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1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

Holomorphic functions (in one variable)

1.1 | The complex numbers

13.04.2021
DEFINITION 1.1.1 (COMPLEX NUMBERS C)

The complex plane C is the real vector space R? with an additional operation. In R?, we  complex plane C
can add vectors and multiply them with real scalars. For x1,x2,y1,y2 € R we define the

multiplication
(T1,91) - (T2, y2) = (T172 — Y1Y2, T1Y2 + Tay1) (1)

which turns C into a field containing the field {(z,0) : € R} isomorphic the real numbers.

We write x € C for (x,0) and i for (0,1) such that for z,y € R i

(z,y) =z + iy.

Remark 1.1.2 (History) This is the end of the mathematisation of the concept of complex numbers. The
history was different: complex numbers came up in algebra, when people figured out how to solve algebraic
equations. For quadratic equations in one variable, there is a well-known formula, and one can live with
the fact that sometimes, a quadratic equation doesn’t have a solution, like 22 + 1 = 0. Then people figured
out how solve equations of degree 3 and something strange happened: you could solve equations of degree
3 by algebraic manipulation and get three real solutions, but in between you would have to calculate with
numbers whose square is negative. It took a long time until complex numbers were established as something
neither blasphemous nor mysterious. The whole discussion of "Yes, but does it exist?" ends with the above

Definition: a field which contains the real numbers and a number whose square is —1. o

DEFINITION 1.1.3 (REAL AND IMAGINARY PART)
The projections of R? onto the entries are called real and imaginary parts, respectively:

R: C>R, (z,y)— x, 3: C—R, (2,9) vy,

such that z = R(2) 4+ iS(z) for z € C.

DEFINITION 1.1.4 (ABSOLUTE VALUE)
The EUCLIDEAN norm ||[(z,y)| = /22 + y? defines a topology on C, and thus also the
notions of neighbourhood, convergence and continuity. We write |z| instead of ||z|| and call

it the absolute value, that is

2] = v/ (R(2)) + (3(2))2.

Every vector (z,y) € R? of length 1 can be represented in angle notation as angle notation

({13, y) = (COS(QO), Sin(@))
with a ¢ € R, determined uniquely up to a multiple of 27. Hence every complex number
z € C can be represented as
z = |z|(cos(p) + isin(y)). (2)

The angle ¢ is the argument of z. For z # 0, the argument is only defined up to a multiple  argument

of 27, for z = 0, the argument is either not defined or arbitrary.

EULER’s equation states
e’ = cos(y) + isin(yp)



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

hence one can write the the polar representation (2) as
z = |z]e®.
DEFINITION 1.1.5 (COMPLEX CONJUGATION)
Complex conjugation is the map
~—: C—-C, T+ iy —x+1y =z —y.

and x + 4y is the complex conjugate of x + 7y.

z zz
calculation shows that C is a field and not only a ring, as one can also divide by complex

numbers; the reciprocal of a complex number is again a complex number:

We have |z|2 = 2z for all z € C and hence 1 = Z = &= for all z € C\{0}. The latter

1 x .y
= —i )
Tty x4y 2+ 32

Remark 1.1.6 (Complex multiplication as an R-linear map) Consider the complex
number w = a + ib = |w|e’¥ for a,b € R and ¢ € [0,27). What is the effect of multiplying

with a complex number? For z,y € R we have (cf. (1)!)

o v 296 90

- cos(p) —sin(p)\ (=
—— \sin(p) cos(p) | \y)’

eR

rotation matrixeSO(2)

where SO(2) © R**? is the special orthogonal group of two dimensions. Hence the map

z — w - z is a scale rotation with center 0, angle ¢ (which is the argument of w) and scale

factor |w].
The map
a —b 9% 2 ) a —b
C—->R-S0(2) = ca,be Ry c R*™7, a+ib—
b a b a
is a field isomorphism (Exercise!). o

1.2 | Differentiability

DEFINITION 1.2.1 (COMPLEX DIFFERENTIABILITY, HOLOMORPHY, ENTIRE)
Let U < C be an open subset and zg € U. A function f: U — C is (complex) differentiable

on U if the limit
L £) = (o)
z2—20 Z— 20

exists. In that case, f/(zp) is the derivative of f at zo. If f is differentiable for all zg € U,

then it is holomorphic or (complex) analytic. A holomorphic function on C is an entire

= f/(Zo) eC.

function.

Remark 1.2.2 (Relation to real differentiability, computation rules)
The definition of the derivative is verbatim the same as in real analysis. Hence many of the

same rules and theorems also hold in the complex case: the derivative is linear, the product

scale rotation

holomorphic

entire

15.04.2021



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

and the chain rule hold and the proofs are the same. Hence polynomials p(z) = >);_ axz®
are entire and rational functions f(z) = 58,

and holomorphic on the open set U := {z € C: ¢(z) # 0}.

where p and ¢ are polynomials, are defined

Not all theorems of real analysis hold in the complex case. For example, C is not an ordered
field, so there is no sensible way to define the relation < on C such that it is compatible with
addition and multiplication. Hence all theorems which rely on greater- or smaller-relations
need not hold. For example, there is no such thing as the Mean Value Theorem (that is,
fz1) — f(zo) = f'(§)(x1 — x) for some & in between zp and z1) in complex analysis. One

can however compare absolute values:
|f(21) = f(20)| < M|z1 — 2o

holds for all zg, z; € C if M is an upper bound for |f/(z)| and suitable conditions hold. o

1.3 | Power series

A large class of holomorphic functions are the power series. Power series are a more impor-
tant tool in Complex Analysis than in Real Analysis, because, as we will see later, every
holomorphic function is represented by a power series around every point of its domain of
definition. In Real Analysis, the function e 1(0,00) () is smooth but not analytic, that is,

representable by a power series, in zero.

If a power series centered at zero, z — ZZO:O apz*, converges for z; € C, then it converges
for all z € C with |z| < |21| because for all but finitely many k € N we have

k
Zk

&
21

z

k‘ _ -

|arzy | <
—

<

laxz

)

50 Dop_ arz" is majorised by the convergent geometric series 3,7 ¢* with ¢ == | =] < 1.

Hence there is an R € [0, 0] := R>o u{o0} so that Y, axz® converges absolutely if |z| < R
and diverges if |z] > R. In the complex case, we cannot make a statement for |z| = R,
anything can happen on parts of that circle. If » € (0, R), then the power series converges
uniformly on the disk

D, ={2eC:|z|<r}
In particular, f(2) = Y,,_, axz"® is continuous on D == {z € C: |z| < R}. All of the above

works similarly for power series Y. ax(z — ¢)* with centre ¢ # 0.

THEOREM 1.3.1: POWER SERIES MAY BE DIFFERENTIATED TERMWISE

Suppose the power series Y. ay(z — 20)* has radius of convergence R € (0, 0] and
let

0
f:{zeC:|z— 2| <R} - C, ZHZak(Z—ZO)k
k=0

be the function defined by it.
@ The power series 35 | kay(z — 20)*~! has the same radius of convergence R
and therefore defines a function
0
g:{zeC:|z— 2| < R} - C, ZHZkak(z—zo)kfl.
k=1

@ The function f is holomorphic.

F e

Fig. 1: Convergence ra-

dius of a power series.
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Proof. @ Use the formula for the radius of convergence (like in the real case)

1
— = limsup /|ay|
k—0

R

(with obvious modifications for 0 and c0).

@ see Jénich, Ferus’ notes, Ahlfors, or later in this course. O

Corollary 1.3.1 (Power series uniqueness theorem)
If [ is given by a power series with positive radius of convergence, i.e.
0

ak zZ— ZO s
k=0

then
F®) (20)
kKl
In particular, two power series with centre zy have the same coefficients, if they define the

ap =

same function in the neighbourhood of zg.

Proof. Repeated application of Theorem 1.3.1 yields

[00)
£ (2) Z v (k=m A+ Dag(z — 20)™
k=m
and hence
™ () =m-(m—=1)-...-1 -ty =m! - ap,. [

Example 1.3.2 (Well known entire functions)
All functions known from Real Analysis which are defined by power series are also defined
on disks in the complex plane. In particular, functions defined by power series that converge

everywhere on the real line also converge everywhere in the complex plane, for example

0 Z 0 2k 0 2k+1
; R cos( Zzl Bl sin(z) = g 2k n 1) (3)

o0

cosh(z
k:o k=0

Example 1.3.3 (CHEBYSHEV polynomials (Tut I))
We show that there exists a sequence of polynomials (T,,: C — C),en such that cos(nz) =
T, (cos(x)) holds for all z € C.

We clearly have T} (z) = z, cos(z) = 1 (e + e~™) (by (3)) and thus

(e +e72%) = — (e + e_“”)2 —1=2cos?(x) — 1

DN =
N =

cos(2z) =

and hence Tp(z) = 222 — 1. We complete the proof by induction (details are left as an

exercise):
cos(nz) = = (e —e™""7)

1

2

1 (ei(n DE e—z(n—l)m) (eiz n e—m) 1 (ei(n—Q)z n e—i(n—Q)w)
2 2

2

cos((n — 1)x) cos(z) — cos((n — 2)x). o
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1.4 | Complex and real differentiability

DEFINITION 1.4.1 ((TOTAL) DIFFERENTIABILITY IN R?)
Let U c C = (RQ, +,-) be an open set and f: U — C. Then f is differentiable at zg € U
in the real sense if there exists an R-linear map F: R? — R? such that

F(2) = f(z20) + F(z — 20) + a(z)  with lim oz) _,,

imzo |2 — 20|

An R-linear map on R? is represented by a real (2 x 2)-matrix: for all z,y € R we have

(-6 C)

for some a,b,c,d € R. The function f is differentiable in the complex sense if F' is also
C-linear on C, that is F/(\z) = AF'(2) for all A € C (the additivity is the same as in the real
case). In particular F'(z) = F(z-1) = zF(1), so a C-linear map F on C is just multiplication
by the complex number F(1). If F is C-linear, it is in particular R-linear, so by (4) we have

Q) - (b d) . ((1)) _ (b) ot b

On the other hand, we have seen in Remark 1.1.6 that multiplication with a complex number

has a particular matrix representation:

F- (‘”) = (a +ib)(z + iy) = (‘b‘ _b> : <x>
Y a Y

Hence f is complex differentiable if and only if the matrix representation of d,, f has the

form (‘; _ab). If f: U - R? is an function and U < R? is open, for z = z + iy we can

separate f into its real and imaginary components:

f(z) = f(z,y) = (u(z,y),v(z,y)) = u(z,y) +iv(z,y).
du  Ju
T T 5 5 T a —=b\ [z
Y Y oz oy/) lz=(zo,y0) \Y b a Yy
or equivalently, the equations
du v ov ou

%—a—y and %z—a—y (5)

Hence

have to hold. We summarise our findings in a Theorem.

THEOREM 1.4.1: REAL AND COMPLEX DIFFERENTIABILITY

A function f: U — C is complex differentiable in zg € C if it is differentiable in the
real sense and one (and hence both) of the following two conditions hold:

e The derivative d, f: R? — R? is C-linear as a map on C.
e The CaucHY-RIEMANN differential equations (5) hold in z.
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In this case we have

7(20) = S (z0) + i ().

This theorem allows us to transfer theorems from two dimensional Real Analysis to Complex
Analysis, in particular the Schrankensatz, as a complex differentiable function is a real
differentiable function on R? with the additional condition that the CAUCHY-RIEMANN
equations hold.

Example 1.4.2 (Complex differentiability)

e The function f(z) = Z is, in real terms,

(G)-C)

The JACOBI matrix is (§ % ), so the CAUCHY-RIEMANN equations are nowhere satis-

fied and hence f is nowhere differentiable in the complex sense.

Intuitively, this makes sense as complex conjugation is reflection on the real axis and

thus locally not well described by a scale rotation (multiplication with (‘; _ab)).

(V:) We can also directly check Definition 1.2.1: let zp € C. For z € C\{zp} we can

write z — 2o = r,e*¥= for r, > 0 and ¢, € R. Then

f(Z) B f(Z()) _ Z =20 _ rze_i(pz _ e—2itpz.

Z— 20 z— 20 r,etP=

The limit lim,_, ., e=2%= does not exist.

o Let g(2) :=2% = (v —iy)? = 2% — y? — 2izy is, in real terms

() -5

The JACOBI matrix is 2( 5 ~¥). The CAUCHY-RIEMANN equations are only fulfilled

in (0,0). It is not a holomorphic function, as {0} is not an open subset of C. o

We want to given an example for a case where we use real differentiability for a complex
function. In Real Analysis one learns that if a function defined on an interval has zero
derivative, the function is constant. This was proven with the Mean Value Theorem and
that proof does not transfer the complex case, as there is no order relation in the complex
plane. But we can use the Theorem of Multivariate Real Analysis stating that if function

R? 5 U — R?, where U is connected, has zero derivative, it is constant.

THEOREM 1.4.2: CONSTANCY CRITERION

If f is holomorphic on the open and connected set U < C and f'(2) = 0 for all z € U,

then f is constant.

Proof. This follows from the corresponding theorem of Multivariate Real Analysis, as in-
stead of the Mean Value Theorem we can use the Schrankensatz, with is still valid in C. []

Open and connected subsets of the complex plane play a crucial role in Complex Analysis.
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DEFINITION 1.4.3 (DOMAIN)

A domain (in C) is an open and connected subset of C.

Corollary 1.4.4 (Real-valued Constancy criterion)

If f is holomorphic on a domain and real-valued, then f is constant.

Proof. If f = u + v is real-valued, then v = 0. By the CAUCHY-RIEMANN equations we

have ‘;—g = %Z =0and ‘;—Z = f% = 0, so u and therefore f are constant by Theorem 1.4.2.[]

Hence there are no interesting real-valued holomorphic functions on a domain.

1.5 [ The argument function and the complex logarithm

We have defined the argument of a complex number z € C as the angle that z, viewed as a
position vector in R?, has with the positive real axis. This angle is only well defined up to a
multiple of 27 and in particular, there is no way to define arg as a single-valued function on
the whole plane without introducing discontinuities. The standard way to resolve this issue

is to cut the plane along the non-positive real axis.

DEFINITION 1.5.1 (ARGUMENT FUNCTION)
On the complement of the non-positive real axis

U=C\{reR:x<0}={re?:r>0, pe (—m,m)}
one has a well-defined argument function

arg: U — (—m,m), re’ — .

Remark 1.5.2 (Continuity of arg) One cannot define the argument as a continuous
function on the whole complex plane as on the complement of U one can assign both 7
and —m as arguments of the complex numbers, but both choices yield a discontinuous argu-

ment function. o

One could choose a different slit, e.g. by cutting along the positive imaginary axis or
along any curve starting in zero and going to infinity. The definition we have chosen is the

"principal value" of the argument function.

It is not entirely obvious how to write an equation for arg(z) with z € U. For example, this

works:
arctan (£), for z > 0,
arg(z +1y) = { 5 — arctan (%) , fory>0, (6)
— 3 — arctan (%) , fory<0.

From (6), we can, for e.g. © > 0, compute the partial derivatives

darg(x + iy) 1 y Y and darg(z + iy) _ 7)

ox - 1+(z)2-(_x2)=_x2+y2 dy 22 +y?

It is left as an exercise that the partial derivatives are the same for y > 0 and y < 0.

The partial derivatives of arg are continuous (in fact, they can be continuously extended to

domain

21.04.2021
2 ]

a3 ()

Fig. 2: The argument
of a complex number
non lying on the non-
positive real axis is well
defined as the angle it
makes with the positive
real axis.

argument function

Remark 1.5.3 In
many computer
languages, there is the
function atan2(y, x),
which is defined for all
(z,y) # 0 and gives
arg(z + iy) on U and
has the value 7 on the
nonpositive real axis,
which is exactly its set
of discontinuity points.o
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C\{0}). The function arg: U — R is therefore differentiable in the real sesnse. But as a real

valued non-constant function, it is not holomorphic by corollary 1.4.4.

The complex exponential function (3) is not injective, as e = e(2km+)i 1holds for all y € R
and all k € Z. But we can define the complex logarithm as the inverse function of the
complex exponential restricted to the horizontal strip {0 + i€ € C: p e R, € (—m,m)}: if

z =re' for r = |2| > 0 and ¢ € (—7,7), then
log(2) = log(|z]) + it,
where log(|z]) is the natural log of the positive real number |z| = r.

DEFINITION 1.5.4 (PRINCIPAL VALUE LOGARITHM)

The (principal value) logarithm function is logarithm

log: C\{reR:2 <0} —>C, z — log(|z|) +iarg(z).

Example 1.5.5 (The complex logarithm is holomorphic)
We check the CAuCHY-RIEMANN equations for

w(z,y) == R (log(z + iy)) = log(n/z2 + y2) = %log(xQ +4?)

and
v(z,y) = S (log(x + iy)) = arg(z + iy).
We have
ou(z,y) 1 2z x (7)) darg(z +iy) Ov(x,y)
ox :§x2+y2:x2+y2: Jy B oy '
ou(z,y) 1 2y y (7 Odarg(x+1iy) ov(x,y)
oy 22 +¢2 224y oy T

Hence by Theorem 1.4.1 the complex logarithm is holomorphic with derivative

. ou(z,y) ov(x,y) x—iy z 1
/ ) )
log'(z =@ +1iy) = oz ' s T2 ry? 2z 2 o

1.6 | Harmonic functions

If we talk about real and complex differentiability, there is one further connection that is
important.

Suppose a holomorphic function f = u + iv is two times differentiable in the real sense.  We will later see that
holomorphic functions

Then the CAUCHY-RIEMANN equations imply

u 0 Ou ()

a2 " Owox

are infinitely often
ov 62’[] differentiable in the

oo _ v
dr oy  0xdy

complex sense.

and

Pu 0 0u@) 0 ov 0%

a2 dyady dyox  Oydx’

By ScHWARZ’ theorem, we can interchange the order of differentiation to obtain

2 2
Au - o°u  0°u

where A is the LAPLACE operator. Analogously, we obtain Av = 0.
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DEFINITION 1.6.1 (HARMONIC FUNCTION)
A function f defined on an open subset U < C that satisfies the LAPLACE equation Af = 0

is a harmonic function.

Remark 1.6.2 (Harmonic functions in other dimensions)

In one (real) dimension, the harmonic functions are the affine linear functions, but in higher dimensions,
they can be more complicated. Hence harmonic functions can be seen as a non-obvious generalisation of
affine linear functions to higher dimensions. o

By the above calculations, the real and imaginary parts of a holomorphic function are

harmonic functions.

Suppose u: U — R is a harmonic function on a domain U < R. Does there exists a harmonic
function v: U — R such that f = u + v is holomorphic? For this to be the case, the partial
derivatives of v would have to fulfil the CAUCHY-RIEMANN equations. In Real Analysis, one
learns that a necessary condition that for "given z- and y-derivatives, is there a function
with this z- and y-derivative?", is that

Py PPu

oy ox?
holds, which is satisfied because u is harmonic.

This condition is also sufficient if U/ is simply connected (or: diffeomorphic to R? or convex
or star-shaped. In Analysis IT one learns that a closed 1-form has an antiderivative (or:
a rotation-free vector field is a gradient field of a function) if U is simply connected. We

conclude:

Lemma 1.6.3 (Harmonic function is real part of holomorphic function)
On a simply connected domain U < C, every harmonic function is the real part of a holo-

morphic function.

Example 1.6.4 The function u(z,y) = log(y/z2 + »2) is harmonic on the punctured plane
C* = C\{0} (which is not simply connected). So on the slit complex plane C\{z € R :
2 < 0}, which is simply connected, there is a harmonic function v such that f = u + v is
holomorphic. The function v is only determined unique up to an additive real constant. If

we choose v(1,0) = 0, then v(z,y) = arg(z + iy) (and hence f = log).

On C*, there is no harmonic function yielding a well defined holomorphic function, because
that function would discontinuous on the slit. o

We close this section with a simple consequence of the fact that the real and imaginary parts

of holomorphic functions are harmonic.

THEOREM 1.6.1: COMPOSITION OF HARMONIC AND HOLOMORPHIC MAP

Let f: U — C be holomorphic and h: f(U) — R harmonic. Then h o f is harmonic.

The idea of the proof is that we consider for h a second function H to make it the real part
of holomorphic function. But this doesn’t work globally. Being harmonic is a local property:

if you can show that it is true on every neighbourhood of every point, it is true globally.

Proof. By lemma 1.6.3 for any point f(z9) € f(U) (which is open), the harmonic function

h is the real part of a holomorphic function H defined on a simply connected neighbourhood

harmonic

punctured plane

CO- ) >
¥W/w

Fig. 3: Illustration
of the setup of Theo-
rem 1.6.1.



1 HOLOMORPHIC FUNCTIONS (IN ONE VARIABLE)

of f(zo), e.g. an sufficiently small (such that it is contained in f(U)) open disk around
f(z0). By the chain rule for differentiation, the composition H o f is holomorphic on an

open neighbourhood of zy. So the real part of h o f is harmonic on a neighbourhood of z.

Since this is true for all zg € U, ho f is harmonic on U. O

1.7 | Conformal maps

We will discuss the geometric properties of holomorphic functions.

Suppose f: U — C is holomorphic on a domain U and let ¢: [tg,t1] — U be a differentiable

curve in U, whose velocity ¢ vanishes nowhere.

, C
[hns] — ’ _I__, w&c

The image curve under f is f oc and its velocity vector is, by the chain rule,

d !/ /
3 (Foat) = f(ct) - (1)

If f'(c(t)) = re’? # 0, then the velocity vector of ¢ is rotated by an angle of ¢ and scaled
by a factor of r > 0. If we take two curves c; and co, which intersect in some point
c1(t1) = ca(t2), then f rotates their velocity vectors by the same angle. Hence the angle of

intersection <¢(¢i1(t1), ¢2(t2)) remains the same after f is applied to both curves.

— =G

[,

Gl

DEFINITION 1.7.1 (CONFORMAL MAP)
A map that preserves angles is conformal.

We have just seen:

THEOREM 1.7.1: CHARACTERISATION OF CONFORMAL MAPS

Holomorphic functions with nonvanishing derivative are conformal.

10
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Example 1.7.2 The function f(z) = 22 is entire, as it is a polynomial. It maps the straight
lines (that make an angle p with the real axis) c,(t) = te’? to (f o c,)(t) = t?€**¢. The

function f doubles all angles at zero, in particular, it does not preserve angles.

[ H

Ca Loc,

Fig. 4: Straight line curves and their image curves under f(z) = 2.

This doesn’t contradict Theorem 1.7.1, as f’(0) = 0 and 0 is the point where all curves c,
intersect. As an exercise one checks that f(z) := 2™ for n > 1 multiplies all angles at zero

with n. At all other points f(z) = 22 preserves the angles, as z = 0 is the only zero of f’. o

We will now look at a sort of converse of Theorem 1.7.1. Let’s look at angle preserving linear
maps because a nonlinear map is conformal if its real derivative - a linear map - is conformal.
We only consider invertible maps, because this makes the discussion less complicated and
prohibit that nonzero vectors are mapped to the zero vector, which is tricky since the angle
between the zero vector and any other vector is not defined.

Lemma 1.7.3 (Characterisation of conformal maps)
For an invertible R-linear map F: R* — R? the following statements are equivalent:
@ F preserves angles.
@ F preserves orthogonal angles: if z and w are orthogonal, then F(z) and F(w) are

also orthogonal.

@ F is C-linear (that is, F(iz) = iF(z) for all z € C) or F is C-antilinear (that is,

Proof. "@) — @": is obvious.

"@ == @”: is almost already known: we know that F'is C linear if and only if

fC)-(00)

i.e. if F'is a scale rotation. If F is C-antilinear, then F' is a scale-reflection in a line through
the origin.

"@ — @" We write 1 = (}) and i = (9). So 1 and i are orthogonal and so are
l+i=(})and1—i=("1). By @) F(1 +4) and F(1 — 1) are orthogonal and hence (by
the additivity of F')
0=CF+4), F(1—1i)) = (F(1) + F(i), F(1) = F(i) )
= (F1), F(1) = F(i) ) +(F (i), F(1) = F(i) ) = (F(1), F(1) ) = (F (i), F(i) ) -

Hence F(1) and F(i) have the same non-zero (as F is invertible) length and are orthogonal.
Hence (as we are in the plane) F (i) = iF (1) or F(i) = —iF (1), as a 90 degree rotation is
multiplication with +i in C. ]

11
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Addendum: How can we distinguish between the two cases in @: we look at the determi-

nant: we have
det(F(1), F(i)) = det(F(1),+iF(1)) = £ det(F(1),iF (1)) = |F(1)|2 >0

Hence if F' also preserves orientation, F is C-linear.

We have essentially proved the following

THEOREM 1.7.2: GEOMETRIC CHARACTERISATION OF HOLOM. MAPS

A real differentiable map f: U — C on a domain U < C is holomorphic if its

derivative in the real sense is everywhere angle and orientation preserving.

The zero function is holomorphic, but it doesn’t preserve angles, so the theorem can’t yield

an only-if statement.

Stereographic projection

DEFINITION 1.7.4 (STEREOGRAPHIC PROJECTION)
The stereographic projection from the north pole e3 = (0,0,1) € R3 is

§ 1
S*\{es} — C, 0| = (€ +in)
-
¢
Its inverse is
2x
+ 1 1z 1 2
X EE —>
Yy 1+ |Z|2 2y
2] — 1

It is a bijective and conformal map (Exercise!).

DEFINITION 1.7.5 (RIEMANN SPHERE)
The RIEMANN sphere (or: extended complex plane)

C:=CP! = Cu{w}

is the complex plane C with the extra point oo added.

The point oo corresponds to the north pole of S? under stereographic projection. The
stereographic projection is a bijective map from S? to C. Since S? has a topology induced

by the ambient R?, the stereographic projection induces a topology on C.

In the extended complex plane, it makes more concrete sense to say that a sequence of
complex numbers converges to c0; it really means the sequence of complex numbers converges
to the point oo € C in the topology on C, it is not only a short form for saying that this
sequence diverges properly.

12
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Fig. 5: The stere-
ographic projection
from the north pole e3.

Here,

C P! = (C?\{0})/~ with
x ~ y if there exists a

A € C\{0} such that

T = A\y.
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/ \

/ skeeoyrephe
\ .

{ ] pejechos

\\'/

Fig. 6: The stereographic projection maps the meridians and circles of longitude (or latitude)
to straight lines through the origin and concentric circles around the origin. The complex
logarithm maps circles (all points with the same absolute value) to circles with the same
real part because the real part of the logarithm is the logarithm of the absolute value. The

orange rays in the middle picture are defined by all their points having the same argument.

As the imaginary part of the logarithm is the argument, they get mapped to horizontal lines.

Since the stereographic projection and the logarithm preserve angles, their composition is
an angle preserving map that maps circle of latitude and longitude to orthogonal families
of straight lines. This is known as MERCATOR’s projection. If one prints it correctly, one
gets a map of the earth which is uniquely determined by the fact that the directions of
the compass are exactly represented on the map: not only is north, south, east and west
always up, down, left and right, but also all angles between these principal directions are
represented correctly in the map. It turns out that this is the only map projection with this

property.

The stereographic projection is a even conformal homeomorphism between the S? and C.

1.8 | Mobius transformations

A MOBIUS transformation is an example of a holomorphic map, which is simple, but also
complicated enough to be interesting. Let us consider functions of the form
az +b
Z =
1) cz+d

for a,b,c,d € C, that is, rational functions with denominator and numerator being polyno-

mials of degree at most 1 (hence the name fractional linear transformations).

We want to exclude the case that the numerator and denominator are linearly independent -
that one is a multiple of the other - because then the function would be constant. If ad = bc

and d # 0, then
adz +bd  bcz +bd  blcz+d) b

1(z) = cdz+d®  cdz+d®  dlezHd)  d
Similarly, if ad = bc and ¢ # 0, then f(z) is also constant.

DEFINITION 1.8.1 (MOBIUS TRANSFORMATION (PRELIMINARY DEFINTION))

A MOBIUS transformation is a function

az+b

J: €=~ Tt d

13
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where a, b, c,d € C are such that ad — bc # 0.

Note that the MOBIUS transformations with the coefficients a, b, ¢, d and Aa, \b, Ac, Ad, where
A € C*, are the same function. Hence the coefficients determine the function, but the

function only determines the coefficients only up to a non-zero scale factor A € C*.

Hence we can (but do not need to) require that ad — be = 1. If we do, then the MOBIUS
transformation determines the coefficients up to a global sign change, i.e. a factor of +1.
A transformation is usually a bijective map. This is indeed the case for the MOBIUS trans-
az+b a

] (which is not equal to %, as this would require b = d = 0, violating
ad — be # 0), then cw — a # 0 and thus

formation: if w =

dw —b

czw+dw=az+b < ((w—a)z=—-dw+b < z2=——.
—Ccw + a

Hence the MOBIUS transformation f(z) = 2%+t is injective (one-to-one) and its inverse is

ca+d
FH(w) = 2t
There is something that is not nice: f(z) is not defined if the denominator vanishes, that
is z = —%. Furthermore, it doesn’t take the value ¢ (because there the inverse is not well

defined). This is all presuming that ¢ # 0. If ¢ = 0, then f is a similarity transformation

(translation + scale rotation), it is just §z + 27 which is a polynomial - and hence boring.
Our way out of this is to consider the MOBIUS transformations as functions from C to C

instead of from C to C.

