely defined, all statements about them are mathematically mean-

ingless because it is not clear what they mean. On the other hand, often it is the case that we can view certain

things from different perspectives and they may look very different. If often happens that these diverse points of

view are really useful because somethings seem clearer from one point of view but not all things are clear from one

single point of view. Maybe we would even like the different perspectives to have different definitions for the same

concept. This is particularly true for analytic continuation, explaining why in many textbooks the definitions are

slightly different.

Hence we want to back up a little and provide some material which allows us to better
translate between different points of view. We will use the different points of view because
it is very useful to be able to translate between multiple points of view.

Definition 5.3.5 (Loc. compatible function elements along curve)
A family of locally compatible function elements family of locally

compatible
function elements

along a curve γ : rt0, t1s Ñ C is a family
of function elements ppft, UtqqtPrt0,t1s with the following property that for every t P rt0, t1s
there exists a number ε ą 0 such that all t1 P rt0, t1s with |t´ t1| ă ε we have

1 γpt1q P Ut (in particular γptq P Ut),

2 pft, Utq and pft1 , Ut1q are direct continuations of each other, i.e. ft ” ft1 on Ut X Ut1 .

Remark 5.3.6 If ppft, UtqqtPrt0,t1s is a family of locally compatible function elements along
γ : rt0, t1s Ñ C, then the following statements are easy to check:

1 One can make the domain smaller, that is, if for each t P rt0t1s, Wt is a domain con-
tained in Ut and containing γptq, then pft|Wt

,Wtq is also a family of locally compatible
function elements along γ. In particular, we may choose Wt to be an open disk with
centre γptq that is small enough.

2 the parametrisation is not so important, that is, if Φ: rs0, s1s Ñ rt0, t1s is a continuous
function and γ̃ :“ γ ˝ ϕ, then ppfϕpsq, UϕpsqqqsPrs0,s1s is a family of locally compatible
function elements along γ̃ : rs0, s1s Ñ C. ˝

The Diversity Lemma allows us to translate between different points of view.
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5 ANALYTIC CONTINUATION

Lemma 5.3.7 (Diversity Lemma)
Let γ : rt0, t1s Ñ C be a continuous curve and let pf, Uq and pf̃ , Ũq be function elements.
Then the following statements are equivalent.

1 There exists a family of locally compatible function elements ppft, UtqqtPrt0,t1s along γ
such that pft0 , Ut0q “ pf, Uq and pft1 , Ut1q “ pf̃ , Ũq (that is, pf̃ , Ũq is an analytic
continuation of pf, Uq) along γ.

2 There exists a subdivision
t0 “ τ0 ă . . . ă τn “ t1

of rt0, t1s and function elements ppfj , Ujqqnj“0 such that

• consecutive function elements pfj , Ujq and pfj`1, Uj`1q are direct analytic con-
tinuations of each other for all j P t0, . . . , n´ 1u,

• γpτjq P Uj for all j P t0, . . . , nu,

• γprτj , τj`1sq Ă UjYUj`1 for all j P t0, . . . , n´ 1u,

• pf0, U0q “ pf, Uq and pfn, Unq “ pf̃ , Ũq.

3 There exists a subdivision
t0 “ τ0 ă . . . ă τn “ t1

of rt0, t1s and function elements ppfj , Ujqqnj“0 such that

• consecutive function elements pfj , Ujq and pfj`1, Uj`1q are direct analytic con-
tinuations of each other for all j P t0, . . . , n´ 1u,

• γprτj , τj`1sq Ă UjXUj`1 for all j P t0, . . . , n ´ 1u (implying γpτjq P Uj for all
j P t0, . . . , nu),

• pf0, U0q “ pf, Uq and pfn, Unq “ pf̃ , Ũq.

Fig. 53: Comparing the third bullet point in 2 and 3.

Proof. " 3 ùñ 2 " Follows from Uj X Uj`1 Ă Uj Y Uj`1.

" 2 ùñ 1 " is a lemma.

" 1 ùñ 3 ":

a By assumption there is for each t P rt0, t1s a number εt ą 0 such that for each
t1 P pt´ εt, t` εtq X rt0, t1s

• γpt1q P Ut,

• pft, Utq and pft1 , Ut1q are direct analytic continuations of each other.
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5 ANALYTIC CONTINUATION

For each t P rt0, t1s let It :“ pt ´ 1
2εt, t `

1
2εtq X rt0, t1s. Applying lemma 5.3.8 to the

open cover pItqtPrt0,t1s of the compact metric space rt0, t1s Ă R (equipped with the
subspace topology of R) yields that there is a number δ ą 0 such that any interval in
rt0, t1s of length smaller than δ is contained in one of the It.

b Choose n P Ną0 large enough such that 1
n pt1 ´ t0q ă minp 1

2δ, εt0 , εt1q and let τj :“

t0 `
j
n pt1 ´ t0q and consider the subdivision

t0 “ τ0 ă τ1 . . . ă τn “ t1. (24)

For each j P t1, . . . , n´ 1u, the length of the interval rτj´1, τj`1s is ă δ, so there is a
point θj P rt0, t1s such that rτj´1, τj`1 Ă Iθj . This implies in particular (we will need
this later)

$

’

’

&

’

’

%

|τj´1 ´ θj | ă
1
2εθj ,

|τj ´ θj | ă
1
2εθj , @j P t1, . . . , n´ 1u

|τj`1 ´ θj | ă
1
2εθj .

Now the subdivision τ0 ă τ1 ă . . . ă τn and the sequence of function elements

p{0,U0q :“ pft0 , Ut0q “ pf, Uq, p{j ,U jq :“ pfθj , Uθj q, pj P t1, . . . , n´ 1uq,

p{n,Unq :“ pft1 , Ut1q “ pf̃ , Ũq

have the desired properties:

• p{0,U0q and p{1,U1q are direct analytic continuation because |τ0 ´ θt1 | ă
1
2εθ1 ă

εθ1 .

• p{j ,U jq and p{j`1,U j`1q are directly analytic continuations for j P t1, . . . , n´ 2u

because

|θj`1 ´ θj | ď |θj`1 ´ τj | ` |τj ´ θj | ă
1

2
εθj `

1

2
εθj “ εθj .

• p{n´1,Un´1q and p{n,Unq are direct analytic continuations of each other because
|τn ´ θτn´1 ă

1
2εθn´1 ă εθn´1 .

• γprτ0, τ1sq Ă U0 because |τ1 ´ τ0| ă εt0 .

• γprτj´1, τjsq Ă U j for j P t1, . . . , n´ 1u because rτj´1, τjs P Iθj .

• γprτj , τj`1sq Ă U j for j P t1, . . . , n´ 1u because rτj , τj`1s P Iθj .

• γprτn´1, τnsq Ă Un because |τn ´ τn´1| ă εt1 . l

Lemma 5.3.8 (Lebesgue Number Lemma)
If pX, dq is a compact metric space and tUiuiPI is an open cover of X, that is a set of open
subsets such that

Ť

iPI Ui “ X, then there exists a number ε (the Lebesgue number Lebesgue numberof the
cover) such that any subset W Ă X of diameter smaller than ε is contained in one of the
open sets Ui.

Proof. Homework 9.1.

First show that the function

% : X Ñ R, x ÞÑ suptr ě 0 : Di P I such that Brpxq Ă Uiu

is continuous (Homework 8.2). l
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5 ANALYTIC CONTINUATION

We have now achieved the diverse points of view of analytic continuation.

A function element pf̃ , Ũq is an analytic continuation of pf, Uq along γ if one (and hence
all) of the conditions 1 - 3 of the Diversity Lemma are satisfied.
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Lemma 5.3.9 (TODO (Tut VIII))
Let f : Dzt0u Ñ C be holomorphic with |fpzq| ďM |z|t for some M ą 0 and t ą ´1 and for
all z P D zt0u. Then the isolated singularity of f at 0 is removable.

Proof. For z P Dzt0u we have |z| ă 1 and thus |z|t ď |z|´1 for all t ą ´1. Hence
|fpzq| ď M |z|t implies that |zfpzq| ď M and thus ordpf, 0q ďě ´1. For all z P C there
exists pckqkě´1 such that

fpzq “ c´1
1

z
`

8
ÿ

k“0

ckz
k

looomooon

“:hpzq

.

There exists a C ą 0 such that for all z P C with |z| ď 1
2 we have |hpzq| ď C, since h is

continuous and thus bounded on a compact set. For all z P Dzt0u we have
ˇ

ˇ

ˇ

c´1

z

ˇ

ˇ

ˇ
ď |fpzq| ` |hpzq|

and thus

|c´1| ďM |z|t`1 ` C|z| ď pM ` Cq|z|a
zÑ0
ÝÝÝÑ 0,

where a :“ minpt ` 1, 1q ą 0. Hence c´1 “ 0 and thus f “ h on D, that is, the singularity
of f is removable. l

Lemma 5.3.10 (No local square root if g1p0q ‰ 0 (Tut VIII))
Let g : D Ñ D be holomorphic with gp0q “ 0 and g1p0q ‰ 0. Then there does not exist a
holomorphic function h : Dzt0u Ñ C such that h2 “ g|Dzt0u.

Proof. Towards contradiction assume such a function. Then hpDq Ă D and 0 is a removable
singularity of h by lemma 5.3.9, as |gpzq| ď |z| implies |hpzq| ď |z|

1
2 . Hence we can represent

h locally as

hpzq “
8
ÿ

k“0

akz
k.

Then gp0q “ hp0q2 “ a2
0 “ 0, so a0 “ 0 and thus g1p0q “ 2hp0qh1p0q “ 2a0a1 “ 0, which is a

contradiction. l

Intuitive approach: let a :“ g1p0q. Let g̃ :“ 1
|a|g, then |g̃

1p0q| “ 1, so g̃pzq “ bz for some
b P S1 and thus gpzq “ |a|bz. There does not exists a square root of z and thus also not of
any multiples.
Remark 5.3.11 Let fpzq :“

ř8

k“0 z
k for z P D. The direct analytic continuation of f with

the largest domain is gpzq :“ 1
1´z for all z P C zt1u. The power series of g around z0 P C is

1

1´ z
“

1

1´ z0 ´ pz ´ z0q
“

1

1´ z0

8
ÿ

k“0

ˆ

z ´ z0

1´ z0

˙k

“

8
ÿ

k“0

p1´ z0q
´k´1pz ´ z0q

k

for all z P C with 0 ă |z ´ z0| ă |1´ z0| and its convergence radius is R “ |1´ z0|. ˝

5.4 Analytic continuation and integration along
continuous curves

The goal of this section is to define integrals of holomorphic function along any continuous
curve in the domain. This is really remarkable because in Real Analysis, there is no such
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5 ANALYTIC CONTINUATION

thing; one needs some kind of regularity conditions on the curve to define an integral.
Since holomorphic functions are so extremely well-behaved, we can extend the definition to
integration along arbitrary continuous curves.

Lemma 5.4.1 (Analytic continuation of the derivative)
If the derivative pf 1, Uq of a function element pf, Uq can be analytically continued along a
curve γ : rt0, t1s Ñ C, then pf, Uq can be analytically continued along γ.

Proof. As pf 1, Uq can be analytically continued, there exists a family ppgt, UtqqtPrt0,t1s of
locally compatible function elements such that pgt0 , Ut0q “ pf 1, Uq.

Without loss of generality we can (by remark 5.3.6 1 ) assume that for all t P rt0, t1s, Ut is
an open disk with centre γptq.

By the Discretisation Lemma, there exists a subdivision

t0 “ τ0 ă . . . ă τn “ t1

such that pgτj , Uτj q and pgτj`1 , Uτj`1q are direct analytic continuations of each other and
γprτj , τj`1sq Ă Uτj X Uτj`1 . How we can define function elements ppfj , Ujqqnj“0 recursively
as follows:

• pf0, Uτ0q “ pf, Uq. (Then pf 10, Uτuq “ pf 1, Uq “ pgτ0 , Uτ0q.)

