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Primer on differential forms

Loosely speaking, a differential k-form (or just k-form) is something that

can be integrated over a k-dimensional manifold, where k € N.

For example, z dz is a 1-form as { % dz is valid expression for K = R
or C. Similarly, 22 dy is also a 1-form. The expression ysin(z)dz A dy is

a 2-form. The notation A will be explained later.

We don’t have to limit ourselves to the real case, and can also consider
complex 1-forms such as f(z)dz, where f: C — C is a function. This

can also be interpreted as a real 2-form by rewriting it as f(z)(dz + i dy).

DEFINITION 0.0.1 (DIFFERENTIAL k-FORM)
A differential k-form w maps each point p € K" to a multilinear alter-

nating map w(p): (K*)* — K.

Multilinearity of w means that w is linear in every component, i.e.
w(p)(Az1 + 22,9, 2) = Iw(p)(x1,y,2) + w(p)(r2,y,2) for A € K and
x1,Z2,Yy,z2 € K" (here k = 3). Alternating means that if two entries
succeeding each other directly are equal, the differential form is zero, i.e.

w(p)(z,z,2) = 0.
Differential O-forms are just (smooth) functions f: K" — K.

The most basic differential 1-form is of the form
dz'(p): K" > K, (21,...,20) = z;

Each 1-form is a linear combination of them:

Z f’L dmiv
i=1
where f; : K" — K is smooth and

(fi dxz<p)) K" — K’ (.%'17. .. >:En) = fz(p)xz

We now "explain" the exterior product A.

If a is a i-form and b is a j-form, a A b = —b A a will be a (i + j)-form.

As any differential form is alternating, we especially have a A a = 0.

The differential operator d is linear: d(a +b) = da + db and fulfills
dfda’ =37 £Lda' A dad.
For 2': K" - K, (21,...,7,) — x;, dz’ is the differential 1-form coming

from differentiating 2* as a 0-form.

DEFINITION 0.0.2 (CLOSED, EXACT DIFFERENTIAL FORM)
A k-form w is closed if dw = 0 and exact if there exists a (k — 1)-form b
such that db = w

exterior product

elased
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THEOREM 0.0.1: POINCARE LEMMA

A closed differential form on a simply connected set U < K" is
exact.

Remark 0.0.3 The simple connectedness above can be replace with

other topological assumptions such as being star-shaped or diffeomorphic
to R2.

THEOREM 0.0.2: STOKES




Complex Numbers and Functions

Complex numbers

It all began with the natural numbers N := {1,2,...}. Adding the negative numbers 21.04.2020
to the natural numbers yields the integers Z, enabling us to preform the operation

a — b for a < b, which in turn can be use to solve the equation = + b = a for x.

Adding the fractions to the integers yields the rational numbers @Q, enabling us to

preform the operation which in turn can be use to solve the equation bx = a for x.

a
b )
Adding the irrational numbers to Q yields the real numbers R, enabling us to solve

the equation z2 = 2.

All these sets of numbers can be constructed with the help of equivalence classes.
In order to construct the integers from the natural numbers define the equivalence
relation (a,b) ~ (¢,d) by a + d = ¢ + b, yielding the equivalence class a — b.

For the rational numbers we define (a,b) ~ (¢, d) by ad = b, yielding the equivalence

class %. For the real numbers we use equivalence classes of CAUCHY sequences.

But there are still equations we can’t solve such as 2 = —1. In order to solve them,

we introduce the complex numbers C, which can be constructed directly, without
using equivalence classes. Within the complex numbers, every algebraic equation has

a solution, C is algebraically closed.

DEFINITION 1.0.1 (C, VERSION I)
The field C is the set R? equipped with addition from R? and the
multiplication

a c ac — bd

b \d] ™ \ad+be

The field C contains the subfield {(z,0) : x € R} >~ R. Furthermore,
C=A={(} ) abeR}via®: A=C, (30)~(5):

ol (@ =b c —d _af (ot —(b+d)

b a d ¢ b+d a+c

_[a+c) fa n b
b+d) \b d)’

and

ol [ b\ [c —d _3 ac—bd —(bc+ ad)

b a d ¢ bc+ ad ac — bd

B ac — bd _[a b

be+ad)] \b d

holds. Furthermore, ® is linear and bijective.

DEFINITION 1.0.2 (IMAGINARY UNIT %)
We define i := (0,1)" e C.

By definition 1.0.1 we obtain

- 0) . (© = 0-1 =—-1eR,
1 1 0
thus i is one of the solutions of 22 = —1, the other being —i.



DEFINITION 1.0.3 (C, VERsION II)
We define C := {z + iy | z,y € R} and (x,%)" := x + iy for (z,9)" € C.

DEFINITION 1.0.4 (R(x + iy), S(x + iy), |z + iy|)
We define the real numbers R(z + iy) = z and S(z + iy) = y and

|z + dy| = /22 +y2 > 0.

With d(z1,22) = |21 — 22| for 21,20 € C, C becomes a metric (and
thus a topological) space, giving rise to properties like convergence and

continuity.

DEFINITION 1.0.5 (COMPLEX CONJUGATION)

Complex conjugation is the R-linear map

T :C—oC, x+iy—ax+iy =z —iy.

With this definition we have 2% = [2|* and 2! = Fz for z € C\{0} and

— R(z — S(z
thus R(z71) = —m(zyi%(z)g and 3(z71) = ——%(Z)Qié(z)z
DEFINITION 1.0.6 (POLAR REPRESENTATION)
For z := x + iy € C define (a radius) r := |z| and an angle arg(z) := ¢ €
R /27 Z such that cos(p) = £ and sin(p) = £. Then

z = r(cos(¢p) + isin(yp)) = re?

is the polar representation of z.

We can now easily interpret multiplication of complex numbers. Let z; =
rie#i for i € {1,2}, r; > 0 and ¢; € [0,27). Then z; - 25 = riroet(P1t¥2)
holds, which is visualised on the right. This implies |z - 22| = |z1] - |22]
and arg(z) - z9) = arg(zy) + arg(22).

&
>

21+ 29

Fig. 1: Two complex numbers in the com-
plex plane and their sum ("Parallelogram
rule"). Complex conjugation represents a
reflection upon the real line.