DEFINITION 1.8.2 (MOBIUS TRANSFORMATION)
A MOBIUS transformation is a function

. g az +b
f(C—>(C, ZHm,

where
f(—é) = and f(©)=2%, ifc#0,

(6]

f(0) = o0, if c=0.
and a, b, c,d € C are such that ad — bc # 0.

THEOREM 1.8.1: MOBIUS GROUP

The MOBIUS transformations form a group of bijective functions under composition.

Proof. The only thing left to show is that the composition of two MOBIUS transformation

is again a MOBIUS transformation. Let f(z) = % and g(z) := Zig, where ad — be # 0 #

ad — bé. Then for z € C we have

(fo )(Z)ia'%"‘biadz+a5+béz+bc‘l~7 (ad+b€)z+a5+bd7. az+b
g C'%*‘d caz + cb + déz + dd (cd—f—d&)z—i—ci)—l—dd “ertd

O

But this shows even more: consider

a b\ (a b\ (aa+bé ab+bd\ (a b
¢ d)\¢ d] \ca+dé cb+dd)] \é¢ d

14
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Hence the map

az+b
cz+d)’

where Mob is the group of MOBIUS transformations, is group homomorphism with kernel

Cc

®: SL(2,C) — Mab, GQHGH

{+idy} < R**? (so ® is two-to-one). One can get an isomorphism between the projective
special linear group PSL(2, C) := SL(2,C)/ker(®) and Méb.

Example 1.8.3 (Affine transformations on C (Tut II))

Consider the affine transformation A: C — C, z — az + b. It is bijective if and only if
a # 0. The bijective affine transformations are a group with respect to composition. If
a =1, b =0, A has infinitely many fixed points, if « = 1 and b # 0, it has none and if
a # 1, it has exactly one. One can view these transformations as MOBIUS transformations
A: C — C with A(w0) = 0. o

We will now see an example of a particularly simple MOBIUS transformation, which is not
as simple as a rotations, translations or scalings.

Example 1.8.4 (Inversion as MOBIUS transform) Consider the MOBIUS transforma-

tion

It can be written as a composition:
f2 z
— | — ),
|22

where f7 is the inversion in the unit circle and f5 is complex conjugation. The map f; is

no %
EE

holomorphic on C*. o
THEOREM 1.8.2: IMAGES OF CIRCLES AND STRAIGHT LINES UNDER IN-
VERSION IN THE UNIT CIRCLE
Inversion in the unit circle f(z) := L maps
z

@ circles that do not pass through 0 to circles,

@ circles that do pass through 0 to straight lines,

@ straight lines that do not pass through 0 to circles,

@ straight lines that do pass through zero to straight lines.

Proof. @ Consider a circle with centre ¢ and radius r, that is

{zeC:|z—c|* —r* =0} (8)
The points w = < of the image of the circle (8) satisfy

2
1 1 1 1 1
—rl=(=—c)(=-C) -1 = — —c=—¢— +|c|* -1
w w w2 W w

If w # 0, then this is equivalent to (by multiplying through with |w|? = ww)

0=1—cw—cw+ (|c|* —r?)|wf 9)

15
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Fig. 7: The intersec-
tion of the ray connect-
ing z to the origin and
the segment connecting
the tangency points on
the unit sphere is ﬁ,
SO % is its reflection at
the real axis.
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If |¢| # r (i.e. if the original circle does not pass through 0), then this is equivalent to
(by completing the square)

_ 1 _cw—i—@
TP e

c _ ¢ |c|? N 1
2 )\ ) TR e

2
7.2

(e = )2

0

C
e[ =7

_’w

which is the equation of a circle with centre ‘CP%T‘Z and radius ‘Cl%rz

@ If the original circle passes through 0, then |c|? = 72, so

(9) becomes
1 =cw+ cw,
which is the equation for a line. Let ¢ = ¢ + icy and w = wy + iws, then

cw + cw = 2(crwy — cows)

That is, a linear expression in w and W is a real linear expression in R(w) and $(w).

@) and @ follow from (@) and @) as f~* = f. O

DEFINITION 1.8.5 (MOBIUS CIRCLE)
A MOBIUS circle is either circle in C or the union of a straight line in C and {o0}.

This definition makes sense as all points of a circle passing through zero are mapped to a
straight line, except 0, which is mapped to o by f.

Corollary 1.8.6 (Inverted MOBIUS circles in the unit circle are MOBIUS circles)
The map f maps MOBIUS circles to MOBIUS circles.

Warning: this maps does not map the centre of a circle to the centre of the image circle

(except when the centre is 0).

Lemma 1.8.7 (Unique MOBIUS transform with f(z1) = 0, f(z2) = 1, f(z3) = ®0)

For any three distinct points z1, 22, 23 € C, there is a unique f € Méb with

f(z1) =0, f(z2) =1, f(z3) = o0. (10)

Proof. Existence. The map
Z9 —Z3Z— 21

z) =
f( ) Z9 —Z1 2 —Z3
fulfills the condition: we have f(z1) = ﬁhEZS =0, f(z2) = %ﬁ = 1 and
flzg) =" 2= 2557 = waswellasa = 25—23, b= z1(23—22), ¢ = 22—21, d = 23(21— 22)
and thus

ad —be = (29 — 23)23(21 — 22) — 21(23 — 22) (22 — 21)

= (Z2 - 23)2’3(2’1 - 22) - 21(Z2 - 2’3)(2’1 - 2’2)

as the z; are pairwisely distinct. Alternatively: if ad = bec, then f were constant, but the

constructed f takes the values 0 and 1 so ad # bc.

Uniqueness.

16
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@ Suppose f(z) = 2t satisfies f(0) = 0, f(1) = 1 and f(o0) = o0. Then f(0) = 0
implies that b = 0, f(o0) = oo implies that ¢ = 0 and f(1) = § = 1 implies a = d.

So the only MOBIUS transformation that fixes 0,1 and oo is the identity (if @ = 0, then
f) #1).

@ Suppose f1, fa are MOBIUS transformations satisfying (10). Then g = fo o fi ! fixes
0,1 and o0, so g = id by the previous step, so f1 = fs. O

Now it is easy to prove the interesting theorem.

THEOREM 1.8.3: 3 POINTS + THEIR IMAGES DETERMINE M OB UNIQUELY

If 21,29,23 € C and w1y, Wo, W3 € C are each three points, then there is a unique
MOBIUS transformation f satisfying f(z;) = w; for i € {1,2,3}.

Proof. Existence. Let g and h be the MOBIUS transformations sending z1, 22, z3 and
w1, ws, ws to 0,1 and oo respectively, which exist by lemma 1.8.7. Then f := h~!og satisfies
f(z) = w; for i e {1,2,3}.

Uniqueness.

@ Suppose f € Mob and f(z;) = z for i € {1,2,3}. Then f = id. Indeed let g € M&b be
the map with g(z1) = 0, g(22) = 1 and g(z3) = 0. Then h := go fog~! € M&b satisfies
h(0) =0, h(1) = 1, h(oo) = oo. By lemma 1.8.7, h = id and thus f = g~ ohog =id.

@ Suppose f; and fo are MOBIUS transformations with f;(z;) = w;, i € {1,2,3}, j €
{1,2}. Then f,* o f; € Mdb fixes 21, 29, 23, s0 by the previous step, f, "o fi = id,

hence fo = f1. O
Example 1.8.8 (The MOBIUS transformation f(z) := z;:)
The MOBIUS transformation f(z) := z—:_z satisfies f(i) = 0, f(—i) = oo and f(0) = 1.
If z e R, 'then lf(z)] = IZ;} = 1, so f maps the Ru{oo} to the unit circle. We have

f) = %T_-i = =2 = —jand f(—1) = == = 4.

2 —1—

.
.t
> & @ "4 L -A (O]
= ] L
—

Fig. 8: The (pre)images of +1, +i and o0 of f(z) == 2.

Before we show that all MOBIUS transformations map MOBIUS circles to MOBIUS circles,
we show a Lemma which makes the proof of that theorem very easy.

17
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Lemma 1.8.9 (Decomposition of MOBIUS transformations)

Every MOBIUS transformation f(z) = ‘CIZZIZ is a composition of MOBIUS transformations
of the following form.:
z—z+b, beC (translation)
z— az, aeC* (scale-rotation)
1 . .
z - (inversion)
z

Clearly the first two MOBIUS transformations map MOBIUS circles to MOBIUS circles and
for the third one, we have shown it in Theorem 1.8.2.

THEOREM 1.8.4: f € MOB MAPS M-CIRCLES TO M-CIRCLES

Every MOBIUS transformation maps MOBIUS circles to MOBIUS circles.

Proof. (Of lemma 1.8.9) If ¢ # 0, then

az+b ad —bc 1 a
= — + =
cz+d c cz+d ¢

by polynomial division. So f is the composition of the following maps

1
z—> cz = 21, z1+— 21 +d = 29, Zo —> — =! 23,
22
ad — be a
23 —> — 23 =! 24, 24— 24 + —.
c c
——
#0
The case ¢ = 0 is clear. ([

We have seen that MOBIUS transformations have simple forms and are flexible; they map
any three points to any other three points, and they map MOBIUS circles to MOBIUS circles,
but they do not preserve lengths, they are not isometries. But is there any other quantity

that is preserved? The answer is yes:

DEFINITION 1.8.10 (CROSS RATIO)

The cross-ratio of four points z1, 22, 23, 24 € C is

21 —Rk2 23 — 24
Cr(21722,2372,’4) = — .
22 — 2324 — 21

If one of the points is o0, this is supposed to be evaluated by cancelling infinities.

For example,

w21 — 22 0—71, 21— 23 23— 21

cr(z1, 22,00, 24) = = =

MZ4—21 Z4 — 21 Z4 — 21

THEOREM 1.8.5: WHEN IS cr(z1, 22, 23, 24) € R?

The cross-ratio of four points z1, 22, 23, 24 € C is real if and only if the four points lie

on a MOBIUS circle.

18
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THEOREM 1.8.6: MOBIUS TRANSFORMATIONS PRESERVE CROSS RATIO

@ For any f € Mob and any four points z1, 29, 23, 24 € C we have

cr(z1, 29, 23, 24) = cr(f(z1), f(22), f(23), f(24))-

@ Conversely, MOBIUS are the only transformation that preserves the cross ra-
tio: if cr(z, 22, 23, 24) = cr(wy, wa, w3, wy), there there exists a f € Mob with
f(z;) =w; for je{1,...,4}.

So in summary: for two points, their distance is not changed under isometries (so, Eu-
CLIDEAN motions), so this is the only invariant for MOBIUS transformations. For three
points, there is no invariant, as one can map any three points to any three other points and

for four points, there is only one invariant, which is the cross-ratio.

One can prove both theorems by a straightforward and lengthy calculation, but one can
also prove both theorems without preforming hardly any calculations by using the following

observation:

Lemma 1.8.11 (Characterisation of the cross-ratio in terms of M&b)
The number cr(z1, 29, 23, 24) is the value h(z1) of the MOBIUS transformation h with h(z) =
0, h(z3) =1, h(z4) = 0.

Proof. Consider the map
23 — R4 2 — 29

h(z) =

23 — 222 — 24
from lemma 1.8.7. Then

23 — R4 21 — 22 Z1 — k9 23 — 24
h(z1) = = = cr(z1, 22, 23, 24)-
23 — 2221 — 24 29 — 2324 — 21 J

Proof. (of Theorem 1.8.5) Let h € Mob be the map satisfying h(z3) = 0, h(z3) = 1 and
h(z4) = o0 and let w = h(z1) = cr(z1, 22, 23, 24), where the last equality is by lemma 1.8.11.
Consider the MOBIUS circle through zs, 23,24 (three points in the complex plane always
determine a circle). If either point is equal to oo, the MOBIUS circle is a line, otherwise it
is a circle. As MOBIUS transformations map MOBIUS circles to circles, the MOBIUS circle is
mapped to the extended real line (the line through the images of zs, z3, 24, which are 0, 1

and oo respectively).

1

0={(n) =L,
EX

Clearly, the point z; is on the MOBIUS circle through 2o, z3, 24 if and only if its image w is
contained in the image of that MOBIUS circle, that is, if and only if it is real. O

Corollary 1.8.12
The points z1, z2, z3, z4 are on a MOBIUS circle in clockwise or anticlockwise order if and

only if cr(z1, 22, 23, 24) < 0.
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Proof. Left to the reader. O

Proof. (of Theorem 1.8.6) (@) Let h € Mob be the map with h(zs) = 0, h(z3) = 1
and h(z4) = oo, which exists by lemma 1.8.7. By lemma 1.8.11 we have h(z;) =
cr(z1, 22, 23, 24). The map h:=ho f~1is a MOBIUS transformation by Theorem 1.8.1
and satisfies h(f(22)) = 0, h(f(z3)) = 1 and h(f(z4)) = c0. By lemma 1.8.11 we have

cr(f(z1), f(22), f(23), f(24)) = h(f(21)) = (ho f71)(f(21)) = h(z1) = cr(z1, 22, 23, 24).

@) Let h,h € Mob be maps with h(zy) = h(wa) = 0, h(2z3) = h(ws) = 1 and h(z) =

h(wyg) = co. By assumption (x) we have

h(z1) het cr(z1, 22, 23, 24) ® cr(wy, wa, w3, wy) = h(wy).

Hence f := h™' o h € M&b satisfies f(z;) = w; for j € {1,...,4}. O

The following theorem will be important later and we will not prove it completely, for now.

THEOREM 1.8.7: MOBIUS TRANSFORMATIONS PRESERVING D

The MOBIUS transformations that map the unit disk
D:={zeC:|z| <1}

onto itself are precisely the MOBIUS transformations of the form

zZ— 20

f(z) =€

1—7%2’

where zp € D and ¢ € R /27 Z.

Proof. " <= ": We first show f maps D to D.
(@ We show that f(S') = S' := {z € C:|z| = 1}. For z € S! we have

(z—20)(2—Z) _ |2]> — %oz — 2% + |2/

2 _ ip _
PRI = 1 A=) (0 =220 ~ 1=%7 — 707 — [z
=1

1 —Z0z — 2Z + |20]?

= =1.
1—2pz — 202 — |20/?

@) Since f is continuous on C and f(S') = S' and f(20 € D) = 0 € D, f maps the
connected component of @\S1 containing zy to the connected component containing
0, which is, f(D) = D.

"= ": See Dirk Ferus’ script or wait until later in this course. O

THEOREM 1.8.8: MOBIUS TRANSFORMATIONS PRESERVING H (TuUT)

The MOBIUS transformations f(z) = %j:db with f(H) = H are characterised by
a,b,c,d € R and ad — bc > 0.
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Fig. 9: Four points z1,
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Proof. "= ": One solution is a computational one: we know that f(z) = ei"”% obeys
f(D) = D and we know a map g with g(H) = D from example 1.8.14. We can thus obtain

themaps H > Has f=g o fog.

Another approach is as follows. As ad — bc # 0, we can assume that at least one of the
coefficients a, b, c, d is nonzero. As the coefficients Aa, Ab, Ac, Ad for any \ € C* give the same
MOBIUS transform, we can assume that nonzero coefficient to be real. If f (R) = R, then all
the numbers f(0) = &, f(o0) = 2, f71(0) = =% and f~*(0) = —¢ must be in R := R u{o}.

Since the ratios must be real and one of the coefficients is real, we can assume a, b, c,d € R.
(One might have to be careful if oo is a fixed point of f.)

As f(H) = H, we must have S(f(¢)) > 0. We have

o (ai+b o [ (ai+b)(—ci+d) S(ac + bd + i(ad — bc))  ad — be

S =g = =
ci+d (ci+ d)(—ci+ d) c? 4+ d? 2 +d?*’

and as ¢® + d? > 0, we must have ad — bc > 0.

"«e— " If a,b,c,d € R, then f(R) = R. With the above calculation we have f(i) € H as

ad — bc > 0 and thus f(H) = H by connectedness. O

Example 1.8.13 (MOBI1US transformation f with f(0) =4, f(i) = o0, f(c0) = 1)
We know that the MOBIUS transformation f; with f1(0) = 0, fi1(i) = 1, fi(0) = o0 is

fi(z) = cr(2,0,i,0) = —iz. Furthermore, the MOBIUS transformation f, * with f, (i) = 0,
f' () =1, f;1(1) = o0 is f3'(2) = ex(z,4,00,1) = 5. Then f = fio fo = 24, o

Example 1.8.14 (Find M6BIUS transformation with f(H) = D (Tut II))

We find the MOBIUS transformation f with f(0) = —1, () = 0 and f(c0) = 1 and show that
f(H) = D, where H := {z € C: &(z) > 0} is the upper half plane and D := {z € C: |z| < 1}
is the open unit disk.

As before fi(z) = —iz and fy!(z2) = % = Ztl and thus fo(z) = z;} and hence

f(z) = Zi MOBIUS transformations map generalised circles to generalised circles. The

"circle" through 0,1,c0 (that is R := {z € C : z € R} U {o0}) is mapped to the unit circle,
as f(0) = —1, f(1) = —i and f(o0) = 1 (three points uniquely determine a circle). The

extended real line R separates C into two connected components, H and @\ﬁ Similarly,
the unit circle separates C into two connected components, D and C\ﬁ As f is a homeo-
morphism, we either have f(H) = D or f(H) = C\D by connectedness. As f(i) = 0 € D, we
conclude f(H) = D. o

Remark 1.8.15 (Connection to hyperbolic geometry) H is one of the models of the hyperbolic plane with

2 2
the metric ds? = w. Geodesics are circle perpendicular to the real axis or lines parallel to the imaginary

axis. As geodesics are mapped to geodesics, the isometries in this model are exactly the MdBIUs transforms. o

We conclude this chapter of MOBIUS applications with one mathematical application.

Example 1.8.16
We first show: For any pair of non intersecting circles, there is a MOBIUS transformation

that maps these circles to concentric circles (circles with the same centre).

Step 1. We consider two cases.
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sealt. rolebio- m
2 T e v : IR

Fig. 10: One can make it such that the small circle has the centre 0 and has radius 1. We

can make the centre of the larger circle to be on the real axis. Both circles are perpendicular
to the real axis.

Step 2. We want to find a number ¢ € R\{£1,0} (or |¢| > 17) such that

! 2q(—2) 4q
c:=cr(a,b,—1,1) =cr(q,—q,—1,1) = = .
( e S (e R e

Solving for g we obtain

2 4
1—¢? =1 P L 120 qe=——dy/5+1
c c
Let g := q4 be the positive solution.
Step 3. Let f be the MOBIUS transformation with

Then f maps the circles to concentric circles.

v
)

Fig. 11: As MOBIUS transformations are holomorphic, they preserve angles, so the centres

are real, and therefore 0.

This can be use to prove a weird theorem of STEINER: Start with two circles with one being
contained in the other. One can start to draw circles between them that touch both circles
like in the figure on the right and then continue drawing such circles that also touch the
previous circle. Either one new circle overlaps the others, or the circle again touches the

first circle, in which case the procedure repeats.

Theorem. (Steiner) Given the blue circles, whether or not the sequence of green circles
"closes up", that is the n-th green circle touches the first, depends only on the blue circles
and not on the choice of the first circle.

Proof. Apply a suitable MOBIUS transformation: if we make the two blue circles concentric,

it is obvious. O
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Complex integration and CAUCHY’s integral

theorem

2.1 | Contour integrals / Integrals along curves

We will consider complex functions f defined on open subsets U < C and curves « in the
domain of definition U, which are represented as maps from a closed interval to the space.
We don’t have to worry about the parametrisation of the curve as we will see that the

integral of a function over a curve is independent of the parametrisation of the curve.

DEFINITION 2.1.1 (COMPLEX INTEGRAL)
Let U < C be any subset, f: U — C be continuous and v: [tg,t1] — U be a continuously
differentiable curve. Then

ty

j f@de = [ remn @ d

to

is the integral of f along ~.

We can consider complex-valued functions as R%-valued functions, which we integrate com-
ponentwise, as we know how to integrate real valued functions of a real variable. Note that
~'(t) € C.

The substitution rule implies that the integral does not depend on the parametrisation of
v (only on the orientation, i.e. on the direction that it is traced in); if 7: [so, s1] — [to, 1]
is a continuously differentiable reparametrisation of v with 7(sx) = tx for k € {0,1}, then

7= yoT:[sg,s1] — U is the reparametrised curve and

ﬁ f(2)dz = f " F (o () () (5) ds = f Pt (1) dt = f f(2) dz

by the substitution rule (aka the change of variables formula).

But if 7 reverses the orientation, that is, 7(sg) = t; and 7(s1) = to, we get (by an analogous

calculation)

Lf(z)dz = —Lf(z)dz.

DEFINITION 2.1.2 (CONTOUR INTEGRAL (EXTENDED DEFINITION))
If v: [to, t1] — U is only piecewise continuously differentiable, i.e. if there is a subdivision

to=T0<T1 <...<Tp =11

such that v € C([to,1]) is continuously differentiable on [7;,7;+1] for j € {0,...,n — 1},
then

f J FD)d

=0
’Yl[Tj,Tj+1]

L f(2)dz =

n
J
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‘We now switch over to
JAHNICH’s textbook.
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Fig. 12: A curve in a
domain.

integral

Note that 7 doesn’t
need to be bijective
(that is, monotonic).

NS

Fig. 13: A piecewise
continuously differen-
tiable curve.
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THEOREM 2.1.1: TRIANGLE INEQUALITY FOR COMPLEX INTEGRALS (TUT

IV)

Let f: C > U — C be continuous and 7: [tg,t1] — U be a C' curve such that
[(f oy)(t)| < M for all t € [to,?1]. Then

11
]Wf |7/ (t)| dt =: M len(y).
to

\. J

Proof. (from Ferus’ lecture notes) Let J := S7 f(z)dz. If J =0, then the statement is
clear. Let J # 0. Then

1=Svﬁ?d (Sf ) (ff ) ( “fwu?vu>@>

zﬂﬁcm?ﬂ»& ﬂuuuw < MJ " ]

For anyone with a background in vector calculus (either over divgrad or differential forms),

there is a little excursion.

Excursion. Consider f(z +iy) = u(x,y) + iv(z,y) and y(t) = £(t) + in(t). Then (ignoring
the argument ¢)

[

J.
_ Jt: ((uw(&,m) - & —o(&m) - ') +i (v(€,m) + (& n)n')) dt
=Lw+4kw
E( e e

(u(&n) +iv(g,m)) - (& +in') dt

~
curve integral of vector curve integral of
field (%, )=F vector field () )

where w = udx —vdy and *w = vdx + udy are differential forms. We have
vy (0 -1 U
w) \1 0 —v

Example 2.1.3 (Integrals of z — 2z* for k € Z) Consider the inversion

and (1 o ) is 90 degree rotation.
04.05.2021

FiC* ST ozt

and the curve
v: [0,27] — C*, t > Re'

R
which traces a circle of radius R > 0 centred at the origin. Then ?
21 21 27
Jf ydz = | f(x( dz—f Eéz}%e”{dt— idt = 2mi.
0

O

Fig. 14: The curve 7.
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For k € Z\{—1} and R = 1 we have

oo 1 pilk+1)t 127
J Zk dz = J ezktiezt dt = Zf ez(k+1)t dt = 75 [ ]
l2l=1 0 0 (k+1)i1,_

eQﬁi(k+1)_1 1-1 0
k+1  k+1 o

Example 2.1.4 (Tut IT) The integral of the identity over the path v going from the origin
to ¢ and then to 1 + ¢ via straight lines can be split into the straight line paths

m:[0,1] — C, t— ti, and v2: [0,1] — C, t—t+1,

1 1 1 1
Jf(z)dz=f tz’-idt+f (t+z’)-1dt=J —tdt+j tdt +i=1.
.

0 0 0 0 o

SO

Excursion into vector analysis (cont.) If f(x + iy) = u(z,y) + iv(x,y), then we have
seen that

Lf(z)dz:L(udm—vdy)-l—iJ (vdz + udy) .

~
You may know the general STOKES theorem for differential forms or the special case called
GREEN’s theorem.

THEOREM 2.1.2: GREEN’S THEOREM

Let B ¢ R? be a compact set with a piecewise C' boundary dB and let P,Q be
functions of class C' on a domain containing B. Then

P 4Q

f de—i—Qdy:f —— + —dzdy.
0B B Oy dz

\.

Applying GREEN’s Theorem (or any other formulation) to S’v f(z)dz we obtain

THEOREM 2.1.3: CAUCHY’S INTEGRAL THEOREM (VECTOR ANALYSIS VERSION)

If f is holomorphic on U with continuous derivative, and if 7 is a piecewise C~ curve

bounding a compact set B < U, then

f f(z)dz =0. (11)

Proof. With GREEN’s Theorem we have

Lf(z)dz=L(udx—vdy)+¢f(vdx+udy)

¥
2.1.2 ou v ) v Ou
= —— — — | dzd —— 4+ — |dedy =0
J, (05 - 5w [, (-5 + 5w
_ (S
® ®p
by the CAUCHY-RIEMANN equations. O

In this lecture we will see a completely different proof a stronger version. It can be stronger

because we don’t really need GREEN’s theorem in full generality, we only need the case
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

where integrand is zero. In particular we will see that it is enough that f is differentiable

and we do not require continuity of its derivatives.

2.2 | Cauchy’s Integral Theorem of a Rectangle

In this lecture we will state more and more general forms of CAUCHY’s integral theorem.
We start with a toy version.

THEOREM 2.2.1: CAUCHY’S INTEGRAL THEOREM OF A RECTANGLE Fig. 15:

A rectangu-

lar region as in Theo-

Let @Q < C be a closed rectangular region with sides parallel to the real and imaginary rem 2.2.1

axes and let v be a piecewise C' parametrisation of the boundary of Q with orientation

as shown in figure 15. If f is holomorphic on a domain containing @, then (11).

Before we prove this, we consider complex functions possessing antiderivatives.

Lemma 2.2.1 (Cauchy’s Theorem for functions with holomorphic antiderivative)
Let f: U — C be continuous and have a holomorphic antiderivative F on U, that is, F' = f.
Then, for any C*-curve : [to,t1] — U we have

| #Gras = Fatw) - o)
If in particular «y is a closed curve, that is, y(to) = v(t1), we have (11).

Proof. This is just the Fundamental Theorem Of Calculus since

SFO(0) = AF, (/1) = P00 (1) = FG)1 ).

O
Proof. (of Theorem 2.2.1) (1) We will prove that, for any ¢ > 0, z‘ < e
Since f is holomorphic on U, for any z € U we have
f(Z) = f(ZO) + f/(ZO) ) (Z - ZO) + Rz, (Z)v
where the error function R,,: U — C satisfies
i F(2) _ (12)

zZ—20 |Z - Zo|

Since z — f(z0)+ f'(20)- (2 — 20) is a polynomial of degree one - hence entire - and thus
has a global antiderivative, its integral along the closed curve 7 is zero by lemma 2.2.1.

Lf(z) dz = LRZO (2)dz. (13)

@ We will choose the point zj later. In the vicinity of zg, R, vanishes fast. The problem
is that the rectangle is not in the vicinity of zy so the idea is to divide up the rectangle.

Therefore

-——

Let ¢ > 0. Divide @ into four equal subrectangles 1, @2, @3, Q4 and let @1 be that (—_“’I LLE: ]

subrectangle for which the integral along the boundary, =1, is largest in absolute value. l’ ,:__"’ m— ‘
When we integrate over all curves, on the interior edges of the rectangle we go once L - T l' ___’T

in one direction and once in the other direction, so those integrals cancel each other -

out and we are left with the integrals over the boundary of @. Then Fig. 16: Division of the

rectangular region Q.

f()
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

Now subdivide the rectangle @) into four equal subrectangles and let Q)2 be the rect- j
angle for which the integral along its boundary curve, s, is the largest. Continuing I

this process we obtain a infinite sequence of rectangles (), and boundary curves W

such that
| s
v Fig. 17: The nested

The intersection of all rectangles () contains a single point zq, that is, ﬂzozl Qr = {z0}.  rectangles (Qg)ren-

< 4k (13) 4F

f(z)dz

Lk R, (z)dz

Tk

The z- and y-intervals of the rectangles form two sequences of nested intervals, whose

lengths tend to zero.

@) We have by Theorem 2.1.1

< len(k) - sup [Ry,(2)]-
2€Q%

Lk R, (z)dz

We have len(v;,) = 2 % len(v). By (12) there is a § > 0 such that |R.,(z)| < &z — 20|
for all z with |z — 2zo| < ¢, where

s 5
" len(y) diam(Q)”

Choose k € N so large that diam(Qy,) = 27% diam(Q) < §, then

sup |R.,(2)] < e sup |z — 2| < ediam(Qy) = ¢ - 27% diam(Q).
2€Qy 2€Qk

Altogether, we have

Lf(z) dz

Remark 2.2.2 We did not need to assume that f’ is continuous (as in Theorem 2.1.3). o

<4527 len(y) - £-27F . diam(Q) = len(y) - € - diam(Q) = e.