• If pfj , Uτj q has been defined such that pf 1j , Uτj q “ pgτj , Uτj q define fj`1 and Uτj`1

as follows: Since Uτj`1 is a disk (!) and gτj`1 is holomorphic on Uτj`1 , the function
gτj`1

is represented by a power series on Uτj`1
. Since power series can be integrated

term by term, there exists an antiderivative fj`1 of gτj`1
on Uτj`1

, which is uniquely
determined up to an additive constant. We choose this constant of integration such
that fj`1pτjq “ fjpτjq. Then fj`1 and fj agree on Uτj XUτj`1

. Indeed, on Uτj XUτj`1

we have
pfj`1 ´ fjq

1 “ f 1j`1 ´ f
1
j “ gτj`1

´ gτj “ 0. (25)

Since Uτj and Uτj`1
are disks (!), their intersection is connected and hence fj`1 ´ fj

is constant on Uτj X Uτj`1 . Since pfj`1 ´ fjqpτjq “ 0, this constant is zero.

So we have a sequence pfj , Uτj q of function elements such that pfj , Uτj q and pfj`1, Uτj`1
q are

direct analytic continuations of each other and γpτjq P Uτj and γprτj , τj`1sq Ă Uτj X Uτj`1
.

Now we use the Diversity Lemma in the other direction: By the Diversity Lemma, pfn, Uτnq
is an analytic continuation of pf, Uq “ pf0, U0q along γ. l

Fig. 54: pF1, D1q is
the continuation of
pF0, D0q along γ.

Definition 5.4.2 (Integral along a continuous curve)
Let f be a holomorphic function on U and let γ : rt0, t1s Ñ U be a continuous function, that
is, a curve in U . Let D0 Ă U be an open disk around γpt0q and let F0 be an antiderivative
of f on D0 (which exists because f is represented by a power series on D0). Let pF1, D1q

be an analytic continuation of pF0, D0q along γ (which exists by lemma 5.4.1 because
pF 10, D0q “ pf |D0 , D0q can be trivially continued along γ). Define the integral of f along γ
by

ż

γ

fpzqdz :“ F1pγpt1qq ´ F0pγpt0qq. The RHS does not
depend on any choice
involved in the
construction.
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5 ANALYTIC CONTINUATION

Theorem 5.4.1: Equivalence of Integral Definitions

If γ is piecewise continuously differentiable, then the integral from Definition 5.4.2
agrees with our original Definition 2.1.1, that is, in that case

F1pγpt1qq ´ F0pγpt0qq “

ż t1

t0

fpγptqqγ1ptqdt

Proof. Homework 9.3. l

Analytic continuation and arcsin

Consider the function fpzq :“ z2. Then f 1p1q “ 2 ‰ 0, so f is locally invertible, but
as it is not injective, it is not globally invertible. The principal branch of the inverse is
sqrt : C zRď0 Ñ C, reiϕ ÞÑ

?
rei

ϕ
2 for r ą 0 and ϕ P p´π, πq.

Now consider fpzq :“ sinpzq “ 1
2i pe

iz´e´izq. As sin1p0q “ cosp0q “ 1, sin is locally invertible,
but as it is not injective, it is not globally invertible.

Definition 5.4.3 ((Minimal) period)
Let f : CÑ C. Then w P C˚ is a period periodof f if

fpz ` kwq “ fpzq @z P C, k P Z .

and minimal if rw is not a period of f for all r P p´1, 1q.

A period of sin is 2π as z ÞÑ eiz is 2π-periodic. As 2π is the minimal period of sin |R, it also
is the minimal period of sin.

Let arcsin be the local inverse of sin around z0 :“ 0. Then

arcsin1pzq “
1

f 1pf´1pzqq
“

1

cosparcsinpzqq

p‹q
“

1
b

1´ sin2
parcsinpzqq

“
1

?
1´ z2

,

where in p‹q we pick the principal branch sqrt of the square root function because cosp0q “

1 ą 0.

What is the domain of definition of arcsin1? We have 1´ z2 “ p1´ zqp1` zq and 1´ x ď 0

if and only if x ě 1 and 1 ` x ď 0 if and only if x ě 1, so the domain of arcsin1 is
C z

`

p´8,´1s Y r1,8q
˘

. We can now write

arcsinpzq “

ż

r0,zs

arcsinpz̃qdz̃

as arcsinp0q “ 0.

5.5 Homotopy of curves

15.06.2021Another tool for bringing order into the different analytic continuations of a function is a
subfield of topology called homotopy. For a more detailed view consider [1] and [2].

Definition 5.5.1 (Curve)
A curve in a topological space X is a continuous map c : rt0, t1s Ñ X.
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5 ANALYTIC CONTINUATION

The topological spaces we will be interested in are open subsets of C.

Definition 5.5.2 (Homotopy)
Two curves c0, c1 : r0, 1s Ñ X in a topological space X are homotopic (in X) if there exists
a homotopy homotopybetween them, that is, a continuous map

H : r0, 1s ˆ r0, 1s Ñ X

for which
Hp¨, 0q “ c0 and Hp¨, 1q “ c1

as well as
Hp0, ¨q “ c0p0q “ c1p0q and hp1, ¨q “ c0p1q “ c1p1q.

In particular, the curves have the same starting point c0p0q “ c1p0q and the same endpoint
c0p1q “ c1p1q.

Fig. 55: A homotopy
from the curve c1 to
the c2.

Definition 5.5.3 (Null homotopic)
A closed curve c : r0, 1s Ñ X is null homotopic null homotopicif it is homotopic to the constant curve at
c1ptq “ cp0q “ cp1q.

Example 5.5.4 The curve c : r0, 1s Ñ C, t ÞÑ e2πit is null homotopic in C. A homotopy to
the constant curve 1 is (the linear interpolation)

Hpt, τq :“ p1´ τqcptq ` τ.

But this curve is not null homotopic in C˚, which is harder to prove. ˛

Fig. 56: The homotopy
of the unit circle and a
constant path in C.

Example 5.5.5 Consider the following curve in X :“ C zt0, 1u. Is it nullhomotopic? ˛

Example 5.5.6 (To hang a picture)
We want to find a closed curve γ : r0, 1s Ñ C zt0, 1u such that γ is nullhomotopic in C zt1u
and in C zt0u but not in C zt0, 1u.

Consider the counterclockwise loops at z0 P C zt0, 1u, one going around 0 and one around 1,
named a and b. Then γ “ aba´1b´1 is such a curve. In C zt0u, a » e and then γ » ebe´1b “ e

and analogously for C zt0, 1u.

What if we instead take n points t0, 1, . . . , n ´ 1u and consider the same problem. We can
recursively construct such an solution (it is not the solution with the fewest characters,
though) by consider cwc´1w´1, where w is the word that worked for k points and c is the
loop around the pk ` 1q-th point. ˛

Definition 5.5.7 (Composition/Concatenation of curves)
The composition of two curves c1, c2 : r0, 1s Ñ X with c1p1q “ c2p0q is the curve

c1c2 : r0, 1s Ñ X, t ÞÑ

$

&

%

c1p2tq, for t P r0, 1
2 s,

c2p2t´ 1q, for t P r 12 , 1s.

Notice that the order is opposite to function composition, we first go along c1 and then
along c2.

Fig. 57: Concatenation
of two curves c1 and c2.
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Definition 5.5.8 (Inverse of a curve)
The inverse of a curve c : r0, 1s Ñ X is the curve cinv : r0, 1s Ñ X, t ÞÑ cp1´ tq.

Lemma 5.5.9 (Neutral element, reparametrisation invariant under homotopy)
Let c : r0, 1s Ñ X be a curve in X and let ϕ : r0, 1s Ñ r0, 1s be a continuous (reparametrisa-
tion) map with ϕp0q “ 0 and ϕp1q “ 1. Then

1 ccinv is null homotopic in X.

2 c and c ˝ ϕ are homotopic.

Proof. 1 We have cinvptq “ cp1´ tq and thus cinvp2t´ 1q “ cp1´ p2t´ 1qq “ cp2´ 2tq,
so

ccinvptq “

$

&

%

cp2tq, if t P r0, 1
2 s,

cp2´ 2tq, if t P r 12 , 1s.

Hence ccinv “ c ˝ ψ, where

ψ : r0, 1s Ñ r0, 1s, t ÞÑ

$

&

%

2t, if t P r0, 1
2 s,

2´ 2t, if t P r 12 , 1s.

A homotopy of ccinv to the constant curve cp0q is

Fig. 58: The function
ψ

Hpt, τq :“ cpp1´ τqψptqq “

$

&

%

cpp1´ τq2tq, if t P r0, 1
2 s,

cpp1´ τqp2´ 2tqq, if t P r 12 , 1s.

2 A homotopy is
Hpt, τq :“ cpp1´ τqt` τϕptqq. l

Lemma 5.5.10 (Associativity of concatenation up to homotopy)
Let c1, c2, c3 : r0, 1s Ñ X be curves with c1p1q “ c2p0q and c2p1q “ c3p0q. Then pc1c2qc3 is
homotopic to c1pc2c3q.

Proof. We have

c1c2ptq “

$

&

%

c1p2tq, for t P r0, 1
2 s,

c2p2t´ 1q, for t P r 12 , 1s.

and thus

pc1c2qc3ptq “

$

&

%

c1c2p2tq, for t P r0, 1
2 s,

c3p2t´ 1q, for t P r 12 , 1s.
“

$

’

’

&

’

’

%

c1p4tq, for t P r0, 1
4 s,

c2p4t´ 1q, for t P r 14 ,
1
2 s,

c3p2t´ 1q, for t P r 12 , 1s.

Similarly,

c1pc2c3qptq “

$

’

’

&

’

’

%

c1p2tq, for t P r0, 1
2 s,

c2p4t´ 2q, for t P r 12 ,
3
4 s,

c3p4t´ 3q, for t P r 34 , 1s.

Check yourself that
c1pc2c3q “ pc1c2qc3 ˝ ψ,
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where

ψptq :“

$

’

’

&

’

’

%

1
2 t, if t P r0, 1

2 s,

t´ 1
4 , if t P r 12 ,

3
4 s,

2t´ 1, if t P r 34 , 1s.

The claim follows by lemma 5.5.9 2 . l

Fig. 59: The function
ψ.

Theorem 5.5.1: Fundamental group

Let X be a topological space and x0 P X a (base)point. A curve c : r0, 1s Ñ X is a
loop at x0 if cp0q “ x0 “ cp1q. Then homotopy is an equivalence relation on the set of
loops at x0. The set of equivalence classes, π1pX,x0q, together with the well-defined
operation

rc1c2s “ rc1src2s, (26)

where c1 and c2 are loops at x0, is the fundamental group fundamental groupof X with base point x0.
The neutral element is the class of constant curves rx0s, i.e. the set of null-homotopic
loops at x0. The inverse of rcs is rcinvs.

Proof. 1 First we show that homotopy is an equivalence relation on the set of loops at
x0.

• Homotopy is reflexive because a homotopy between c and itself is Hpt, τq “ cptq.

• Homotopy is symmetric: if H is a homotopy from c1 to c2, then a homotopy from
c2 to c1 is pt, τq ÞÑ Hpt, 1´ τq.

• Homotopy is transitive: if H12 is a homotopy from c1 to c2 and H23 is a homotopy
from c2 to c3, then a homotopy from c1 to c3 is

H13pt, ¨q “ H12pt, ¨qH23pt, ¨q

seen as concatenation of curves, that is

H13 “

$

&

%

H12pt, 2τq, if τ P r0, 1
2 s,

H23pt, 2τ ´ 1q, if τ P r 12 , 1s.

2 We now show that the group operation is well defined. If c1 and rc1 are homotopic,
and c2 and rc2 are homotopic, then c1c2 and rc1 rc2 are homotopic. Indeed, if H1 is a
homotopy from c1 to rc1 and H2 is a homotopy from c2 to rc2, then a homotopy from
c1c2 to rc1 rc2 is

Hpt, τq :“

$

&

%

H1p2t, τq, if t P r0, 1
2 s,

H2p2t´ 1, τq, if t P r 12 , 1s.

3 The group operation is associative: if c1, c2 and c3 are loops at x0, then

prc1src2sqrc3s “ rpc1c2qc3s
lemma 5.5.10

“ rc1pc2c3qs “ rc1sprc2src3sq.