7/
|Z|1/3ei(so+27r1 it )
\z|1/3ew/3
\

\ Y

. 2|3 eilptam)/3 . .

Fig. 2: Polar representation in the complex

plane.

Fig. 3: Multiplication of complex numbers.

TODO

Fig. 4: Inversion of complex numbers.
TODO



Complex differentiability

From now on, let U < C be an open set and f : U — C a function.

DEFINITION 2.0.1 (COMPLEX DIFFERENTIABILITY)
A function f is complex differentiable at zo € U if the limit

lim f(z) — f(20) - lim f(z0 +h) — f(20)
h

z—20 zZ— 2y h—0

= f/(ZQ) eC.

exists.

Note that h € C. Formally, this is the same definition as for functions
of one real variable. But as C =~ R?, it is more sensible to compare
the above definition to the definition of differentiability of functions
f:R? 5 U — R?, which is as follows

DEFINITION 2.0.2 ((TOTAL) DIFFERENTIABILITY IN R?)
Let U < R? be an open set, f : U — R?. Then f is differentiable at
(z0,%0) € U if there exists a R-linear map A : R? — R? such that

f(xO + &% +77) - f(x07y0) =A (;) + 90(5777)

and lim . ,)|-0 w = 0 hold. We write A := df(zo,y0) € R**?

Note that there is no definition of division by vectors in R?, so this
definition looks very different to the one above. But we can rewrite the

first definition in a manner similar to the second definition:

lp()]

f(zo+h) — f(z0) = f'(20)h + ¢(h) with lim

=0.
h—0 |h‘

We observe the difference is that in the complex case, A is a C-linear map
and not a R-linear map; it acts on C as a multiplication by the complex
number f’(zp).

Lemma 2.0.3 (R- and C-linearity)

A R-linear map A (or its matric A = (24)) is C-linear (acts as a

multiplication by a complex number x + iy ) if and only if A = (m —y> }
T

that is: a = d and b = —c.

Proof. Let Ah = ch with ¢ := z + iy € C. This translated to R? as

A <€> = (z+iy)(e+in) = (ze—yn)+i(ye+an) = (x —y) (€> . O
n y n

Equipped with this lemma we can now find conditions for complex
differentiability. First, we separate a complex function into its real and
imaginary part:

f(2) = f(& +iy) = u(z,y) + iv(z,y),



where u,v : R? 5 U — R2. The JACOBI matrix of f at zo == (zo,yo0) is

u ou\ [
A=df(z) =2 & .
or oy Yo

THEOREM 2.0.1: CAUCHY-RIEMANN EQUATIONS

A function f: C o U — C is differentiable at zg := (zq,yo) € U if
and only if its JACOBI matrix df(z): R* — R? is a C-linear, i.e.

ou ov ou ov

6_x(x0’y0) = a—y(ﬂﬁmyo) and a—y(xo,yo) = —0—33(1‘0,%)

Example 2.0.4 (Complex differentiability)

o Let f(2) := 2% = (z+iy)? = 2% —y? +i(2zy). Let u(z,y) == 2% —y?
and v(z,y) := 2zy. We have A = (gz 5Y), so f is differentiable
everywhere and thus called entire.

o Let f(2) =22 = (z —iy)? = 2® — y? — i2xy. Then A = (fgy )
holds, so f is only differentiable in (0,0).

e Let f(2) =%. Then A = ((1] *01) holds, so f is nowhere differentiable.
o

Remark 2.0.5 (Formula for the derivative)
In case of complex differentiability, we have

o = P 419y = D 20
f (x,y)) - ax ((E,y) +Zax (xay) - 6$ (x7y) Zay(xay)
ov ov ov ou

= @(x’y) +i£(x,y) = @($,y) _i@(xay)'



Holomorphic functions

DEFINITION 3.0.1 (HOLOMORPHIC)
A function f is holomorphic (analytic) if it is (complex) differentiable

on its entire domain.

Differentiability is a local property, whereas holomorphicity is global.

The following three theorems, which will be proven throughout the course,
showcase that holomorphy strikingly differs from the real case.

Theorem of GOURSAT. A holomorphic function is infinitely often
differentiable on its domain.

Counterexample 3.0.2 In the real case a function can be differentiable
but have no second derivative: Consider f: R — R, z > sign(z)z?. Then
f/(x) = 2|z| is not differentiable in 0. o
Power series representation. For holomorphic f and zy € U there
exists a neighbourhood of zy such that f(z) = Y, f(n:!zm (z — zo)"

holds on U.
Counterexample 3.0.3 (Non-analytic function)

Consider f(z) = /%" with £(0) = 0. Then f € C* and f™(0) = 0 for
all n € N, so the TAYLOR expansion in zero is identically zero. o

Uniqueness theorem. Let f,g: U — C be holomorphic and J < U

have an accumulation point zy. If f = g holds on .J, we have f = g on U.

The set J could be a open disk, a curve or even a discrete set.
Counterexample 3.0.4 Let J < R be an open interval and f,g: J - R
two smooth functions agreeing on a J, then there are infinitely many

extensions of f and ¢ such that f and g don’t coincide globally. o

A similar theorem holds for ordinary differential equations: under suitable

assumptions, two solutions agree if and only if they agree in one point.

3.1 Consequences of the CAUCHY-RIEMANN
equations

Assume f(2) = u(z,y) + iv(z,y) is holomorphic in U and assume wu, v €
C*(U) (which is actually a consequence of the GOURSAT theorem). By
the CAUCHY-RIEMANN equations (CR) and the theorem of SCHWARTZ

(S)

Pu Po_ 0 ()0 (a0 (@), 0 ( o
ox2  oy?  ox \ox oy \oy/) oz \ oy oy ox

g v - %v _
dxdy  Oxdy

holds. Analogously, the LAPLACE operator of v, Av, vanishes as well.

DEFINITION 3.1.1 (HARMONIC FUNCTION)

A C? function u: R? > U — R? is a harmonic function if Au = 0.

holomorphic

< | t >

Fig. 5: The function f(z) = exp <_:%2>

22.04.2020

harmonic function



3.1 CONSEQUENCES OF THE CAUCHY-RIEMANN EQUATIONS

This yields

THEOREM 3.1.1: R(f), S(f) HARMONIC

The real and the imaginary part of a holomorphic function are

harmonic functions.