O

This version of CAUCHY’s integral theorem is fairly useless as in most cases we are not
interested in integrating only over rectangular curves. But all analytical ideas are already

in the proof.

2.3 | Cauchy’s Theorem of C! images of rectangles

Now let us consider a version of CAUCHY’s Theorem that is actually useful.

THEOREM 2.3.1: CAUCHY’S INTEGRAL THEOREM FOR (C'! IMAGES OF

RECTANGLES

Let f be a holomorphic function on U < C, let Q < C be a closed rectangular region,
let v be a C' parametrisation of its boundary and let ®: W — C be a continuously
differentiable (in the real sense) map on some set W o @ with ®(Q) < U. Then

f(z)dz = 0.

Pory
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¥

e,

o)

Fig. 18: The setup of Theorem 2.3.1.

Proof. We construct a sequence of rectangles @ D @1 © Q2 O ... as before with

f(z)dz

Doy

< 4k f f(z)d= (14)
Doy

with v, == 0Qy and 7 = 0Q. But now we need to estimate diam(®(Qy)) and len(® o ;).

To this end, we observe that since ® is a C' function, d® is continuous on the compact set

@, so there exists a C' > 0 such that ||d®,| < C for all z € Q. Hence

diam(®(Qy)) < O diam(Qy) = C2 % diam(Q) and len(® o~y;) < Clen(yg) = C27F.

Let € > 0 and let zp := ® ("), Qk)- Choose & > 0 so small that |R.,(z)| < €|z — zo| holds
for all z with |2 — 29| < J. Now choose k € N large enough that C27* diam(Q) < § holds.
Then we have

f(z)dz

Pory

g f £(2) dz| < 4k2=227FC% len(v) diam(Q) - .

Dok O

This was the worst analysis we will do in this course. From now on, the proofs will only be simple applications.

Differentiable images of rectangles are also not really what one needs, but it is easy to adapt
Theorem 2.3.1 to different situations.

THEOREM 2.3.2: CAUCHY’S THEOREM FOR TRIANGLES

If f is holomorphic on U and < is the boundary curve of a triangular region that is
contained in U, then (11).

Proof. Apply Theorem 2.3.1 to the function
®:[0,1]> - U, (5,8) = (1 —1) (1 —8)A+sB) +t (1 —s)A+sC) .

~~ ~~
straight line segment straight line segment
connecting A and B connecting A and C ]

They ey -

O I...\".;A S ———

—_—_—————

bh

Fig. 20: The action of ®, which maps the unit square to the triangle ABC.

28

Fig. 19: A triangular
region bounded by -y
with vertices A, B and
C' contained in a do-
main U.
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THEOREM 2.3.3: CAUCHY’S THEOREM FOR DISK

If f is holomorphic on U and 7 is the boundary circle of a closed disk that is contained
in U, then (11).

Proof. Let zy € U be the centre and r > 0 the radius of the closed disk. Apply Theo-
rem 2.3.1 to the function

®: [0,27] x [0,7] — U, (5,t) — 20 + te's

Fig. 21: The action of the map ®. The bottom edge of the rectangle is mapped to the point zo.
The left edge is mapped to a radius of the circle. The remaining two segments are mapped to the

boundary circle and the inverse of the first path.

Only the integral along the pink curve matters, as a single point does not contribute to the
integral and the other two paths cancel each other out. The integral along the pink line is

Z€ro. O

98 T
ot lppl-, b Mg cirel.

Fig. 22: For this theorem it is important that the disk is contained in U, for the red circle in the
above drawing CAUCHY’s theorem does not hold.

Notation. Integrals along circles are very common, thus there is a special notation for this:

JZ_Z():T f(z)dz = Lf(z) dz
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2 COMPLEX INTEGRATION AND CAUCHY’S INTEGRAL THEOREM

where v: [0,27] — C, t — 2 + re'®. By convention, the circle |z — 29| = r is traversed in

the counterclockwise direction.

CAUCHY’s integral theorem for C'-homotopic curves

DEFINITION 2.3.1 (C'-HOMOTOPIC)
Two curves a, f3: [0,1] — C are C'-homotopic in U < C if there exists a C'-function
H: [0,1]?> - U, called homotopy, such that

e H(0,:) =« and H(L,-) = f,
e H(-,0) =«a(0) =p4(0) and H(-,1) = a(1) = B(1).

The parameter domain [to,¢1] of both curves can be chosen to be [0,1] without loss of

generality as we can always reparametrise accordingly.

THEOREM 2.3.4: CAUCHY’S THEOREM FOR C'-HOMOTOPIC CURVES

If o, B: [0,1] > C are C'-homotopic curves in U and f is holomorphic on U, then

L f(z)dz = L £(2)dz. (15)

Proof. Choosing ® = H, Theorem 2.3.1 implies

Lf(z) dz — L F(=)dz = 0. )

Remark 2.3.2 Jdhnich, at this point, only considers the case where all straight segments

connecting «(t) and B(t) are in U. o

C! homotopy is more general, but it is also not the most general case possible. We will see
later that it suffices if H is continuous, and that is why C' homotopy is not a well known
concept, as it can be replaced by something even more general.

CAUCHY’s theorem for freely C' homotopic closed curves

DEFINITION 2.3.3 (FREELY C'-HOMOTOPIC)
Two closed curves a,3: [0,1] — C are freely C'-homotopic in U < C if there is a cl-
function H: [0,1] x [0,1] — U such that

O H(Oa) = a and H(la) = B,
e H(-,0)=H(,1).

THEOREM 2.3.5: CAUCHY’S THEOREM FOR CLOSED FREELY C' HOMO-

TOPIC CURVES

If o, B: [0,1] — C are closed freely C'-homotopic curves in U and f is holomorphic
on U, then (15).

30
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e
o FHE,
e
<

Fig. 23: Two C!-
homotopic curves «
and 3.

==

Fig. 24: Our case (be-
low) is more general, as
we can see in the both
pictures above

U only needs to be a

3

=9

Fig. 25: Two closed
freely C! homotopic

curves a and f3.
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Proof. We apply Theorem 2.3.1. The image of the boundary of [0, 1]? under H is the curve

« traced in the opposite direction, a segment connecting it to 3, the curve 8 and the segment

traced in the other direction.

An important special case is the

THEOREM 2.3.6: CAUCHY’S INTEGRAL THEOREM FOR ANNULI

L_ZO_TD f(z)dz = L_Zl_rl () dz.

If two nested (that is, one is contained in the other and they don’t intersect) circles
with centres zg and z; and radii ry and r; are contained in U together with the region

between them, then for all holomorphic functions f on U we have

A special case occurs if zy = 21, and then the concentric circles in U bound an annulus in

U.

‘_“Wr

w iy Wl ol %,
¥

q o

Fig. 27: The setup of Theorem 2.3.6

Let us now consider two example applications of CAUCHY’s theorem.

Example 2.3.4 ({; e~(@=i0)* gz — /& for all a € R) Define
I: R—C, a— J e~ (@=ia)” qg.
R

Then we have I(a) = I(0) for all a € R.
For R > 0 consider the contour given by the C* curves

71:[—R,R]—>RCC, =1, WQZ[O,G]—’(C,
v3: [-R,R] > Rc C, t—ia —t, ~4: [0,a] = C,

R
J e dz = J et o, 1(0).
é! -R

_ .2
fezdz
Y2

and analogously for v3. By CAUCHY’s Theorem

We then have

and

t— R+ it,
t— R+ ia —it.

a
2_ p2 2_p2 R
<J e TR At <ae® T 2250
0

0= f e dz 222, 1(0) — f e~ (t=i0)* gz
R

Y1+7v2+7v3+74
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Example 2.3.5 (Todo (Tut IV)) For a,b > 0 we have

m 1 2m
[ alm
o a?cos?(t) + b2 sin”(t) ab

Take v(t): [0,27] — C, t — acos(t) + ibsin(t), which is homotopic to ¢ — e in C*. Hence

1 1
ffdz:f —dz = 2mi.
v # |21=1 %

Hence

PRI ; 27 PR .

or — J 1 L) = J‘ asin(t) +'zb ?os(t) a) = f S asin(t) +.zb (.IOS(t) &
v 2 o acos(t) + tbsin(¢) 0 acos(t) + ibsin(t)

_ rﬂ 3 <_(a2 +b%) cos(t) sin(t) + iab(sin*(¢) + cos® (t))> dt

B a2 cos2(t) + b2 sin®(t)

0

27
b
:J .
o a?cos?(t) + b?sin“(t) o
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First consequences of CAUCHY’s theorem

After we adapted the CAUCHY integral theorem for images of rectangles to particular useful
cases, we can now reap the rewards in this section. This section is not called "Consequences
of CAUCHY’s theorem" because ultimately, everything in Complex Analysis is a consequence
of CAUCHY’s theorem.

3.1 | Cauchy’s Integral Formula

THEOREM 3.1.1: CAUCHY’S INTEGRAL FORMULA FOR DISKS

Let f be holomorphic on the (open) set U < C, with B,(z9) < U for zg € C. Then

for every a € B,(zp) we have

Proof. Choose ¢ > 0 so small that B.(a) c B,(z¢). By Theorem 2.3.6,
f &) g, - &) g, (16)
|z—z0|="7

z—aQ |Z,a|=€z—a

because the integrand (which is not defined at a) is nevertheless holomorphic on the annulus
(not containing a) bounded by the circles |z — 2p| = r and |z — a| = ¢ as it is the quotient

of two holomorphic functions. We have

[T gy (UL CEVO
|z—al=¢ |z—a|=¢

z—a z—a
= f Mdz+J —f(z) — /(@) dz.
|z—al=c # — @ |z—al=¢ z—a
=A :‘:rB
We have
1 27 1 o 27 ) )
A= f(a) ﬁz—a|—6 P dz = f(a) . mwdt = f(a)J; idt = 2mif(a).

using the parametrisation v(t) = a + ee’’. It remains to show that B = 0. Note that B
does not depend on ¢ as long as € > 0 is small enough: one can immediately see this from
CAUCHY’s theorem for annuli with concentric circles because if we change € then we get the
same result. Hence it is enough to show that

. fe) - @)

eN\0 |z—a|=¢ zZ—a

z=0.

We have

FO @) [T fateet)  f@) e (T
flz—a|=s o dz = . - iseTdt =i . fla+ee) — f(a)dt.

=th(t)
Since f is continuous at a, lim.\ o he(t) = 0 uniformly in ¢ € [0,27], because continuous
functions on compact sets are uniformly continuous. Hence

2
lim | he(t)dt = 0. -
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Fig. 28: By Theo-
rem 3.1.1, the wvalues
of f in the interior of
the disk are determined
by the values on its

boundary.
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Example 3.1.1 (Tut IV) As sin and cos are entire we have

. . i
f %dz:—j 2misinGz) 4, _ orisin(0) = 0
lz|l=1 2 27t Jjz—o|=1 2—0

by Theorem 3.1.1 and analogously

1 27
f cos(z) dz = —f 2mé cos(z) dz = 2micos(0) = 2mi.
lz]=1 Z 27t Jjz—oj=1 2—0

Example 3.1.2 (Calculating S% dz (Tut IV)) How can we calculate

z1)(z—22

e
LR CE CEr i

where z; # 25 are complex numbers with max(|z1],|22|) < R?
We want to find constants A, B € C such that
1 A B

+ ;
(z—21)(z—22) 2z—21 2z—29

which can be rewritten as
1=z (A+B) — 20A — 1 B.

Assuming A = —B (to eliminate the z term), we get
1= —ZQA — ZlB = —ZQA + ZlA

and thus 1 1
and B =
21— 29 Z2 — 21

A=

We found the partial fraction decomposition:

1 A B 1 1

(z—z21)(z—2) z—21 z—2z (2—21)(21 —22) * (z — 22)(22 — 21)

and thus, by the Cavucny integral formula we have

B g, e ) .
sz—R (Z_Zl)(Z_ZQ)d JlZ—R (z—zl)(zl —z2) (Z_ZZ)(Zl—zQ) d
=2m'( fe) _ f(z) ) o 1)~ f(z2)

21 — 22 Z1 — 22 21 — 22

Alternatively we can consider the path tracing a circle around z; of a sufficiently small £ > 0,
the straight line segment connecting this circle to a small circle around zo with radius € > 0
and the closing the curve up with a segment back to the first circle. The contributions of

the connecting segments in the curve cancel each other out. Hence

ORI e, S (R
‘[|Z=R (2 —21)(2 — 22) ¢ J;Zz1|=e (z —21)(2 — 22) de J|222|=5 (2 =21)(z = 22) ‘
3Ll . ( f(z1) n f(z2) ) )

21 — 22 22 — 21

In particular we get the following corollary by choosing a = zj.

Corollary 3.1.3 (Mean value property of holomorphic functions)

If f is holomorphic on a domain containing B, (zy), then

27

f(z0) = f(zo + re't)dt.

2 0
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Proof. With the parametrisation 2z = 2z + re’’ for t € [0,27] and using Theorem 3.1.1 for

a = zy we obtain

f(2)

2m )
f(zo +re™).
0

1 ([P flzo e w1

O

The Real Analysis version of CaucnHy’s Integral Formula would be: the values of a differ-
entiable function f: [a,b] — R at the endpoints determine all values in between, which is

certainly not true.

3.2 | The power series expansion theorem

Digression (from JAHNICH’s book)

We consider another consequence of CAUCHY’s theorem that is not strictly necessary, but
it is a nice example of ways to think and also a way to show that power series can be
differentiated term by term - by showing that they can be integrated term by term.

THEOREM 3.2.1: COMPLEX VERSION OF THE FUNDAMENTAL THEOREM
oF CALCULUS

Let f be holomorphic on a convex domain U and zg € U. Define

z
F:U—-C, z»—»J f(u) du, (17)
zZo
where we write SZ for the integral along the straight line segment from a to b

parametrised by v(t) = a + t(b — a) for ¢ € [0,1]. Then F' is an antiderivative of
f, that is, F' is holomorphic and F’ = f.

\. J

In the real case we only require continuity of f. Here we need holomorphicity, because then
CAUCHY’s integral theorem holds and the integral in the definition of F' should not depend
on the path from 2o to z (we take a straight line segment anyway, but it should also work
for arbitrary paths).

Proof. For z; € U, we have to show that F is differentiable at z; and F’(z1) = f(z1), that
is

F(z1 +h) — F(z1)

lim = f(z1).
h—0 h (21)
Because U is convex, the closed triangular region with vertices zg, z; and 25 == z; + h is

contained in U as long as h is small enough. By Cauciiy’s Integral Theorem,
Z1 Z2 Z0
J f(z) dz+J f(2) dz+f f(z)dz =0. (18)
zZ0 zZ1 zZ2

Hence,

Flz) — F(z1) 2 j £(2) dz_fl f2)de @ J () dz =L Flz1 +th)hdt (19

Z1

35

Fig. 29: A circle with
centre zg and the ori-
entation (counterclock-
wise) of its boundary

curve.

11.05.2021

The convexity is not
necessary, it suffices

that U is star-shaped
with respect to zg.

Fig. 30: The closed
triangular region with
vertices zg, 21 and
22 =21 + h.
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by using the parametrisation : [0,1] — C, ¢ — z1 + th of the line segment [z, z2]. By the
Mean Value Theorem of Real Analysis, there exists 7,7’ € [0, 1] such that

7 (PG = ) [ rten ) de &R+ )+ 190+ 1) 22 £)

where the limit is due to the continuity of f. O

It is easier to prove that power series can be integrated term-by-term than that they can be
differentiated term-by-term, because integration makes function "nicer" and differentiation
makes them "worse". Using Theorem 3.2.1, we can prove the second statement using the
first. Why is this not usually taught like this? Because power series and differentiation is

treated very early on and integration is treated much later.

THEOREM 3.2.2: POWER SERIES CAN BE INTEGRATED TERM-BY-TERM

If the power series f(z) = ZZO:O arz® has radius of convergence R > 0, then the

. 0 . . .
power series F'(z) = >, ﬁakzk also has radius of convergence R and /' = f.

The idea of this proof is that we can interchange limit and integral if the convergence is

uniform.

Proof. On compact subsets of the disk {z € C : |z| < R}, the power series Y., ay2"
converges uniformly, so we may interchange integration and this limit. If we set f,(z) =
Yin_oarz®, then F,(z) = Y._ pgarz"tt is the uniquely determined antiderivative of f,,
with F},(0) = 0 (the last condition is needed for the uniqueness). By Theorem 3.2.1 for z in
the disk we have

ﬂ@=thM,

so by the uniform convergence (UC) of (f,)nen on the closed line segment from 0 to z,

F(z) = lim F,(z) = lim ’ fn(u)du o fz lim f,(u)du = LZ f(u) du.

n—o0 n—oo 0 0 n—oo

By Theorem 3.2.1, F' is an antiderivative of f. O

We can now prove the second part of Theorem 1.3.1.

THEOREM 3.2.3: DIFFERENTIATING POWER SERIES TERM-BY-TERM

If the power series f(2) = Y., ax2" has radius of convergence R > 0, then the
power series g(z) = 22021 kayz"~1 also has radius of convergence R and ¢’ = |.

Proof. Integrate g term-by-term and use Theorem 3.2.2 to see that f(z) — f(z0) is an
antiderivative of g, so f' = g. ]

End of digression.

THEOREM 3.2.4: POWER SERIES EXPANSION

Let f be a holomorphic function on U. For zy € U there exists a unique power series

f(2) = ) enlz — z0)

k=0
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with positive convergence radius representing f in some neighbourhood of z3. The

coeflicients ¢y, are determined by CAaucHY’s coefficient formula

1 f(2)
- I 4
%= omi J (z — z9)**1 =
|z—z0|="r

where the only condition on r is to be small enough such that B,.(z) < U.
The radius of convergence is not smaller than the radius of the largest open disk

around zy contained in U.

. J

In other words: "Holomorphic functions can be represented by power series". Since power
series are differentiable and their derivatives are again power series, we get the Theorem of
GOURSAT.

Corollary 3.2.1 (GOURSAT)

Every holomorphic function is arbitrarily often complex differentiable. In particular it is C*
in the real sense.

Proof. (of Theorem 3.2.4) Uniqueness. Since power series are differentiable by Theo-
0]

rem 3.2.3, f(2) = Y5 cx(2—20)* implies f(¥)(29) = kley, so the coefficients are ¢, = ngzO)

are determined by f in any neighbourhood of zy and there can be at most one power series

representing f.

Existence. Let 7 > 0 be small enough such that B,.(zg) = U. By Theorem 3.1.1 for z € B,.(2g)

L 1) O
/) 2mi ju_ZO 70ufz fu 2ol=r ufzo)f(zfzo)d

_ 1 fw)
_QWiju_Z0ru201—md H():

U—=zo

Note that f;—z?) = #%0 < 1, so we can apply the formula for the geometric series 11?(1 =

Z—Z0

o] k . .
204" to g = T2

Z—Z
1— = A (u — 20)

Hence

1 u) Vv (2 — 2 1 &

0 k
x) = — g — g — du.
() 2w Jlu zo]=r U — 20 (u— z0)F " 2mi flu zo|= (u — 20) ’f“ (2= 20)" du

As the series converges uniformly (as the geometric series converges uniformly) in « with

|u — 29| = r, so the above term is equal to

Ly f(u) 1 ¢ f(u)
ml;oﬁu zo|=r W(Z—ZO)kdu_ QMICZOJU 2ol deu(Z—ZO)k

_

=iCk

1 0
=35 2 cr(z — Zo)k
271 =

Corollary 3.2.2 (CAUCHY estimate for TAYLOR coefficients)
Let f be holomorphic on U and suppose r > 0 such that B,(z0) = U. Assume that |f(z)] <
M for all z with |z — zo| = r for some M > 0 and let

(2) = D erlz —20)"
k=0
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3 FIRST CONSEQUENCES OF CAUCHY’S THEOREM

be the power series expansion of f around zy. Then

ler| <M -r~%  VkeN.

Proof. By theorem 3.2.4 we have

1 £ ()l 1 M
S dz| < — - (2 =_
lexl 27 J |z — zo|FtT S on (2m7) rk+l  pk
|z—zo|="r
because % < T,ﬁ‘f{l and the length of the curve is 27r. O

THEOREM 3.2.5: LIOUVILLE (CAUCHY, 1844)

A bounded entire function (that is, f is holomorphic on C and |f(z)| < M for all
z € C) is constant.

Proof. The function f is represented by a power series by Theorem 3.2.4 and we can choose

0 as its centre: for all z € C we have

[ee]
flz) = Z e
k=0
By corollary 3.2.2 we have
el <
k| X ’I"k,
for all r > 0, so ¢ = 0 unless k = 0. O

Corollary 3.2.3 (Entire functions bounded away from zero (Tut V))
Let f be entire such that there exists a ¢ > 0 with |f(z)| = ¢ for all z € C. Then f is
constant.

Proof. As f(z) is never zero, % is well defined and holomorphic as composition of the
holomorphic maps f: C — C* and 1: C* — C. The inequality implies ﬁ < %, ) % is
constant by Theorem 3.2.5 and thus so is f. O

Corollary 3.2.4

Let f be entire and let A,R > 0 and m € N be constants such that f(z) < Alz|™ for all
z € C with |z| > R. Then f is a polynomial of degree at most m.

Proof. Homework 5.2. O
Corollary 3.2.5 (Fundamental Theorem of Algebra)

A polynomial p € C,[z] of degree n =1 has at least one zero in C.

Proof. (By contradiction) Suppose the polynomial p(z) := >}}_, apz* with a,, # 0 and

n > 1 has no zeros. As p is also holomorphic, so is f = %. Also
1 1 o0
&)= ey re— — 0.
ap + a1z + ...+ apz"| |z||zn+zn—,1+...+an‘

So there is an R > 0 such that | f(z)| < 1 for all z € C with |z| > R. As f is continuous on the
compact disk with radius R, it is bounded there, so f is bounded on C. By Theorem 3.2.5,
so f is constant and so is p, which is a contradiction to n > 1 and a,, # 0. O
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THEOREM 3.2.6: CAUCHY’S INTEGRAL FORMULA FOR DERIVATIVES

Under the same conditions as in CAuCHY’s Integral Formula for f(a), we have

k!
IO = o L_m_r = f%)kﬂ 4

Proof. By Theorem 3.2.4,
0
fz) =) en(z = 20)F
k=0

in some open disk around zy and we have two equations for the coefficients:

_ f(k)(zo) _ 1 f(z)
CETTRT T om J (z — 20)kt1 dz.
|z—zo|=" 0

This is another explanation for the fact that complex differentiable functions are so much
nicer behaved than real differentiable functions. In Real Analysis, integrating makes func-
tions smoother, while differentiating makes them rougher. In Complex Analysis, however,
derivatives are also obtained by an integration process.

Example 3.2.6 (Bounding f(™)(0) when f(z) < 1+|z|
Let D:={z€eC:|z| <1} and f: D — C holomorphic such that |f(z)| < 7= for all z € D.

on the open unit disk)

1-[e]
How can we upper bound |f(™(0)| in a sensible way?
For r € (0,1) we have by Theorem 3.2.6 and Theorem 2.1.1
! ! 1 1
™) (0 :"—J B g < B o T ) T — nl .
£ )l 210 J 5= (2 = 0) 1 IS or rﬁﬁf |z|7+T 1yt " (I =r)rm
Standard real analysis shows that, given n € N, (1 — 7)r™ is minimised for r = T SO we
have
1 1 1)n+t 1\"
|£M(0)] < n! — n=n!(n+ ) =(n+1)!(1+—> <e(n+1).
n+1 S

3.3 | Morera’s Theorem and Schwarz’s reflection

principle

THEOREM 3.3.1: MORERA (HOLOMORPHICITY CRITERION / CONVERSE

OF CAUCHY’S THEOREM)

Let U < C be an open subset, f: U — C be a continuous function and suppose that
for each curve v that bounds a closed triangular region contained in U we have (11).

Then f is holomorphic.
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Proof. Remember the digression, where we showed that a holomorphic function on a convex
domain has a holomorphic antiderivative. The proof works also if we only assume that
Sv f(2)dz = 0 for boundary curve of triangles contained in the domain (instead of f being

holomorphic).

So for any zg € U let Uy be an open disk around zq that is contained in U. Then f|y, has
an holomorphic antiderivative, which is infinitely often differentiable by corollary 3.2.1, so

flu, is holomorphic. Hence f is holomorphic. O

Remark 3.3.1 (Motivation of the SCHWARZ reflection principle)

Suppose f is a holomorphic function defined on a domain U that intersects the real axis and
suppose that f(R) < R. This is not an unusual set up: the standard functions from Real
Analysis such as polynomials or the exponential functions can also take complex arguments
but take real values on the real axis.

If we represent f as a power series

o]

f(z)= Z cr(z — xo)k

k=0
around a point zg € U n R, then the coefficients
5 ()
k!

are real. Hence, if z is contained in a disk around zg that is contained in U, then

Cr =

oo 0
chz—aso chz—xo = f(2).
k=0 k=0

THEOREM 3.3.2: SCHWARZ REFLECTION PRINCIPLE

Let
={zeC:Im(z) = 0}

be the closed upper half plane and let U < C be open in the subspace topology of
H. Suppose f: U — C is continuous and holomorphic on U\ R and f(R) < R. Then
the function

F ULl > C . flz), iftzeU,
’ 7(2), ifzeU,

where U := {z € C : z € U} (the bar denotes complex conjugation, NOT closure) is

holomorphic.

Proof. @ The function f is holomorphic on U\ R because complex conjugation is the R

“()-()-6 3)C)

it is differentiable in the real sense with derivative dr, = (

linear map

9 ). Now on U\R,

o

f = 7o f ot is R-differentiable and for any point z € U\R,

~ 1 0 a —b 1 0 a b
df. = dryes 0 dfs o dr, = _ .
Jo=dryeodfzodr (0 —1) (b a><0 —1) (—b a>

Hence f is C-differentiable at z and f'(z) = f/(2).
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Fig. 32: U is open in
the subspace topology
of the closed upper half

plane.

This means there is an

open set U < C such
that U = U ~ H.

Y

v

Fig. 33: A set U and
its corresponding re-
flection U.
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@ To prove that f is holomorphic on U n U, we apply Theorem 3.3.1. For a boundary
curve v of a closed triangular region contained completely in U\R or U\R we know
that

L f(z)dz =0,

because f is holomorphic on these domains by step @

(3) Consider a closed triangular region 7' that intersects R. Let T == {z € T : ¥(z) = 0}
and T~ analogously. Let v, v+ and v~ be the boundary curve (oriented counterclock-
wise) of T, Tt and T, respectively. Then

Lf(z)dz = - f(z)dz+L_ f(z)dz

because the contributions of the segments of v* and = on the real axis cancel. It
remains to show that § , f(z)dz=§ _ f(z)dz = 0.

@) Let T+ == {z € T : 3(z) = ¢} for £ > 0 and let v be its boundary curve. Then by the
continuity of f

f(z)dz = limf f(z)dz =0,
v

At eN\0

where the second equality is by CAUCHY’s integral theorem of C'-images of rectangles.
Analogously ST f(z)dz = 0. O

3.4 | Zeros of holomorphic functions

The term holomorphic comes from the Greek "holo" (meaning "whole") and "morphic"
(meaning "shape of" or "similar to"). Hence holomorphic functions are, in a sense, like
polynomials. We know that holomorphic functions can be represented as a power series,
which are a sort of like polynomials of infinite degree.

By corollary 3.2.5, any polynomial can be decomposed in a product of linear factors, which
enables us to define the multiplicity of its zeros. A very similar concept can be defined for
holomorphic functions using that they can be represented as a power series.

In the following let U < C be an open subset and f: U — C be a holomorphic function.

DEFINITION 3.4.1 (ORDER / MULTIPLICITY OF A ZERO)
The order or multiplicity of a zero zg € U of f is

ord(f, z9) = min{k € N : f*) () # 0}

or ord(f, z) = o0 if f(®)(2) = 0 for all k € N.

Example 3.4.2 (Order of zeros of entire functions) We will find the zeros and their

multiplicities of the entire functions

f(z) = cos(z), g(z) == cos(z) — 1, h(z) =e* —1.

(1) We have

— 2z=mn+2nk, keZ
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Hence the zeros of f are {z; := § +kn : k€ Z}. We have f'(z;,) = —sin(z) = £1 # 0,
so ord(f, zx) = 1.

() Similarly, cos(z) = 1, is equivalent to e + e~ = 2, that is (e~5 — e73)% = 0, so
e”i% —e7%5 =1, that is €’* = 1, so z € 2r Z. We have f/(2rZ) = —sin(27rZ) = 0 but
f"(2nZ) = —cos(2w Z) # 0, so ord(g, 27k) = 2.