4 The neural element is rx0s and rcs´1 “ rcinvs. This follows from lemma 5.5.9. l

Remark 5.5.11 (Commutativity) The fundamental group is in general not commuta-
tive. Therefore, the group operation is written is as multiplication. Instead of null homotopic
it would be more correct to say "one homotopic" but nobody does that. ˝
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Example 5.5.12 (Non-Abelian Fundamental Group) Consider Xzt0, 1u. Consider
a loop c0 around 0 based at x0 P X concatenated with a loop c1 around 1 based at z0. The

Fig. 60: A non null ho-
motopic loop.

curve c0c1cinv
0 cinv

1 is not null homotopic, so rc0src1src0s´1rc1s
´1 is not the neutral element of

π1pX, z0q, so rc0src1s ‰ rc1src0s. ˛

16.05.2021Remark 5.5.13 (Dependence on the base point)
The fundamental group π1pX, yq depends not only on the space X but also on the base point
y P X. However, if X is path-connected, then two base points y and x P X can always be
connected via a curve c and one obtains a group isomorphism

πpX,xq Ñ πpX, yq, rcs ÞÑ rc´1γcinvs.

as detailed in lemma 5.5.14 Hence for path-connected space, fundamental groups with
different base points are isomorphic. However, the isomorphism is in general not unique
but depends on the choice of connecting path γ. For example for the path-connected space
X :“ C zt0, 1u one choose different in X non-homotopic paths. ˝

Lemma 5.5.14 (Isomorphism of fundamental groups along curve (Tut IX))
Let X be a topological space, c : r0, 1s Ñ X be a curve and x :“ cp0q and y :“ cp1q. Then
πpX,xq – πpX, yq.

Proof. Consider the map

Φ: πpX,xq Ñ πpX, yq, rγs ÞÑ rc´1γcs.

Let rγs “ rγ̂s. We have to show that rc´1γcs “ rc´1γ̂cs. We have

Φprγγ̂sq “ rc´1γγ̂cs “ rc´1γcc´1γ̂cs
(26)
“ rc´1γcsrc´1γ̂cs,

so Φ is a homomorphism.

The map
Ψ: πpX, yq Ñ πpX,xq, rγ̂s ÞÑ rcγ̂c´1s

is the inverse of Φ:

pΨ ˝ Φqprγsq “ ψprc´1γcsq “ rcc´1γcc´1s “ rγs

for any rγs P πpX,xq. l

Remark 5.5.15 We are only interested in open subsets of C. More generally, for open
subset of Rn, connectedness and path-connectedness are equivalent. ˝

Theorem 5.5.2: Characterisation of trivial fundamental group

Let X be a nonempty path-connected topological space, e.g. a domain. Then the
following are equivalent:

1 Every closed curve c : r0, 1s Ñ X is null homotopic in X.
2 For every x0 P X, π1pX,x0q “ t1u.
3 There is a point x0 P X such that π1pX,x0q “ t1u.
4 Any curves c1, c2 : r0, 1s Ñ X with c1p0q “ c2p0q and c1p1q “ c2p1q are homo-

topic.
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Definition 5.5.16 (Simply connected)
If one (and hence all) of the statements in Theorem 5.5.2 hold, X is simply connected simply connected.

Proof. " 1 ùñ 2 ": is clear from Theorem 5.5.1.

" 2 ùñ 3 ": is trivial.

" 3 ùñ 4 ": Let c1p0q “ c2p0q “: a and c1p1q “ c2p1q “: b. Choose a curve γ from x0

to a. By assumption, rγc1cinv
2 γinvs “ 1, so γc1cinv

2 γinv is null homotopic. If we write – for
the homotopy relation, we obtain γc2 – γc1c

inv
2 γinvγc2 – γc1. This means that γc1 and γc2

are homotopic. Then γinvγc1 and γinvγc2 are homotopic, so c1 and c2 are homotopic.

" 4 ùñ 1 ": If c is a closed curve, consider c1 “ c and c2 to be the constant curve
cp0q “ cp1q. l

Example 5.5.17 (Convex domain is simply connected)
A convex domain U Ă C is simply connected: if c1 and c2 are curve in U with c1p0q “ c2p0q

and c1p1q “ c2p1q, then a homotopy in U from c1 to c2 is the linear interpolation

Fig. 61: As U is con-
vex, the linear interpo-
lation between c1pt0q

and c2pt0q lies in U for
any t0 P r0, 1s.

Hpt, τq :“ p1´ τqcptq ` τc2ptq. ˛

Example 5.5.18 (Starshaped domains have trivial fundamental group)
If a domain U Ă C is starshaped with respect to a point z0 P U , then π1pU, z0q “ t1u: for
any loop c at z0, a homotopy from c to the constant curve is the linear interpolation

Fig. 62: As U is star-
shaped with respect to
z0, the linear interpola-
tion between cpt0q and
z0 lies in U for any t0 P
r0, 1s.

Hpt, τq :“ p1´ τqcptq ` τz0.

Hence starshaped domains are simply connected by Theorem 5.5.2.

The slit complex plane U :“ C zRď0 is starshaped with respect to 1 P U , so it is simply
connected. ˛

Example 5.5.19 (Fundamental group of C˚)
The unit circle c : r0, 1s Ñ C, t ÞÑ e2πit is not null homotopic, so π1pC˚, 1q ‰ t1u. One can
show that π1pC˚, zq is isomorphic to pZ,`q for any z P C˚. ˛

Example 5.5.20 (Fundamental group of the twice punctured plane)
The fundamental group of the twice punctured plane U :“ C zt0, 1u is not Abelian. One
can show that it is isomorphic to the free group of rank 2; π1pU, z0q is generated by rγ0s and
rγ1s. ˛

5.6 The Monodromy Theorem

following Ferus’ notes
and Ahlfors

The Monodromy Theorem, briefly, states that analytic continuations along homotopic curves
give the same result.

Theorem 5.6.1: Monodromy

Let U Ă C be a domain and let pf0, U0q be a function element, z0 P U X U0 and
suppose pf0, U0q can be continued analytically along every curve in U starting at z0.
If c and c̃ are homotopic curves starting at z0 and pf1, U1q and pf̃1, Ũ1q are analytic
continuations of pf0, U0q along c and c̃ respectively, then f1 and f̃1 agree in some
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open neighbourhood of z1 :“ cp1q “ c̃p1q.

Fig. 63: The Monodromy Theorem.

Proof. (From Ahlfors) Let H : r0, 1s2 Ñ U be a homotopy from c to c̃.

1 Any curve γ : r0, 1s Ñ r0, 1s2 “: R with γp0q “ p0, 0q corresponds to a curve H ˝ γ in
U starting at z0, along which there exists an analytic continuation of pf0, U0q.

2 It is enough to show that pf0, U0q is an analytic continuation of itself along the bound-
ary curve of R. If we go along c first, we get some analytic continuation, which agrees Fig. 64: The bound-

ary of R corresponds to
the closed curve from
z0 via c to z1 and back
via c̃.

with pf1, U1q in some neighbourhood of z1, because analytic continuation is locally
unique. Now continue this analytic continuation which agrees locally with pf1, U1q

around z1 back to z0, If we get back to pf0, U0q, then if we go back in the other direc-
tion, we get something again which agrees in a neighbourhood of z1. And this is what
we will show.

3 We prove this by contradiction and the "method of dissection". Suppose an analytic
continuation of pf0, U0q along H ˝ γ results in a function element that does not agree
with pf0, U0q in any neighbourhood of z0. We say that analytic continuation along
H ˝ γ is not the identity. Now we construct a sequence of curves γ1, γ2, . . . as follows:
γ1 is one of the curves in the plot to the left. Whichever rectangle we circle we call

Fig. 65: The two possi-
bilities for γ1.

R1. We choose between both option such that analytic continuation along γ1 is not
the identity. If the analytic continuation along both options would be the identity,
one can show that the continuation along the boundary of R would be the identity,
because if we go first along the first curve, ending in the bottom left point and then
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along the second curve, we undo the analytic continuation so at the top right point
of the lower rectangle we reach a function element which agrees in a neighbourhood
of this point, continuing to trace this curve, we end up again at the bottom left point
and have traced an analytic continuation along the boundary curve of R.

For the future construction it is important to note that in either case, γ1 goes along
the boundary of R1 for t P

“

1
3 ,

2
3

‰

.

4 In the next step, divide vertically: so γ2 is either one of the possibilities in figure 66,
where the boundary of R2 is traced out in the interval

“

1
3 `

1
32 , 1´

`

1
3 `

1
32

˘‰

. We

Fig. 66: The two possi-
bilities for γ2.

again choose such that the analytic continuation along γ2 is not the identity.

5 We continue this process to obtain a sequence of pγkqkPN along which analytic contin-
uation is not the identity. This sequence of curves converges to a curve γ˚ from p0, 0q

to x˚ P
Ş

kPNRk (which is unique) and back.

Fig. 67: The closed
loop γ and the point
x˚.

Let pf˚, U˚q be the function element obtained by from pf0, U0q by analytic continuation
along H ˝ γ˚|r0, 12 s from p0, 0q to z˚ :“ Hpx˚q.

If k P N is large enough, then Rk Ă H´1pU˚q and H´1pU˚q is an open neighbourhood
of x˚. Then analytic continuation along H ˝ γk would give function elements agreeing
in a neighbourhood of z0. But continuation along H ˝ γ˚ is the identity. This is a
contradiction. l

22.06.2021The first corollary states that under certain conditions we can uniquely continue a function
element pf, Uq to all other points in the domain and we can in this way define a holomorphic
function.
Corollary 5.6.1
Let U Ă C be a simply connected domain, pf, U0q be a function element, and U0 Ă U . If
pf, U0q can be continued analytically along every curve U starting in U0 (e.g. because f
is an antiderivative of a holomorphic function on U), then f is the restriction to U0 of a
holomorphic function on U .

Recall that we extended the Definition of the Integral along C1 curves to continuous curves
via analytic continuation.

Corollary 5.6.2 (
ş

c
fpzq dz “ 0 if c null homotopic)

If f is holomorphic on U Ă C and c1 and c2 are homotopic curve in U , then
ż

c1

fpzqdz “

ż

c2

fpzqdz.

In particular,
ş

c
fpzqdz “ 0 if c is null homotopic.

Corollary 5.6.3 (Cauchy’s Integral Theorem for continuous images of rectangles)
Let f be holomorphic on U , R Ă R2 be a rectangle with boundary curve γ and ϕ : RÑ U be
a continuous map. Then

ż

ϕ˝γ

fpzqdz “ 0.

Fig. 68: The setup of
corollary 5.6.3.

Proof. Show that ϕ ˝ γ is null homotopic in U . l
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6 The winding number version of Cauchy’s
Integral Theorem

6.1 Towards a definitive version of Cauchy’s Integral
Theorem

For a domain U Ă C, what is a sufficient and necessary condition that a closed curve γ in
U has to fulfil such that

ż

γ

fpzqdz “ 0

for every holomorphic function f on U?

The most general sufficient condition we know is that γ is null homotopic:

Theorem 6.1.1: Homotopy-Version of Cauchy’s Integral Theo-
rem

If f is holomorphic on the domain U and γ is a null homotopic closed curve in U ,
then

ş

γ
fpzqdz “ 0.

Proof. See corollary 5.6.2. l

But this condition is not necessary:

Example 6.1.1 Consider the loops from figure 60. Then the curve c :“ c0c1c
inv
0 cinv

1 is not
null homotopic in U :“ C zt0, 1u. But for every holomorphic function f on U we have

Fig. 69: This curve is
homotopic to c.

ż

c

fpzqdz “

ż

c0

fpzqdz `

ż

c1

fpzqdz ´

ż

c0

fpzqdz ´

ż

c1

fpzqdz “ 0.
˛

We want to characterise closed curves along which the integrals of holomorphic functions
vanish. What we get is some sort of commutative version of homotopy. To this end it is
convenient to extend integration to more general objects than curves: 1-chains. We would
like to integrate over collections of curves such as the two 1-chains in figure 70.