Suppose we have a harmonic function u: R?> > U — R? and we want to
find a function v related to u by the CAUCHY-RIEMANN equations. Then
0 0 0 0

Lo g 2 (1)
ox oy oy Ox
must hold.

The existence of a solution v of this system of two partial differential

equations is called exactness of the one-form
ou ou
——|d — |d 2
(&) (&) ®

By the POINCARE lemma one only has to check the closedness of the

on U.

one-form. A one-form is closed if its CARTAN derivative vanishes (cf.

definition 5.0.8), i.e.

ou ou )
1((-5) e (3) @)
d _(9_u dx + 6_u dy | = Audx A dy =0,
oy ox

as u is harmonic.

We have

We can conclude that if w is harmonic, then the one form (2) is closed. If
additionally, U satisfies a topological condition, this form is exact, that
is, the function v exists and is unique up to an additive constant: If there
would be two such function v; and vy solving the system (1), we have
%(vl —vg) = %(vl —v9) = 0, i.e. v — vy is constant. Moreover, this

function v is harmonic by the same argument.

We have just proven the following

THEOREM 3.1.2: CONJUGATE HARMONIC IS UNIQUE

For a harmonic function u: U — R?, where U satisfies a topologi-

cal condition, there exists a unique (up to an additive constant)
harmonic function v such that the CAUCHY-RIEMANN equations
are satisfied.

DEFINITION 3.1.2 (CONJUGATE HARMONIC FUNCTION)
The function v from theorem 3.1.2 is a conjugate harmonic function.

Thus the real and imaginary part of a holomorphic function are conjugated

harmonic functions, implying the following

conjugate harmonic function

A rigid collection is one in which every
element is uniquely determined by less
information about than one would expect.



3.1 CONSEQUENCES OF THE CAUCHY-RIEMANN EQUATIONS

THEOREM 3.1.3: RIGIDITY

For a harmonic function u: R? > U — R?, where U satisfies a
topological condition, there exists a holomorphic function f: C o
U — C such that u = R(f), which is unique determined up to a

imaginary constant.

Corollary 3.1.3 (R(f) =0 = f=0C)
If R(f) =0 holds, S(f) and thus f is constant.

All of the above results hold with R(f) and S(f) reversed.

Example 3.1.4 Consider

u: C\{0} = R, (z,y) — In(n/22 + y?) = %ln(z2 + y2).
Then

Puwy) _ P-d? L Puley) oy
0z (22 +42)2 o2 (22 +yP)?

hold, so Au = 0 holds on U; u is harmonic.

But as U does not fulfil one of the topological conditions, it is difficult
to find the harmonic conjugate of u. We can solve this by cutting U
along any ray starting at 0, e.g. along the negative real half-axis, yielding
U’ := C\Rgp, which is star-shaped and simply connected, so we can
find a harmonically conjugate function in U’ via the CAUCHY-RIEMANN

equations:
ov(x,y) 1 _au(x7y) Yy and ov(z,y) 1 ou(z,y) _ x
or oy x242 oy  ox  a24y2

The solution (existence guaranteed theorem 3.1.2) is
. )
v(x,y) = arctan (—) +C,
x

where C' = 0 for z > 0 and C' = 7 in the second quadrant and C = —7
in the third quadrant. We can more conveniently write this as v(z,y) =

arg(z + dy) € (—m,m). Thus
U >R, z=x+iy— u(z,y) +iv(z,y) = In(|z]) + iarg(z)
is holomorphic. o

Corollary 3.1.5 (Au = 0 if f holomorphic and A(h o f) = 0)
If f: U — C is a holomorphic function and h: f(U) — R is harmonic,

then ho f: U — R is a harmonic function

Proof. Let zp € U. On an open neighbourhood of f(zp), h is the real
part of a holomorphic function H by theorem 3.1.3. By the chain rule,
H o f is differentiable, so it is holomorphic on a small neighbourhood of
zo. Thus R(H o f) = ho f is harmonic by theorem 3.1.1. O

Remark 3.1.6 The proof only works if f is non constant, because
otherwise the image of the neighbourhood of zy is not open, so theorem

3.1.3 is not applicable.



3.1 CONSEQUENCES OF THE CAUCHY-RIEMANN EQUATIONS

The open mapping theorem, which we will prove later, states that any
non-constant holomorphic function is open, i.e. maps open sets to open
sets.

THEOREM 3.1.4: PROPERTIES OF HOLOMORPHICITY

Let f,g: U — C be holomorphic. Then the functions f + g, f-g¢
and f/g are differentiable (provided g does not vanish anywhere
on U for the last).

Corollary 3.1.7 (Properties of holomorphic functions)

e Polynomials are holomorphic in C, i.e. entire.

o A rational function is holomorphic on the complement of the zeros

of its denominator (provided this set is finite).

o Iff: U -V < C and g: V — C are holomorphic, so is their
composition go f: V — C.

Remark 3.1.8 The standard formulae for the derivative of a product,
quotient etc. of functions hold.

WIRTINGER calculus

Consider functions on R? (f(x,y)) as depending on new coordinates in

z+z 73

and y =

R? given by z and z: © =

This change of variables induces a change of bases in 1-forms: from

dz+dz dz—dz
2

dz and dy we pass to dz and dz via dz = o

dz = dz + idy and dz = dz — i dy hold).

and dy = (as

For a real-differentiable function f: R? — C we thus have

6 6y ox Gy
oo ot
"oz foz
_of of
= e+ 5 d

Separating the real and imaginary part one obtains
Ty (i i (i
or 8y ox or oy oy

du v N 61} 6u
or 0Oy Z 6y

The bracketed terms are familiar, they come from the CAUCHY-RIEMANN

r—

ORI Y

equations (1). Thus a C*-function f: R* > U — C is holomorphic if and
only if “/ = 0 holds in U.

Intuitively, a function on C ”depends on" z and z. If f is holomorphic
that means it only "depends on" z and not on Z in the sense that af =
holds.