(3) We have h(0) = 0, &'(z) = 2z¢*” and h”(z) = 2(222 + 1)e*". Hence ord(h,0) = 2. The
other zeros z(gk), z§k) of h are implicitly defined by (z(gkl) )2 = 2mik for k € Z. We have

W (2) = 250 eo)” = 9z emik — 9,(8) 4 g

so ord(h, z(()kl)) =1 for all ke Z. o

THEOREM 3.4.1: ISOLATED SINGULARITIES

Let U be a domain and let zp € U be a zero of order k € N u{oo}. Then either

@ k=coand f=0
or
@ there is a holomorphic function g: U — C such that g(z) # 0 and

f(2) = (2 = 20)*g(2).

In particular, zeros of finite order are isolated.

Proof. In a disk around zg, f is represented by a power series due to Theorem 3.2.4:

F) = an(z - z0)"

n=0
for all z € Bgr(zo).

@ If k = oo, then a,, = % = 0 by Definition 3.4.1, so f(z) = 0 for all z € Bgr(zp).
All these z are zeros of infinite order. Hence the set of zeros of infinite order is open.
Because f is continuous, the set of all zeros is closed in U. We will see in (2) that the
set of zeros of finite order is discrete. Hence the set of zeros of infinite order is closed,
as the set of finite order zeros is discrete, so the singletons of that set are open, so
taking them away from the set of zeros doesn’t change its closedness. Since the set of
zeros of infinite order is nonempty, open and closed in U and U since is connected, it
is equal to U.

@) Ifk < oo, then f(z) = 37, an(z —20)" = (2 — 20)* S _o apm (2 — 20)™ and ay # 0.
Now we can define

Yoo km(z — 20)%, if |z — 20| < R,
9(x) =19 "0, _
m, lf z # z20-
(The definitions agree on the overlap {z € C : 0 < |z — 2| < R} of both cases.)
The function g is holomorphic because it is either a power series or a quotient of two

holomorphic functions with nonvanishing denominator. O
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S < C if there exists a
neighbourhood of z in C
that doesn’t contain any
other points of S.
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THEOREM 3.4.2: IDENTITY THEOREM FOR HOLOMORPHIC FUNCTIONS

Let U be a domain and f; and f2 be holomorphic on U. If the set

M:={zeU: fi(z) = fa(2)}

has an accumulation point in U, then f; = f,.

Proof. The set M is the set of zeros of the holomorphic function f; — fo. If it has an
accumulation point z € U, that means that if there is a sequence (z;)jen © M with limit
z € U, then z is a zero of infinite order, as the set of finite order zeros is isolated by
Theorem 3.4.1. Hence f; — fo = 0 by Theorem 3.4.1 @ O

Counterexample 3.4.3 The function f(z) = sin (%) is holomorphic on U := C*. It, like
the zero function, has zeros at the points Jlﬂ for j € Z\{0}. This set has 0 as a accumulation
point, but f is not equal to the zero function. This is not a contradiction to Theorem 3.4.2

because the limit point is not in U. o

Local behaviour of holomorphic functions near zeros

We will now try to understand the local behaviour of a holomorphic function near one of its

zeros. For a motivation, we investigate the simplest function with a zero of order n.

Example 3.4.4 For n € N, the function f(z) := z™ has only one zero, z = 0, which has
order n (as f (") = pnl # 0). This function is globally as easy as it is locally. Consider the
disk in B,.(0) = C. Then f(B,(0)) = B, (0). Writing z = e’ in polar form, we have
f(z) = o"e™¥. Hence the argument of all points is multiplied by n when applying f. So
as we wrap around zero one time in the domain of f, the image point walks around zero n
times. Or if we cut the disk |z| = r™ along the negative real axis, then the preimage is the
disk |z| = r with n cuts.

- W 19
W v —
(tl=r
_ _ le ¢
i (L}
Fig. 35: Caption
In particular, every point except zero in the image of f has exactly n preimages. o

We will see that all holomorphic functions show distorted versions of this behaviour.

Let us back up a little and get to gather some more basic theorems.
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THEOREM 3.4.3: INVERSE FUNCTION THEOREM (REAL VERSION)

If U c R"is open and f: U — R™ is C*, zg € U and df,,: R™ — R™ is an invertible
linear map, then there is an open neighbourhood Uy of xy such that f(Up) is also

open and f|y, is invertible with continuously differentiable inverse df~!|y, Flzo) =

(dfwo)_l'

This implies the complex version:

THEOREM 3.4.4: INVERSE FUNCTION THEOREM

If f is holomorphic on U and [’(zy) # 0 for some 2o € U, then there is an open

neighbourhood W of f(zg) on which an holomorphic inverse function g: W — C
1
705"

exists. We have ¢’ =

Proof. The function f is differentiable in the real sense and df,, is the R-linear map
v — f'(z0)v (multiplication with a complex number is a R-linear map), which is non-singular
(if f'(z0)v = 0, then v = 0, so ker(f’(z0)) = {0}). The inverse R-linear map v — f'(z)v is
v — ﬁv. So the complex version follows from the real one. O

Let us apply the previous theorem to a particular function. Consider again example 3.4.4.
For the function f(z) = 2™ there is no well-defined inverse function locally around 0, because
the function is not injective. Start with a point w in the image and pick on of its preimages.
If we move around zero in the clockwise direction, we move from one preimage to another,
so there has to be some discontinuity.

THEOREM 3.4.5: LOCALLY DEFINED n-ROOT FUNCTION

For wg € C* and n € Ny there exists an open neighbourhood Wy of wy and a
holomorphic function R on Wy such that

(R(w))" = w

for all we Wy.

Proof. Let zg # 0 be one of the n-th roots of wy apply Theorem 3.4.4 to the function
f(z) = 2™ around zp. O

We will need this in a more specialised context.

Lemma 3.4.5
Let f be a holomorphic function on U, let zo € U and assume f(zg) # 0. For n € N~g, there

exists an open neighbourhood Uy of zo and a holomorphic function g (the locally defined n-th
root of [) such that

gn = f|U0'

Proof. Let R be the n-th root function defined in a neighbourhood W of f(zo), which exists
by Theorem 3.4.5. Let Uy := f~1(W), which is open as f is continuous and we are done. []
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DEFINITION 3.4.6 (BIHOLOMORPHIC)
A holomorphic function f: U — C that has a holomorphic inverse f~1': f(U) — C is

biholomorphic.

The following theorem states in the neighbourhood of a n-th order zero, [ behaves like the

n-th power function up to a biholomorphic deformation.

THEOREM 3.4.6: LOCAL BEHAVIOUR OF A HOLO. FUNCTION NEAR A 0

Let f be a holomorphic function on U, let f(zy) = 0 and n = ord([, zy) < 0. Then
there is an open neighbourhood Uy of zp and an biholomorphic function h on Uy such
that h(zo) = 0 and f|y, = h".

In particular, f takes any non-zero value w € f(Up) exactly n times in Uy.

{o)

T
‘% ¢
LG 4

Proof. Since zj is an n-th order zero of f,

f(2) = (2 = 20)"9(2)

for some holomorphic function g on U with g(zg) # 0 by Theorem 3.4.1 (2). By lemma 3.4.5

there is an open neighbourhood Uy of zy and a holomorphic function H on Up such that
H™ = g|g,. Let h(2) = (2 — 20)H(z) on Up. Then h" = fla,-

Since h'(z9) = H(zp) # 0 (by the chain rule), the function h is invertible with holomorphic
inverse in a neighbourhood Uy by Theorem 3.4.4. O

Corollary 3.4.7 (Biholomorphy)
A injective holomorphic function is biholomorphic.

3

Counterexample 3.4.8 (Real Analysis) The function z — 2° is injective on R with

inverse = — /x which is differentiable at 0 (the graph has a vertical tangent). o

Proof. Suppose f is holomorphic on U. We first show that if // has no zeros, then [ is
injective. If f'(z9) = 0 for some 2o € U, then the function

9(2) = f(2) = f(20)

has a zero of order at least two at zg, as g(zo) = 0 and ¢'(z9) = f'(20) # 0. So g takes any
nonzero value in neighbourhood of zero at least twice by Theorem 3.4.6. So f takes any
value in a neighbourhood of f(zp) except for f(zp) at least twice. So f is not injective.

The inverse of f, which exists as f is injective, is differentiable with derivative (f~!) =

1
ForT L
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3.5 | Preservation of Domain, Maximum Principle,

Schwarz’s Lemma

THEOREM 3.5.1: PRESERVATION OF DOMAIN

If f is holomorphic and not constant on a domain U, then f(U) is also a domain.

Proof. The image f(U) is connected because it is the image of the connected set U under

the continuous function f.

Suppose wy = f(z9) € f(U). We have to show that f(U) contains an open neighbourhood
of wp. Since f is not constant, the function g(z) := f(2) — f(20) has a zero of finite order
at zg by Theorem 3.4.1. Hence there is an open neighbourhood W of 0 such that g takes
any nonzero value in W at least once by Theorem 3.4.6. So f takes any value in the open
neighbourhood f(zo) + W at least once. O

If we forget about connectedness, we get the following corollary:

THEOREM 3.5.2: OPEN MAPPING THEOREM

The image [(U) of a holomorphic function on U (this implies that U is open in C)

is open.

Counterexample 3.5.1 (Real Analysis) Theorem 3.5.2 is not true for real differentiable
functions: the function x — 22 is differentiable on R, but the image [0, o0) is not open. o

THEOREM 3.5.3: MAXIMUM PRINCIPLE

If f is holomorphic and nonconstant on a domain U, then |f| does not attain a

supremuim on U.

Proof. Let zp € U and wg = f(z20). As f(U) is open by Theorem 3.5.2, it contains an open
disk of radius € > 0 around wq which is not contained in the closed disk Ew0|(0). Hence
the e-disk contains the point w; = f(z1) with |f(z1)| = |w1| > |wo]. O

Similarly, one can prove

THEOREM 3.5.4: MAXIMUM PRINCIPLE FOR R(f), S(f)

For a non-constant holomorphic function f on a domain both R(f) and J(f) do

neither attain a infimum nor a maximum on U.

Proof. We only show that if f a holomorphic function on a domain U < C that is non
vanishing and not constant and if | f| attains its infimum in U, then f is constant.

Consider the function g(z) := %, which is holomorphic on U and well-defined as f does not

vanish. If |f| attains its infimum, then |g| attains it supremum, so g has to be constant, so

f has to be constant, which is a contradiction. O
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An equivalent formulation of Theorem 3.5.3, which better illustrates its name is

THEOREM 3.5.5: MAXIMUM PRINCIPLE (VERSION 2)

If f is holomorphic and not constant on U and K < U is compact, then |f|x| attains

its maximum on the boundary of K, 0K.

Proof. Since |f|k]| is continuous, it attains its supremum on the compact set K by a
Theorem of WEIERTRASS. Suppose |f|x| attains its maximum at a point zg in the interior
K of K , which is an open set. By Theorem 3.5.3, this implies f is constant on the connected
component of K containing zo. Hence | f1x| attains its supremum on 0K. O

One can also deduce Theorem 3.5.3 from Theorem 3.5.5 (Exercise!).

THEOREM 3.5.6: SCHWARZ’S LEMMA

Let f: D — D be holomorphic with f(0) = 0. Then
@ IFO) <1,
@ 1f()] < el
If we have |f/(0)| = 1 or there is a point zy € D where |f(20)| = |20|, then f is a

rotation, that is f(z) = az for some a € C with |a| = 1.

. J

Remark 3.5.2 (Rigidity of holomorphic functions) In Real Analysis, the correspond-
ing statement would be: for a differentiable function f: [0,1) — [0,1) we have |f'(0)| < 1
and |f(z)| < |z| and if [f/(0)| = 1, then either f(z) =z or f(z) = —=z. o

Proof. @ Since f has a zero of order at least one at zero, there exists a holomorphic
function g on D such that f(z) = zg(z) by Theorem 3.4.1. For all z € D we have
|7 (2)] = |2|lg(2)| < 1 because f(D) < D. For r € (0,1) and z € C with |z| = r we have

[f(2)] =rlg(z)] <1

and so )
< -
9] <

By Theorem 3.5.5 the function |g| attains its supremum in the compact set K := B,.(0)
on the boundary 0K = {z € C : |z| = r}. So |g(z)] < L if |z| < r. This implies
l9(2)] < 1forall z € D: given z € D, we find a r > |z| > 0 such that |g(z)| < 2 Ny

Therefore, | f(2)| < |2||g(2)] < |2].

@ We have
vt = | S = FO)] L f(2)
(A e - e
—
<1
Now suppose there exists a zg € D with | f(20)| = |20||g(20)| = |20|- Then we have |g(zo)| = 1.

Since |g(2)| < 1for all z € D, |g| attains its supremum in D. By Theorem 3.5.3, g is constant,
that is, there exists a @ € C with |a| = 1 such that g(z) = a. Hence f(z) = az.

Finally, suppose |f’(0)] = 1. Note that f'(z) = g(z) + z¢’(z) and hence f’(0) = ¢(0). So |g|
attains its supremum in zero and is thus constant as before. O
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Fig. 37: A compact
connected subset of a
domain U < C and a
function f: U — C.

: ,,,

D
Fig. 38: A holomorphic
map f: D — D.
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Corollary 3.5.3 (ord(0, f) = n = |f(2)| < |z|™ (Tut VI))
Let f: D — D be holomorphic and let 0 be a zero of n-th order, where n = 1. Then

|7 (2)] < |z|™ for all z € D.

Proof. Consider the holomorphic function g(z) := Z’if—f)l on D. Then g has a zero of order
1 at zero. We show that g(D) c D. Consider gi(z) := 2 % f(2) for k € N. By SCHWARZ's
lemma, we have |f(z)| < |z| and thus ’@’ < 1 and thus g1(D) € D and g; is holomorphic.

Applying this iteratively we get |g,—2| < |2| and thus |g,—1]| < 1 and thus g, (D) = g(D) <
D. Applying SCHWARZ's lemma to g,—1 yields the claim. O

In the last theorem we dealt with functions mapping the unit disk into the unit. Now let us

consider a stronger assumption.

THEOREM 3.5.7: HOLOMORPHIC MAPPINGS D — D

Let f: D — D be holomorphic and injective Then there is a ¢ € R and a zy € D such

that
f(z) = e =

1—7%z"

In particular, f then is the restriction to D of a rotated MOBIUS transformation.

Proof. By corollary 3.4.7, f is biholomorphic.

Case 1. Assume that f(0) = 0. Then Theorem 3.5.6 (1) implies that |f'(0)] < 1. As

f71(0) = 0, we also have
1
oy = ()0 <1
£(0)]
by Theorem 3.5.6 and Theorem 3.4.4 and hence |f/(0)] = 1. By Theorem 3.5.6, there exists
aa = e% e C with |a| = 1 for some ¢ € R such that f(z) = az = €?¥z. This proves the

theorem with zg = 0.
Case 2. Assume that zy == f~1(0) # 0. We will show that the MOBIUS transformation

zZ— 20

9@%:1_5@

maps D bijectively onto D.

%ﬁ O }‘awe)?
QO

Fig. 39: TODO
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1 1

Since f o g~! is a biholomorphic map D — D preserving the origin, we have fog~! = e?Pw

by Case 1. Then f(z) = e*?g(z), which proves the theorem.

It suffices to show g(D) = D, as MOBIUS transformations are bijective maps from C to C.
First we show that g(S') = S. If [z] = 1, then 1 = Z and thus

B
z) = =
9 1— 202 1—ZOZ

and so [g(2)| = g(2)g(2) = 1.

L either maps the connected

1

So g~ ! also maps S! to S!. As a MOBIUS transformation, g~
components of C\S! to themselves or to each other. Since g7!(z9) = 0€ D, g~! maps D to

D and hence so does g. O

Remark 3.5.4 The injective holomorphic maps mapping D onto D are the MOBIUS trans-
formations mapping D onto D (cf. Theorem 1.8.7).

Remark 3.5.5 Using a MOBIUS transformation mapping D to the upper half plane H, we

az+b
cz+d

are not only all MOBIUS transformations mapping H to itself (cf. Theorem 1.8.8), but they

see that the MOBIUS transformations z — with real coefficients fulfilling ad — be > 0

are all injective holomorphic maps from H to H.

The set {z — e"? 72} forms a three-dimensional manifold of transformations, as there are
three real parameters ¢, $(zg) and $(2p), while in general, spaces of holomorphic functions
are infinite-dimensional.

There is a very close connecting between Complex Analysis and 2D Hyperbolic Geometry.

Remark 3.5.6 (Geometric interpretation of SCHWARz’s Lemma) If we consider D as the hyperbolic plane
in the PoINCARE disk model. Then ScHWARZ’s Lemma says that any holomorphic function f on D with f(D) ¢ D
is a contraction mapping in the hyperbolic metric:

dnyp (f(21), f(22)) < dnyp(21, 22).

—zg
1—%02

The maps z — e*?
disk model.

are exactly the orientation preserving isometries of the hyperbolic plane in the POINCARE
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4 ISOLATED SINGULARITIES

Isolated singularities

4.1 | Three types of isolated singularities

DEFINITION 4.1.1 (ISOLATED SINGULARITY)
Let f be holomorphic on U. A point 2y € C\U is a isolated singularity of f if there is an
open neighbourhood Uy of zg such that Uy n U = Up\{2}, that is, there is an £ > 0 such
that

{zeC:0<|z—2| <e} cU.

An isolated singularity is "point-shaped hole" in the domain of definition. As with real
numbers, where we have continuous completion, there are isolated singularities that are not

really singularities and are thus called removable.

DEFINITION 4.1.2 (REMOVABLE ISOLATED SINGULARITY)
An isolated singularity zg of f: U — C is removable if there is a holomorphic function f
on U U {2} (still open!) such that f = f|y.

Hence removable singularities are that isolated singularities zg of f that can easily be "fixed"

by assigning the "appropriate value" to f at z.

THEOREM 4.1.1: RIEMANN’SCHER HEBBARKEITSSATZ

If 2o € C\U is an isolated singularity of a holomorphic function f: U — C, then the
following statements are equivalent.

@ The singularity zg is removable.

@ f is bounded in a neighbourhood of zy: there is a € > 0 and a M > 0 such that

lf(z)| <M for all z € U n Be(20).

@ We have lim (z — 2) f(2) = 0.
z— 20

. J

Proof. "@ - @”: If zg is removable, then by Definition 4.1.2 there exists a holomorphic
continuation f , which is bounded in a neighbourhood of zy because it is continuous. As
f=7 |, the statement follows.
"@ == @”: is clear by the normal rules of doing limits.
"@ — @": Suppose lim,_,.,(z — z9) f(z) = 0. Consider the function

(z — 20)2f(2), if 2z # 2,

g(z) = .
0, if z = zp.

Then g is holomorphic on U. But g is also differentiable in zy: for z # 2y we have

o) =9() _ 9(2) (=G (e e

Z— 20 zZ— 20 Z— 20 @

So ¢'(z0) = 0 and so ¢ has a zero of order of at least two at zo. Around zp, g is represented

by a power series of the form

9(z) = > ar(z — 20)*

k=2
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for all z in a neighbourhood of zy by Theorem 3.2.4. Hence the holomorphic function

9(2) _ < a 5 )P
7@_20)2 71;0 k2 0)

has a removable singularity at zy. Defining f(z) = (zfi(zzg)Q concludes the proof. O

Corollary 4.1.3 (Dominating function (Tut VI))
Let f and g be entire functions such that |f(z)| < |g(2)| for all z € C. Then there exists a
a € C such that f = ag.

Proof. Case 1. If g is bounded, then it is constant by Theorem 3.2.5 and hence so is f.

_ 9(20)
So we can choose a = yien) for any zg € C.

Case 2. If g is not bounded, consider the holomorphic function h := 5: C\M — D, where
M = {ze C:g(z) =0} is the zero set of g (all zeros (of finite order) are isolated by Theo-
rem 3.4.1). If z € M, then h has a removable singularity at z, so h can be holomorphically
continued onto C and is bounded by 1, as h is bounded by 1 on C\M. By Theorem 3.2.5,

h is constant and thus the statement follows. O

THEOREM 4.1.2: 3 TYPES OF SINGULARITIES

Let zp be an isolated singularity of a holomorphic function f. There are three possi-
bilities:

@ f is bounded in a neighbourhood of z; and hence zy is removable.

@) lim,_,., |f(z)| = . Then z is a pole of f and there exist a number m € N
such that z — (2 — z9)™ f(z) has a removable singularity at zp. The smallest
such exponent m is the order of the pole.

@ If none of the above holds, zg is an essential singularity.

Proof. We only have to prove that only at most one of the possibilities can hold, since by

construction of @, every isolated singularity must fall in one of the three categories.
@ holds by Theorem 4.1.1.

@) Suppose lim, ., |f(2)| = o0. By Theorem 4.1.1, 1 is bounded in a neighbourhood of

> f
20, as lim,_, ﬁ = 0. Hence zy is a removable singularity of % After removing
the singularity, one obtains a holomorphic function g = % with g(z9) = 0. If m is

the order of the zero, g(z) = (2 — z9)™h(z), where h is a holomorphic function with
h(z0) # 0 by Theorem 3.4.1 @). Hence (z — 20)™ f(2) = (z — zo)mm = ﬁ
for z # zp, so (- — zo)™f has a removable singularity at zg. (We also see that the order
of the pole is the order of the zero of % after the singularity has been removed.) []

Corollary 4.1.4 (TODO (Tut VI))

There does not exists an entire function such that f(%) = 5.0 for all n € Nxg.

Proof. Suppose there exists such a function f Define g(z) = % = Qiz for z € C\{2}.

Then f(z) = g(z) forall z € {£ : n e Nog}. As (2),en_, has a limit point, by Theorem 3.1.2,

we must have f = ¢g. But as lim,_,5 |g(2)| = 00, so z = 2 is not a removable singularity of g,

so it cannot be continued to a holomorphic function f, which is a contradiction to f being
entire. 0

o1
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We prove a theorem about the behaviour of a function at an essential singularity, the most

mysterious type of singularity.

THEOREM 4.1.3: CASORATI- WEIERSTRASS

If zp is an essential singularity of a holomorphic function f on U, then the set of

values that f takes on any open punctured neighbourhood of z; is dense in C.

Whereas for poles, where the function values tend to infinity when approaching a singularity,
near an essential singularity, the set of values of the function is dense, that is, no matter
how small a neighbourhood of the singularity we choose, we can come arbitrarily close to

any complex number.

Proof. We will show: if there is a neighbourhood Uy of zy such that f(Up\{z0}) is not dense
in C, then zy is a removable singularity or a pole of f. By assumption, there is a complex
number wy € C that is not a a limit point of f(Up\{z0}). Hence there is a € > 0 such that
|f(2) —wp| > € for all z € Up\{zp}. This implies that

is holomorphic on Up\{zp} and bounded. Hence g has a removable singularity at zo by
Theorem 4.1.1. Hence

has a removable singularity at zy or a pole by Theorem 4.1.2, depending on whether
lim,_,., g(z) # 0 (then z; is removable) or not (then zg is a pole). O

In fact, an even stronger statement is true, whose proof is more complicated and hence
omitted.

THEOREM 4.1.4: GREAT PI1CARD’S THEOREM

In any neighbourhood of an essential singularity, a holomorphic function takes all

values in C or all values in C except for one.

We have already defined the order of a zero. It makes sense to extend this definition of the

order of a zero to poles and assign poles negative numbers.

DEFINITION 4.1.5 (ORDER OF ANY POINT)
Let f be holomorphic on U and let 2y be an isolated singularity of f or a just zo € U. The
order of f at zq is

ord(f,z0) =sup<meZ:z— @) has a removable sing. at zg y € Z u{tw0}
(z—20)™

with the convention sup(Z) = o0 and sup(Jf) = —co.
Remark 4.1.6 (Consistency of the Definition of the order) This Definition agrees with

the previous Definition: if ord(f, z9) = m > 0, then f has at most a removable singularity

at zg. After removing the singularity (if necessary), f has a zero of order m at zo.
If ord(f, z0) = m < 0 and m # —o0, then f has a pole of order —m > 0.

If ord(f, z9) = —o0, then f has an essential singularity at zg. o

52

=
S

Fig. 40: According to
Theorem 4.1.3, any
small neighbourhood
of the essential singu-
larity gets "splatted"
over the whole complex
plane.
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Remark 4.1.7 For holomorphic functions f and g we have ord(f - g,20) = ord(f,20) +
ord(g, z0), where 00 4+ (—o0) := oo (as if f has a zero of infinite order and g has a essential
singularity, then f is zero in a neighbourhood of zy and thus so is f - g). We also have
ord(%, z9) = —ord(f, zp) and hence ord(ﬁ, 20) = ord(f, z0) — ord(g, z0)-

In particular: if f has a pole of order n at zg and g has a zero of order m at zp, then there
are three cases:

e if n > m, then f- g has a pole of order n — m at zg.
e if n < m, then f - g has a zero of order m — n.

e if n =m, then f - g has a removable singularity at zyp and lim,_,,, f(z) -g(z) # 0. o

Example 4.1.8 (Three types of singularities)

The function f(2) = 2 = 3 (& + 1}rz) has poles of order 1 and zy = =+1, as if
we multiply f by 1 + 2, then this product can be bounded, so the singularity F1 can be
removed.
The function f(z) = ﬁ has poles of order 1 at the points z; := 27k for k € Z, as
z z B 1 250 1 _1
Sin(Z) Zfzo(fl)km22k+l kazo(fl)kmzﬂk 1-0

For the other singularities we use that sin(z + kn) = (—1)*sin(z) for all k € Z, which can
be deduced from the power series of sin.

The function g(z) := e+ has an essential singularity at zp := 0, as

Rt Nt
lime* =00 #0 = lime>
z— z—0
z>0 z<0
. 1 . 1 :
and, even worse, if R(z) = 0, then |ez| =1, so hn%) ez does not exist. o
Fand

R(2)=0

Example 4.1.9 (Singularities and their orders (Tut VII))

For n € Z we find the singularities and their order for the following functions: f(z) =
._ sin(z) . 1—cos(z)

g(z) == =52 and h(z) :

z™ sin(z)

cos(z)
Z’Vl )

e We have ord(f,0) = ord(cos, 0)—ord((-)",0) = 0—n = —n and 0 is the only singularity,
as ()" is holomorphic on C*.

e We have ord(g,0) = ord(sin,0) — ord((-)",0) = 1 —n and 0 is the only singularity, as
()™ is holomorphic on C*.

e We have sin(z) = 0 if and only if z = 2z, := kw. Hence ord(h, zox) = ord(1 — cos, za5) —

ord(sin, zer) = 0 — 1 = —1 and ord(h, zax4+1) = ord(l — cos, zap4+1) — ord(sin, zox+1) =
2—1=1for k e Z. o

4.2 | Meromorphic functions

A meromorphic function is a function which is holomorphic except for poles.

DEFINITION 4.2.1 (MEROMORPHIC / HOLOMORPHIC EXCEPT FOR ...)

Let U = C be an open subset. A function f is holomorphic on U except for isolated
singularities if f is holomorphic on U\S for some subset S < U and all points in S are
isolated singularities of f. If all points in S are removable singularities or poles, then f is

holomorphic on U except for poles or meromorphic.
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Meromorphic is Greek and means "fraction-like". We know that holomorphic function be-
have similar to polynomials (power series expansion, infinitely often differentiable, ...) and

we will see that meromorphic functions behave similarly to rational functions.

Lemma 4.2.2 (Quotient of holomorphic functions is meromorphic)

If f and g are holomorphic on a domain U < C and h #£ 0, then g is meromorphic on U.

This is the generalisation of the statement "if f and g are polynomials and g 0, then 5 is

a rational function".

Proof. The function h := g is holomorphic on {z € U : g(z) # 0}. Since the zeros of g are
isolated by Theorem 3.4.1 (here we need the connectedness of U: otherwise g could be zero
on one connected component and nonzero on the other but then the quotient will not be
meromorphic on the first connected component. Hence h is holomorphic on U except for
isolated singularities. If zg is a zero of ¢ of order m and also a zero of f if order n, then zj

is a removable singularity of h if n > 0 and a pole of order m — n of h otherwise. O

Corollary 4.2.3 (Meromorphic functions on a domain are a field)
If U < C is a domain, then the set of meromorphic functions on U is a field (depending on

U ), where the operators are defined pointwise (after removing the removable singularities).

This shows that there is a close connection between Complex Analysis and Algebra. Before
we show another such connection, let us define zeros and isolated singularities of a function
at z = e C.

We had this idea that we can map the complex plane to the sphere and then we get all
points except 0. So o0 is one point in C and it makes sense to say that oo is an isolated

singularity of a holomorphic function on some domain.

DEFINITION 4.2.4 (ISOLATED SINGULARITY AT 00)
Let f be holomorphic on some domain U. Then oo € C is an isolated singularity of f if
there is a number R > 0 such that {ze C: |z| > R} c U .

Motivation. To classify the isolated singularities at oo, note the following. If zy € C*
is a removable singularity, a pole of order m or a essential singularity of f, then % is a
singularity of the same type of the function g(z) := f (l)

z

DEFINITION 4.2.5 (SINGULARITY AT )

If oo is an isolated singularity of a holomorphic f, then we say that f has a
e removable singularity at oo if z — f (%) has a removable singularity at 0.
e pole of order m at oo if z — f (%) has a pole of order m at 0.

e essential singularity at oo if z — f (%) has a essential singularity at 0.