Fig. 70: We want to
consider the sum of
curves.

Definition 6.1.2 (1-chain, C1)
A 1-chain 1-chainc in an open set U Ă C is a formal linear combination

c “ n1 d c1 ‘ . . .‘ nk d ck (27)

of curves cj : r0, 1s Ñ U , where nj P Z for j P t1, . . . , ku. The Abelian group of 1-chains
in U is C1pUq.

Aside. Since the curves are maps to C, one might be tempted to thinking that ‘ and d
denote pointwise addition and multiplication, respectively. This is not what is meant. Think
of a formal linear combination with integer coefficients as a shopping list with finitely many
items. All that matters is how often an item appears in the list.
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Definition 6.1.3 (Integral over a 1-chain)
For a 1-chain (27) in U for curves cj : r0, 1s Ñ U for j P t1, . . . , ku and a holomorphic
function f on U , the integral of f along c is

ż

c

fpzqdz :“
k
ÿ

j“1

nj

ż

cj

fpzqdz.

A more formal definition.

Definition 6.1.4 (Free Abelian group)
If B is some set, then one can define the free Abelian group generated by B as the group
pZpBq,`q, where ZpBq is the set of functions B Ñ Z (mapping a shopping item to its
multiplicity), which are zero for all but finitely many elements and ` means pointwise
addition.

The confusing part: interpret an element b0 P B also as the characteristic function

ϕb0 : B Ñ Z, b ÞÑ

$

&

%

1, if b “ b0,

0, if b ‰ b0.

Then we can write any element in the free Abelian group generated by B as a finite
"formal" linear combination

řk
j“1 njbj for pnjq

k
j“1 Ă Z.

Definition 6.1.5 (0-chain, C0)
A 0-chain 0-chainin U is a formal linear combination

Àk
j“1 nj d zj of points pzjqkj“1 Ă U with

integer coefficients pnjqkj“1 Ă Z. The Abelian group of 0-chains in U is C0pUq.

Definition 6.1.6 (Boundary map)
The boundary boundarymap B : C1pUq Ñ C0pUq is the group homomorphism defined as follows: the
1-chain (27) is mapped to

Bc :“
k
à

j“1

nj ‘
`

cjp1q a cjp0q
˘

.

Definition 6.1.7 (Closed 1-chain, Cycle, Support)
A 1-chain c is closed if Bc “ 0. A closed 1-chain in U is also called a cycle cyclein U . The

support support|c| of a 1-chain (27) in U is the subset
k
ď

j“1
nj‰0

cjpr0, 1sq Ă U .

Example 6.1.8 (Closed curves are closed 1-chains)
If c : r0, 1s Ñ U is a closed curve in U , then, viewed as a 1-chain, c is also closed: Bc “
cp1q a cp0q “ p1´ 1q d cp0q “ 0. ˛

Example 6.1.9 (All coefficients being 1)
Consider a formal linear combination

c “
k
à

j“1

cj ,
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where all coefficients are one. Then

Bc “
k
ÿ

j“1

`

cjp1q ‘ p´1q d cjp0q
˘

.

Hence Bc “ 0 if and only if any point for any z P C the same number of curve start at z and
end at z. ˛

Example 6.1.10 The formal sum of the twelve straight line segments in figure 71 is a closed
1-chain. We could also find a closed curve that traces out all these line segments but the

Fig. 71: The formal
sum of these twelve
straight line segments
is a closed 1-chain

point is that it doesn’t matter how we assemble them to a closed curve, it is good enough
to consider them as Abelian sum (the order doesn’t matter). ˛

Remark 6.1.11 (Cycles) The set of cycles in U is the kernel of the the boundary homo-
morphism B : C1pUq Ñ C0pUq, so this set is a subgroup of C1pUq.

If c1 and c2 are cycles, then c1 ‘ c2 and c1 a c2 are also cycles. ˝

In the homotopy group, we can only concatenate curves where the endpoint of the first curve
is the starting point of the second curve. Now, we have defined a different Abelian group,
where we can add any kind of curves, and we can figure out a certain class of curves that
are closed.

6.2 The winding number

We will define our classification of paths over which all integrals of holomorphic functions
are zero in terms of the winding number.

Definition 6.2.1 (Winding number)
The winding number winding numberor winding index of a closed curve γ : r0, 1s Ñ C around a point
z0 P C zγpr0, 1sq is

νγpz0q :“ Indγpz0q :“
1

2πi

ż

γ

1

z ´ z0
dz.

Example 6.2.2 Consider the curve γ : r0, 1s Ñ C, t ÞÑ z0 ` re
2πnit, which circles the point

z0 n P N times at distance r ą 0 has winding index

Indγpz0q “
1

2πi

ż

γ

1

z ´ z0
dz “

1

2πi

ż 1

0 �
�
��1

re2πnit
2πni��

��
re2πnit dt “

�
��1

2πi

ż 1

0
��2πindt “ n.

˛

Theorem 6.2.1: Winding number is a integer

We have Indγpz0q P Z.

23.06.2021Proof. We will show that exp
´

ş

γ
1

z´z0

¯

“ 1. (This is true because this integral is essentially
one branch of the logarithm function of z ´ z0 plus some constant of integration at the
endpoint minus the initial point of the curve.) This implies

ş

γ
1

z´z0
“ 2πin for some n P Z

and hence the statement. If F is a locally defined antiderivative of z ÞÑ 1
z´z0

, that is
F 1pzq “ 1

z´z0
, then

d

dz

eF pzq

z ´ z0
“

eF pzq

z ´ z0
F 1pzq ´

eF pzq

pz ´ z0q
2
“ eF pzq

ˆ

1

pz ´ z0q
2
´

1

pz ´ z0q
2

˙

“ 0.
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Hence eF pzq “ Apz ´ z0q for some constant A P C.

Suppose F0 is an antiderivative of z ÞÑ 1
z´z0

defined on a domain U0 around γp0q satisfying
eF0pzq “ Apz ´ z0q. Analytic continuation of pF0, U0q along γ (which is possible since the
derivative 1

z´z0
is defined on C ztz0u and can therefore be trivially continued) leads to a

function element pF1, U1q which also satisfies eF1pzq “ Apz ´ z0q because peF1 , U1q is the
trivial continuation of peF0 , U0q because the function eF0pzq “ Apz ´ z0q is defined on the
whole complex plane.

Hence
ż

γ

1

z ´ z0
dz “ F1pγp1qq ´ F0pγp0qq

and
exp

ˆ
ż

γ

1

z ´ z0
dz

˙

“
Apγp1q ´ z0q

Apγp0q ´ z0q
“ 1

because γ is closed. l

Lemma 6.2.3 (Indγ constant on connected components)
The winding number Indγ is constant on connected components of C zγpr0, 1sq.

Proof. For z0 P C zγpr0, 1sq, the winding number depends continuously on z0 and takes
integer values. Hence it is constant on connected components of its image.

To see continuity, note that
ˇ

ˇ

ˇ

ˇ

1

z ´ z0
´

1

z ´ z1

ˇ

ˇ

ˇ

ˇ

“
|z0 ´ z1|

|z ´ z0||z ´ z1|

and that 1
|γ´z0||γ´z1|

is bounded on r0, 1s. l

Example 6.2.4 To find the winding numbers of the regions that a closed curve γ separates
the complex plane into we can proceed as follows. The image of the curve is compact, so
there is a disk containing it, and outside of this disk the winding number is zero. Whenever

Fig. 72: Rule for
increasing/decreasing
the winding number
when crossing the
curve.

we cross the curve and the curve comes from the left, then the winding number increasing
by one and it decreases by one if the curve comes from the right.

Fig. 73: A curve and the winding numbers of the regions that a closed curve γ separates the
complex plane into.
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We can and want to extend the concept of the winding number to cycles.

Definition 6.2.5 (Winding number of a cycle)
The winding number Indcpz0q of a cycle c in C around a point z0 P C z|c| is

Indcpz0q “
1

2πi

ż

c

1

z ´ z0
dz.

Theorem 6.2.2: Winding number is an integer

The winding number of a cycle is an integer.

Proof. Let c be as in (27) for curves cj : r0, 1s Ñ C ztz0u. For j P t1, . . . , ku let pF
p0q
j , U

p0q
j q

be a local antiderivative of 1
z´z0

defined on a domain Uj around cjp0q and let pF p1qj , U p1qq

be its analytic continuation along cj .

As before,

eF
p0q
j pzq

“ Ajpz ´ z0q “ eF
p1q
j pzq.

Hence

exp

˜

ż

cj

1

z ´ z0
dz

¸

“ exp
´

F
p1q
j pcjp1qq ´ F

p0q
j pcjp0qq

¯

“�
�Ajpcjp1q ´ z0q

��Ajpcjp0q ´ z0q
,

for all j P t1, . . . , ku and therefore

exp

ˆ
ż

c

1

z ´ z0
dz

˙

“ exp

˜

k
ÿ

j“1

nj

ż

cj

1

z ´ z0
dz

¸

“
pc1p1q ´ z0q

n1pc2p1q ´ z0q
n2 . . . pckp1q ´ z0q

nk

pc1p0q ´ z0q
n1pc2p0q ´ z0q

n2 . . . pckp0q ´ z0q
nk
“ 1,

because c is closed and thus every point occurs the same number of times as an endpoint
cjp1q as it occurs as a starting point cj̃p0q, taking the weights nj into account. More precisely,
for each z P C

k
ÿ

j“1
cjp1q“z

nj “
k
ÿ

j“1
cjp1q“z

nj .

As before, this implies
ş

c
1

z´z0
dz P 2πiZ and thus the claim. l

6.3 The winding number / homology version of
Cauchy’s Integral Theorem

Definition 6.3.1 (Zero homogolous cycle)
A cycle c in an open set U Ă C is zero homogolous zero homogolousin U if Indcpzq “ 0 for all z P C zU .

Example 6.3.2 A circle c around z0 is not zero homologous in U :“ C ztz0u because z0 R U ,
but Indcpz0q “ 1. ˛
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Remark 6.3.3 (null-homotopic ùñ null-homologous) If γ is null-homotopic, then γ
is null-homologous. The converse does not hold, consider γ :“ aba´1b´1, which is not
null-homotopic but

Indγpz0q “ Indapz0q ` Indbpz0q ` Inda´1pz0q ` Indb´1pz0q “ 0,

as Inda´1pz0q “ ´ Indapz0q for any z0 P???. ˝

Lemma 6.3.4 (Has to be somewhere else)
Let U Ă C be open and C zU unbounded and connected. Then a closed curve in U is null-
homologous.

Proof. Let γ be a closed curve in U . Without loss of generality we can assume that γ is
piecewise C1. Then

| Indγpz0q| “
1

2π

ˇ

ˇ

ˇ

ˇ

ż

γ

1

z ´ z0
dz

ˇ

ˇ

ˇ

ˇ

ď
1

2π
lenpγq sup

zP|γ|

ˇ

ˇ

ˇ

ˇ

1

z ´ z0

ˇ

ˇ

ˇ

ˇ

loooooomoooooon

|z0|Ñ8
ÝÝÝÝÝÑ0

|z0|Ñ8
ÝÝÝÝÝÑ 0.

Hence there exists a z0 P C zU such that

| Indγpz0q| ă
1

2
.

l

As Indγ P Z, Indγpz0q “ 0 for all z0 P C zU , as C zU is connected.

Theorem 6.3.1: Cauchy’s Integral Theorem (Winding number /
homology version)

Let U be a domain in C and c be a cycle in U . The following statements are
equivalent.

1 c is zero homologous in U
2

ş

c
fpzqdz “ 0 for all holomorphic functions f on U .

Proof.  1 ùñ  2 : There is a point z0 P C zU such that Indcpz0q ‰ 0. Then the
function fpzq :“ 1

z´z0
is holomorphic on U and

ż

c

fpzqdz “ 2πi Indcpz0q ‰ 0.

1 ùñ 2 : Assume c is a zero homologous cycle in U .

1 First we will construct a cycle c̃ that is a formal linear combination of horizontal or
vertical line segment traversed at constant speed such that

ż

c

fpzqdz “

ż

c̃

fpzq dz

for all holomorphic functions f on U .