If f is given by an analytic formula involving z and Z, this should be
understood literally: the functions f(z) = 22, f(2) := €* and f(z) :=
sin(z) are holomorphic, while the functions f(z) = z, f(z) = |2]* =

10



3.1 CONSEQUENCES OF THE CAUCHY-RIEMANN EQUATIONS

2z and f(z) = p(z) + r(Z), where p and r are polynomials, are not

holomorphic.

11



Power series

Recall that a complex power series

o0
3 e

possesses a radius of convergence R € [0,

with (¢p)neny € C, a,2€ C

o0] such that for all z € C with
|z — a|] < R the series converges absolutely and for |z — a| > R the series
diverges. We have R~! := limsup,,_, ., {/m (with obvious modifications
for 0 and c0).

For z with |z — a| < R the series defines a function

o0

f: Bgr(a) > C, z+— Z (z—a)" (3)

The function (3) is holomorphic with f/(z) =
with Rf = Rf/.

Proof. The last statement follows from {/n|c,| =

/n R/lenl-
—1

To prove differentiability, let zg € Br(a) and without loss of generality
a = 0. Then there exists a 6 > 0 and a p € (0, R) such that Bs(zp) <
B,(0) holds.

The power series for f converges absolutely in Bs(zg). For h with |h| < ¢

(Zo + h)n

_ZTL
— O =y +h2<>hk2”k

holds by the binomial theorem. Thus

< Z ( T
< |h| 1;2 k(k—1) (Z) I [F=2| |
= lhin@—l@ (Z 2)|h|k 220"

(z0 + A)" — 2
h

(cf. Fig. 6)
holds. We can now estimate
e}
20+ h)
Z cn(o— Z NCp 2
n=0
with the triangle inequality by
N o0
zo+h)" — 23 n— 2o+ h)" — 28 n—
7;0 cn% — CnNZg g 2 cn% — CpNZy !

n=N+1

SIS 5y n(n—1)p"—2c,

12
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radius of convergence

Fig. 6: Illustration of a step in the proof of
theorem 4.0.1



Thus for all € > 0 there exists a N, € N such that

o0

|h| - Z n(n—1)p" ?¢, <
n=N:+1

| ™

Finally, for this V. choose § > 0 so small that for all h with |h| <6

N
h)" —
Z cn—(Z0+ ]i %0 N <§
n=0
holds. We have shown
. f(Zo + h L
1 n )
s Zzz nenzy
thus finishing the proof. O
Corollary 4.0.1 (Trigonometric functions)
The functions
o0 P 0 2n 0 n 2n+1
g v C s(z) = 7;0(— . and sin(z ,;0 2n )

are entire.

The EULER formula e = cos(z) + isin(z) follows from the above and
the

THEOREM 4.0.2: POWER SERIES UNIQUENESS THEOREM

If f is given by two convergent power series, i.e.
(e 0] 0
= Z en(z—a)” Z (z—a)"
n=0 n=0

then ¢, = b,, holds for all n € N.

\. J

()

n!

Proof. This follows from ¢, = = b,,, which follows from theorem

4.0.1 applied inductively. O

13



The CAUCHY integral theorem

28.04.2020

The goal of this section is to prove variants of the following theorem.

THEOREM 5.0.1: CAUCHY INTEGRAL THEOREM

For a holomorphic function f: U — C and a closed curve « in U,

jﬁ F(z)dz = 0. (4)

DEFINITION 5.0.1 ((CLOSED, PIECEWISE) C' CURVE)
A C* curve in U c Cis a C* map v: R o [a,b] — U , where differen-

tiability on the endpoints is understood in a one-sided way. )
Fig. 7: An open set and a closed curve

A piecewise C' curve is a continuous piecewise C' map 7: [a,b] — C inside it. TODO
that is [a,b] = U, [tk—1,tx] With to = a, ty—1 <t and t,,, = b holds
such that « is C' on [tx_1,ts].

A curve 7 is closed if y(a) = v(b).
Curves are parametrised curves.

DEFINITION 5.0.2 (S’Y f(z) dz) Fig. 8 A piecewise C! curve. TODO

For a holomorphic function f and a C' curve v: [a,b] — U,

b
f f(2)de = f FO®)Y (1) dt

is the integral of f over v. We use the sum over the integrals of the

sub-intervals if 7 is only piecewise C*.

Remark 5.0.3 For a closed curve v we write §v instead of Sv‘

Example 5.0.4 The unit circle can be parametrised by ~: [0, 27] — S!,
t — exp(it). We obtain

Fig. 9: A curve and a tangent vector.
TODO

2T ) 2 1 }
ffzdz = f etiet dt = zj 2t dt = = [64’” - 60] = 0.
; 0 0 2

Similarly we can show § 2" dz = 0 for all m € Z\{—1}:

¥
dz 2 jeit
— = — dt = 2mi. o
z 0 ezt

b

DEFINITION 5.0.5 (REPARAMETRISATION)
A reparametrisation is a C'-diffeomorphism ¢: [¢,d] — [a, b], which
is orientation preserving i f ¢’ > 0 (in that case ¢(c) = a and

(d) = b) and orientation reversing if ¢’'(t) < 0.

The reparametrised curve is 4 := 7 o (.

14



Lemma 5.0.6 (Invariance under reparametrisation)
A reparametrisation of a curve does not change the value of the integral
over that curve if the reparametrisation is orientation preserving and

reverses the sign if it is orientation reversing.
Proof. For orientation preserving ¢ we get
d
| 10z~ [ s6tee) - (o) () ds
vy c

d w(d)
= J Fr(e(s)) - (V' (w(s)) - ¢ (s)ds = J Fy@®)y' () dt

@(c)

b
=ffmmwmw=fﬂ@w

by the chain rule and the substitution ¢ = ¢(s).
For orientation reversing ¢ we get using the same techniques as above
v(c)

d
ﬁ ft)dz = J Fr(e() - (' (0(s) - ¢'(5) ds = J F(@®)'(t) dt

©(d)

b
o RGO OER =

Consider Sv<ﬁ’ dz) for a vector field @(z,y) = (p(x,y),q(z,y))T, or,
conceptually better Sw w for a differential 1-form « (a natural integrand for
curve integrals) where w = p(z,y) dz + g(z,y)dy, and p,q: R* >U - R
are continuous. Then

jw:kawwmw»+«ww¢w»w

holds for v(t) := (x(t), y(t))".