Using the results about isolated singularities in C obtained before we obtain the following
characterisation of isolated singularities at oo: The function f has a removable singularity
at oo if f is defined and bounded on {z € C: |z| > R} for some R > 0 and f has a pole at c©
if lim, o |f(2)| = oo. This is case, there is a m € Z~ such that z — z7™ f(z) is bounded
on {z € C: |z| > R} for some R > 0. The smallest such m is the order of the pole at co.

Otherwise, an isolated singularity at oo is essential.
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Example 4.2.6 (Singularity at o)
The entire functions exp, sin and cos have essential singularities at c0. Any polynomial of
degree d has a pole of order d at c0. (Check for yourselves!) o

Lemma 4.2.7 (o is 1st-order pole of bijective f (Tut VIII))
Let f be a bijective entire function. Then the isolated singularity at oo is a pole of order

one.

Proof. @ We first show that if f is injective and zg is an isolated singularity of f, then zg
is not essential. Assume that zy is essential, then by Theorem 4.1.3 A := f(B,(z)) < C
is dense. The set Br(20)\B;(20) is open and by Theorem 3.5.2 B := f(Bgr(20)\B(20))
is open, too. As A is dense and B is open, there exists a y € A n B and thus there
exist 1 € A and x9 € B such that f(z1) = y = f(x2), which is contradiction to the
injectivity of f.

@ We now show that if f: C* — C is holomorphic and injective, then the isolated
singularity z¢p = 0 is removable or a pole of first order. If zy is not removable, consider
the injective map g(z) = ﬁ If ord(f,0) = —k for k € N, then ord(g,0) = k, that
is 0 is a k-th order zero of g. By lemma 3.4.5 there exists a holomorphic function
h on some neighbourhood of 0 such that h¥ = g and ord(h,0) = 1. There exists a
e > 0 such that B.(0) ¢ h(C¥). We have é; := Se, € B:(0) for k € {1,...,k}, where
e1,...,ex are the k-th roots of unity. But we have &} = g—i, so g cannot be injective
and hence f can’t be injective provided k > 2.

@ We now show that for an entire bijective function f, o0 is a pole of order 1. Consider
g9(2) == f (1) on C*, which is injective and has an isolated singularity at 0. From (2)
we know that 0 is either removable or a pole of first order of g. If 0 were removable for
g, then g would be bounded in a neighbourhood of 0, but then f would be bounded.
If f is bounded, then it is constant by Theorem 3.2.5, which is a contradiction to the
bijectivity of f. Hence 0 is a pole of first order of g and thus oo is a pole of first order
of f. ]

The following Theorem also illustrates the close connection between Algebra and Complex
Analysis as rational functions are essentially algebraically defined: rational functions are
exactly the functions of one variable that can be defined in terms of finitely many elementary
operators (+, —, -, /).

THEOREM 4.2.1: MEROMORPHIC ON C <= RATIONAL

The meromorphic functions on C are precisely the rational functions.

Proof. " <= ": We show that rational functions are meromorphic on C. On C, a rational
function has only removable singularities and poles. For z — o0, a rational function f either
has a finite limit or lim, o |f(2)| = 0. Hence 0 is a removable singularity or a pole.

n S H:

@ Assume that f is meromorphic on C. So f has a pole or a removable singularity at
00. In the first case let m > 0 be the order of the pole at oo, in the second case, let

m = 0. In either case, there are numbers R, M > 0 such that

27" f(2)| < M Vz e C with |z]| > R. (20)
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4 ISOLATED SINGULARITIES

In particular, there are no further poles in the region {z € C : |z| > R}. All poles, if
any, lie in the closed disk {z € C : |z| < R}. Since the poles are isolated, they cannot
have a limit point, the function f can only have finitely many poles zq,...,z, € C.

Let mq, ..., m, be their orders.

@ Then the function

n

9(z) = f(x) [ [(z = z)™

k=1
has only removable singularities in C. After removal, we obtain an entire function g.

We want to apply corollary 3.2.4 to g, as then § is a polynomial of degree at most m

and hence f(z) = (z—zl)ml‘f}.(ﬁ)(z—zn)mn is a rational function.

@) By (20) we have that |f(z)| < M|z|™ for all z € C with || > R. Thus
9] < Mz = 2™ - |2 = 2|2
for all z € C with |z| > R. Note that |z| > R and |z;| < R implies
2= 2] < J2l 125l < 12| + R < 2]2].

So
g1 < 2z

where m = Y7, my. O

4.3 | Laurent series

LAURENT series are not power series.

DEFINITION 4.3.1 (LAURENT SERIES)
A LAURENT series with centre zq is a series of the form

Z ag(z — zo)k. (21)

k 0

More precisely, a LAURENT series is composed of two ordinary series:

(0'0]
Z ax(z — zo)® (nonsingular part)
k=0
© -1
Z a_p(z —20)F = Z ar(z — z)*. (principal part)
k=1 k=—o0

If both series converge, then the expression (21) also denotes the sum of the limits.

The nonsingular part of a LAURENT series is an ordinary power series centred in zg, so it has a
, TEence inei i ' series i yo— 1L i
radius of convergence R € Rsg u{co}. The principal part is a power series in w := p—— with
centre zero. Let its radius of convergence be 1 € Ry u{oo} (if the radius is 0, then r = o
and if the radius is co, then r = 0). Hence the nonsingular part diverges for |z — zp| < R and
—— < L and thus)
|z—z0] r

|z — 20| > r and diverges for |z — 29| < r. If » < R, then both parts and hence the LAURENT

diverges for |z — zp| > R and the principal part converges for (Jw| =

series converges on the domain {z € C : r < |z — z9| < R}. This domain is an annulus if
0 <r < R < oo. This domain can also be the complement of a closed disk in C (if » > 0
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4 ISOLATED SINGULARITIES

and R = o) or a punctured disk (r =0 < R < ) or the punctured plane (r = 0, R = ).

But these are somewhat degenerate cases, in general, one should think of an annulus.

THEOREM 4.3.1: DIFFERENTIATING AND INTEGRATING LAURENT SERIES
TERM BY TERM

If the LAURENT series "

f(z) = Z ar(z — zp)*

k=—00
converges on the nonempty domain U = {z € C : r < |z — 2| < R} for r,R €

R u{oo}, then it can be differentiated and integrate term-wise. More precisely

Q0

f(z) = Z kay(z — z)F ! and J f(z)dz = Z akj (z — 29)* dz

k=—0 k=—o0

for any piecewise C* curve v: [to,t,] — U.

Proof. The statement about differentiation follows from the corresponding statement for

the power series > a(z — 20)" and Y} ; a_rw" together with the chain rule for z = 1.
The statement about integration follows similarly from the fact that power series convergence

uniformly on compact subset of the open disks of convergence. O

Lemma 4.3.2 (CAUCHY formula for LAURENT coefficients)
If the LAURENT series ., ax(z—20)" converges on the domain {z € C : 7 < |z—20| < R}
and represents a holomorphic function f there, then

1 f(z)
n=5_ ———d
“ 2mi J (z — zp)t1 ?

|z—z0|=¢

for alln e N and any o € (r, R).

Proof. For simplicity let us assume zy = 0. Then by Theorem 4.3.1 for £ € (0, R) we get

f(Z) J- Zk J- k—n—1
prws dz = Z akﬁ dz = Z ak z dz,
lz|=¢ |z|=¢

In example 2.1.3 we showed that

0, ifk—n—1%#-1,
omi, ifk—n—1=—1,

iy =
l21=¢

so every summand except the n-th one vanishes and we get

(2)

Zn+1

|z1=¢ ]

dz = 2mia,,.

We can now state the LAURENT series equivalent of Theorem 3.2.4.
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4 ISOLATED SINGULARITIES

THEOREM 4.3.2: LAURENT SERIES THEOREM

Let f be holomorphic on the domain U := {z € C: r < |z — 29| < R}. Then for all
z € U we have

f@ = Y anlz— 20",
k=—0o0
where
_ 1 f(z)
|z—20]=¢

for all n € Z and any p € (1, R).

The proof is similar to the proof of Theorem 3.2.4 but requires a few more steps. First, we
prove CAUCHY’s Integral Formula for Annuli and then prove the above theorem. First, a

warm-up.

Let us consider two concentric circles, the inner one being centred at 0 and a circle tangent
to both circles, centred at 1, with radius r € (0,1). Now consider the region enclosed by the

largest circle without the area enclosed by the two smaller circles

U={zeC:1l—-r<|z|<l+mr]|z—1]>r}

We claim that the closure U of U is the C'-image of a closed rectangle. One way to do
rsin(a)
1—r cos(a)

this is the following. Consider the angles « and § as in figure 43. Then tan(s) =
rsin(a) ) Furthermore, o(a) = 4/(rsin(a)? + (1 — rcos(a))? =

and thus /6(01) = arctan (1—rcos(a)
/1 = 2r cos(a) + r2. Define

10 (a,t)

P: [077T] X [071]_’((:3 (a,t)Hg(a):e )

where
0o, t) == Blar) + (2m — 25(a))t
is a linear interpolation.

We can now easily prove CAUCHY’s Integral Formula for Annuli.

THEOREM 4.3.3: CAUCHY’S INTEGRAL FORMULA FOR ANNULI

Let zg € C and let f be holomorphic on the annulus
A={zeC:r<|z—2)| <R}
for 0 <r < R<oo. If z € Cis such that r < g1 < |z — 29| < 02 < R, then

== | | M

u—z
|z—z0|=02 |z2—20|=01

FOI

u—=z

So again, we can represent the value of f anywhere between the two circles {z € C : |z —z| =
0i}, i € {1,2}, by integrating the function along those circles, so the values of [ between the

two circles are completely determined by the values of f along the two circles.
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4 ISOLATED SINGULARITIES

Proof. Choose € > 0 small enough such that the closed e-disk around z lies completely
between the two circles, that is |z — 20| + € < 2 and |z — 29| — € > 01. By Theorem 3.1.1

we have

_ 1 (u)
lu—z|=¢

(23)

Now consider two circles centred at zy which touch the disk around z as in figure 45. Since
the closed region bounded between the pink circles and outside the blue circle is the C'-image

of a rectangle (see warm-up), Theorem 2.3.1 implies

— f I g+ J f(_“) du — J

u—z
lu—z|=r |lu—zo|=|z—20|+€ |lu—zo|=|z—20|—¢

f(w)

u—=z

du = 0.

Hence we get

23y 1 1
oL [ W L[ e, [ S,
271, uU—z 273, uU—z uU—z
lu—z|=¢e |u—zo|=|z—20|+¢€ |u—zo|=|z—20|—¢€
Finally, by Cavucny’s Integral Theorem for Annuli, we have
7f(u) du = J 7f(u) du
uU—z uU—z
|u—zo|=|z—20|+€ [u—z0|=02
and
AOWWE B (O
u—z u—z
lu—zo|=|2—20|—¢ [u—z0|=01 U

Proof. (of Theorem 4.3.2) Assume that r < g1 < |z — 29| < g2 < R. By Theorem 4.3.3

we have ) )
f(z)=— J Mdu——, J Mdu:h—lg.
) u—z 21 u—z
|u—zo|=02 |u—zo|=01
We have
1 1 1 11 i z—z\"
u—z_(u—zo)—(z—zo)_u—zol—%_u—zokzo u—2z9)

by the properties of the geometric series as on the larger circle we have |u—zp| = 02 > |z— 20|
and thus

inside the domain of convergence (U) we get

1 1 1
[ = — -
L J flu)— du =52 f

Z—Z0

< 1. Using the uniform convergence of power series on compact domains

|[u—zo|=02 |u—zo|=02 k=0
w 1 < J f(u) K
= AN/ | _
o ];0 (u — z0)F+1 u [ (z = z0)
[u—z0|=02
0]
1 f(w) k
= — ———du |(z — %
];0 2mi J (u— zp)kt1 ( )
|lu—zo|=0
=ag, k=0

for any ¢ € (r, R).
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Fig. 45: The orange ar-
rows indicate the ori-
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gle, whose Cl-image is
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4 ISOLATED SINGULARITIES

Similarly, we have

1 1 1 11 i u—2\"
u—z—(z—zo)—u(—zo)_z—zol—%_Z—zom= Z—2p ’

—Z0 0

as on the smaller circle we have [u — zo| = 01 < |z — 20| and thus |{=22| < 1. Hence (with
k=-m-—1)
1 1 0 o m
7[2 - f(U) du = — f(u) Z (u Zo) du
211 lu—zol=01 U — 2 21 lu—zol=01 % — 20 “2g \Z — %0

®© 1 m 1
N f ()= 20)™ | oy

m=0
|u—20|=01

1 U
-3 | (uj(zo;kﬂ du e =z
[u—zo0|=0

~—

=ay, k<0 O

Remark 4.3.3 (Principal part of f at an isolated singularity; classification)

If f is holomorphic except for an isolated singularity at zg, then for small enough r > 0, one
can represent f on the punctured disk {z € C: 0 < |z — z9| < R} by a LAURENT series. The
principal part of it, Z;i_oo(z — 2p)* is the principal part of f at the isolated singularity zo.
The principal part of the LAURENT series describes the singular behaviour of f at zg. There

are three possibilities:

@ ar = 0 for all k£ < 0. Then zj is a removable singularity and the LAURENT series is a

power series because the principal part vanishes.

@ ar # 0 for at least one but finitely many k < 0. Then zy is a pole of order n =
max{m e Z: a_, # 0}.

@ ay # 0 for infinitely many k& < 0 (that is, for all m < 0 there exists a k < m such that

ar, # 0). Then zp is an essential singularity. o

Example 4.3.4 (LAURENT series expansion of i)
Let us consider the LAURENT series of the function f(z) := i around zg = 0. The function

f has a pole of first order at 1, so it is holomorphic on C\{1}. The function f is holomorphic

on the annuli
A1 ={zeC:0<|z| <1} and Apy:={zeC:1<|z|}.
For z € A1 we have
0
HOEDIES
k=0
so the LAURENT series on A; is the geometric series. The principal part vanishes.

For z € A5 we have

—1

1 1 1 134 1
- S Y —1)z"
o) 1—2 21—% zkgozk Z( )z

n=-—0oo

and the nonsingular part vanishes.

Let now zp = 1. Then the LAURENT series around zg is

fe) =~ = (D -1

z—1 o
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4 ISOLATED SINGULARITIES

Example 4.3.5 (LAURENT series of exp(z~2))

The function g(z) = = is holomorphic on C* and we have

0 1 0
= Z Ez_% = Z anz"
k=0 "

n=—0u

1

for all z € C*, where a,, = if n is nonpositive and even and 0 if n > 0 or n is odd. ©

ey

Example 4.3.6 (Singularities of LAURENT series and their orders (Tut VII))

w3

We characterise the singularities of f(z) = cos( ). The only singularity of f is 0. We can

write
Cy D e Z (D" o
= (2k)! it (—2k)!"
so for all m € Z there exists a k < m such that aj, # 0 and hence ord(f,0) = —oc0. o

Example 4.3.7 (LAURENT series of 1322 (Tut VII))
Consider the function f(z) := er% Partial fraction decomposition yields 1
For |z — 1| € (0,2) we want to find the LAURENT scries of f. We have (as |251

1 1 1 1i 1—2\*
z+1 2+z—1 21 ( 51 2=

1 1
1—=z 1+z"

| <1)

and thus

f(Z)zllz_;kio(l_Z)k. O

[\]
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5 ANALYTIC CONTINUATION

Analytic continuation

5.0 | Motivation and History

Any mathematical theory should solve some (not necessarily mathematically defined) prob-
lem. In this case, the problem is: many holomorphic functions are in a natural way multi-
valued. In the case of z — {/z or the logarithm, both functions are the inverse function of
some other function (z — 2™ or exp) and the logarithm is an antiderivative of the completely
innocuous function z — % There are n n-th roots of any number and also the real part of
the complex logarithm is the logarithm of the absolute value, but the imaginary part of the
logarithm is the argument and there is no sensible way to define that globally in a unique
way. So far, we have stuck to the pragmatic (and somewhat simple-minded) solution to only
ever consider such functions on domains U < C, where one can pick at each point z € U one

of the values in a consistent way to obtain a holomorphic function on U.

This pragmatic solution can always be done. But the problem with this solution is that it
involves arbitrary choices, like the choice of U and the choice of the value. The different
functions one obtains this way belong together somehow as different "branches" (will be
defined later) of one "function". Wouldn’t it be important to have a theory for this to make

all these concept and notions precise? This is what analytic continuation is for.

Remark 5.0.1 (Analytic continuation according to WEIERSTRASS)

Consider the power series
0
z Z ar(z — zo)*
k=0

with positive radius of convergence R := (limsup,,_,., ¥/@,)"' > 0. Then this power series
defines a holomorphic function on a disk with radius R and centre zy. Now consider the
power series expansion of this function around some z; € C with |z; — 29| < R. We know
that the radius of convergence of that new power series (which is said to be a direct analytic
continuation) is at least the radius of the largest disk that is contained in the disk of con-
vergence of the power series around zg. But it can happen that we get a power series that
converges in a disk that reaches outside the previous domain. In this case, we can extend
the domain, on which the first function is defined, onto the union of the two disks by the
[dentity Theorem for Holomorphic Functions because both power series must agree on the
intersection of the two disks. After performing some iterations of this procedure, it may
happen that we obtain a power series that converges on a disk that overlaps with the first
disk. Then it may or may not happen that the power series agree on the intersection of both
disks.

The idea of WEIERSTRASS and then RIEMANN was to take a power series and its disk of
convergence and then consider all the power series and their disks of convergence that
can be obtained by this iterated process of direct analytic continuation. According to

WEIERSTRASS, all these power series together describe one "global analytic function".

One can imagine cutting out these disks of convergence out of paper and gluing them to-
gether. When the power series agree on the intersection, then we can image getting back to
the same point where we already were. If the power series don’t agree on the intersection,
we don’t glue them together. We hence obtain a multiple covering of a part of the complex
plane by this process by glued-together disks, called the RIEMANN surface of the global
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5 ANALYTIC CONTINUATION

analytic function. o

What is nice about this approach is that the power series representations always exist and
they give canonical domains for these "function elements". However, always dealing with
power series makes some things more complicated and unnecessarily so. For example: the
power series around z; is a direct analytic continuation of the power series around zy but
the converse is not true because zg is not contained in the disk centred around z;. So just
showing that the equivalence relation f ~ g if f is a direct analytic continuation of ¢ is

symmetric requires some work which we don’t want to do.

There are different ways not to use power series and we follow a compromise between the
book of JAHNICH and ALFOHRS.

5.1 | Analytic Continuation of Function Elements

Instead of power series we will consider holomorphic functions defined on domains. Let us

begin with some definitions.

DEFINITION 5.1.1 (FUNCTION ELEMENT)
A function element is a pair (f,U) consisting of a domain U < C and a holomorphic

function f on U.

Every function already determines its domain but it is useful to have a notation where
we have the function and its domain indicated. Furthermore, it is important that U is
connected.

DEFINITION 5.1.2 (DIRECT ANALYTIC CONTINUATION)
Function elements (f,U) and (f,U) are direct analytic continuations of each other if U
U+@Pand f=fonUnU.

This definition of direct analytic continuation is inherently symmetric.

Remark 5.1.3 (Existence/Uniqueness of direct analytic continuation)

If (f,U) is a function element and U is a domain, then there may not exist a direct analytic
continuation (f, (7) because U n U may be empty or because U n U # & but there exists
no holomorphic function f on U such that f =fonUnU. If U c U, then there exists a

direct analytic continuation (f|z,U). Beyond that, not much can be said.

In any case, if there is a direct analytic continuation ( 1, U), then it is unique because if

(g9,U) is also a direct continuation of (f,U), then

f|0r\U = f|UmU = g|UﬂU7
SO f = g by the Identity Theorem for Holomorphic Functions. Note that here we use that

U is connected. o
Having defined direct analytic continuation, we can define analytic continuation.

DEFINITION 5.1.4 (ANALYTIC CONTINUATION ALONG A SEQUENCE OF DOMAINS)
Function elements (f,U) and (f,U) are analytic continuations of each other, if there exists

a finite sequence

(f.U) = (f1,U1), (f2,U2), ..., (fa,Un) = (f,Un)
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5 ANALYTIC CONTINUATION

of function elements such that (f;,U;) and (f;,U;j4+1) are direct analytic continuations of
each other for all j e {1,...,n— 1}.

In this case we say that ( f,U ) is an analytic continuation of (f,U) along the sequence of
domains Uy, ...,U,.

This defines an equivalence relation on the set of function elements, where (f,U) ~ ( 1, U)
if and only if (f,U) and ( f,U ) are analytic continuations of each other.

DEFINITION 5.1.5 (GLOBAL ANALYTIC FUNCTION, BRANCH)
An equivalence class of ~ as described above is a global analytic function. A function

element of an equivalence class is a branch of the global analytic function.

5.2 | Example: The Complex Logarithm

In Definition 1.5.4, we defined the principal branch of the complex logarithm function as
the holomorphic function

log: C\R¢o — C, z > log(|z|) + iarg(z),

where the log on the left side is the real logarithm and arg(z) € (—m, 7). We will now define

some other branches of the complex logarithm function.

The principal value logarithm is a locally defined inverse of the exponential function. The
exponential function is 2mi-periodic and therefore the inverse is not uniquely defined.

DEFINITION 5.2.1 (NON-PRINCIPAL BRANCHES OF THE LOGARITHM)
For k € Z, let
log,: C\Rgo — C, z — log(z) + 2mik.

and
log), 1 C\Rsy — C, z — log(—z) + im,

where we slit the complex plane along the nonnegative axis.

The function I(logy,) takes values in the open interval (=7 + 27k, 7 + 27k) and S(logy, 1)
takes values in the open interval (2mk, 27 (k + 1)). For all k € Z, log;, and log;, 1 agree on
the upper half plane H* := {z € C: §(z) > 0} and log,, and log;,_1 agree on the lower half
plane H~ = {z € C : ¥(z) < 0}. In particular, log, and log,_ ; agree nowhere and their
difference is everywhere 2mik.

So (logy, C\R<o) and (logyy 1 |+, HT) are direct continuations of each other and so are
(log.1 1 lz+, HT) and (logj11,C\Rgp). Hence (logy,C\R<o) and (log,,1,C\R<o) are
only indirect analytic continuations of each other. So we can go from the slit complex plane
C\ Ry to the top half plane and then from the top half plane to the other slit plane C\Rxg
(and vice versa).

Hence all function elements (log,, C\R<o) and (log, 1, C\R<o) are different branches of a
global analytic function, the global complex logarithm.

Motivated by this example, we add some remarks.

64

branch

—

Fig. 47: The domains
of log; and logk+% R
where k € Z.



5 ANALYTIC CONTINUATION

The exponential function is not injective. The global complex logarithm function (sort of
the inverse of the exponential function) is not a normal (i.e. single-valued) function. But
for each z € C* (C* is the image of the exponential function), there is a branch of the global

logarithm defined at zg. (In fact, there are infinitely many branches on different domains.)

We will now see that if a function element is a local inverse of some function f, then any

analytic continuation is also a local inverse of f.

Lemma 5.2.2 (Analytic continuation of local inverse of a holomorphic function)
Let f be an entire function and (g,U) be a function element such that f(g(z)) = z for all
zeU. If (§,0) is a analytic continuation of (g,U), then f(§(z)) = z for all z € U.

Proof. The general case follows directly from the special case that (g, U ) is a direct analytic
continuation of (g,U), because any non-direct analytic continuation is a sequence of direct
analytic continuations and if the property of being a local inverse of f is preserved from

one direct continuation to the other, then it is preserved for all steps. So assume (g,U) is a
direct analytic continuation of (g, U), that is UnU # @ and g=gon U n U.

Hence for z € U n U we have f(§(z)) = f(g(z)) = z. So fog and the identity function
z — z agree on U n UcU. By Identity Theorem for Holomorphic Functions f o g and

z — z agree of the domain U. O

Hence if f is holomorphic on U < C, zy € U is a point and f'(zp) # 0, then by the Inverse
Function Theorem, there exists a small neighbourhood Uy of zg and a local inverse function
g. We can now analytically continue this local inverse function to a global analytic function

and all the branches of this global analytic function will be local inverse functions of f.

In the same way we can prove the following statements:

Lemma 5.2.3 (Analytic continuation and algebraic or differential equations)
Suppose the coefficient functions ag, . .., an, b are entire and that the function elements (f,U)

and (f7 U) are analytic continuations of each other.

o If f satisfies the pointwise polynomial equation
anf™ + an_lf"_l +a1f+ap=">
on U, then f satisfies the pointwise polynomial equation

anf" + an_lf"_l + a1f+ ag=">

on U.

o If f satisfies the linear differential equation
any(”) + an,ly("_l) +...a1y =0
on U, then f satisfies the same differential equation on U.
Proof. Homework 8.2 O

Hence if we define a function locally implicitly by a polynomial equation, where the coef-
ficients are functions of z and continue this function analytically, then the other branches

also satisfy this polynomial equation and something similar holds for differential equations.
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Lemma 5.2.4 (?77)
Let (f,U) and (g, W) be function elements. The following statements are equivalent:

@ f=gonUnW.
@ There exists a holomorphic function h on U U W such that h|ly = f and hlw = g.

Proof. "@) — (@)": For z€ U n W we have f(z) = h(z) = g(2).

@ = @": Define

f(z), ifzel,
h:UuW — C, zZ
g(z), ifzeW,
which is well-defined by @ and holomorphic as f and g are. O

5.3 | Analytic continuation along curves

We discussed the direct analytic continuation of function elements and we discussed the
indirect analytic continuation, which is just the repeated process. But we need to put some
order into the function elements that can be obtained by analytic continuation and it turns

out that it is important to have the notion of continuation along curves to get a grip on this.

DEFINITION 5.3.1 (ANALYTIC CONTINUATION ALONG CURVES)
Let 7: [to,t1] — C be a continuous curve. A function element (f,U) is an analytic con-

tinuation of a function element (f,U) along ~ if there is a family of function elements
((ft, Ut))tefto,t,] Such that

@ (ftovUto) = (f7 U) and (ftUUtl) = (f, U>7

@) ~(t) € U; for all t € [to, 1] and there exists a € > 0 such that for each ' € [to,t1] with
[t —t'| < e we have (') € Uy and fy agrees with f; on Uy n Up.

In contrast to analytic continuation, the family of function elements is a continuous and not

a discrete set.

Lemma 5.3.2 (From direct continuation to continuation along a curve)

Suppose there is a finite family
(£, U) = (fOU), (f D uW) . (fM,u) = (£,0)

such that

@ (f9D,UD)Y and (fU+D,U0UHD)Y are direct analytic continuations of each other for every
jef{0,...,n—1},

@ there is a subdivision
to=T0<T <...<Tp =11

such that v(1;) € UY) for all j € {0,...,n} and v([1j,7j+1]) € U 0 UG for all
jefo,...,n—1}.

Then (f,U) is an analytic continuation of (f,U) along .
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5 ANALYTIC CONTINUATION

X O (.j”)
Vi

Fig. 48: An analytic continuation along a curve via a finite family of domains (left: simple
version, right: more complicated transition from UU) to UU+1)),

Proof. Define the family of function elements ((ft,Ut))tef[t,,t,] as follows
e If t = 7; for some j € {0,...,n}, then (f;,U;) = (f0),UW)).

e If t € (j,7;41) for some j € {0,...,n — 1}, let U; = UY) 0 UUHD and let f; be the
holomorphic function on Uy that is equal to ) on U and equal to fU+1 on UG+,

O

So what we really do is to chose the f; and U; to be "piecewise constant": in the open
intervals between the subdivision points they remain constant, in the end point the domain

becomes smaller and then it becomes constant again.

We have defined what it means to continue a function element analytically along a curve and
now we talk about what happens if we continue essentially the same function element. The
following lemma roughly states that analytic continuation along curves is uniquely deter-
mined - it depends only on the curve - but we have to be satisfied with only neighbourhoods
around the starting and endpoint.

Lemma 5.3.3 (If function elements agree, their continuations do, too)
Let 7: [to,t1] — C be a continuous curve, let (f~, U) be an analytic continuation of (f,U)

along v and let (g, W) also be an analytic continuation of (g, W) along . If f and g agree
on some open neighbourhood Vo < U n' W of v(to), then f and § are equal on some open
neighbourhood Vi < U n W of y(ty).

Proof. @ By assumption, there exists families of function elements (( fz, Ut))te[to, ] and
((gt7 Wt))te[to,tl] such that

L4 (ftvUto) = (f7 U)v (ftl?Utl) = (fv U)a (gt7Wto) = (97W)5 and (gt17Wt1) = (gaW)7
o v(t) e Uy n Wy for all t € [to, 1],

e for each t € [to,t1] there is a number £ > 0 such that for all ¢ € [tg,t1] with
|t — t'| < e we have y(t') € Uy n Wy and also fy = f; on Uy n Uy and gy = g; on
Wt N Wt/.

@ Let

A= {te[to,t1] : ft and g; agree on some open neighbourhood of v(t).}

We want to show that ¢; € A by showing that A = [to, t1].
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@ It is A # J because ty € A by assumption.