To this end, consider on curve cj occurring in the cycle c.

We want to cover the curve by rectangles contained in U and then we take a subdivision
of cj such that the portions in one subinterval are contained in a rectangle that is
contained in U and the we replace this portion to a vertical and a horizontal line
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segment. Because the old and the new portion are homotopic, the integral doesn’t
change. Let R be the set of open rectangular regions with sides parallel to the axes
that are contained in U . Applying the Lebesgue number lemma to the open cover
tc´1
j pRquRPR at r0, 1s, we see that there exists a subdivision

0 “ t0 ă t1 ă . . . ă tM “ 1

such that cjprt`, t``1sq is contained in some open rectangle R Ă U .

Consider the curves

cvj,` :“ cjpt`q ` t ¨ i=pcjpt``1q ´ cjpt`qq

chj,` :“ cjpt`q ´ p1´ tq ¨ i<pcjpt``1q ´ cjpt`qq.

Since the rectangle is convex and hence simply connected, the curves cj |rt`,t``1s and
cvj,`c

h
j,` are homotopic.

So for all holomorphic functions f on U ,
ż

cj |rt`,t``1s

fpzqdz “

ż

cvj,`

fpzqdz `

ż

chj,`

fpzqdz.

Let c “
Àk

j“1pnj d cjq and define

c̃ “
k
à

j“1

nj ¨
M´1
à

`“1

cvj,` ‘ c
h
j,` “ ‘

k
j“1 ‘

M´1
`“1

`

nj d c
v
j,`

˘

‘
`

nj d c
h
j,`

˘

.

Hence for the rest of the proof we may assume without loss of generality that c is a
cycle consisting of horizontal and vertical line segments.

29.06.2021

2 We will now construct a rectangular grid by taking all the endpoints of the vertical
and horizontal line segments and making a grid out of these endpoints.

Fig. 74: The not necessarily simply connected domain and a zero homologous cycle consisting
only of horizontal and vertical line segment and the grid constructed from the endpoints of
the vertical and horizontal line segments.

Let
x0 ă x1 ă . . . , xN
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be the real parts of the segments’ endpoints and let

y0 ă y1 ă . . . ă yM

be the imaginary parts. Now we can subdivide the horizontal and vertical line segments
further such that all the horizontal and vertical line segments are really edges of this
non-uniform rectangular grid: by subdividing the line segments of which the cycle c
consists further if necessary, we may arrive at a cycle whose curves are edges of the
non-uniform rectangle grid with vertices

zj,k :“ xj ` iyk.

So without loss of generality we may assume that the cycle c is of the form

Fig. 75: The horizontal
or vertical straight line
segments chj,k and cvj,k.

c “
M´1
ÿ

j“0

N´1
ÿ

k“0

`

nhj,kc
h
j,k ` n

v
j,kc

v
j,k

˘

,

where chj,k is the horizontal straight line segment from zj,k to zj`1,k and cj,k is the
vertical straight line segment from zj,k to zj,k`1, both parametrised on r0, 1s. The
coefficients nhj,k and nvj,k are integers

3 In the interior of each rectangle

Fig. 76: The rectangle
Rj,k.

Rj,k :“ rxj , xj`1s ` iryk, yk`1s

choose an arbitrary point ajk and let

νj,k :“ Indcpaj,kq.

Since the interior of Rj,k and |c| are disjoint, Indc is constant on Rj,k, so νj,k is
independent of the choice of aj,k.

The assumption that c is null-homogolous enters here! If Rj,kzU ‰ H, then νj,k “ 0.
(This is true even if the point of Rj,k outside U are all boundary points of Rj,k.)

Fig. 77: Suppose that
the bottom left cor-
ner is the only point
not contained in U .
Then the winding num-
ber is zero around that
point. But as the
winding number is lo-
cally constant - the ad-
jacent edges can not
be traced out by the
curve - there is a neigh-
bourhood around this
point, where Indc “ 0.

Claim. We claim that the coefficients of the horizontal / vertical straight line segments
are the differences of winding numbers of adjacent rectangles, in particular

a nhj,k “ νj,k ´ νj,k´1,

b nvj,k “ νj´1,k ´ νj,k.

Fig. 78: Adjacent rect-
angles.

4 We now prove a , the proof of b is similar. Let

Fig. 79: The cycle rj,k.

rj,k :“ chj,k ` c
v
j`1,k ´ c

h
j,k`1 ´ c

v
j,k.

Then Indrj,kpaj,kq “ 1 p‹q.

Consider the cycle
c̃ “ c´ nhj,krj,k.

Then the support |c̃| does not contain the edge |chj,k| because the coefficient of chj,k is
zero. That means that the Indc̃ is constant on the interior of Rj,kYRj,k´1. Hence (by
the linearity of the integral (L) in the definition of the winding index)

νj,k´1 “ Indcpaj,k´1q
loooooomoooooon

νj,k´1

´nhj,k Indrj,kpaj,k´1q
looooooomooooooon

“0

“ Indc̃paj,k´1q

“ Indc̃paj,kq
(L)
“ Indcpaj,kq

loooomoooon

νj,k

´nhj,k Indrj,kpaj,kq
loooooomoooooon

“1

p‹q
“ νj,k ´ n

h
j,k.
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5 We claim that

c “
M´1
ÿ

j“0

N´1
ÿ

k“0

νj,krj,k.

This can be shown using the previous claim and comparing coefficients of the edges.

But this implies
ż

c

fpzqdz “
M´1
ÿ

j“0

N´1
ÿ

k“0

νj,k

ż

rj,k

fpzqdz.

Note that Rj,k Ă U if νj,k ‰ 0, so all the integrals in the sum vanish due to Cauchy’s
Integral Theorem for Rectangles. l

6.4 Cauchy’s Integral Formula & the Residue Theorem

Theorem 6.4.1: Cauchy’s Integral Formula (Winding number
version)

Let f be a holomorphic function on U Ă C, let a P U and let c be a cycle in Uztau
that is zero-homologous in U . Then

1

2πi

ż

c

fpzq

z ´ a
dz “ Indcpaq ¨ fpaq.

Fig. 80: The proof of Theorem 6.4.1.

Proof. Choose r ą 0 so small that Brpaq Ă U . Let γ : r0, 1s Ñ U , t ÞÑ a ` re2πit. Then
Indγpaq “ 1, so for c̃ :“ ca Indcpaq d γ we have

Indc̃paq “ Indcpaq ´ Indcpaq Indγpaq
looomooon

“1

“ 0.

It follows that c̃ is zero homologous in Uztau, because Indc̃paq “ 0 and Indc̃pzq “ 0 for any
z R U , because Indcpzq “ 0 for any z R U and the winding number of Indγpzq “ 0 for any
|z ´ a| ą r, so c̃ is not only zero homologous in U but also in Uztau.

Since z ÞÑ fpzq
z´a is holomorphic on Uztau, the winding number version of Cauchy’s Integral

Theorem implies

0 “

ż

c̃

fpzq

z ´ a
dz “

ż

c

fpzq

z ´ a
dz ´ Indcpaq

ż

γ

fpzq

z ´ a
dz

p‹q
“

ż

c

fpzq

z ´ a
dz ´ Indcpaq2πifpaq,

where in p‹q we use Cauchy’s Integral Formula for Disks. l
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Let us now introduce a notion

Definition 6.4.1 (Bounding cycle)
Let K Ă C be a compact set. A cycle c bounds K if |c| Ă BK and if

Indcpzq “

$

&

%

1, if z P K̊,

0, if z R K.

Remark 6.4.2 We need not have |c| “ BK (but in most cases we do): consider for example
K :“ D Y r1, 2s. Then the unit circle c is a bounding cycle for K, but the BK contains
p1, 2s Ć |c|. The point is: We did not assume that K is the closure of its interior. ˝

We can now formula Theorem 6.4.1 more simply:

Corollary 6.4.3
If f is holomorphic on U and the cycle c bounds the compact subset K Ă U , then

fpaq “
1

2πi

ż

c

fpzq

z ´ a
dz

for all a P K̊.

Proof. In this case, the winding number is 1. l

Fig. 81: Corollary 6.4.3 is perfectly suited for dealing with a domain U with holes and a
cycle as shown.

Residues

Theorem 6.4.2: Residue

1 Suppose the holomorphic function f has an isolated singularity at z0 (or is
holomorphic at z0, too). The residue residueof f at z0 is

Resz0pfq :“
1

2πi

ż

|z´z0|“ε

fpzqdz,

where ε ą 0 is so small that tz P C : 0 ă |z ´ z0| ď εu Ă U .
2 Equivalently, if the Laurent series around z0 representing f is

ř

kPZ akpz ´

z0q
k, then Resz0pfq “ a´1.
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Proof. Of 2 : use the formula for the coefficients of the Laurent series expansion or argue
directly:

Resz0pfq “
1

2πi

ż

|z´z0|“ε

fpzqdz “
1

2πi

ż

|z´z0|“ε

ÿ

kPZ
akpz ´ z0q

k dz

“
1

2πi

ÿ

kPZ
ak

ż

|z´z0|“ε

pz ´ z0q
k dz

loooooooooooomoooooooooooon

“1´1pkq

.

l

Theorem 6.4.3: Residue Theorem

Let f be holomorphic on U except for a set S Ă U of isolated singularities. Let c be
a zero homologous cycle in U with |c| X S ‰ H. Then

1

2πi

ż

c

fpzqdz “
ÿ

aPS

IndcpaqResapfq,

where the sum is finite because Indcpaq ‰ 0 only for finitely many a P S.

Corollary 6.4.4
If c bounds a compact subset K Ă U , then

1

2πi

ż

c

fpzqdz “
ÿ

aPSXK̊

Resapfq.

30.06.2021Proof. (of Theorem 6.4.3) Let us assume that Indcpaq ‰ 0 for finitely many singularities
a P S.

For each a P S, let γa be a circle around a with radius small enough such that the closed
disk that it bounds in contained in U and doesn’t contain any other singularities.

Fig. 82: The set U , a closed curve c and some circles γa.

Let c̃ :“ ca p
À

aPS Indcpaq d γaq. For every a0 P S,

Indc̃pa0q “ Indcpa0q ´
ÿ

aPS

Indcpaq ¨ Indγapa0q “ 0,

as Indγapa0q “ 1 if a “ a0 and 0 else. Hence c̃ is zero homologous in UzS.

Also, f is holomorphic on UzS. By the winding number version of Cauchy’s Integral
Theorem,

0 “

ż

c̃

fpzqdz “

ż

c

fpzqdz ´
ÿ

aPS

Indcpaq ¨

ż

γa

fpzqdz
looooomooooon

“2πiResf paq

.
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It remains to show the assumption made at the beginning. Towards contradiction assume
that Sc :“ ta P S : Indcpaq ‰ 0u is infinite.

1 The set Sc is bounded. To see this, note that |c| is compact, hence bounded. Suppose
|c| Ă BRp0q. Then for all points z P C zBRp0q, we have Indcpzq “ 0. Hence |a| ď R

for all a P Sc.

2 The set Sc has a limit point a˚. But this cannot be contained in U , since the set of
singularities is isolated in U and hence a˚ can’t be the limit point in U of a sequence
in U . Because c is zero homologous, Indcpa

˚q “ 0. But the winding number Indc is
constant on the connected components of C z|c|, which are open. So Indcpa

˚q “ 0 in
an open neighbourhood of a˚, contradicting the claim that a˚ is a limit point of Sc.
l
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7 THE CALCULUS OF RESIDUES

7 The calculus of residues

7.1 Computing integrals using the residue theorem
(preliminary remarks)

The "calculus of residues" is a bag of tricks that are helpful to compute some definite
integrals, in particular real integrals. To use the Residue Theorem, we have to be able to
compute residues. This is easy if we know the Laurent series for some reason.

Example 7.1.1 (Computing residues of exppz´1q) By the power series expansion of
the exponential function, we have

e
1
z “

8
ÿ

k“´8

1

p´kq!
zk

for z ‰ 0 and this function has one singularity at z “ 0, which is essential. We have
Resexppz´1qp0q “

1
1! “ 1. ˛

For poles it is also straightforward to compute the residue.