We now investigate under which conditions integrals of a differential

1-form (or a two dimensional vector field) over closed curves vanish.

DEFINITION 5.0.7 (EXACT 1-FORM)
A 1-form w (vector field ) is called exact (a gradient vector field) if

there exists a 0-form (a function) ¢: U — R such that

L Op(x,y) op(z,y)
=dp = P dx + o dy

which is equivalent to

0 Z, 0 z,
pay) = 20 wd o) = EEY,

2p(a.y) aw(w,w)T.

which is equivalent to ¥ = grad(y) = ( o oy

Thus we require ¢ to be a C'-function.

15



THEOREM 5.0.2: § w =0 IF w EXACT

The integral of an exact 1-form over a closed curve is equal to 0.

Proof.
P00V (1) oy ()
fﬁw:L ( e z'(t) + 2 y(t))dt
¥
b g b
- [ et = o) o,
a t=a
where we use that ~ is closed in the last step. O

DEFINITION 5.0.8 (CLOSED 1-FORM)
A 1-form w with C'-coeficients p(z,y) and q(z,y) is called closed if its
CARTAN derivative vanishes:

dw = (%dx—l—@dy) A dx + <@dm+a—zdy> A dy

oy ox 0
_ (% _dp L
= (8_x @)dxAdy—O,
that is, if
R
or oy
holds.

Corollary 5.0.9

Any exact form is closed.

Proof. If w is an exact 1-form, there exists a ¢ such that w = dy and
thus dw = 0 holds. If p = g—f and ¢ = %’ with o € C3(U), then

e _0qg _ 0 (dp)_ 0 (v _,

dr  dy ox \ dy oy \ oz )
holds by SCHWARTZ’s theorem. O
Any closed form is locally exact, but not necessarily globally, cf. the

POINCARE lemma.

In the CAUCHY integral theorem we deal with a C-valued 1-form:

w=f(z)dz = f(z)dz +if(z)dy,
cf. the WIRTINGER calculus. The 1-form w is called holomorphic if f is
a holomorphic function.

To prove the theorem, we show that the 1-form w = f(z)dz, where f
is holomorphic and C' (this is a strong additional assumption) fulfills
dw = 0.

The holomorphic 1-form is closed (under the additional assumption

fec' ().

16



Proof. Using the WIRTINGER calculus we have

dw = gdz+a—fd2 /\dz:a—de/\dz—l- 6*{ dz A dz =0,
0z 0z 0z ~—— 0%
=0 ~——
0 ()
where in () we use that f is holomorphic. O

Thus
Eff(z) dz=0
¥

for the holomorphic 1-form f(z)dz.

We will now formulate and prove the CAUCHY theorem in its most general
form (concerning the assumptions), that is, without the unnecessary

assumption of f e C'.

THEOREM 5.0.3: CAUCHY THEOREM FOR RECTANGLES

Let @Q < U be a closed rectangle with sides parallel to the coordi-

nate axes and v := 0@ the boundary curve of @) consisting of four

line segments. Then (4) holds.

Proof. We subdivide @ into four equal rectangles @1,...,Q4 and label
the boundary curves 71, ...,74 as in the picture of the right. Consider
the four numbers § f(2)dz for i € {1,...,4}, whose sum is § f(z)dz as
the line segments shared by two curves cancel each other out as they are

traversed in opposite directions.

Let Q™) be the one of the @, for which the corresponding integrals has
the largest absolute value and v(!) := Q") the corresponding boundary

curve. Then
%f(z)dz <4 jg f(z)dz
Y (1)

holds. Subdividing the rectangle Q@ = Q), we get a smaller Q(® and
7®) = 0Q®? with

jgf(z)dz <4 3€f(z)dz.

M ()

Continuing this process we obtain a strictly decreasing sequences of boxed

rectangles
Q2QW 2P >Q® ...
with boundary curves v(*) := 9Q ).
We thus obtain
3€f(z)dz < 4" ff f(z)dz
Y 'y(“)

for n € N. The centres of the Q™) form a CAUCHY sequence in C, which
is thus convergent to a point zg = (),,cy QM eU.

17
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As f is differentiable at ¢y, we have

f(z) = f(20) + f'(20)(z — 20) + R(2), (5)

|R(2)| 2—%20 0.

|z—2z0]
Let € > 0 and choose § > 0 such that |R(z)| < €]z — zg| holds for all z
with |z — 29| < d. Then

jg f(2)dz = f(20) § 1dz + f'(20) 3€(z—z0)dz+ 3€ R(z)dz

~ () () ~ () 5 ()

holds by (5). We have

jgldz: 3€z—zodz:O,

() e

where

as the functions z — 1 and z — 2z — 29 have continuous antiderivatives in

2—20)2

U, namely, z and ( ?7?. Indeed by the main theorem of calculus

§ P2z = PG 0,) = FGen) =0,

where b, and a,, are the end- and starting points of the curve. As (") is
closed, we have 7™ (a,) = v (b,).

Remark 5.0.10 Actually the CAUCHY theorem follows immediately for
a function possessing an antiderivative, but unfortunately, we cannot
claim yet that any holomorphic function has an antiderivative in U. For

z+— 1 and z — z — zg however we know this to be true.
So we have to estimate
fﬁ f(z)dz = 3€ R(z)dz.
() ~()
Now we have
%j(z)dz <4 § R(z)dz|. (6)
% y(n)

Choose n € N so large that for the diameter (largest distance between
two points) of Q™ diam(Q(™) = diam(@) — § holds. Then on 7™ we

2’".
have di
|R@n<5p—zd<g-i%%92
such that
diam(Q) ¢

'y(")
where £ is the length of v. Thus by (6),

Aﬁ/
<o

jgf(z)dz <H7 e diam(Q) - L e diam(Q) RN
5

holds. O

Remark 5.0.11 Many textbooks start with the CAUCHY theorem for
triangles, whose proof is analogous to the one above but instead divides
the triangle by bisecting the sides.
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THEOREM 5.0.4: CAUCHY THEOREM FOR C'-IMAGES OF

RECTANGLES

Let Q — C be a closed rectangle and ¢: @ — U a C'-map. Then
(4) holds for v = ¢(2Q).