@ A is open in [tg,t1], that is, for each ¢t € A there is a number € > 0 such that
t'e Aift' € [to,t1] and |t —t'| <e.

@ A is closed.
Together, these three imply that A = [t,#;]. We have to show @) and @).

@): Suppose t € A. Then f; and g; agree in some open neighbourhood V; of ~(t).
Also, there is a number € > 0 such that the following holds for all ¢ € [to,¢;] with
[t—¢| <e:

o y(t') € V; (because v is continuous and V; is an open set),
e fy and fi agree on U; N Uy,
e g, and gy agree for all Wy n Wy.

Then ft' and gy agree on V; n Uy n Uy n Wy n Wy, which is an open neighbourhood
of y('). So t’' € A.

@: Suppose t € [to, t1] is a limit point of A. Let D be an open disk around ~(t) that

is contained in Uy n Wy.

By assumption, there is a sequence (s;)reny € A N D with limit ¢. Hence gs, and fs, N
agree in some open neighbourhood of v(sy) for all k € N. If k is large enough, then g,

agrees with g; on W, n Wy and f, agrees with f; on U, n U (local compatibility Fig. 50: The pink circle
condition). So for k large enough, the following functions agree on some neighbourhood is the disk D.
of Y(sk): gsp.» Gty fsps [t Since the holomorphic functions g; and f; agree on a nonempty
open subset of the domain D, they are equal on the whole of D by the [dentity Theorem

for Holomorphic Functions. Hence t € A. ]

Back to something more concrete and less technical, we will look at what kind of non-obvious
things can happen with analytic continuation.
Example 5.3.4 (The dilogarithm function)

Start with the geometric series

1
l+z+22+22+... =
11—z
for |z| < 1. If we continue this function on the unit disk analytically along arbitrary paths,
then we get (restrictions of) the holomorphic function z — 2~ on C\{1}.

Integrating this power series (and setting the constant of integration to zero), we obtain

1 1
z+§z2—|—§z3+...:—log(l—z)

for |z| < 1. Dividing by z yields

1 1 log(1 — 2)
Lt czd 224 .. = -2
+ 22’ + 32 + >
for |z| < 1. This is also holomorphic on the unit disk because the singularity at z = 0 is
removable.
Integrating again, we obtain the dilogarithm function: dilogarithm
22 28 o 2k * log(1 — u) )
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for |z| < 1.

What happens to these function if we continue them analytically? The domain of log(1 — 2)
can be extended to C\[1,00). The singularity of W at 0 is removable, s the domain
of w can also be extended to C\[1,00). And this is also the domain of the principal
branch of the dilogarithm function.

—% along ~y as in figure 51, we go to another branch of the logarithm,

If we continue
which does not have a zero a 1 anymore (the value is +27%). So the analytic continuation

of —W has a singularity at 0, which is not removable but a pole of order 1.

So the picture of the global dilogarithm is this: the principal branch is defined on C\[1, ).

The next branches are obtained by analytic continuation along curves that cross the cut.
These can be defined on a doubly slit plane. Each side of one of the cuts is glued to cuts
of other branches.

In particular, if we take the principal branch of the dilogarithm and continue it analytically
around zero, then nothing happens because the function is well defined at 0. If we continue

around v, we go to a different branch, which cannot be continued around zero anymore. <

Sometimes, Mathematics is difficult because there are contradicting objectives. For one thing, we need absolutely
precise definitions. If our concepts are not precisely defined, all statements about them are mathematically mean-
ingless because it is not clear what they mean. On the other hand, often it is the case that we can view certain
things from different perspectives and they may look very different. If often happens that these diverse points of
view are really useful because somethings seem clearer from one point of view but not all things are clear from one
single point of view. Maybe we would even like the different perspectives to have different definitions for the same
concept. This is particularly true for analytic continuation, explaining why in many textbooks the definitions are

slightly different.

Hence we want to back up a little and provide some material which allows us to better
translate between different points of view. We will use the different points of view because

it is very useful to be able to translate between multiple points of view.

DEFINITION 5.3.5 (LOC. COMPATIBLE FUNCTION ELEMENTS ALONG CURVE)
A family of locally compatible function elements along a curve v: [tg,t;] — C is a family
of function elements ((f;, Ut))e[to,t,] With the following property that for every ¢ € [to, 1]
there exists a number £ > 0 such that all ¢’ € [to, 1] with |t — /| < € we have

@ ~(t) € U; (in particular v(t) € Uy),
@ (ft,Uz) and (f, Uy) are direct continuations of each other, i.e. f; = fy on Uy n Up.

Remark 5.3.6 If ((f:,Ut))ie[ty,t,] s @ family of locally compatible function elements along
v: [to,t1] — C, then the following statements are easy to check:

@ One can make the domain smaller, that is, if for each ¢ € [tot1], W} is a domain con-
tained in Uy and containing v(t), then (fi|w,, W) is also a family of locally compatible
function elements along . In particular, we may choose W; to be an open disk with

centre v(t) that is small enough.

@ the parametrisation is not so important, that is, if ®: [sg, s1] — [to, 1] is a continuous
function and 5 = v o ¢, then ((fy(s), Up(s)))se[so,s:] 15 @ family of locally compatible

function elements along 7: [sg,s1] — C. o

The Diversity Lemma allows us to translate between different points of view.
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Lemma 5.3.7 (Diversity Lemma)

Let 7: [to,t1] — C be a continuous curve and let (f,U) and (f,U) be function elements.
Then the following statements are equivalent.

(@ There exists a family of locally compatible function elements ((ft, Ut))tefto,tr] along v
such that (fi,,Uy) = (f,U) and (fi,,Uy,) = (f,U) (that is, (f,U) is an analytic

continuation of (f,U)) along .

@ There exists a subdivision

to=1<...<Th, =11
of [to, t1] and function elements ((f;,U;))}_y such that

e consecutive function elements (f;j,U;) and (fj4+1,Uj41) are direct analytic con-
tinuations of each other for all j €{0,...,n — 1},

e Y(1;) € Uj for all j€{0,...,n},
o V([75,7j+1]) € UjuUj41 for all je{0,...,n—1},
b (anUO) = (fa U) and (fnaUn) = (f7 (j)

@ There exists a subdivision

to=10<...<Tp =11
of [to, t1] and function elements ((f;,U;))}—y such that

o consecutive function elements (f;,U;) and (fj4+1,Uj41) are direct analytic con-
tinuations of each other for all j € {0,...,n—1},

o ([, 7j+1]) € UjnUj41 for all j € {0,...,n — 1} (implying v(7;) € U; for all
j€{0,...,n}),

o (fo.Uo) = (f,U) and (fn,Un) = (f,0).

%kvmv\\
Vet

X el

1)

Fig. 53: Comparing the third bullet point in 2 and 3.

Proof. "@ — @" Follows from U; nUjy1 < Uj  Ujqq.
"@ = @” is a lemma.
n@ —_ @ll:

@ By assumption there is for each t € [to,?1] a number ¢, > 0 such that for each
t'e (t—er,t+er) N [to, t1]

o (') e Uy,

o (f,Uy) and (fy,Uy) are direct analytic continuations of each other.
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5 ANALYTIC CONTINUATION

For each t € [to,t1] let I; := (t — %et,t + %st) M [to, t1]. Applying lemma 5.3.8 to the
open cover (It)seft,,¢,] of the compact metric space [to,1] = R (equipped with the
subspace topology of R) yields that there is a number ¢ > 0 such that any interval in

[to,t1] of length smaller than ¢ is contained in one of the I;.

@ Choose n € Nxg large enough such that 1(t; —ty) < min(36,e4,,2,) and let 7; =

to + Z(t1 — to) and consider the subdivision

to=T0<T1...<Tp =11. (24)

For each j € {1,...,n — 1}, the length of the interval [7;_1,7;41] is < J, so there is a
point 0; € [to,t1] such that [7;_1, 741 < Ip,. This implies in particular (we will need
this later)

|7j-1 = 05] < 5e0;,

|7 — 0] < 3eo,, Vje{l,....n—1}

|Ti+1 — 0] < %eq,.

Now the subdivision 1 < 7y < ... < 7, and the sequence of function elements

({071/{0) = (fto,Uto)=(f7U)7 ({j’uj):z (f9j7U9j)’ (je{L...,n—l}),
({naun) = (ft17Ut1) = (f~7 0)
have the desired properties:

e ({(,Uo) and ({;,U1) are direct analytic continuation because |7y — 6y, | < &g, <

0y -

({;,U;) and ({;,,,U;+1) are directly analytic continuations for j € {1,...,n —2}
because

1 1
1041 = 051 < 105201 = 73] + |75 = 03] < Seo; + 526, = e,

({,,_1:Un-1) and ({,,,Uy) are direct analytic continuations of each other because
|Tn - 07'7171 < %Egnfl <E¢, ;-

v([10,71]) = Uy because |11 — 19| < &4, -
Y([7j-1,75]) = U; for j € {1,...,n — 1} because [7;_1,7;] € Iy,.
o Y([15,7541]) c U for j e {1,...,n — 1} because |1}, Tj11] € Ip,.
Al

Tn—1,Tn]) © Uy, because |7, — T_1| < &,. O

Lemma 5.3.8 (LEBESGUE Number Lemma)

If (X,d) is a compact metric space and {U;}icr is an open cover of X, that is a set of open
subsets such that | J,c; Ui = X, then there exists a number € (the LEBESGUE number of the
cover) such that any subset W < X of diameter smaller than € is contained in one of the
open sets Uj;.

Proof. Homework 9.1.

First show that the function
0: X > R, x +— sup{r = 0: 3i € I such that B,.(x) c U;}

is continuous (Homework 8.2). O
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e have now achieve e diverse points of view of analytic continuation.
We h 0 h d the d ts of f lyt t t

A function element ( f,U ) is an analytic continuation of (f,U) along + if one (and hence
all) of the conditions (@) - @) of the Diversity Lemma are satisfied.
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Lemma 5.3.9 (TODO (Tut VIII))
Let f: D\{0} — C be holomorphic with |f(z)| < M|z|* for some M >0 and t > —1 and for
all z € D\{0}. Then the isolated singularity of f at 0 is removable.

Proof. For z € D\{0} we have |z| < 1 and thus |z|' < |z|7! for all ¢ > —1. Hence
|f(2)] < M|z|t implies that |2f(z)] < M and thus ord(f,0) <> —1. For all z € C there

exists (cx)g=—1 such that

1

k
—ci-+ ) :
f(z)=c 1 k:Ockz

—
=:h(z)

There exists a C' > 0 such that for all z € C with |z| < £ we have |h(z)| < C, since h is

continuous and thus bounded on a compact set. For all z € D\{0} we have
C_1
|| < 17+ 102)]

and thus
leoa| < M2 + Cl2] < (M + C)2]* =5 0,
where a := min(t + 1,1) > 0. Hence c_; = 0 and thus f = h on D, that is, the singularity

of f is removable. |

Lemma 5.3.10 (No local square root if g’(0) # 0 (Tut VIII))
Let g: D — D be holomorphic with g(0) = 0 and ¢’(0) # 0. Then there does not exist a
holomorphic function h: D\{0} — C such that h® = g|p\(o}-

Proof. Towards contradiction assume such a function. Then h(D) < D and 0 is a removable
singularity of h by lemma 5.3.9, as |g(z)| < |z| implies |h(z)| < |z|2. Hence we can represent

h locally as
0
h(z) = Z apz".
k=0

Then g(0) = h(0)? = a3 = 0, so ag = 0 and thus ¢’(0) = 2h(0)R/(0) = 2apa; = 0, which is a
contradiction. ]
Intuitive approach: let a := ¢’(0). Let g = ‘%ng, then |¢'(0)] = 1, so g(z) = bz for some
b e S and thus g(z) = |a|bz. There does not exists a square root of z and thus also not of
any multiples.

Remark 5.3.11 Let f(2) := >}, ;2" for z € D. The direct analytic continuation of f with
the largest domain is g(z) = =

for all z € C\{1}. The power series of g around zp € C is

1—2
1 1 1 & zZ— 2 k &
_ _ _ 1— ) F=1(y _ )k
1—2 1—2z—(2—20) 1-—2 kZ:O<1ZO> kZ::o( 20) (2= )
for all z € C with 0 < |z — zg| < |1 — 20| and its convergence radius is R = |1 — z|. o

5.4 | Analytic continuation and integration along

continuous curves

The goal of this section is to define integrals of holomorphic function along any continuous
curve in the domain. This is really remarkable because in Real Analysis, there is no such
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thing; one needs some kind of regularity conditions on the curve to define an integral.
Since holomorphic functions are so extremely well-behaved, we can extend the definition to
integration along arbitrary continuous curves.

Lemma 5.4.1 (Analytic continuation of the derivative)
If the derivative (f',U) of a function element (f,U) can be analytically continued along a
curve y: [to,t1] = C, then (f,U) can be analytically continued along .

Proof. As (f’,U) can be analytically continued, there exists a family ((g:,Ut))seft,,] Of
locally compatible function elements such that (g, Us,) = (', U).

Without loss of generality we can (by remark 5.3.6 (1)) assume that for all ¢ € [t, 1], U; is
an open disk with centre ~(t).

By the Discretisation Lemma, there exists a subdivision
to=10<...<Tp =11

such that (g-;,Us,) and (gr,,,,Us,,,) are direct analytic continuations of each other and
Y([75, 75+1]) < Ur; 0 Us,,,. How we can define function elements ((f;,U;))}—, recursively
as follows:

o (fo,Ur) = (f,U). (Then (fo,Ur,) = (f',U) = (97, Ury)-)
e If (f;,Ur,;) has been defined such that (f},U.;) = (g-,,Us,) define f;11 and U,

j+1

as follows: Since U-,,, is a disk (!) and g,,,, is holomorphic on U,,,,, the function

j+17
gr;,, 1s represented by a power series on U, ,. Since power series can be integrated

term by term, there exists an antiderivative f;.1 of g, , on U. which is uniquely

Tj+17
determined up to an additive constant. We choose this constant of integration such
that f;y1(7;) = fj(7j). Then f;;1 and f; agree on U, nU,,, . Indeed, on U, nU,
we have

(fj-‘rl - fj)/ = fjl‘-&-l - f_; =Yrj41 — 9y = 0. (25)

Since U, and U,,,, are disks (!), their intersection is connected and hence f;;1 — f;

is constant on U, n U, ,. Since (fj11 — f;)(7;) = 0, this constant is zero.

So we have a sequence (f;, Us,) of function elements such that (f;, Ur;) and (fj41,Ur,,,) are

direct analytic continuations of each other and v(7;) € U, and y([7},7;41]) € U, n Uy, .
Now we use the Diversity Lemma in the other direction: By the Diversity Lemma, (f,,, UTy,)
is an analytic continuation of (f,U) = (fo, Upy) along ~. O

DEFINITION 5.4.2 (INTEGRAL ALONG A CONTINUOUS CURVE)

Let f be a holomorphic function on U and let 7: [tg,t1] — U be a continuous function, that
is, a curve in U. Let Dy c U be an open disk around «(to) and let Fy be an antiderivative
of f on Dy (which exists because f is represented by a power series on Dy). Let (Fy, D)
be an analytic continuation of (Fp, Dg) along ~ (which exists by lemma 5.4.1 because
(E}, Do) = (f|py> Do) can be trivially continued along «). Define the integral of f along
by

f f(2)dz = Fy(v(t)) — Foln(to)).
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THEOREM 5.4.1: EQUIVALENCE OF INTEGRAL DEFINITIONS

If v is piecewise continuously differentiable, then the integral from Definition 5.4.2

agrees with our original Definition 2.1.1, that is, in that case

Fi(v(t)) — Fo(n(fo)) = j o) (@ dt

\.

Proof. Homework 9.3. |

Analytic continuation and arcsin

Consider the function f(z) := 2z2. Then f/(1) = 2 # 0, so f is locally invertible, but
as it is not injective, it is not globally invertible. The principal branch of the inverse is
sqrt: C\R<g — C, e — \/re'? for r > 0 and ¢ € (—m, 7).

Now consider f(z) := sin(z) = 5 (e —e~%*). Assin’(0) = cos(0) = 1, sin is locally invertible,

but as it is not injective, it is not globally invertible.

DEFINITION 5.4.3 ((MINIMAL) PERIOD)
Let f: C — C. Then w € C* is a period of f if

f(z +kw) = f(2) VzeC,keZ.

and minimal if rw is not a period of f for all r € (—1,1).

A period of sin is 27 as z > e%* is 27-periodic. As 27 is the minimal period of sin |g, it also
is the minimal period of sin.
Let arcsin be the local inverse of sin around zg := 0. Then

—~

" f(f'(2))  cos(arcsin(z)) \/1 — sin®(arcsin(z)) IRV )

arcsin’(z)

where in () we pick the principal branch sqrt of the square root function because cos(0) =
1>0.

What is the domain of definition of arcsin’? We have 1 — 22 = (1 —2)(1+2) and 1 — 2 < 0
if and only if x > 1 and 1 + 2 < 0 if and only if z > 1, so the domain of arcsin’ is
C\((—o0,-1] U [1,0)). We can now write

arcsin(z) = J arcsin(z) dz
[0,2]

as arcsin(0) = 0.

5.5 | Homotopy of curves

Another tool for bringing order into the different analytic continuations of a function is a

subfield of topology called homotopy. For a more detailed view consider [1] and [2].

DEFINITION 5.5.1 (CURVE)

A curve in a topological space X is a continuous map c: [tg,t1] — X.

(0]

period
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The topological spaces we will be interested in are open subsets of C.

DEFINITION 5.5.2 (HOMOTOPY)
Two curves ¢y, ¢1: [0,1] — X in a topological space X are homotopic (in X) if there exists

a homotopy between them, that is, a continuous map
H:[0,1] x [0,1] = X

for which
H(-,0) = ¢ and H(,1)=¢

as well as
H(0,-) = ¢o(0) = ¢1(0) and h(1,-) = co(1) = c1(1).

In particular, the curves have the same starting point ¢y(0) = ¢1(0) and the same endpoint
co(1) = e (1).

DEFINITION 5.5.3 (NULL HOMOTOPIC)
A closed curve c: [0,1] — X is null homotopic if it is homotopic to the constant curve at

c1(t) = ¢(0) = ¢(1).

Example 5.5.4 The curve c: [0,1] — C, t — €?™ is null homotopic in C. A homotopy to

the constant curve 1 is (the linear interpolation)
H(t,7)=(1—7)c(t) + 7.
But this curve is not null homotopic in C*, which is harder to prove. S

Example 5.5.5 Consider the following curve in X := C\{0,1}. Is it nullhomotopic? ¢

Example 5.5.6 (To hang a picture)
We want to find a closed curve «: [0,1] — C\{0, 1} such that 7 is nullhomotopic in C\{1}
and in C\{0} but not in C\{0, 1}.

Consider the counterclockwise loops at zp € C\{0, 1}, one going around 0 and one around 1,
named a and b. Then v = aba~1b~! issuch a curve. In C\{0}, a ~ e and then vy ~ ebe 1b = ¢

and analogously for C\{0, 1}.

What if we instead take n points {0,1,...,n — 1} and consider the same problem. We can
recursively construct such an solution (it is not the solution with the fewest characters,

1

though) by consider cwe™tw™!, where w is the word that worked for k points and ¢ is the

loop around the (k + 1)-th point. o

DEFINITION 5.5.7 (COMPOSITION /CONCATENATION OF CURVES)

The composition of two curves ¢1,cq: [0,1] — X with ¢;1(1) = ¢2(0) is the curve

c1(2t), for t € [0, %],

crez: [0,1] — X, t—
co(2t —1), forte [ 1]

Notice that the order is opposite to function composition, we first go along ¢; and then

along cs.
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from the curve ci to

thelkhomotopic

Fig. 56: The homotopy
of the unit circle and a

constant path in C.

(o

Fig. 57: Concatenation

of two curves ¢ and ca.
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DEFINITION 5.5.8 (INVERSE OF A CURVE)

The inverse of a curve c: [0,1] — X is the curve ¢™: [0,1] —» X, t — ¢(1 — t).

Lemma 5.5.9 (Neutral element, reparametrisation invariant under homotopy)
Let c: [0,1] = X be a curve in X and let : [0,1] — [0,1] be a continuous (reparametrisa-
tion) map with (0) =0 and ¢(1) = 1. Then

@ cd™ is null homotopic in X.

@ c and co ¢ are homotopic.

Proof. () We have ¢™(t) = ¢(1 —t) and thus ¢™ (2t — 1) = ¢(1 — (2t — 1)) = ¢(2 — 2t),

SO
. 2t), if t € [0, 1],
CCmV(t) _ C( ) 1 [ 2]
c(2—2t), ifteli 1]
Hence cc™ = ¢ o, where
2t, ifte[0,1], 4
:[0,1] = [0,1],  t— 2
2-2t, ifte[3,1]
A homotopy of cc™ to the constant curve ¢(0) is b
F] L
c((1 —7)2¢), if te [0, 1], b
H(t,7) = c((1=7)¢(t) = . e
c((I—7)(2-2t), ifte [5, 1]. Fig. 58: The function
¥
@ A homotopy is
H(t,7) =c((1 —7)t + To(t)). [

Lemma 5.5.10 (Associativity of concatenation up to homotopy)
Let ¢1,¢9,¢3: [0,1] —> X be curves with ¢1(1) = ¢2(0) and c2(1) = ¢3(0). Then (cic2)cs is

homotopic to c¢1(cacs).

Proof. We have

c1(2t), for t € [0, 1],
crea(t) = ) 2
c2(2t —1), forte[s,1].

and thus

c1(4t), for ¢t € [0, 1],

c1e2(2t), for t € [0, %], (41) [1 41]

(cre2)es(t) = =9 c2(4t —1), forte[y,3],
cs(2t — 1), forte[,1].

cs(2t —1), fortel[l

Similarly,
c1(2t), for t € [0, 1],
ci(cacs)(t) = { co(4t —2), forte [}
cs(4t —3), forte[2,1].
Check yourself that

c1(eae3) = (c1ea)es o 1,

7
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where
t if t € [0,

-1, ifte]

2 —1, ifte

!
3, ’ /
1. :

The claim follows by lemma 5.5.9 @ |

N[ =

1
2
t

P(t) =

NSV I
[V
-~

o !i a

THEOREM 5.5.1: FUNDAMENTAL GROUP Fig. 59: The function

Let X be a topological space and zp € X a (base)point. A curve c: [0,1] - X is a v

loop at g if ¢(0) = xg = ¢(1). Then homotopy is an equivalence relation on the set of
loops at xg. The set of equivalence classes, 71 (X, o), together with the well-defined

operation
[crca] = [e1][e2], (26)

where c¢; and co are loops at xg, is the fundamental group of X with base point z. fundamental group
The neutral element is the class of constant curves [zg], i.e. the set of null-homotopic

loops at zg. The inverse of [c] is [¢™V].

Proof. @ First we show that homotopy is an equivalence relation on the set of loops at

Zg-
e Homotopy is reflexive because a homotopy between ¢ and itself is H(t,7) = ¢(t).
e Homotopy is symmetric: if H is a homotopy from ¢y to ¢z, then a homotopy from
ca tocyis (¢, 7)— H(t,1—7).

e Homotopy is transitive: if Hy5 is a homotopy from ¢; to co and Hsg is a homotopy

from cs to c3, then a homotopy from ¢y to c3 is
His(t, ) = Hia(t,-)Has(t,-)

seen as concatenation of curves, that is

@ We now show that the group operation is well defined. If ¢; and ¢ are homotopic,
and co and ¢ are homotopic, then c¢ics and ¢1¢5 are homotopic. Indeed, if Hy is a
homotopy from ¢; to ¢; and Hs is a homotopy from cs to ¢3, then a homotopy from
c1co to €16y 18

H,y(2t,7), ifte [0, 5],
Hy(2t —1,7), ifte[3,1].

N

H(t, 1) =

@ The group operation is associative: if ¢1, co and cg are loops at xg, then

([ea]lez])es] = [(crez)es] ™" [er(eaes)] = [er]([e2][es])-

@ The neural element is [x0] and [¢] ' = [¢™¥]. This follows from lemma 5.5.9. O

Remark 5.5.11 (Commutativity) The fundamental group is in general not commuta-
tive. Therefore, the group operation is written is as multiplication. Instead of null homotopic

it would be more correct to say "one homotopic" but nobody does that. o
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Example 5.5.12 (Non-ABELIAN Fundamental Group) Consider X\{0,1}. Consider
a loop ¢y around 0 based at zg € X concatenated with a loop ¢y around 1 based at z5. The

curve cocr e el is not null homotopic, so [co][c1][co] "2[e1] ™ is not the neutral element of
™1 (X, 20), so [co][e1] # [e1][co]- ¢

Remark 5.5.13 (Dependence on the base point)

The fundamental group 71 (X, y) depends not only on the space X but also on the base point
y € X. However, if X is path-connected, then two base points y and x € X can always be
connected via a curve ¢ and one obtains a group isomorphism

m(X,2) > m(X,y),  [e] = [eThye™].

P

as detailed in lemma 5.5.14 Hence for path-connected space, fundamental groups with

different base points are isomorphic. However, the isomorphism is in general not unique
but depends on the choice of connecting path 7. For example for the path-connected space

X := C\{0, 1} one choose different in X non-homotopic paths. o

Lemma 5.5.14 (Isomorphism of fundamental groups along curve (Tut IX))
Let X be a topological space, c: [0,1] — X be a curve and x := ¢(0) and y = ¢(1). Then
(X, z) = n(X,y).

Proof. Consider the map
O 7w(X,2) »7(X,y),  [Y] = [y

Let [v] = [#]. We have to show that [c~1vc] = [¢714¢]. We have

(i) = [ 97e] = [ e 5e] = [ elle e,

so ® is a homomorphism.

The map
U n(X,y) - w(X,2),  [§]— [¢he]

is the inverse of ®:
(Wo®)([y]) = ([c"ve]) = [ec " yee™ ] =[]
for any [v] € (X, x). ]

Remark 5.5.15 We are only interested in open subsets of C. More generally, for open

subset of R", connectedness and path-connectedness are equivalent. o

THEOREM 5.5.2: CHARACTERISATION OF TRIVIAL FUNDAMENTAL GROUP

Let X be a nonempty path-connected topological space, e.g. a domain. Then the
following are equivalent:
@ Every closed curve c: [0,1] — X is null homotopic in X.
@ For every zg € X, m (X, zo) = {1}.
@) There is a point z9 € X such that m (X, z) = {1}.
@ Any curves ¢, co: [0,1] — X with ¢;(0) = ¢2(0) and ¢;(1) = ¢3(1) are homo-
topic.
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DEFINITION 5.5.16 (SIMPLY CONNECTED)

If one (and hence all) of the statements in Theorem 5.5.2 hold, X is simply connected.

Proof. "@) — @)": is clear from Theorem 5.5.1.
"@ — @”: is trivial.

"@ — @": Let ¢1(0) = ¢2(0)

to a. By assumption, [ycicV 4] = 1, so yerelfVy!

=:a and ¢1(1) = c2(1) = b. Choose a curve « from x

is null homotopic. If we write = for

inv . inv

Y yce = e
are homotopic. Then v™~y¢; and v vc, are homotopic, so ¢; and ¢y are homotopic.

the homotopy relation, we obtain yca = yeich This means that yc; and yeo

"@ — @": If ¢ is a closed curve, consider ¢; = ¢ and ¢, to be the constant curve

c(0) = ¢(1). O

Example 5.5.17 (Convex domain is simply connected)
A convex domain U < C is simply connected: if ¢; and cq are curve in U with ¢;(0) = ¢2(0)

and ¢1(1) = c2(1), then a homotopy in U from ¢; to ¢y is the linear interpolation

H(t,7) = (1—7)c(t) + Tea(t). o
Example 5.5.18 (Starshaped domains have trivial fundamental group)
If a domain U < C is starshaped with respect to a point zg € U, then 71 (U, z9) = {1}: for

any loop ¢ at zg, a homotopy from c¢ to the constant curve is the linear interpolation

H(t,7) = (1= 7)e(t) + 720.

Hence starshaped domains are simply connected by Theorem 5.5.2.
The slit complex plane U := C\Rgo is starshaped with respect to 1 € U, so it is simply

connected. o

Example 5.5.19 (Fundamental group of C*)
The unit circle c: [0,1] — C, t — e is not null homotopic, so m (C*,
show that m;(C*,

1) # {1}. One can
z) is isomorphic to (Z, +) for any 2z € C*. o

Example 5.5.20 (Fundamental group of the twice punctured plane)
The fundamental group of the twice punctured plane U := C\{0,1} is not ABELIAN. One
can show that it is isomorphic to the free group of rank 2; 71 (U, z) is generated by [0] and

[1]- ©

5.6 | The Monodromy Theorem

The Monodromy Theorem, briefly, states that analytic continuations along homotopic curves

give the same result.

THEOREM 5.6.1: MONODROMY

Let U ¢ C be a domain and let (fo,Up) be a function element, zg € U n Uy and

suppose (fo,Up) can be continued analytically along every curve in U starting at z.