Example 7.1.2 (Computing residues at poles) 1 The simplest case are poles of or-
der 1. If f has a poles of order 1 at z0, then the Laurent series at z0 is

fpzq “
a´1

z ´ z0
` a0 ` a1pz ´ z0q ` a2pz ´ z0q

2 ` . . . ,

so
pz ´ z0qfpzq “ a´1 ` a0pz ´ z0q ` a1pz ´ z0q

2 ` . . .

and
lim
zÑz0

pz ´ z0qfpzq “ a´1 “ Resf pz0q.

2 If f “ g
h , where h has a simple zero at z0 and gpz0q ‰ 0, then f has a first order pole

at z0 and

Resf pz0q “ lim
zÑz0

z ´ z0

hpzq
gpzq “

gpz0q

h1pz0q
.

3 If f has a pole of order n at z0, then the Laurent series expansion is

fpzq “ a´n
1

pz ´ z0q
n
` . . .` a´1

1

pz ´ z0q
` a0 ` a1pz ´ z0q ` . . .

and thus

pz ´ z0q
nfpzq “ a´n ` . . .` a´1pz ´ z0q

n´1 ` a0pz ´ z0q
n ` . . .

is a Taylor series in a neighbourhood of z0. Hence

Resf pz0q “ a´1 “ lim
zÑz0

1

pn´ 1q!

ˆ

d

dz

˙n´1 „

pz ´ z0q
nfpzq



.
˛
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7 THE CALCULUS OF RESIDUES

Example 7.1.3 (Computing residues with cot (Tut XII))
Consider fpzq :“ cotpzq

z`1 . Let gpxq :“ cospzq
z`1 and hpzq :“ sinpzq. Then h has a simple zero at

0 and π and g is holomorphic with gp0q ‰ 0 ‰ gpπq and thus by example 7.1.2 2

Resf p0q “
gp0q

h1p0q
“ 1 and Resf pπq “

gpπq

h1pπq
“

1

π ` 1
.

˛

7.2 Integrals along the whole real axis

Example 7.2.1 (Computing
ş

Rp1 ` x
4q´1 dx)

One can calculate
ş

Rp1 ` x4q´1 dx with partial fraction decomposition (the antiderivative

is very complicated: C `
´ log

´

x2´
?

2x`1
¯

`log
´

x2`
?

2x`1
¯

´2 tan´1
´

1´
?

2x
¯

`2 tan´1
´?

2x`1
¯

4
?

2
), but also with

the Residue Theorem. We can write
ż

R

1

1` x4
dx “ lim

RÑ8

ż R

´R

1

1` x4
dx

The idea is to consider the function fpzq :“ 1
1`z4 , which is holomorphic except for first order

poles at the four square roots of ´1 “ eiπ, which are z0 :“ ei
π
4 “ 1?

2
p1 ` iq, z1 :“ iz0 “

1?
2
p´1` iq, z2 :“ ´z0 “

1?
2
p´1´ iq and z3 :“ 1?

2
p1´ iq.

By the Residue Theorem,
ż

γ1aγ2

1

1` z4
dz “ 2πi pResf pz0q ` Resf pz1qq .

Also,
ż

γ1

fpzqdz “

ż R

´R

1

1` x4
dx.

Hence
ż R

´R

1

1` x4
dx “

ż

γ2

1

1` z4
dz ` 2πi pResf pz0q ` Resf pz1qq .

1 We have
ˇ

ˇ

ˇ

ˇ

ż

γ2

1

1` z4
dz

ˇ

ˇ

ˇ

ˇ

“ď πR
1

R4
“ πR´3 RÑ8

ÝÝÝÝÑ 0,

so we don’t have to care about γ2 in the limit.

2 By example 7.1.2 3 we have

Resf pz0q “
1

4z3
0

“ ´
1

4
z0 “ ´

1

4
?

2
p1` iq

as z4
0 “ ´1 and analogously

Resf pz1q “
1

4z3
1

“ ´
1

4
?

2
p´1` iq
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7 THE CALCULUS OF RESIDUES

and hence
2πi pResf pz0q ` Resf pz1qq “ 2πi

ˆ

´1

4
?

2
p2iq

˙

“
π
?

2
.

In conclusion
ż

R

1

1` x4
dx “

π
?

2
.

For this to work it was important that

• The integral over the large half-circle tends to zero.

• there are no poles on the real axis. ˛

7.3 Integrals over R with poles on the real axis

Example 7.3.1
We can set sinp0q

0 “ 1 and then
ż

R

sinpxq

x
dx

becomes the integral of a continuous function (without singularities). We can also write the
integrand as

sinpxq

x
“ =

ˆ

eix

x

˙

and hence our idea is to integrate fpzq :“ eiz

z along some cycle. The function f has a simple
pole at 0 with Resf p0q “ 1.

How do we find an appropriate contour? We have

|eiz| “ |eipx`iyq| “ |eixe´y| “ e´y,

which tends to zero for y Ñ8, and thus

|eiz| “
e´y

|z|
.

Consider the following contour for 0 ă r ă R.

The function f is holomorphic in the region bounded by the cycle

γ1 ‘ γ2 ‘ γ3 a γ4 a γ5 a γ6,

so by Cauchy’s Integral Theorem,
ż

c

fpzqdz “ 0. (28)
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Also,
ż ´r

´R

sinpxq

x
dx`

ż R

r

sinpxq

x
dx “ =

ˆ
ż

γ1‘γ2

fpzqdz

˙

.

We have by (28)
ż

γ1‘γ2

fpzqdz “ ´

ż

γ3

fpzqdz `

ż

γ4

fpzqdz `

ż

γ5

fpzqdz
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

RÑ8
ÝÝÝÝÑ0

`

ż

γ6

fpzqdz.

• First let us consider the integral along γ6. Near 0,

fpzq “
Resf p0q

z
` gpzq,

where g is holomorphic at 0. Hence
ż

γ6

fpzqdz “ Resf p0q
looomooon

“1

ż

γ6

1

z
dz

looomooon

iπ

`

ż

γ6

gpzqdz
looooomooooon

rŒ0
ÝÝÝÑ0

.

and thus
lim
rÑ0

ż

γ6

fpzqdz “ iπ.

• Let us now consider the integral along γ2. We have
ˇ

ˇ

ˇ

ˇ

ż

γ2

fpzqdz

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż R`iR

R

eiz

z
dz

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

0

eipR`itq

R` it
i dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż R

0

e´t

|R` it|
dz ď

ż R

0

e´t

R
dz “

1

R
p´e´R ` 1q

RÑ8
ÝÝÝÝÑ 0.

• The integral along γ4 also goes to 0 to RÑ8 by an analogous argument.

• For the integral along γ5 observe
ˇ

ˇ

ˇ

ˇ

ż

γ5

fpzqdz

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż R`iR

´R`iR

eiz

z
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2R
e´R

R
“ 2e´R

RÑ8
ÝÝÝÝÑ 0.

We get
ż

R

sinpxq

x
dx “ lim

rŒ0
=
ˆ
ż

γ6

fpzqdz

˙

“ =piπq “ π.
˛

Example 7.3.2 (What is
ş

R
1

px2`1qpx2`4q
dx? (Tut XII))

Define f : C zt˘i,˘2iu Ñ C, z ÞÑ 1
pz2`1qpz2`4q and cR : r0, πs Ñ C, t ÞÑ Reit for R ą 0.

First we show that if |fpzq| ď M
|z|a for some a ą 1 and M ě 0 holds for all large z, then

ş

cR
fpzqdz

RÑ8
ÝÝÝÝÑ 0. We have

ˇ

ˇ

ˇ

ˇ

ż

cR

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď lenpcRq
M

Ra
“

πM

Ra´1

RÑ8
ÝÝÝÝÑ 0.

Why do we have |fpzq| ď M
|z|a in our case? For |z| ě 4, we have |z|2 ď |z2 ` 1||z2 ` 4|, so

ş

cR
fpzqdz

RÑ8
ÝÝÝÝÑ 0.

Now let dR : r´R,Rs Ñ R, t ÞÑ t. Then d1Rptq “ 1 and thus
ż

dR

fpzqdz “

ż R

´R

1

px2 ` 1qpx2 ` 4q
dt.
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7 THE CALCULUS OF RESIDUES

By Theorem 6.4.3,
ż

dR

fpzqdz ´

ż

cR

fpzqdz “ 2πi
ÿ

aPti,2iu

InddRcRpaqResf paq “ 2πi
`

Resf piq ` Resf p2iq
˘

.

Defining g1pzq :“ 1
pz`iqpz`2iqpz´2iq , g2pzq :“ 1

pz`iqpz´iqpz`2iq , h1pzq :“ z´i and h2pzq :“ z´2i,
we find

Resf piq “
g1piq

h11piq
“

1

p2iqp3iqp´iq
“
´i

6
and Resf p2iq “

g2piq

h12piq
“

1

p3iqp2iqp4iq
“

i

12

and thus
ż

R

1

px2 ` 1qpx2 ` 4q
dx “ lim

RÑ8

ż

dR

fpzqdz ´

ż

cR

fpzqdz “ 2πi

ˆ

i

12
´
i

6

˙

“
π

6
.

˛

We omit subsection 7.4

7.5 Integrals of rational function of sin and cos over a
period

Example 7.5.1 Consider
ş2π

0
1

3`cospxq dx. We have

ż 2π

0

1

3` cospxq
dx “ =

ˆ
ż 2π

0

1

3` 1
2 pe

ix ` e´ixq

1

eix
ieix dx

˙

“ =

˜

ż

|z|“1

1

p3` 1
2 pz `

1
z qqz

dz

¸

“ =

˜

ÿ

j

2πiResf pzjq

¸

,

by the Residue Theorem, where fpzq :“ 1
p3` 1

2 pz`
1
z qqz

and the sum is taken over the poles of
f inside the unit circle. The result is π?

2
. ˛

7.6 An integral that counts zeros and poles

06.07.2021If f has an isolated zero (this means f is not zero in a neighbourhood and the order of
the zero is finite) or a pole (which implies that it is an isolated singularity) at z0, then by
Theorem 3.4.1 there is a k P Z zt0u and a holomorphic function g such that

fpzq “ pz ´ z0q
kgpzq

in a neighbourhood of z0, where g is holomorphic at z0 and gpz0q ‰ 0. If f has a zero at z0,
then k ą 0 and the order of the zero is k. If f has a pole at z0, then k ă 0 and the order of
the pole is ´k.

Now consider the logarithmic derivative of f , z ÞÑ f 1pzq
fpzq , which is holomorphic where f is

holomorphic except for the zeros of f .

In a neighbourhood of z0,

f 1pzq “ kpz ´ z0q
kgpzq ` pz ´ z0q

kg1pzq,
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so
f 1pzq

fpzq
“
kpz ´ z0q

kgpzq ` pz ´ z0q
kg1pzq

pz ´ z0q
kgpzq

“
k

z ´ z0
`
g1pzq

gpzq
.

Since g is holomorphic and doesn’t have a zero at z0, its logarithmic derivative g1pzq
gpzq is

holomorphic at z0. By example 7.1.2 1 this implies

Res f 1
f

pz0q “ lim
zÑz0

pz ´ z0q

ˆ

k

z ´ z0
`
g1pzq

gpzq

˙

“ lim
zÑz0

k ` pz ´ z0q
looomooon

Ñ0

g1pzq

gpzq
loomoon

Ñ
g1pz0q
gpz0q

“ k.

Applying the residue theorem to f 1

f yields the following theorem.

Theorem 7.6.1: Zero and pole counting integral

Let f be meromorphic on U Ă C and c be a cycle that bounds a compact set K Ă U

such that BK doesn’t contain any zero or poles of f . Then

1

2πi

ż

c

f 1pzq

fpzq
dz “ Z ´ P,

where Z is the number of zeros of f in K̊ and P the number of poles, each counted
with multiplicity according to their order.

Fig. 83: The setup of
Theorem 7.6.1.

There is an topological interpretation in terms of the winding number.