Proof. We construct Q < QM) < Q@ < ... as before with

%f(z)dz <4 J f(z)dz

oy oy (™)

with v(™ := 9Q(™ ad ~ := Q. Since ¢ is a C* function of the compact set
Q, there exists a C' > 0 such that | dy| < C. Thus there exists constants
c1, ¢z such that diam(p(Q™)) < ¢;p2~" and length(p(7™)) < ¢1£27".

If 2o == ),y (Q™) € U, let € > 0 and 6. > 0 so small that |R(2)| <
€|z — zo| holds for all z with |z — zg| < d.. For n € N chosen so large that
cop2™ ™ < § holds, we have

f(z)dz

oy

<A4n f f(z)dz| =4" J R(z)dz
LpO’)’(") (po’y(")
<4"- e - diam(p(Q"™)) - length(p (™))

<4”~5-01p-2*".02~€.2*”:esC’pfﬂ»O. ]
Corollary 5.0.12
Let v, B: [a,b] — U be two Cl-curves, whose start- and endpoints coincide

such that all line segments between a(t) and B(t) lie inside U for every
t € [a,b]. Then we have

J f(z)dz = J f(z)dz.
a B
Proof. The above mentioned line segments can be parametrised by

©: [a,b] x [0,1], (t,5) — (1 —s)a(a) + sB(¢),

which is a C' map. Let Q := [a,b] x [0,1]. The boundary curve of ¢(Q)
consists of four curves: a, hy, —f and —h, (see Fig. 12). By theorem
5.0.4 we have

L F(z)dz — L F(z)dz = L F(z)dz — N £(2)dz.

If a(a) = B(a) and a(b) = B(b) hold (cf. Fig. 13, the curves h, and hy
are constant and thus the right side of the above equation is equal to

zero, which implies the claim. O

If U is not simply connected, i.e. "has holes", the assumption that the

connecting straight line segments lie in U might not be satisfied, cf.

Fig. 14.
Corollary 5.0.13
If o, B as above and also closed we have § f(z)dz = §6 f(z)dz.
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Proof. Sticking to the notation of the proof above in this case we have

hq = hp, thus their corresponding integrals coincide. O

How can we see (an image of) a rectangle here? Consider the image on

the right, where the distance between h, and h; is very small.

Corollary 5.0.14 (CAUCHY theorem of an annulus)

If an annulus {z : r < |z — 29| < R}, where r, R > 0 lies in U we have

§ f(z)dz = § f(z)dz

[z—zo|=7 |z—z0|=R

Sending r to 0 we particularly get §‘Z_ZU‘:R f(2)dz =01if {z: |z — 20| =
R} < U holds.

20
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Fundamental theorems of Complex
Analysis (as corollaries of the

CAUCHY theorem)

THEOREM 6.0.1: CAUCHY INTEGRAL FORMULA

Suppose D :={z:|z—zg| < r} c U. Forany a € {z : |z— 2| < r}

fla) = L § Mdz.

we have

zZ—aQa
|z—z0|="7

Note that £2) is not holomorphic in U but only on U \{a}.

z—a
Proof. Let € > 0. For an eccentric annulus we can still apply corollary

5.0.14:
6 )
z—a z—a
oD |z—a|=¢

TODO: give formal proof of the existence of a parametrisation
of |z — 2| = r and |z — a| = € such that all segments connecting
corresponding pairs of point do not pass through a. As the right
hand side depends on ¢ but the other side does not we have

M dz = lim M dz
zZ—a e\0 z—a
D |z—al=¢e
. f(z) — f(a) dz
=i1\1,% fj; z—a dz+f(a) § z—a’
|z—al=¢ |z—a|=¢

_

~

=0

where the first integral vanished as the integrand is bounded and the
length of the integration path, 27 - ¢, converges to zero. The second

integral is independent of e:

27 - it
dz e-i-¢€ .
= — dt = 271,
zZ—a 0 cet

|z—a|=¢

as z = a +ee'’, t € [0,27] is a parametrisation of |z —a| = ¢. O

Example 6.0.1 (Applying the CAUCHY integral formula)
We can now easily calculate

22 -1
—d
f)[; 241

|z—2i|=2
as we can rewrite f(z) = ziﬂ as gz(_zz, as |i — 2i] = 1 < 2, where
g(z) = ZZ;il. By theorem 6.0.1 we obtain

2

z=—1

dz = 2mig(i) = —2m. o
§ 22 +1 9(2)
|z—2i|=2

21
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Example 6.0.2 (Partial fraction decomposition)

i %d

[z|=R

How can we calculate

where z; # z5 are complex numbers with max(|z1], |22]) < R?

We want to find functions a, b, such that

f(2) _a(z) | b()
(z—21)(z—2) z—2x * z— 2z

which can be rewritten as

f(2) =z (a(z) + b(2)) — z2a(z) — 21b(2).
Assuming a(z) = —b(z) (to eliminate the z term), we get

f(2) = —2z0a(2) — 21b(2)

and thus £2) 1)
a(z) = po—— and b(z) = po——
so the integrand becomes
f(z) a(z) | b(z) f(z) _ f(z)

(z—21)(2 — 22) - z—z1+z—22 - (z—21)(21 —22) (2 —22)(21 — 22)

and thus, by the CAUCHY integral formula we have

O » = a(z) _ a(z) ;
J;z|—R (2 —21)(2 — 22) d le_R (z — 21)(21 — 22) (z — 22)(21 — 22) d
= 2mi (a(z1) — a(z2)) = 2ri ( fe1) _ f() )