If ¢ and ¢ are homotopic curves starting at zg and (f1,U;) and ( fl, Ul) are analytic

continuations of (fo,Up) along ¢ and ¢é respectively, then f; and f1 agree in some
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Fig. 61: As U is con-
vex, the linear interpo-
lation between ¢1(to)
and ca(to) lies in U for
any to € [0, 1].

72

Fig. 62: As U is star-
shaped with respect to
20, the linear interpola-
tion between c(to) and

zo lies in U for any tg €
[0, 1].

following Ferus’ notes
and Ahlfors
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l open neighbourhood of z; := ¢(1) = ¢&(1). J

Fig. 63: The Monodromy Theorem.

Proof. (From Ahlfors) Let H: [0,1]> — U be a homotopy from c to ¢.

@ Any curve v: [0,1] — [0,1]*> = R with (0) = (0,0) corresponds to a curve H o~ in

U starting at zg, along which there exists an analytic continuation of (fo,Up).

@) Tt is enough to show that (fo, Up) is an analytic continuation of itself along the bound-
ary curve of R. If we go along c first, we get some analytic continuation, which agrees
with (f1,U1) in some neighbourhood of 21, because analytic continuation is locally
unique. Now continue this analytic continuation which agrees locally with (f;,U7)
around z; back to zg, If we get back to (fo, Up), then if we go back in the other direc-
tion, we get something again which agrees in a neighbourhood of z;. And this is what

we will show.

@ We prove this by contradiction and the "method of dissection". Suppose an analytic
continuation of (fy, Up) along H o results in a function element that does not agree
with (fo,Up) in any neighbourhood of zy. We say that analytic continuation along
H o~ is not the identity. Now we construct a sequence of curves 71,72, ... as follows:
~1 is one of the curves in the plot to the left. Whichever rectangle we circle we call
R;. We choose between both option such that analytic continuation along 7; is not
the identity. If the analytic continuation along both options would be the identity,
one can show that the continuation along the boundary of R would be the identity,

because if we go first along the first curve, ending in the bottom left point and then

81

Fig. 64: The bound-
ary of R corresponds to
the closed curve from

zp via ¢ to z1 and back

via ¢.

L 4 Rq A
y R‘ 1

r ¥ (14.%))

xR y(feA)

Fig. 65: The two possi-
bilities for ~;.
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along the second curve, we undo the analytic continuation so at the top right point
of the lower rectangle we reach a function element which agrees in a neighbourhood

of this point, continuing to trace this curve, we end up again at the bottom left point

and have traced an analytic continuation along the boundary curve of R. R
<
2
For the future construction it is important to note that in either case, y; goes along ©, )
the boundary of Ry for t € [%, %] /
@ In the next step, divide vertically: so 2 is either one of the possibilities in figure 66, <
where the boundary of Rj is traced out in the interval [§ + 55,1 — (3 + 45)]. We I R, 4
again choose such that the analytic continuation along 5 is not the identity.

A 7
@ We continue this process to obtain a sequence of (vx)ken along which analytic contin- {%
uation is not the identity. This sequence of curves converges to a curve v* from (0, 0)
Fig. 66: The two possi-

to z* € Ry, (which is unique) and back.
mkEN k ( ! ) bilities for ~a.

Let (f*, Uy ) be the function element obtained by from ( fy, Up) by analytic continuation o
along H o v*|o 17 from (0,0) to z* := H(z™).

If k € N is large enough, then R, ¢ H~1(U*) and H~'(U*) is an open neighbourhood
of *. Then analytic continuation along H oy, would give function elements agreeing 4

in a neighbourhood of zy. But continuation along H o v* is the identity. This is a

contradiction. n

Biz.067203pe closed
loop v and the point

element (f,U) to all other points in the domain and we can in this way define a holomorphic  z*.

The first corollary states that under certain conditions we can uniquely continue a function

function.

Corollary 5.6.1

Let U < C be a simply connected domain, (f,Us) be a function element, and Uy < U. If
(f,Uq) can be continued analytically along every curve U starting in Uy (e.g. because f
is an antiderivative of a holomorphic function on U), then f is the restriction to Uy of a

holomorphic function on U.

Recall that we extended the Definition of the Integral along C' curves to continuous curves
via analytic continuation.

Corollary 5.6.2 (§_ f(z)dz = 0 if ¢ null homotopic)
If f is holomorphic on U < C and c¢; and co are homotopic curve in U, then

J f(z)dz = j f(z)dz.
In particular, § f(z)dz = 0 if ¢ is null homotopic.

Corollary 5.6.3 (CAUCHY’s Integral Theorem for continuous images of rectangles)
Let f be holomorphic on U, R < R? be a rectangle with boundary curve v and p: R—U be

a continuous map. Then

v

f(z)dz =0. —
LpO'y() vfgl’@i\i‘c

Proof. Show that ¢ o+ is null homotopic in U. [0 Fig. 68: The setup of
corollary 5.6.3.
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6 THE WINDING NUMBER VERSION OF CAUCHY'’S INTEGRAL THEOREM

The winding number version of CAUCHY’s

Integral Theorem

6.1 | Towards a definitive version of Cauchy’s Integral

Theorem

For a domain U < C, what is a sufficient and necessary condition that a closed curve v in
U has to fulfil such that

j f(z)dz=0
.
for every holomorphic function f on U?

The most general sufficient condition we know is that + is null homotopic:

THEOREM 6.1.1: HOMOTOPY-VERSION OF CAUCHY’S INTEGRAL THEO-

REM

If f is holomorphic on the domain U and ~ is a null homotopic closed curve in U,
then § f(z)dz =0.

Proof. See corollary 5.6.2. O

But this condition is not necessary:

inv .inv

Example 6.1.1 Consider the loops from figure 60. Then the curve ¢ := cocicgVe™ is not
null homotopic in U := C\{0,1}. But for every holomorphic function f on U we have

J f(z)dz = f f(z)dz + J f(z)d= —J f(z)dz — J f(z)dz=0.
c co (1 co c1 <&
We want to characterise closed curves along which the integrals of holomorphic functions
vanish. What we get is some sort of commutative version of homotopy. To this end it is
convenient to extend integration to more general objects than curves: 1-chains. We would

like to integrate over collections of curves such as the two 1-chains in figure 70.

DEFINITION 6.1.2 (1-CHAIN, Ch)
A 1-chain ¢ in an open set U < C is a formal linear combination

c=n1O0c®...0nOck (27)

of curves ¢;: [0,1] — U, where n; € Z for j € {1,...,k}. The ABELIAN group of 1-chains
in U is C1(U).

Aside. Since the curves are maps to C, one might be tempted to thinking that ® and ©®
denote pointwise addition and multiplication, respectively. This is not what is meant. Think
of a formal linear combination with integer coefficients as a shopping list with finitely many
items. All that matters is how often an item appears in the list.
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Fig. 69: This curve is

homotopic to c.

C
1-chain 2

c= C.+(y

OO &0

Fig. 70: We want to
consider the sum of
curves.
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DEFINITION 6.1.3 (INTEGRAL OVER A 1-CHAIN)
For a 1-chain (27) in U for curves ¢;: [0,1] — U for j € {1,...,k} and a holomorphic

function f on U, the is

Lﬂmm_imLﬂ@u

A more formal definition.

DEFINITION 6.1.4 (FREE ABELIAN GROUP)

If B is some set, then one can define the as the group
(Z(B),—i—), where Z®) is the set of functions B — Z (mapping a shopping item to its
multiplicity), which are zero for all but finitely many elements and + means pointwise
addition.

The confusing part: interpret an element by € B also as the characteristic function

1, if b= by,

O B—>Z, b
0, if b+ bo.

Then we can write any element in the free ABELIAN group generated by B as a finite

. A k
"formal" linear combination »;;_, n;b; for (nj);?:l c Z.

DEFINITION 6.1.5 (0-CHAIN, Cy)
A in U is a formal linear combination @?:1 n; © z; of points (zj);?:l c U with

k_, © 7Z. The ABELIAN group of 0-chains in U is Co(U).

integer coefficients (n;)7_,

DEFINITION 6.1.6 (BOUNDARY MAP)
The map 0: C1(U) — Cy(U) is the group homomorphism defined as follows: the
1-chain (27) is mapped to

Ble o= @1 n; @ (c;(1) © ¢;(0)).

DEFINITION 6.1.7 (CLOSED 1-CHAIN, CYCLE, SUPPORT)
A 1-chain c is if A in U is also called a in U. The

k
|c| of a 1-chain (27) in U is the subset U ¢;([0,1]) c U.
j=1
n;#0

Example 6.1.8 (Closed curves are closed 1-chains)
Ifc: [0,1] > U is a curve in U, then, viewed as a 1-chain, ¢ is also closed: dc =

c(1)©c(0) =(1-1)®c0) = 0.
Example 6.1.9 (All coefficients being 1)

Consider a formal linear combination
k
c=De,
Jj=1
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where all coefficients are one. Then
k
dc = Z (c;(1)® (—1) ©¢;(0)).
j=1

Hence dc = 0 if and only if any point for any z € C the same number of curve start at z and
end at z. o

Example 6.1.10 The formal sum of the twelve straight line segments in figure 71 is a closed
1-chain. We could also find a closed curve that traces out all these line segments but the
point is that it doesn’t matter how we assemble them to a closed curve, it is good enough
to consider them as ABELIAN sum (the order doesn’t matter). o

Remark 6.1.11 (Cycles) The set of cycles in U is the kernel of the the boundary homo-
morphism ¢: C1(U) — Cy(U), so this set is a subgroup of Cy(U).

If ¢; and ¢y are cycles, then ¢; @ ¢ and ¢; © ¢y are also cycles.

In the homotopy group, we can only concatenate curves where the endpoint of the first curve
is the starting point of the second curve. Now, we have defined a different ABELIAN group,
where we can add any kind of curves, and we can figure out a certain class of curves that
are closed.

6.2 | The winding number

We will define our classification of paths over which all integrals of holomorphic functions

are zero in terms of the winding number.

DEFINITION 6.2.1 (WINDING NUMBER)
The winding number or winding index of a closed curve «: [0,1] — C around a point

zo € C\([0,1]) is
1 1

vy (20) = Indy(20) = =—

- dz.
2mi ), 2z — 20

Example 6.2.2 Consider the curve v: [0,1] — C, t — 2 + re?™ which circles the point

zo n € N times at distance » > 0 has winding index

1 1 11 , 1/ ("
Ind,(20) = — dz = — _2mnire™ ™ dt = sz 27indt = n.
27i ), 2 — 2o 2mi Jo mnit T Jo o

THEOREM 6.2.1: WINDING NUMBER IS A INTEGER

We have Ind,(29) € Z.

Proof. We will show that exp (S,y ﬁ) = 1. (This is true because this integral is essentially
one branch of the logarithm function of z — 2y plus some constant of integration at the
endpoint minus the initial point of the curve.) This implies Sv ﬁ = 2min for some n € Z
and hence the statement. If F' is a locally defined antiderivative of z — ﬁ, that is

F'(z) = ﬁ7 then

F(z F(z F(z
d OO O e 1 1 _o.
dzz—29 2z—29 (z — 29)? (z—20)%2 (22— 20)?

Fig. 71: The formal
sum of these twelve
straight line segments
is a closed 1-chain

winding number

23.06.2021
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Hence e'(*) = A(z — ) for some constant A € C.

Suppose Fj is an antiderivative of z — ﬁ defined on a domain Uy around +(0) satisfying

ef(2) = A(z — zp). Analytic continuation of (Fy, Up) along v (which is possible since the

derivative Zfzo is defined on C\{zp} and can therefore be trivially continued) leads to a
function element (Fy,U;) which also satisfies ef1(*) = A(z — z) because (ef*,U;) is the
trivial continuation of (ef,Uy) because the function ) = A(z — ;) is defined on the

whole complex plane.

Hence 1
f ——dz = F(3(1)) — Fo(4(0))
42— 20
wnd | A (1) — =)
Y — 20
P (f 2=z dz) T AGO) )
because 7 is closed. J

Lemma 6.2.3 (Ind, constant on connected components)

The winding number Ind, is constant on connected components of C\ry([0,1]).

Proof. For zy € C\v([0,1]), the winding number depends continuously on zy and takes

integer values. Hence it is constant on connected components of its image.

To see continuity, note that

1 1

|20 — 21

Tz = 20|z — 21

zZ— 20 zZ—z

and that ———— is bounded on [0, 1]. O

[y—zo||[v—=21]

Example 6.2.4 To find the winding numbers of the regions that a closed curve  separates
the complex plane into we can proceed as follows. The image of the curve is compact, so
there is a disk containing it, and outside of this disk the winding number is zero. Whenever
we cross the curve and the curve comes from the left, then the winding number increasing

by one and it decreases by one if the curve comes from the right.

Fig. 73: A curve and the winding numbers of the regions that a closed curve -y separates the

complex plane into.
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Fig. 72: Rule for
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We can and want to extend the concept of the winding number to cycles.

DEFINITION 6.2.5 (WINDING NUMBER OF A CYCLE)

The winding number Ind.(zg) of a cycle ¢ in C around a point zg € C\|¢| is

1 1
Indc(zo) = —

: dz.
2mi ). 2 — 2o

THEOREM 6.2.2: WINDING NUMBER IS AN INTEGER

The winding number of a cycle is an integer.

Proof. Let ¢ be as in (27) for curves ¢;: [0,1] = C\{zo}. For je {1,...,k} let (FKOi, U;O))

J
be a local antiderivative of —— defined on a domain U; around c¢;(0) and let (F' SN M)

J
be its analytic continuation along cj.

As before,
eFJ'(O)(Z) = AJ (Z - Zo) = eFJ'(l)(Z).

Hence

exp <£ 1 dz) = exp (Fj(l)(cj(l)) F(O)( j(O))) _ j(C]:(]_) — )

jZ—Zo

for all j € {1,...,k} and therefore

0)" (c2(1) — 20)"* ... (e (1) — 20)™
0)™"(c2(0) — 20)"2 ... (cx(0) — z9)"*

because ¢ is closed and thus every point occurs the same number of times as an endpoint

=1,

¢j(1) as it occurs as a starting point ¢;(0), taking the weights n; into account. More precisely,

k k
Z”ﬂ 2”;

for each z € C

j=1 j=1
cj 1):2 cj 1):z
As before, this implies |, Z_lz O
6.3 | The winding number / homology version of
Cauchy’s Integral Theorem
DEFINITION 6.3.1 (ZERO HOMOGOLOUS CYCLE)
A cycle ¢ in an open set U < C is zero homogolous in U if Ind.(z) = 0 for all z € C\U. zero homogolous

Example 6.3.2 A circle ¢ around 2 is not zero homologous in U = C\{zp} because zy ¢ U,
but Ind.(zp) = 1. o
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6 THE WINDING NUMBER VERSION OF CAUCHY'’S INTEGRAL THEOREM

Remark 6.3.3 (null-homotopic = null-homologous) If 7 is null-homotopic, then
is null-homologous. The converse does not hold, consider v := aba~'b~!, which is not

null-homotopic but
Ind,(20) = Indq(20) + Indy(20) + Indg-1(20) 4+ Indp-1(20) = 0,
as Ind,-1(z9) = —Ind,(20) for any zo €777. o

Lemma 6.3.4 (Has to be somewhere else)
Let U < C be open and C\U unbounded and connected. Then a closed curve in U is null-

homologous.

Proof. Let « be a closed curve in U. Without loss of generality we can assume that - is

piecewise C'. Then

1

1 1 |z0|—00
Ind = — de| < 1 =25 0.
| Ind, (20)] = 5 Lz_ZO Z‘ o en(v)zsggl p——
| ———
|zg|—0o0

Hence there exists a zp € C\U such that
1
| Ind, (20)] < 3 0
As Ind, € Z, Ind,(z9) = 0 for all zo € C\U, as C\U is connected.

THEOREM 6.3.1: CAUCHY’S INTEGRAL THEOREM (WINDING NUMBER /

HOMOLOGY VERSION)

Let U be a domain in C and ¢ be a cycle in U. The following statements are
equivalent.

@ ¢ is zero homologous in U

@ SC f(2)dz = 0 for all holomorphic functions f on U.

Proof. — (1) — — (2): There is a point zp € C\U such that Ind.(z0) # 0. Then the

function f(z) := ZEZO is holomorphic on U and

J f(z)dz = 2miInd.(20) # 0.

@ = @: Assume c is a zero homologous cycle in U.

@ First we will construct a cycle ¢ that is a formal linear combination of horizontal or

vertical line segment traversed at constant speed such that

Lf(z)dz = Lf(z) dz

for all holomorphic functions f on U.
To this end, consider on curve c; occurring in the cycle c.

We want to cover the curve by rectangles contained in U and then we take a subdivision
of ¢; such that the portions in one subinterval are contained in a rectangle that is

contained in U and the we replace this portion to a vertical and a horizontal line
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6 THE WINDING NUMBER VERSION OF CAUCHY'’S INTEGRAL THEOREM

segment. Because the old and the new portion are homotopic, the integral doesn’t
change. Let R be the set of open rectangular regions with sides parallel to the axes
that are contained in U. Applying the LEBESGUE number lemma to the open cover

{c}l(R)} Rrer at [0,1], we see that there exists a subdivision
O=to<ti<...<ty =1

such that ¢;([ts, te+1]) is contained in some open rectangle R < U. .
a8 bl
Consider the curves G

v v clyy) L’l[‘l\tl"'l
cfo=cj(te) +t-iS(cj(ten) — ¢(te)) :

cho = cj(te) = (1 =) - iR(c;(ter) — ¢;(te))-

Since the rectangle is convex and hence simply connected, the curves c;|p,, and

tos1]
v h :
¢j ¢¢j ¢ are homotopic.

So for all holomorphic functions f on U,

J

Let ¢ = @?:1("]‘ ®¢;) and define

f(z)dz = L” f(z)dz + L’?z f(z)d=.

J'l[te,feﬂ]

k M—1
i=@ni- @ o, =@ &l (n;0ck,) ®(n; 0.
j=1 =1

Hence for the rest of the proof we may assume without loss of generality that c is a
cycle consisting of horizontal and vertical line segments.
29.06.2021

@ We will now construct a rectangular grid by taking all the endpoints of the vertical
and horizontal line segments and making a grid out of these endpoints.

Fig. 74: The not necessarily simply connected domain and a zero homologous cycle consisting
only of horizontal and vertical line segment and the grid constructed from the endpoints of

the vertical and horizontal line segments.

Let
To<T1 <...,TN
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6 THE WINDING NUMBER VERSION OF CAUCHY'’S INTEGRAL THEOREM

be the real parts of the segments’ endpoints and let
Yo <Y1 <...<Ym

be the imaginary parts. Now we can subdivide the horizontal and vertical line segments
further such that all the horizontal and vertical line segments are really edges of this
non-uniform rectangular grid: by subdividing the line segments of which the cycle ¢
consists further if necessary, we may arrive at a cycle whose curves are edges of the

non-uniform rectangle grid with vertices
Zjk =Tj + 1Yk -

So without loss of generality we may assume that the cycle c is of the form

M—-1N-1
_ h _h vow
c= Z Z (nkChn + 15 k)
i=0 k=0

where c;?k is the horizontal straight line segment from z;j to zj41,% and c;y is the

vertical straight line segment from z;; to zjx+1, both parametrised on [0,1]. The

. h v .
coefficients nj, and nf, are integers

In the interior of each rectangle

Rjk = [z, xj51] + i[yk, Y]
choose an arbitrary point a;, and let
vk = Indc(a; ).
Since the interior of R;; and lc| are disjoint, Ind. is constant on R, so v is
independent of the choice of a; .

The assumption that ¢ is null-homogolous enters here! If Rjyk\U # &, then v;, = 0.
(This is true even if the point of R; ) outside U are all boundary points of R} ;.)

Claim. We claim that the coefficients of the horizontal / vertical straight line segments

are the differences of winding numbers of adjacent rectangles, in particular
h

@ Nk
@ ny, =v; —V;

gk = Yi—l1k gk

We now prove (@), the proof of @ is similar. Let

=Vjk — Vjk-1,

. h v h v
Tk = Cik + Cip1k — Cut1 — ik
Then Ind,, , (ajx) =1 (*).
Consider the cycle
~ h .
¢=c—njTik

Then the support |¢| does not contain the edge |c§‘ | because the coefficient of c?’k is
zero. That means that the Ind. is constant on the interior of 1, w12, ;. Hence (by
the linearity of the integral (L) in the definition of the winding index)
Vjk—1 = Indc(ajﬁk_l) —n;-lwk Indewk_(ajyk_l) = Indg(aj7k_1)
—_—— —_—
Vjk—1 =0
@) *)
= Inde(ajk) = Inde(aje) —nfx Indr,  (aj) = vig — 1]
—_—

ik =1
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Fig. 75: The horizontal
or vertical straight line

h v
segments c; | and 5 g

2 v—\—l LAY
[. r&u'tdjln

.

Jh Q‘ih'n

Fig. 76: The rectangle
Rj k-

V

‘k (‘tbo

Fig. 77: Suppose that
the bottom left cor-
ner is the only point
not contained in U.
Then the winding num-
ber is zero around that
But as the

winding number is lo-

point.

cally constant - the ad-
jacent edges can not
be traced out by the
curve - there is a neigh-
bourhood around this

point, where Ind. = 0.

T

Fig. 78: Adjacent rect-
angles.

l 0-. AL
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(5) We claim that

This can be shown using the previous claim and comparing coefficients of the edges.

But this implies
f(z)dz = Z Vjk f(z)dz.
j=0 k=0 ik
Note that R;, < U if v, # 0, so all the integrals in the sum vanish due to CavciyY’s

Integral Theorem for Rectangles. O

6.4 | Cauchy’s Integral Formula & the Residue Theorem

THEOREM 6.4.1: CAUCHY’S INTEGRAL FORMULA (WINDING NUMBER
VERSION)

Let f be a holomorphic function on U < C, let a € U and let ¢ be a cycle in U\{a}

that is zero-homologous in U. Then

1 [ &

2mi J,z —a

dz = Ind.(a) - f(a).

Fig. 80: The proof of Theorem 6.4.1.

Proof. Choose 7 > 0 so small that B,(a) < U. Let v: [0,1] — U, t = a + re?™*. Then
Ind,(a) =1, so for ¢ .= ¢ © Ind.(a) ©~ we have
Indi(a) = Ind.(a) — Ind.(a) Ind,(a) = 0.

—_——
=1

It follows that ¢ is zero homologous in U\{a}, because Indz(a) = 0 and Indz(z) = 0 for any
z ¢ U, because Ind.(z) = 0 for any z ¢ U and the winding number of Ind,(z) = 0 for any
|z —a| > 7, so ¢ is not only zero homologous in U but also in U\{a}.

Since z — % is holomorphic on U\{a}, the winding number version of CAUCHY’s Integral

Theorem implies
0= fz) dz = J % dz — Ind.(a) L % d: ¥ J % dz — Ind.(a)2mif(a),

cR—a

where in (*) we use CAUCHY’s Integral Formula for Disks. O
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6 THE WINDING NUMBER VERSION OF CAUCHY'’S INTEGRAL THEOREM

Let us now introduce a notion

DEFINITION 6.4.1 (BOUNDING CYCLE)
Let K < C be a compact set. A cycle ¢ bounds A if |¢| € K and if

1, ifzeK,

Ind.(z) =
0, ifz¢ K.

Remark 6.4.2 We need not have |¢| = 0K (but in most cases we do): consider for example
K = D U [1,2]. Then the unit circle ¢ is a bounding cycle for K, but the 0K contains
(1,2] & |¢|. The point is: We did not assume that K is the closure of its interior. o

We can now formula Theorem 6.4.1 more simply:

Corollary 6.4.3
If f is holomorphic on U and the cycle ¢ bounds the compact subset I < U, then

1 (2)
=— | —=d
Ja) 2 ).z —a N
forallae K.
Proof. In this case, the winding number is 1. O

C

Fig. 81: Corollary 6.4.3 is perfectly suited for dealing with a domain U with holes and a

cycle as shown.

Residues

THEOREM 6.4.2: RESIDUE

@ Suppose the holomorphic function f has an isolated singularity at zo (or is
holomorphic at zg, too). The residue of [ at =z is

Res., (f) i= —— f()dz,

- 2mi |z—z0|=¢
where € > 0 is so small that {zre C: 0 < |z — 2| <e} c U.
@ Equivalently, if the LAURENT series around zo representing f is >}, , ar(z —
20)*, then Res,,(f) = a_;.

residue
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Proof. Of @: use the formula for the coefficients of the LAURENT series expansion or argue

directly:
Res., () = - fz)de = o S ar(z — )t d
0(f) =5 S z)dz = o |z_zo|=5kezakz 20)%dz
=— > a; (z—29)"dz.
2mi 1;2 L|z—zo|:5

:l_vl(k) 0

THEOREM 6.4.3: RESIDUE THEOREM

Let f be holomorphic on U except for a set S < U of isolated singularities. Let ¢ be
a zero homologous cycle in U with |¢| n S # ¢J. Then
1
27

J f(2)dz = 3 Inde(a) Resa(f),

aesS

where the sum is finite because Ind.(a) # 0 only for finitely many a € S.

\. J

Corollary 6.4.4

If ¢ bounds a compact subset K < U, then
1

211

Jf(z)dz: D1 Resa(f).

aceSnK

Proof. (of Theorem 6.4.3) Let us assume that Ind.(a) # 0 for finitely many singularities 30.06.2021

a€sS.

For each a € S, let 7, be a circle around a with radius small enough such that the closed

disk that it bounds in contained in U and doesn’t contain any other singularities.

Fig. 82: The set U, a closed curve ¢ and some circles ,.

Let ¢ := c© (P g Indc(a) ©®7,). For every ag € S,
Indz(ag) = Ind.(ag) — Z Ind.(a) - Ind,, (ag) = 0,
aeS
as Ind,, (ap) = 1 if a = ap and 0 else. Hence ¢ is zero homologous in U\S.

Also, f is holomorphic on U\S. By the winding number version of CAUCHY’s Integral

Theorem,

O=J-f(z)dz=J‘f(z)dz—ZIndc(a)- f(z)dz.

aesS

=2miResy(a)
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It remains to show the assumption made at the beginning. Towards contradiction assume
that S, := {a € S : Ind.(a) # 0} is infinite.

@ The set S, is bounded. To see this, note that |c| is compact, hence bounded. Suppose
le| € Br(0). Then for all points z € C\Bg(0), we have Ind.(z) = 0. Hence |a| < R
for all a € S,.

(2 The set S, has a limit point a*. But this cannot be contained in U, since the set of
singularities is isolated in U and hence a* can’t be the limit point in U of a sequence
in U. Because ¢ is zero homologous, Ind.(a*) = 0. But the winding number Ind. is
constant on the connected components of C\|c|, which are open. So Ind.(a*) = 0 in
an open neighbourhood of a*, contradicting the claim that a* is a limit point of S..

O
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7 THE CALCULUS OF RESIDUES

The calculus of residues

The "calculus of residues" is a bag of tricks that are helpful to compute some definite
integrals, in particular real integrals. To use the Residue Theorem, we have to be able to

compute residues. This is easy if we know the LAURENT series for some reason.

Example 7.1.1 (Computing residues of exp(z~!)) By the power series expansion of

the exponential function, we have

w =

e

o8] 1 .
- k;w —k)”

for z # 0 and this function has one singularity at z = 0, which is essential. We have
Resexp(,l)(()) = % =1.

For poles it is also straightforward to compute the residue.

Example 7.1.2 (Computing residues at poles) @ The simplest case are poles of or-
der 1. If f has a poles of order 1 at zy, then the LAURENT series at zg is

a_
f(2)=z ;'|'Ol0-i-a1(2‘—zo)—&-ag(z—zro)Q—&-...7
— 20

(z—20)f(2) = a_1 +ao(z — 20) + a1(z — 20)* + ...

and
lim (z — 20) f(2) = a—_1 = Resy(20).

z—20

@ If f = £, where h has a simple zero at zp and g(zg) # 0, then f has a first order pole

at zo and

Res; (z0) = Zli_{go zhzzjo g(z) = 9(20) _

@ If f has a pole of order n at zy, then the LAURENT series expansion is

+...+a_1 +ag+ai(z—2) +...

1
(z — 20)
and thus
(2= 20)"f(2) =an + ...+ a1(z—20)""" +ao(z = 2)" + ...

is a TAYLOR series in a neighbourhood of zy. Hence

Res(z0) = a_y = lim ——— < d )nl [(z - zo)"f(z)].

2=z (n—1)! \dz
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7 THE CALCULUS OF RESIDUES

Example 7.1.3 (Computing residues with cot (Tut XII))
Consider f(z) = <42 Let g(z) := ) and h(z) := sin(z). Then h has a simple zero at

z+1 Z+1
0 and 7 and g is holomorphic with g(0) # 0 # g(r) and thus by example 7.1.2 (2)
9(0) g(m) 1
_ -1 d - - .
Resf(0) 7(0) an Res(m) CREES!