For a 1-chain c “
À

j nj d γj we define the image under a map f , defined on |c| by

fpcq :“
à

j

nj ¨ pf ˝ γjq

Now for some piecewise C1
prt0, t1sq curve γ : rt0, t1s Ñ U that does not pass through any

zeros or poles of f
ż

γ

f 1pzq

fpzq
dz “

ż t1

t0

f 1pγptqq

fpγptqq
γ1ptqdt “

ż

f˝γ

1

z
dz. (29)

This is still true if γ is only continuous, because any continuous curve in Uztpoles and zeros
of fu is homotopic to a C1-curve. Hence, even for a 1-chain c in U whose support |c| does
not contain zeros or poles of f , we have

“
1

2πi

ż

c

f 1pzq

fpzq
dz “

1

2πi

ż

fpcq

1

z
dz.

For the 1-cycle bounding K, we get

Z ´ P “ Indfpcqp0q

We can thus reformulate the above theorem:

Theorem 7.6.2: Zero and pole counting winding number

Under the same assumptions of and using the same notation as in the previous
theorem, Indfpcqp0q “ Z ´ P .

Jänich uses this to prove the following result.

100



7 THE CALCULUS OF RESIDUES

Theorem 7.6.3

A nonconstant rational function has a many zeros as it has poles in Ĉ (both counted
with multiplicities).

Corollary 7.6.1
A nonconstant rational function takes every value a P Ĉ the same number of times.

Proof. If f is that rational function, apply Theorem 7.6.3 to f ´ a. l

In think that only the zero and pole counting winding number is a bit over the top. If
fpzq “ ppzq

qpzq , where p and q are polynomials without common zeros, then the number Z of
zeros and the number P of poles are

Z “ degppq `maxpdegpqq ´ degppq, 0q and P “ degpqq `maxpdegppq ´ degpqq, 0q,

where the second summands correct for zeros and poles at 8. In any case Z ´ P “ 0.

Rouché’s theorem

Lemma 7.6.2 (Dog on a leash)
Let c1, c2 : r0, 1s Ñ C be two closed curves and z0 P C zp|c1| Y |c2|q Furthermore assume that
for all t P r0, 1s:

|c1ptq ´ c2ptq| ă |c1ptq ´ z0|. (30)

Then Indc1pz0q “ Indc2pz0q.

Fig. 84: The setup of
lemma 7.6.2.

Proof. Homework 11.3. l

Theorem 7.6.4: Rouché

Let γ be a closed curve bounding a compact region K Ă U and f and g be holomor-
phic functions on U such that |gpzq| ă |fpzq| for all z P |γ|. Then f and f ` g have
the same number of zeros (counted with multiplicities) in K̊.

Proof. Since the functions have no poles, the numbers of zeros are winding numbers of
c1 :“ f ˝γ and c2 :“ f ˝γ`g˝γ around 0 by (29). But since |c1´c2| “ |g˝γ| ă |f ˝γ| “ |c1|,
the winding numbers are equal by lemma 7.6.2. l

The following stronger version of Rouché’s theorem is also true but more technical to prove
(cf. Ferus’ lecture notes).

Theorem 7.6.5: Rouché (more general version)

Let c be a cycle bounding a compact region K Ă U and f and g be holomorphic
functions on U such that |gpzq| ă |fpzq| for all z P |c|. Then f and f ` g have the
same number of zeros (counted with multiplicities) in K̊.

This is more difficult to prove as the cycle might be a linear combination of not just closed
curves, so we can’t apply lemma 7.6.2 in a straightforward way.
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7 THE CALCULUS OF RESIDUES

If we have a region bounded by a curve and suppose on that curve, the function f becomes
nonzero - it attains a minimum - and we add to f a holomorphic function g which is smaller
in absolute value than f , then it doesn’t change the number of zeros in that region.
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8 Sequences of holomorphic function

8.1 Uniform convergence on compact sets

If we look at sequences of functions and their convergence in Real Analysis, we know that
uniform convergence is a good property, because of its favourable relation to integration.
In Complex Analysis, we can also describe derivatives with integrals using Cauchy’s for-
mula. Hence in Complex Analysis, also derivatives behave nicely with respect to uniform
convergence. In fact, taking derivatives is a local property.

Let U Ă C be open.

Definition 8.1.1 (Uniform convergence on compact sets)
A sequence pfn : U Ñ CqnPN of functions converges uniformly on compact sets converges

uniformly on
compact sets

to a function
f : U Ñ C if one of the following conditions is satisfied.

• For any compact subset K Ă U , we have fn Ñ f uniformly on K.

• pfnqnPN converges locally uniformly to f , that is, for any z0 P U , there exists an open
neighbourhood on which fn Ñ f converges uniformly.

Lemma 8.1.2
Both conditions are equivalent.

Proof. " ùñ ": Let z0 P U . If r ą 0 is small enough, then th compact neighbourhood
Brpz0q is contained in U . On this closed disk, convergence is uniform, therefore, also on
Brpz0q.

"ðù ": For z P U , let Uz Ă U be an open neighbourhood of z on which pfnqnPN converges
uniformly to f .

Let K Ă U be a compact subset. The open cover pUzqzPK has a finite subcover pUkqMk“1

with M P N. Given ε ą 0, there are numbers N1, . . . , NM such that

|fnpzq ´ fpzq| ă ε

if z P Uj for n ě Nj . Let N :“ maxpN1, . . . , NM q, then

|fnpzq ´ fpzq| ă ε

if n ě N . Hence convergence is uniform l

07.07.2021Hence uniform convergence on compact sets is the same as locally uniform convergence.
Remark 8.1.3 (Real Analysis reminder) If pfn : C Ą U Ñ CqnPN converges to f uni-
formly on compact sets, then f is also continuous.

If c is a 1-chain in U , then
ż

c

fnpzqdz
nÑ8
ÝÝÝÑ

ż

c

fpzqdz

because the sequence converges uniformly on the compact set |c|. ˝

Due to Cauchy’s integral formula, we can express derivatives as integrals. This is a main
ingredient in the proof of the following theorem.

103



8 SEQUENCES OF HOLOMORPHIC FUNCTION

Theorem 8.1.1: Uniform convergence on compact sets
(Weierstrass)

Let pfnqnPN be a sequence of holomorphic functions on U that converges uniformly
on compact sets to the function f . Then f is also holomorphic on U and the sequence
pf 1nqnPN converges uniformly on compact sets to f 1.

Proof. To show that f is holomorphic, it suffices to show that
ż

B∆

fpzqdz “ 0

for every closed triangular region ∆ Ă U by Morera’s Theorem.

Due the remark 8.1.3 p‹q, we have
ż

B∆

fpzqdz “

ż

B∆

lim
nÑ8

fnpzqdz
p‹q
“ lim

nÑ8

ż

B∆

fnpzqdz
loooooomoooooon

“0 by
Cauchy’s Theorem

“ 0.

To show that pf 1nqnPN converges uniformly on compact sets to f 1, use Cauchy’s integral
formula for the derivative:

|f 1npzq ´ f
1pzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

|u´z0|“r

fnpuq ´ fpuq

pu´ zq2
du

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
��2πr

��2π

maxt|fnpuq ´ fpuq| : |u´ z0| “ ru

mint|u´ z|2 : |u´ z0| “ ru

“
r

|r ´ |z ´ z0||
2

max
uPC:

|u´z0|“r

|fnpuq ´ fpuq|,

where z0 P U and r ą 0 are chosen such that |z ´ z0| ă r and tu P C : |u´ z0| “ ru Ă U . l

This is not true in Real Analysis: fnpxq :“ 1
n sinpnxq Ñ 0 uniformly on R, but fnpxq “

cospnxq does not converge.

8.2 Multiplicities of values of the limit function

The following Theorem states that limit function can not take a value more often than all
the elements of the sequence.

Theorem 8.2.1: Multiplicities of values in the limit (Hurwitz)

Suppose a P C and pfnqnPN is a sequence of holomorphic functions on U that converges
uniformly on compact sets to the function f . Suppose further that each function fn
takes the value a at most m times (counting multiplicities). Then f takes the value
a at most m times (counting multiplicities) or f is constant.

Corollary 8.2.1
The limit function of a sequence of injective holomorphic functions than converges uniformly
on compact sets is also injective or constant.

Proof. (of Theorem 8.2.1) It suffices to treat the case a “ 0, otherwise apply this case
to f̃ :“ f ´ a. We prove the counterpositive statement: if pfnqnPN converges to f uniformly
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on compact sets and f has more than m zeros (counting multiplicities), then there is an
n P N for which fn has more than m zeros.

Let z1, . . . , zN be the distinct zeros of f . Let r ą 0 be small enough so that the closed disk
of radius r around zj is contained in U , but does not contain any other zeros. Let γj be the
path tracing out the boundary of those disks for j P t1, . . . , Nu.

Fig. 85: Closed disks around the distinct zeros.

Since pfnqnPN converges uniformly on the compact set Γ :“
ŤN
j“1 |γj |, for ε :“ minzPΓ |fpzq| ą

0 there is an n P N such that

|fnpzq ´ fpzq| ă ε “ min
uPΓ

|fpuq| ă |fpzq|

for all z P Γ. By Rouché’s Theorem fn “ f ` pfn ´ fq has the same number of zeros as f
in the N open disks, so it also has more than m zeros. l

8.3 Locally bounded function sequences

Definition 8.3.1 (Locally bounded function sequence)
A sequence pfn : U Ñ CqnPN is locally bounded locally boundedif every z0 P U has an open neighbourhood
U0 so that there is a number m P R for which

|fnpzq| ďM @z P U0, n P N .

The Theorem of Bolzano-Weierstrass in Real Analysis states that every bounded se-
quence has a convergent subsequence. Montel’s Theorem is the analogous Theorem in
Complex Analysis.

Theorem 8.3.1: Montel

Every locally bounded sequence of holomorphic functions has a subsequence that
converges uniformly on compact sets.

The proof is somewhat involved and hence we prove two lemmas first.

Lemma 8.3.2 (Locally bounded ùñ local Lipschitz-equicontinuity)
Let pfn : U Ñ CqnPN a locally bounded sequence of holomorphic functions. Then for every
point in U there is an open neighbourhood U0 Ă U and a (Lipschitz constant) M ě 0 such
that for all n P N and for all z1, z2 P U0 we have

|fnpz1q ´ fnpz2q| ďM |z1 ´ z2|.
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Proof. Let U0 “ tz P C : |z´ z0| ă
r
2u. By Cauchy’s integral formula (and reverse partial

fraction decomposition) we have

|fnpz1q ´ fnpz2q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

|z´z0|“r

fnpzq

z ´ z1
´
fnpzq

z ´ z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pz1 ´ z2q

ż

|z´z0|“r

fnpzq

pz ´ z1qpz ´ z2q
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
�
��1

2π
|z1 ´ z2|��2πr

M̃
r2

4

“
4M̃

r
loomoon

“:M

|z1 ´ z2|,

where we use |z ´ zj | ě r
2 for z P U0 and j P t1, 2u and that as fn is locally bounded, there

exists the constant M̃ ě 0 such that |fn| are bounded by M̃ on the small neighbourhood U0

(we can choose r ą 0 so small that this is true). l

Lemma 8.3.3 (Pointwise on dense subset ùñ uniformly on compact sets)
Suppose pfn : U Ñ CqnPN is a locally bounded sequence of holomorphic functions, which
converges pointwise on a dense subset A Ă U . Then pfnqnPN converges uniformly on compact
sets.

Proof. By lemma 8.1.2 it suffices show local uniform convergence. Let z0 P U . By
lemma 8.3.2, there are numbers M, r ą 0 so that

Dr,z0 :“ tz P C : |z ´ z0| ă ru Ă U

and for all n P N and z1, z2 P Dr,z0 we have

|fnpz1q ´ fnpz2q| ďM |z1 ´ z2|.

We show that pfnqnPN converges uniformly on D 1
3 r,z0

, then we are done. To this end we
show the Cauchy-condition: for any ε ą 0 there is an N P N such that for all z P D 1

3 r,z0

and all n,m ě N ,
|fnpzq ´ fmpzq| ă ε.