Z1 — 29 Z1 — %2
— o f(z1) — f(Zz).
Z1 — 29

Another way to think about this is to imagine that we want to split the
domain which contains the two poles z; and z; into two domains with
one pole each as indicated in the figure on the right We can now (this

will be made more rigorous later) pull those two regions together into

two e-balls around z; and z,, so the integral becomes Fig. 17: TODO

CI R
|z—f|—a (z—zl)(z—zz)d +|Z_Z£_E (Z_Zl)(Z_ZQ)d o

By theorem 6.0.1,
*=27ri< fe) | Sz ) _ o 71) = flz2)

21— %2 22— 2 1 — 22

Corollary 6.0.3 (Mean value theorem)
If D c U holds we have

27

Fz0) = % o+ ety
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Proof. With the parametrisation z = zo + re® for t € [0, 2] and using
theorem 6.0.1 for a = zy we obtain

27
1 f(2) 1 \(ﬁ f(zo0 + re’) it
F(z0) = 2mi § Z— 29 dz = 2mi reit iretdz
[z—z0|=r 0
_ ” f(z0 + re') O
271' 0 0 '

THEOREM 6.0.2: MORERA (HOLOMORPHICITY CRITERION)

Let f: D — C be a continuous function such that its integral over

any closed curve in D vanishes. Then f is holomorphic.

Proof. We want to find the anti-derivative F of f, i.e. F' = f. By the
theorem of GOURSAT we can then conclude that f is holomorphic.

For fixed zg € D define
F = | f(&)dE,

where 7 is a path in D from 2y to z. This function is well defined, as
for two paths 7 and p from z to zy we have that the integral over the
closed path obtained by concatenating 7 with p traversed backwards is
zero and the integral over p traversed backwards is minus the integral of

p, yielding the equality of the integrals.

We now show F’ = f. Let z € D and v be a path from 2y to z. We have

Fz+h)—F(z) §,.f&de=5§ f(&)de § fe)de
h - h Tk
Let £ > 0. We want to show that there exists a ¢ > 0 such that |h| < 6
implies ‘% —f (z)‘ < €. As f is continuous, there exists a § > 0
such that |f(z + &) — f(2)| < € holds for all |¢] < 4.

For |h| < ¢ we have

§, 1©)ds
h

|~

f(2)

- |Jﬂ®%—Wﬂ@

- Lf@ﬂﬁ—ﬁf@ﬁ4

=

==~

=||Lﬂ0—ﬂ@%‘

< [hfmax |£(€) = ()| L(7)
— max /() = f()] <<. m

>

THEOREM 6.0.3: POWER SERIES EXPANSION

. . . o) .
For z € U there exists a unique power series >~ ¢, (2—20)" with

positive convergence radius representing f in some neighbourhood

23
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of zg. If {z : |z — 20| < r} < U holds, the series converges to f(z)
in {z: |z — 20| < r}. Moreover, the CaucHY formula holds:

1 f(z)
5 — —————dz.
¢ 2mi 3€ (z — zo)nt! :
|z—z0|=r

\. J

Proof. Uniqueness is clear: a sum of a convergent power series is in-

finitely differentiable by theorem 4.0.1 and the series is the TAYLOR series
)

for f(z) so that ¢, = fisz”)

Existence. Without loss of generality assume zp = 0 and {z : |2| < r} c U.
For all |z] < r the CAuCHY inte gral formula yields

2 g § ==
[Cl=r \C|—7”

As |z| < [¢], the series (25 = > * 2: converges absolutely and uni-

formly for |¢| = r. Integrating term by term we obtain

Example 6.0.4 We can now calculate

z
C dz
Zn
|z|=1

for n € N the power series of f(z) := e*, which is entire, in zero, has the

coeflicients
1 ff e* &
Cn-1=— — dz.
Y7 omi 2™
|z]=1
We have e* = ZZO:O 77]: by corollary 6.0.9 and thus
jﬁ Cgp= T o
Z" (n—1)!

|z|=1

Remark 6.0.5 We can reconstruct the ¢,, and thus f(z) from its values
on |z| = r only, where r > 0 is arbitrarily small.
Corollary 6.0.6 (GOURSAT)

Every holomorphic function is C*

How can we determine the convergent radius of the power series? We
know that the series converges to f(z) in any open disk around zg, which
lies in U. This is in stark contrast to real analysis:

Example 6.0.7 Let f(z) == (22+1)71 = 3 ,(—1)"2%". This function
behaves well in R and one does not see any reason why this series only
converges for z € (—1,1). But this becomes obvious in C: f is only
defined on U = C\{£1}. The largest open disk in U around zero has

radius 1.

Similarly, the series for f(z) = In(1 + 2?) = Zf=0(—1)”2n?

vergence radius 1. o

2n+2
has con-

24
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Example 6.0.8 Consider the even function

fo)m o DO g (2) 2y e
Ter—1 2 2e2-1 2 2/ & (2n)”

where by are the BERNOULLI numbers. Comparing coefficients in
ZOO (b2n) 2211 Py
n=0 (2n)! 2
2300727 =z+ 5(6 -1
n=1 n!

one finds a recurrent solution for bs,,, which shows that b, € Q. One
finds bg = 1, by = %, by = 73—10, bg = é. The first impression is
deceptive; the BERNOULLI numbers grow exponentially, which we can
show be determining the convergence radius of the power series. The
function is not defined at z = 0 but by L’HOPITAL’s rule, one can show
the corresponding limits agree. Unfortunately, for z = 2mmi, where
m € Z\{0}, this is not the case. Thus the largest open disk around 0

lying in U has radius 27, i.e.

1

27 = . T
limsup,,_, ., ’ﬁ

which implies ‘% ~ ﬁ, where C' > 0 is a constant

By the EULER formula 7?7 we have

b2n B (_1)n—1
(2n)! 2 (2m)n/2”

where ((z) := Zkoozo 27% is the Zeta function.

Thus

bn n— n— n
((2n) = (-1

is a rational multiple of 72". We have

0 7'r2 4 71.6 8
(@)= 2 k=" (W=1gg C6)=gr, and ((8)=

k=1

05.05.2020
Corollary 6.0.9 (CAUCHY estimate for TAYLOR coefficients)
Forzge U andr >0, let {z : |z—zo| <7} c U. Assume that |f(2)| < M
for all z with |z — zo| = r for some M > 0. For the coefficients of the

power Series expansion

F(2) =) ealz —z0)"

n=0
we have
len| < M 77" Yn =0

Proof. By theorem 6.0.3 we have

jg Mdz<i~(2wr)rM :M. O

|z — zo|?T1 27

len| < o

|z—zo|="
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THEOREM 6.0.4: LIOUVILLE

Any bounded entire function is constant.