Example 7.2.1 (Computing { (1 + z*)~! dx)

One can calculate SR(l + 2*)~1 dz with partial fraction decomposition (the antiderivative

is very complicated: ¢ + 71og(w2,\/ix+1)+1og(,:2+\/§z+1)72caxrl(17«/§w)+2canfl(\/§z+1))7 but also with

42
the . We can write
1 S|
f —— dz = lim 7
rl+2 Row J_pl+ax
The idea is to consider the function f(z) := 7 +z4 , which is holomorphlc except for first order
poles at the four square roots of —1 = '™, which are zy := e*7 = ﬁ(l +1), 21 = izg =

%(—1 +1), 29 == —20 = %(—1 —14) and z3 := %(1 —1).

/ N\ -\- o= --(_4+:
| N b T

‘-11‘-'-4(1,0 ‘E‘ k"'l‘)

o ‘% '
| Sen Qrd& o f'“'d‘\.lf R
— = - > 7 IR
-Q ' ’ ‘A (a
& ']
v ',_‘3

By the Residue Theorem,

1
———dz = 27mi (Resy(%0) + Ress(#1)) .
J:MO’YQ 1+ 24

Also,
f f(z)dz = f _ 1 de.
1+ at
Hence
R 1 1 |
pltat dz = LTt dz + 2mi (Resy(20) + Resy(21)) -
@ We have
1 3 R—>w»
d <7TR— = 7R3 2%, 0,
yo L 24 ‘ TR =T

so we don’t have to care about 7, in the limit.

(2) By example 7.1.2 (3) we have

1 1 1 .
ReSf(ZO) = 4723 = —120 = —m(l + Z)
as zg = —1 and analogously
1 1
Resf(z1) = —5 = ———=(—1+1
O
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and hence 1
omi (Res(z0) + Resy(z1)) = 2mi | —=(24) ) =
(R ao) + Res e2) = 2 (520
In conclusion
J L e ™
r 1+ V2
For this to work it was important that
e The integral over the large half-circle tends to zero.

e there are no poles on the real axis.

Example 7.3.1
We can set Sinow =1 and then

Sl

becomes the integral of a continuous function (without singularities). We can also write the

integrand as

sin() _ <e)

and hence our idea is to integrate f(z) = % along some cycle. The function f has a simple

pole at 0 with Resz(0) = 1.

How do we find an appropriate contour? We have

€] = [+ = [eF7e Y] = &7,

which tends to zero for y — o0, and thus

67y

i

iz| _

le

Consider the following contour for 0 < r < R.

¥s

a
—Rf ‘ror—’x—— "

The function f is holomorphic in the region bounded by the cycle
NDV2DY13O 71075 O 76,

so by CAUCHY’s Integral Theorem,

Lf(z)dz = 0.
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7 THE CALCULUS OF RESIDUES

Also,

We have by (28)

J f(z)dz = — J f(z)dz + (z)dz + ()dz+ | f(2)d=.
71D72 V3

Y4 s e

R—
—)0

e First let us consider the integral along 5. Near 0,

le
_ Res;(0) |
z

f(2) 9(2),

where g is holomorphic at 0. Hence

1
(Z)dZ:RESf(O)J fdz—&-f g(z)dz.
g e < e
=1 —_—

[ N0
—0

e

and thus
lim | f(z)dz = im.

r—0 Y6

e Let us now consider the integral along ~5. We have

R+iR iz R i(R+it)
f(z)dz| = J —dz| = J —idt
Y2 R 4 0 R+Zt
R —t R —t
e e 1 _ R—w
S| =——de<| =de=—=(—eF+1 0.
L|R+it|z N T

e The integral along v4 also goes to 0 to R — o0 by an analogous argument.
e For the integral along ~5 observe

fs f(z)dz fRHR ﬁ dz

—R+iR *

e_R R—0
<2R—— =20 222,
R e

We get
J Mdm: lim%( f(z)dz> = Qi) = 7.
R N0 "6

Example 7.3.2 (What is { m dx? (Tut XII))

Define f: C\{%i, +2i} - C, 2z — m and cg: [0,7] — C, t — Re' for R > 0.

First we show that if |f(z)| < |iv|1a for some a > 1 and M > 0 holds for all large z, then

R—

§,, [(2)dz = 0. We have

J;R f(z)dz

Why do we have |f(2)] < 24 in our case? For |z| > 4, we have |2|? < |22 + 1]|22 + 4], so

[z]*
SCR f(z)dz Rl Ny

M oM R
< 1en(cR)E = Za-i 22%0.

Now let dp: [-R,R] — R, t — t. Then d4(t) = 1 and thus

R 1
dz = ——— dt.
L e ey
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7 THE CALCULUS OF RESIDUES

By Theorem 6.4.3,

. f(z)dz — J f(z)dz = 2mi Z Indg,c,(a) Resy(a) = 2mi( Resy (i) + Resy(2i)).

ae{i,2i}

Deﬁning g1 (Z) = m, 92(2) = m7 hl (Z) = z—14 and hQ(Z) = 2—227
we find
() 1 i 2 (0) 1 i

'i=g = = — an es Z.:g( = = —
Ress =0 = @G~ 6 ™ R =50 = Ghenm) ~ 2

and thus

) ) T

1 . .
medx = }%gnoo w f(z) dz—JCR f(z)dz = 2mi (12 - 6) =35

We omit subsection 7.4

Example 7.5.1 Consider S(Q)Tr m dz. We have

27 27
1 1 1 ..
f — dz=9 U — e d:z:)
o 34 cos(x) 0 3+ L(eim 4 emin) e

3 1 N ——
o <Ll=1 <3<>>d> =3 (Z 2ri Res ») 7

J

by the Residue Theorem, where f(z) :

f inside the unit circle. The result is

= m and the sum is taken over the poles of
2 z

S

If f has an (this means f is not zero in a neighbourhood and the order of
the zero is finite) or a pole (which implies that it is an isolated singularity) at zp, then by
Theorem 3.4.1 there is a k € Z\{0} and a holomorphic function g such that

f(2) = (2 = 20)"g(2)

in a neighbourhood of zy, where g is holomorphic at zy and g(zg) # 0. If f has a zero at 2o,
then k£ > 0 and the order of the zero is k. If f has a pole at zg, then k£ < 0 and the order of
the pole is —k.

Now consider the , 2 )}'((22))7 which is holomorphic where f is

holomorphic except for the zeros of f.

In a neighbourhood of z,
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7 THE CALCULUS OF RESIDUES

SO
f'(2) _ k(z = 20)"9(2) + (2 — 20)"9'(2) k 9'(2)
= - = + :
f(z) (z = 20)*9(2) 2=z 9(2)
Since ¢ is holomorphic and doesn’t have a zero at zg, its logarithmic derivative Z/((ZZ)) is
holomorphic at zy. By example 7.1.2 @ this implies
k 9'(2) 9'(2)
Resy (z9) = lim (z — 2 + = lim k+ (2 —z =k
fT( 0) z—»zo( 0) (Z — 20 g(z) Z—20 w g(z)
*)O
_,9'(z0)
(z0)
Applying the residue theorem to fT/ yields the following theorem.
Let f be on U c C and ¢ be a KcU
such that 0K doesn’t contain any zero or poles of f. Then
1 !
L (&g, s p
271 ). f(2)
where Z is the of fin K and P the , each
according to their order.
There is an in terms of the winding number. ;:Ip:ﬁi
For a 1-chain ¢ = ®); n; ©; we define the image under a map f, defined on |c| by Fig. 83: The setup of

Theorem 7.6.1.

f(e) ¢=@nj'(f07j)

Now for some piecewise C!([to,t1]) curve 7: [to,t1] — U that does not pass through any

zeros or poles of f

f'(z) . f(y(t) B 1 .
| e, oy oa=], S (29)

This is still true if « is only continuous, because any continuous curve in U\{poles and zeros
of f} is homotopic to a C'-curve. Hence, even for a 1-chain ¢ in U whose support le| does

not contain zeros or poles of f, we have

1, 1L

- - — | =-d-
omi ). f(2) T 2mi )y 2

For the 1-cycle bounding K, we get

Z —P= Indf(c)(O)

We can thus reformulate the above theorem:

Under the same assumptions of and using the same notation as in the previous
theorem, Ind)(0) = Z — P.

Janich uses this to prove the following result.
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7 THE CALCULUS OF RESIDUES

A nonconstant rational function has a many zeros as it has poles in ¢ (both counted

with multiplicities).

Corollary 7.6.1
A nonconstant rational function takes every value a € C the same number of times.

Proof. If f is that rational function, apply Theorem 7.6.3 to f — a. O

In think that only the zero and pole counting winding number is a bit over the top. If

flz) = ZE;;, where p and ¢ are polyvnomials without common zeros, then the number Z of

zeros and the number P of poles are

Z = deg(p) + max(deg(q) — deg(p),0)  and P = deg(q) + max(deg(p) — deg(q),0),

where the sccond summands correct for zeros and poles at 0. In any case Z — P = 0.

ROUCHE’s theorem

Lemma 7.6.2 (Dog on a leash)
Let ¢1,c2: [0,1] — C be two closed curves and zy € C\(|e1] U |ca|) Furthermore assume that
for all t € [0,1]:

ler(t) = ca()] < fer(t) = 2o- (30)
Then Ind,, (20) = Ind,.,(20).

Proof. Homework 11.3. U Fig. 84: The setup of

lemma 7.6.2.

THEOREM 7.6.4: ROUCHE

Let v be a closed curve bounding a compact region K < U and f and g be holomor-

phic functions on U such that |¢(-) < /(-) for all z € |y|. Then f and f + g have
the same number of zeros (counted with multiplicities) in K.

Proof. Since the functions have no poles, the numbers of zeros are winding numbers of
c1 = fovyand cy := foy+goyaround 0 by (29). But since |c; —co| = |[gory| < |foy| = |e1],
the winding numbers are equal by lemma 7.6.2. O

The following stronger version of ROUCHE’s theorem is also true but more technical to prove

(cf. Ferus’ lecture notes).

THEOREM 7.6.5: ROUCHE (MORE GENERAL VERSION)

Let ¢ be a cvcle bounding a compact region K < U and f and g be holomorphic
< [(2) for all z € |c|]. Then f and f + ¢ have the

same number of zeros (counted with multiplicities) in K.

functions on U such that |¢(-)

This is more difficult to prove as the cycle might be a linear combination of not just closed
curves, so we can’t apply lemma 7.6.2 in a straightforward way.
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7 THE CALCULUS OF RESIDUES

If we have a region bounded by a curve and suppose on that curve, the function f becomes
nonzero - it attains a minimum - and we add to f a holomorphic function g which is smaller

in absolute value than f, then it doesn’t change the number of zeros in that region.
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8 SEQUENCES OF HOLOMORPHIC FUNCTION

Sequences of holomorphic function

8.1 | Uniform convergence on compact sets

If we look at sequences of functions and their convergence in Real Analysis, we know that
uniform convergence is a good property, because of its favourable relation to integration.
In Complex Analysis, we can also describe derivatives with integrals using CAUCHY’s for-
mula. Hence in Complex Analysis, also derivatives behave nicely with respect to uniform

convergence. In fact, taking derivatives is a local property.
Let U < C be open.
DEFINITION 8.1.1 (UNIFORM CONVERGENCE ON COMPACT SETS)

A sequence (fy,: U — C)pen of functions converges uniformly on compact sets to a function

f: U — C if one of the following conditions is satisfied.
e For any compact subset K < U, we have f,, — f uniformly on K.

o (fn)nen converges locally uniformly to f, that is, for any zo € U, there exists an open

neighbourhood on which f,, — f converges uniformly.

Lemma 8.1.2
Both conditions are equivalent.

Proof. " = ": Let zg € U. If » > 0 is small enough, then th compact neighbourhood

B,.(zp) is contained in U. On this closed disk, convergence is uniform, therefore, also on
BT(Z()>.

"«=": For z € U, let U, < U be an open neighbourhood of z on which (f,,),en converges

uniformly to f.

Let K < U be a compact subset. The open cover (U,).cx has a finite subcover (Uk)]ﬂ/le
with M € N. Given € > 0, there are numbers Ny, ..., Ny such that

|fn(2) = f(2) <&
if ze Uj for n > N;. Let N := max(Ny,...,Nys), then
lfn(2) = f(2)] <&
if n > N. Hence convergence is uniform OJ

Hence uniform convergence on compact sets is the same as locally uniform convergence.
Remark 8.1.3 (Real Analysis reminder) If (f,: C > U — C),ey converges to f uni-

formly on compact sets, then f is also continuous.
If ¢ is a 1-chain in U, then
J- fn(z)dz 222 f f(z)dz
C c
because the sequence converges uniformly on the compact set |c]. o

Due to CAUCHY’s integral formula, we can express derivatives as integrals. This is a main

ingredient in the proof of the following theorem.
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8 SEQUENCES OF HOLOMORPHIC FUNCTION

THEOREM 8.1.1: UNIFORM CONVERGENCE ON COMPACT SETS

(WEIERSTRASS)

Let (fn)nen be a sequence of holomorphic functions on U that converges uniformly
on compact sets to the function f. Then f is also holomorphic on U and the sequence

(f! )nen converges uniformly on compact sets to f'.

Proof. To show that f is holomorphic, it suffices to show that
f(z)dz=0
0A

for every closed triangular region A < U by MORERA’s Theorem.

Due the remark 8.1.3 (x), we have
(2)dz = J lim f,(z)dz ® lim fa(z)dz =0.
oA oA n—o0 n—0o0 oA

=0 by
CaucHy’s Theorem

To show that (f])neny converges uniformly on compact sets to f/, use CAUCHY’s integral

formula for the derivative:

1 (2) = f(2)| = QLM J anZ)__Z;;(U) du <2§max{|fn(u)_f(u)| tu— 2| =1}
|lu—z0|="r

minf{lu — z|? : |u — 2| = 7}

S hax | fr(w) — f(u)],
lu—zo|="7

where zp € U and r > 0 are chosen such that |z — zg] <rand {ueC:|lu—z2y|=r}cU.O

This is not true in Real Analysis: f,(x) := X sin(nz) — 0 uniformly on R, but f,(z) =

n
cos(nz) does not converge.

8.2 | Multiplicities of values of the limit function

The following Theorem states that limit function can not take a value more often than all

the elements of the sequence.

THEOREM 8.2.1: MULTIPLICITIES OF VALUES IN THE LIMIT (HURWITZ)

Suppose a € C and (f;, )nen is a sequence of holomorphic functions on U that converges
uniformly on compact sets to the function f. Suppose further that each function f,
takes the value a at most m times (counting multiplicities). Then f takes the value

a at most m times (counting multiplicities) or f is constant.

Corollary 8.2.1
The limit function of a sequence of injective holomorphic functions than converges uniformly

on compact sets is also injective or constant.

Proof. (of Theorem 8.2.1) It suffices to treat the case a = 0, otherwise apply this case
to f := f — a. We prove the counterpositive statement: if (fn)nen converges to f uniformly
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8 SEQUENCES OF HOLOMORPHIC FUNCTION

on compact sets and f has more than m zeros (counting multiplicities), then there is an
n € N for which f,, has more than m zeros.

Let z1,...,2zn be the distinct zeros of f. Let r > 0 be small enough so that the closed disk
of radius r around z; is contained in U, but does not contain any other zeros. Let 7y; be the
path tracing out the boundary of those disks for j € {1,..., N}.

¥ L3
o ¥r
/0
X- [ £3

Fig. 85: Closed disks around the distinct zeros.

Since (fr )nen converges uniformly on the compact set ' := U;‘V=1 |51, for € :== min,er | f(2)]| >
0 there is an n € N such that

[fa(2) = ()] < £ = min| f(u)| < |£()

for all z e I'. By RoucHE’s Theorem f,, = f 4+ (f, — f) has the same number of zeros as f
in the N open disks, so it also has more than m zeros. O

8.3 | Locally bounded function sequences

DEFINITION 8.3.1 (LOCALLY BOUNDED FUNCTION SEQUENCE)
A sequence (f,: U — C)pen is locally bounded if every zg € U has an open neighbourhood
Up so that there is a number m € R for which

Ifn(2)| S M  VzeU, neN.

The Theorem of BOLZANO-WEIERSTRASS in Real Analysis states that every bounded se-
quence has a convergent subsequence. MONTEL’s Theorem is the analogous Theorem in
Complex Analysis.

THEOREM 8.3.1: MONTEL

Every locally bounded sequence of holomorphic functions has a subsequence that

converges uniformly on compact sets.

The proof is somewhat involved and hence we prove two lemmas first.

Lemma 8.3.2 (Locally bounded = local LIPSCHITZ-equicontinuity)

Let (frn: U — C)pen a locally bounded sequence of holomorphic functions. Then for every
point in U there is an open neighbourhood Uy — U and a (LIPSCHITZ constant) M = 0 such
that for all n € N and for all z1, zo € Uy we have

| fu(21) = fa(z2)] < Mlz1 — 2a].
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8 SEQUENCES OF HOLOMORPHIC FUNCTION

Proof. Let Uy = {z € C: |z — 2| < §}. By CAUCHY’s integral formula (and reverse partial

fraction decomposition) we have

sl | 502
|z—zo|="1

! al2)
prd CREIN I -

z—21)(z — 22)

|z—zo|=r
1 M 4AM
<ZZ|2’1—Z2|247/7"TT: — |2'1—22|;
lis = r
4 ~——

=M
where we use |z — z;| = § for z € Uy and j € {1,2} and that as f, is locally bounded, there
exists the constant M = 0 such that | | are bounded by M on the small neighbourhood Uy

(we can choose r > 0 so small that this is true). ]

Lemma 8.3.3 (Pointwise on dense subset = uniformly on compact sets)

Suppose (frn: U — C)pen is a locally bounded sequence of holomorphic functions, which

converges pointwise on a dense subset A < U. Then (fn)nen converges uniformly on compact
sets.

Proof. By lemma &8.1.2 it suffices show local uniform convergence. Let zg € U. By
lemma 8.3.2, there are numbers M, r > 0 so that

Dr,zo :Z{ZECI‘Z—ZQ|<7"}CU
and for all n € N and 21, 22 € D, ,, we have
|[frn(z1) — fn(22)| < M|z1 — 29].

We show that (f,)nen converges uniformly on D 1rz0 then we are done. To this end we
show the CaucHy-condition: for any e > 0 there is an N € N such that for all z € D1, |
and all n,m > N,

|fn(z) - fm(z)| <Eé&.

Choose ¢ > 0 so that ¢ < min(357, 5) like in figure 86.

Fig. 86: TODO

Then (Dy.q)qea is an open cover of the compact set Dg,zo and all disks D, , that have

nonempty intersection with Dg,zo are contained in D, ..

Hence there exists a finite subcover. More specifically, there exists numbers aq,...,a; € A
such that

k
D%Jo < U DLMI]' C Drpzy.
J=1
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8 SEQUENCES OF HOLOMORPHIC FUNCTION

Choose N € N such that
€

Falay) — Fulay)] <
for all n,m > N for all j € {1,...,k}. Then for each ze%there isaje{l,...,k} such
that z € D, 4, that is, [z — a;| < 0 < 35;. Hence for n,m > N we have
[fn(2) = fm(2)| < |fn(2) = fn(ay)l + [fnlaz) = fm(a;)| + | fm(a;) = fm(2)]
<M|z—a|+§+M\z—a|<§+§+§=s. 0

Proof. (of Theorem 8.3.1 via a classical diagonal argument) Let (f,)neny be a lo-
cally bounded sequence of holomorphic functions on U < C. Let (a;)jeny be a sequence
in U that is dense in U. For example, arrange the points in U with rational real and

imaginary parts in a sequence.

TODO O
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9 THE RIEMANN MAPPING THEOREM

The RIEMANN mapping theorem

DEFINITION 9.0.1 (CONFORMALLY EQUIVALENT DOMAINS)
Two domains U and U in C are biholomorphically or conformally equivalent if there is a

bijective holomorphic function f: U — U.

By corollary 3.4.7, in this case f~! is also holomorphic (hence the term biholomorphically).

Example 9.0.2 The domains D = {z € C: |z] < 1} and H := {z € C : &(z) > 0} are

conformally equivalent, as the MOBIUS transformation z — 2—12 maps H bijectively onto D

by example 1.8.14. o
Counterexample 9.0.3 The domains C and D are not conformally equivalent as every
holomorphic map on C with image in D is a bounded entire function and hence constant by
LIOUVILLE’s theorem. o
Counterexample 9.0.4 The domains D\{0} and {z € C: § < |z| < 1} are not conformally
equivalent (Exercisel!). o

The RIEMANN mapping theorem is about simply connected domains (like in example 9.0.2
and counterexample 9.0.3).

THEOREM 9.0.1: RIEMANN MAPPING THEOREM

Every nonempty simply connected domain UC C is conformally equivalent to the

open unit disk D.

Remark 9.0.5 (Supposedly stronger statement)

Since conformal equivalence is an equivalence relation (the identity is conformal, the inverse
of a conformal map is conformal and the composition of conformal maps is conformal), this
implies that any nonempty simply connected domain in C except C itself is conformally

equivalent to any other such domain. o

Remark 9.0.6 (Horrible simply connected domains) To appreciate how monstrous
simply connected domains can be and hence what a strong and remarkable statement The-

orem 9.0.1 is, consider the following example:

N v tn

e |

LIS R
-1 2

Fig. 89: The set on the right is the interior of the square with endpoints 0, 1, 4 and 1 + 1,
which slits at {R(z) = £} with length 1 — } and alternating starting points for k € N .

There can not be any distortion of angles, since holomorphic maps are angle-preserving by
Theorem 1.7.1, but there will be a huge distortion of area by this mapping. o
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nected domains from

counterexample 9.0.4.

Fig. 88: A biholomor-
phic map between a
simply connected do-
main U C C and the
open disk, which exists
by Theorem 9.0.1.



9 THE RIEMANN MAPPING THEOREM

Remark 9.0.7 (Uniqueness of RIEMANN maps) The RIEMANN mapping theorem as-
serts the existence of a RiEMANN map f: U — D. How unique is it? If f and f are
biholomorphic maps from U onto D, then f o f~! is a bijective holomorphic map from D
onto D. By Theorem 1.8.7, f o f~! is the restriction of a MOBIUS transformation m. But
fof~' =m implies f =mo f.

Hence two RIEMANN maps U — D differ by post-composition with a MOBIUS transformation

mapping D onto D.

How can one make the RIEMANN mapping unique? One can prescribe a point 2y € U, that
is should be mapped to 0 and we can also describe an angle «, with which the horizontal
direction is mapped at zg and this is the argument of the derivative of f at 0: for any 25 € U

and any « € [0, 27) there is a unique RIEMANN map f: U — D satisfying

f(z0) =0 and f'(z0) = €| f'(20)].

Remark 9.0.8 (Proof of Theorem 9.0.1) There are many ways to prove the RIEMANN
mapping theorem. The proof we will show here uses only complex analytic methods and is
due to CARATHEODORY.

He also proved: a RIEMANN map U — D extends continuously to a map U — D (continuous on U and holomorphic
on U) if and only if U is a JorpAN domain, that is, the boundary of U is a JorDAN curve - a simple closed curve.o

In order to prove Theorem 9.0.1, we will first prove the following Lemma.

Lemma 9.0.9 (Global root function on simply connected domains)

If U < C is a simply connected domain and 0 ¢ U, then there exists an injective holomorphic

function o on U such that (0(2))” = = for all z€ U.

Remark 9.0.10 This holds for all n > 0, not just n = 2. In fact, using analytic continua-
tion, one can show a global version of the inverse function theorem: If f is holomorphic on
a domain U and f’ has no zeros in U and f(U) is simply connected, then there is an inverse
function f(U) - U of f.

Proof. We will first construct the logarithm function A and then construct the square root
by considering e3*. Choose zo € U and wq € C such that e"° = z3. In a neighbourhood Uy
of zp, let A\gp be an antiderivative (the logarithm!) of the function z — % with Ag(20) = wp.
Since z — % is holomorphic on U (because 0 ¢ U) and can therefore be trivially extended
along any path in U starting at zp, the same is true for the local antiderivative (Ao, Up).
Since U is simply connected, the analytic continuation does not depend on the path but

only on the endpoint. Hence this defines a holomorphic function A on U with X'(z) = L.

Now,
d (1 e Lo ¢ Ly
d( V)T e AN Ee =0
implies by Theorem 1.4.2 that there exists a constant ¢ € C such that e’?) = ¢z and

e Mz0) — ewo — 2 implies that ¢ = 1. So \ is a holomorphic function on U satisfying e*(*) = z

for all z € U. Now let ¢ := e2*, which is holomorphic with (o(z))2

injective:o(21) = o(22) implies 21 = (0(21))* = (0(22))* = 22. ]

= z. Furthermore, g is

Proof. (of Theorem 9.0.1) @ The main argument. Consider the case that U is
bounded. We’ll deal with the other case later. Then we may also assume that U < D
and 0 € U (otherwise translate and scale U appropriately, which are biholomorphic

operations). Then main idea of CARATHEODORY was considering the set of functions

F:={f: U — C: f is holomorphic, injective, f(U) < D, f(0) = 0}.
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9 THE RIEMANN MAPPING THEOREM

Claim. There exists a function f € F for which |f’(0)| is maximal among functions in
F. This is a biholomorphic map onto D.

Proof. @ A criterion for surjectivity. Proposition. If for f € F the value | f/(0)]

is maximal among all functions in F, then f(U) = D.

Proof. We will show: if f(U) # D, then |f'(0)] is not maximal. So assume
zo € D\f(U)

.“ ./”
— ©

Fig. 92: The different maps in the order they appear in the proof of the proposition.

Let m; be a MOBIUS transformation with my(D) = D and m(zp) = 0 (which
exists by Theorem 1.8.7), so 0 ¢ (mq1 o f)(U). Now let w be a square root
function on (my o f)(U) (this set is simply connected because f and m; are
injective and continuous; this is theorem from topology), i a holomorphic
injective function with w(z)? = z, which exists by lemma 9.0.9. Finally, let m.
be another MOBIUS transformation with mq(D) = D, mapping (w oms o [)(0)
to 0. Then f := moowomiof € F because f(0) = 0 by construction and
=

—g
holomorphic and injective as a composition of holomorphic and injective maps.

It remains to show that |f'(0)| > |f/(0)|. Note that f'(0) = ¢'( £(0) )- f'(0) by
ey
the chain rule. We will show that |¢’(0)| > 1 and then we are donz?
Note that g is an injective holomorphic function on f(U) < D and g(0) = 0. The
inverse,
g7 (z) = (mi" ow™ omy ) (2) = my ' ((my ' (2))?)

is a restriction of the entire function
h: C—C, 2z miH(my(2))?).

Now h(D) < D and h(0) = 0, but h is not a MOBIUS transformation (otherwise
z + 22 would have to be MOBIUS transformation), in particular, h is not a
rotation z +— az with |a| = 1. By Scuwarz’s Lemma, |h'(0)| < 1, so |¢’(0)] =

O O

@ The existence statement. The set F of functions contains the identity z — z,

so it is nonempty. Also, the set of values

{If/(0):feFl=R
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9 THE RIEMANN MAPPING THEOREM

is bounded. To see this, use CAUCHY’s integral formula for the derivative: if
r > 0 is small enough so {z € C: |z| <r} < U, then

T 1
27 LZ_T (z—0)? d

1 1
"0)] = rr— — =,
|f( )| 2T WTTZ r

<

as |f(z)] < 1. Hence
so = sup{|F/(0)] : f € F} < % <o,

Let (fn)nen < F be a sequence of functions such that lim,_, |f},(0)] = so. All
functions in the sequence are bounded by 1, because their image is a subset of D.
By MONTEL’s theorem there is a subsequence of ( f;,)nen that converges uniformly
on compact sets. Its limit f is holomorphic and |f/(0)] = s by the theorem about
uniform convergence on compact sets. Also f(0) =0, as f,,(0) = 0 for all n € N.
Since f'(0) # 0, f is not constant, so by the Corollary to HURWITZ theorem, f is
injective because all f,, are injective. Finally, f(U) c D, since f,,(U) = D for all
n € N. By the theorem on preservation of domain f(U) < D. By the surjectivity

criterion @, fU)=D. L]

@ Suppose U is not bounded. By assumption U # C, so there is a point zg € C\U. We
may assume 0 ¢ U (otherwise apply the translation z — z — zp). Let w be a square

root function on U, i.e. an injective holomorphic function on U with (w(z))? = z for

all ze U.
Proposition. The set w(U) does not contain a pair of diametrically opposed points p
and —p.
Proof. w(z1) = —w(z2) implies
— 2 _ 2 _

21 = (w(z1))” = (—w(z2))” = 22,
therefore w(z1) = —w(z1), so w(z1) = 0, so z; = 0 € U, which is a contradiction to
0¢U. ]

Pick a point zg € w(U) and let » > 0 be small enough that Uy = {z € C: |z — 2| <
r} < w(U). Let =Uy == {—z : z € Up}. Then (—=Uy) n w(U) = & by the above
proposition.

w(U)
= UO Ua

The inversion o(z) = —— maps C\(—Up) o U into the bounded set {z € C : |2+ 20| <

z+2zo

1}. Therefore p(w(U)) is bounded. O
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