13.07.2021Choose % ą 0 so that % ă minp ε
3M , r3 q like in figure 86.

Fig. 86: TODO

Then pD%,aqaPA is an open cover of the compact set D r
3 ,z0

and all disks D%,a that have
nonempty intersection with D r

3 ,z0
are contained in Dr,z0 .

Hence there exists a finite subcover. More specifically, there exists numbers a1, . . . , ak P A

such that

D r
3 ,z0

Ă

k
ď

j“1

D%,aj Ă Dr,z0 .
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Choose N P N such that
|fnpajq ´ fmpajq| ă

ε

3

for all n,m ě N for all j P t1, . . . , ku. Then for each z P D r
3 ,z0

there is a j P t1, . . . , ku such
that z P D%,aj , that is, |z ´ aj | ă % ă ε

3M . Hence for n,m ě N we have

|fnpzq ´ fmpzq| ď |fnpzq ´ fnpajq| ` |fnpajq ´ fmpajq| ` |fmpajq ´ fmpzq|

ďM |z ´ a| `
ε

3
`M |z ´ a| ă

ε

3
`
ε

3
`
ε

3
“ ε.

l

Proof. (of Theorem 8.3.1 via a classical diagonal argument) Let pfnqnPN be a lo-
cally bounded sequence of holomorphic functions on U Ă C. Let pajqjPN be a sequence
in U that is dense in U . For example, arrange the points in U with rational real and
imaginary parts in a sequence.

TODO l
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9 The Riemann mapping theorem

Definition 9.0.1 (Conformally equivalent domains)
Two domains U and Ũ in C are biholomorphically or conformally equivalent conformally

equivalent
if there is a

bijective holomorphic function f : U Ñ Ũ .

By corollary 3.4.7, in this case f´1 is also holomorphic (hence the term biholomorphically).

Example 9.0.2 The domains D :“ tz P C : |z| ă 1u and H :“ tz P C : =pzq ą 0u are
conformally equivalent, as the Möbius transformation z ÞÑ z´i

z`i maps H bijectively onto D
by example 1.8.14. ˛

Counterexample 9.0.3 The domains C and D are not conformally equivalent as every
holomorphic map on C with image in D is a bounded entire function and hence constant by
Liouville’s theorem. ˛

Counterexample 9.0.4 The domains Dzt0u and tz P C : 1
2 ă |z| ă 1u are not conformally

equivalent (Exercise!). ˛ Fig. 87: The two not
conformally equivalent
and not simply con-
nected domains from
counterexample 9.0.4.

The Riemann mapping theorem is about simply connected domains (like in example 9.0.2
and counterexample 9.0.3).

Theorem 9.0.1: Riemann mapping theorem

Every nonempty simply connected domain U(C is conformally equivalent to the
open unit disk D.

Fig. 88: A biholomor-
phic map between a
simply connected do-
main U ( C and the
open disk, which exists
by Theorem 9.0.1.

Remark 9.0.5 (Supposedly stronger statement)
Since conformal equivalence is an equivalence relation (the identity is conformal, the inverse
of a conformal map is conformal and the composition of conformal maps is conformal), this
implies that any nonempty simply connected domain in C except C itself is conformally
equivalent to any other such domain. ˝

Remark 9.0.6 (Horrible simply connected domains) To appreciate how monstrous
simply connected domains can be and hence what a strong and remarkable statement The-
orem 9.0.1 is, consider the following example:

Fig. 89: The set on the right is the interior of the square with endpoints 0, 1, i and 1 ` i,
which slits at t<pzq “ 1

k u with length 1´ 1
k and alternating starting points for k P Ną0.

There can not be any distortion of angles, since holomorphic maps are angle-preserving by
Theorem 1.7.1, but there will be a huge distortion of area by this mapping. ˝

108



9 THE RIEMANN MAPPING THEOREM

Remark 9.0.7 (Uniqueness of Riemann maps) The Riemann mapping theorem as-
serts the existence of a Riemann map f : U Ñ D. How unique is it? If f and f̃ are
biholomorphic maps from U onto D, then f̃ ˝ f´1 is a bijective holomorphic map from D

onto D. By Theorem 1.8.7, f̃ ˝ f´1 is the restriction of a Möbius transformation m. But
f̃ ˝ f´1 “ m implies f̃ “ m ˝ f .

Hence two Riemann maps U Ñ D differ by post-composition with a Möbius transformation
mapping D onto D.

How can one make the Riemann mapping unique? One can prescribe a point z0 P U , that
is should be mapped to 0 and we can also describe an angle α, with which the horizontal
direction is mapped at z0 and this is the argument of the derivative of f at 0: for any z0 P U

and any α P r0, 2πq there is a unique Riemann map f : U Ñ D satisfying
Fig. 90: The specifi-
cations needed for the
uniqueness of a Rie-
mann map.

fpz0q “ 0 and f 1pz0q “ eiα|f 1pz0q|. ˝

Remark 9.0.8 (Proof of Theorem 9.0.1) There are many ways to prove the Riemann
mapping theorem. The proof we will show here uses only complex analytic methods and is
due to Carathéodory.
He also proved: a Riemann map U Ñ D extends continuously to a map U Ñ D (continuous on U and holomorphic
on U) if and only if U is a Jordan domain, that is, the boundary of U is a Jordan curve - a simple closed curve.˝

In order to prove Theorem 9.0.1, we will first prove the following Lemma.

Lemma 9.0.9 (Global root function on simply connected domains)
If U Ă C is a simply connected domain and 0 R U , then there exists an injective holomorphic
function % on U such that p%pzqq2 “ z for all z P U .

Remark 9.0.10 This holds for all n ą 0, not just n “ 2. In fact, using analytic continua-
tion, one can show a global version of the inverse function theorem: If f is holomorphic on
a domain U and f 1 has no zeros in U and fpUq is simply connected, then there is an inverse
function fpUq Ñ U of f . ˝

Fig. 91: A simply con-
nected domain not con-
taining the origin.

Proof. We will first construct the logarithm function λ and then construct the square root
by considering e

1
2λ. Choose z0 P U and w0 P C such that ew0 “ z0. In a neighbourhood U0

of z0, let λ0 be an antiderivative (the logarithm!) of the function z ÞÑ 1
z with λ0pz0q “ w0.

Since z ÞÑ 1
z is holomorphic on U (because 0 R U) and can therefore be trivially extended

along any path in U starting at z0, the same is true for the local antiderivative pλ0, U0q.
Since U is simply connected, the analytic continuation does not depend on the path but
only on the endpoint. Hence this defines a holomorphic function λ on U with λ1pzq “ 1

z .
Now,

d

dz

ˆ

1

z
eλpzq

˙

“ ´
1

z2
eλpzq `

1

z
λ1pzqeλpzq “ 0

implies by Theorem 1.4.2 that there exists a constant c P C such that eλpzq “ cz and
eλpz0q “ ew0 “ z0 implies that c “ 1. So λ is a holomorphic function on U satisfying eλpzq “ z

for all z P U . Now let % :“ e
1
2λ, which is holomorphic with p%pzqq2 “ z. Furthermore, % is

injective:%pz1q “ %pz2q implies z1 “ p%pz1qq
2 “ p%pz2qq

2 “ z2. l

14.07.2021Proof. (of Theorem 9.0.1) 1 The main argument. Consider the case that U is
bounded. We’ll deal with the other case later. Then we may also assume that U Ă D

and 0 P U (otherwise translate and scale U appropriately, which are biholomorphic
operations). Then main idea of Carathéodory was considering the set of functions

F :“ tf : U Ñ C : f is holomorphic, injective, fpUq Ă D, fp0q “ 0u.
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Claim. There exists a function f P F for which |f 1p0q| is maximal among functions in
F . This is a biholomorphic map onto D.

Proof. 1.1 A criterion for surjectivity. Proposition. If for f P F the value |f 1p0q|
is maximal among all functions in F , then fpUq “ D.

Proof. We will show: if fpUq ‰ D, then |f 1p0q| is not maximal. So assume
z0 P DzfpUq

Fig. 92: The different maps in the order they appear in the proof of the proposition.

Let m1 be a Möbius transformation with m1pDq “ D and mpz0q “ 0 (which
exists by Theorem 1.8.7), so 0 R pm1 ˝ fqpUq. Now let w be a square root
function on pm1 ˝ fqpUq (this set is simply connected because f and m1 are
injective and continuous; this is theorem from topology), i.e. a holomorphic
injective function with wpzq2 “ z, which exists by lemma 9.0.9. Finally, let m2

be another Möbius transformation with m2pDq “ D, mapping pw ˝m1 ˝ fqp0q

to 0. Then f̃ :“ m2 ˝ w ˝m1
loooooomoooooon

“:g

˝f P F because f̃p0q “ 0 by construction and

holomorphic and injective as a composition of holomorphic and injective maps.
It remains to show that |f̃ 1p0q| ą |f 1p0q|. Note that f̃ 1p0q “ g1p fp0q

loomoon

“0

q ¨ f 1p0q by

the chain rule. We will show that |g1p0q| ą 1 and then we are done.

Note that g is an injective holomorphic function on fpUq Ă D and gp0q “ 0. The
inverse,

g´1pzq “ pm´1
1 ˝ w´1 ˝m´1

2 qpzq “ m´1
1 ppm´1

2 pzqq2q

is a restriction of the entire function

h : CÑ C, z ÞÑ m´1
1 ppm´1

2 pzqq2q.

Now hpDq Ă D and hp0q “ 0, but h is not a Möbius transformation (otherwise
z ÞÑ z2 would have to be Möbius transformation), in particular, h is not a
rotation z ÞÑ az with |a| “ 1. By Schwarz’s Lemma, |h1p0q| ă 1, so |g1p0q| “

1
|h1p0q| ą 1. l

1.2 The existence statement. The set F of functions contains the identity z ÞÑ z,
so it is nonempty. Also, the set of values

t|f 1p0q| : f P Fu Ă R
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is bounded. To see this, use Cauchy’s integral formula for the derivative: if
r ą 0 is small enough so tz P C : |z| ă ru Ă U , then

|f 1p0q| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

|z|“r

fpzq

pz ´ 0q2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2π
2πr

1

r2
“

1

r
,

as |fpzq| ă 1. Hence

s0 :“ supt|f 1p0q| : f P Fu ď 1

r
ă 8.

Let pfnqnPN Ă F be a sequence of functions such that limnÑ8 |f
1
np0q| “ s0. All

functions in the sequence are bounded by 1, because their image is a subset of D.
By Montel’s theorem there is a subsequence of pfnqnPN that converges uniformly
on compact sets. Its limit f is holomorphic and |f 1p0q| “ s0 by the theorem about
uniform convergence on compact sets. Also fp0q “ 0, as fnp0q “ 0 for all n P N.
Since f 1p0q ‰ 0, f is not constant, so by the Corollary to Hurwitz theorem, f is
injective because all fn are injective. Finally, fpUq Ă D, since fnpUq Ă D for all
n P N. By the theorem on preservation of domain fpUq Ă D. By the surjectivity

criterion 1.1 , fpUq “ D. l

2 Suppose U is not bounded. By assumption U ‰ C, so there is a point z0 P C zU . We
may assume 0 R U (otherwise apply the translation z ÞÑ z ´ z0). Let w be a square
root function on U , i.e. an injective holomorphic function on U with pwpzqq2 “ z for
all z P U .

Proposition. The set wpUq does not contain a pair of diametrically opposed points p
and ´p.

Proof. wpz1q “ ´wpz2q implies

z1 “ pwpz1qq
2 “ p´wpz2qq

2 “ z2,

therefore wpz1q “ ´wpz1q, so wpz1q “ 0, so z1 “ 0 P U , which is a contradiction to
0 R U . l

Pick a point z0 P wpUq and let r ą 0 be small enough that U0 :“ tz P C : |z ´ z0| ă

ru Ă wpUq. Let ´U0 :“ t´z : z P U0u. Then p´U0q X wpUq “ H by the above
proposition.

The inversion %pzq “ 1
z`z0

maps C zp´U0q Ą U into the bounded set tz P C : |z`z0| ď

1
r u. Therefore %pwpUqq is bounded. l
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