Proof. For a bounded function f there exists a M > 0 such that | f(z)| <
M for all z € C. By corollary 6.0.9 we have

ANE Y laaller < 301 (1)
n=0 n=0 r

for all » > 0. Sending r — oo we obtain |¢,| = 0 for all n > 1, implying

f(z) = co. O

Corollary 6.0.10 (Fundamental theorem of algebra)
Any polynomial p(z) € C[z] of degree n = 1 has at least one zero (and

thus, inductively, n zeros) in C.

Proof. Let p(z) := Y _, axz* with a, # 0 and n > 1. Then we have

n
_ ZTL(Z aka_TL),
k=0

| R —

|z| >0
Qn

)] = co. Thus for all M > 0 there exists
| = M for all z with |z| > rp. Towards

implying that lim,_, |p(z
)

contradiction assume p(z) # 0 for all z € C. Set m = min|;|<, [p(z)| > 0.

a rp > 0 such that [p(z

Thus the function f(z) : p(lz) is holomorphic in C with

£G)] = oy < ma (%%)

By the LIOUVILLE theorem, f and thus p is constant, which is a contra-
diction. O]

THEOREM 6.0.5: UNIQUENESS THEOREM

Let D < C be a domain (open and connected) and J < D a
subset having an accumulation point in 2y € D. Let f,g: D — C
be holomorphic. If f =g on J, then f =g on D.

Proof. @ It suffices to show that if A := f — g vanishes on J, it
vanishes on D. As h is holomorphic in D, theorem 6.0.3 implies

o0
- 3} ate-

for |z—zp| < £ and some € > 0. As zp is an accumulation point, there
exists a sequence (zg)geny < J converging to zg. Thus h(zx) = 0 for

all k € N, implying h(zy) LN h(zp) = ¢o = 0.

@ Assume that there exists a n € N such that ¢,, # 0, take the smallest
of such. Thus

h(z) = (z—z)" Cnem(z — 20)" =t (z — 20)"h1(2),

Hngt

0
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where hq(2) = Y0 _ cpim(z — 20)™ is holomorphic. ¢, = 0 is
equivalent to hy(zg) = 0, thus hi(z) # 0 in some neighbourhood
of zp. In the is neighbourhood, zj is the only zero of h(z), which
is a contraction h(z,) = 0 with z, — 2z9. Thus h(z) = 0 in some

neighbourhood of zj.

3) Set M :=={pe D:h(z) =0Vze B.(p)}. Then M # & (2 € M)
is open. But D\M is open, as well:

e if h(p) # 0, then h(z) # 0 in some neighbourhood of p

e if h(p) = 0 but A (p) # 0, then there exists a neighbourhood
of p whence p i s the only zero of h.

Thus p € D\M implies that some neighbourhood of p is in D\M,
so D\M is open.

(@) Towards contradiction assume that D\M is empty. Then D is the
union of two open non-empty disjoint sets, which is a contradiction,
thus D\M = &, i.e. M = D. O

DEFINITION 6.0.11 (ZERO OF ORDER m)
The point zg € U is a zero of f of order m € N u{oo} if £ () = 0 for
ke {0,...,m—1} but f0™(z) # 0.

Remark 6.0.12 If f(zp) = 0, then z; always has finite order unless
f = 0. If a holomorphic function has a zero of infinite order, then f =0,
which is not true for C* function on R: consider f(z) = exp (—=z) - Ljo,00),

which has a zero of infinite order at z = 0.

A simple zero is a zero of order 1, i.e. f(z9) = 0 # f'(20), which has
the following geometric interpretation. In a neighbourhood of a point
20, where f’(zg) # 0, a holomorphic function acts biholomorphically: it
maps some neighbourhood of f(zg) bijectively and the inverse map is
holomorphic, too.

Indeed, f is a local diffeomorphism on U  R? as

det(@f ) = 3| =@+ B =11 o)l £ 0,

where a,b are the real resp. imaginary part of f, df(zg) is a real two-

dimensional map and f’ is the complex derivative.

Thus if

with ¢; # 0, we have

Formally, one can find the coefficients a inductively by comparison in
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9(f(2)) = 2, ie
2o + a1 (c1(z — 20) + 2z — 20) + c3(2 — 20)® + )
+as (c1(z — 20) + ca(z — 20) + ... .)2
taz(e(z—20)+...)° +... =z,

which yields (for 2z — 29) aic; = 1, (for (2 — 20)?) aica + arc? = 0, (for
(2 — 20)3) arcs + 2azciea + azcd = 0. We thus have

_ —aicC2 C2
ay =¢; , as = 5 = T3
c c
1 1
—ajic3 — 2asc1co cics + 203
as = 3 = — = .
a =1

So we can formally invert power series.

Bonus: Show directly that the power series 3" a,(w — o)™ has a non-
vanishing convergence radius provided the power series 31" ¢, (2 — 2o)"
has a non-vanishing converge radius. Hint: Cauchy inequalities.

We have show, that if f/(zp) # 0, then f acts biholomorphically in some
neighbourhood of zy. This is, of course, true for simple zeros, where the
neighbourhood of z; is mapped to a neighbourhood of 0.

For m > 1, the situation is different:

THEOREM 6.0.6: HOLOMORPHIC m-TH ROOT

Let zg € U be a zero of order m > 1. Then in some neighbourhood
of zy there exists a holomorphic function h with a simple zero at
20: h(z0) = 0, h/(z0) # 0 such that

\. J

Proof. (1) We have ¢,, # 0 in

0

F(2) = (z=20)™ D] enlz —20)" ™ = (2 = 20)"g(2).

n=m
Then we have g(zp) = ¢, # 0.

It is sufficient to determine a holomorphic m-th root of g, i.e. to

solve
9(2) = (w(=)™,
where w is holomorphic in some neighbourhood of zy. Set h(z) :=

(z — 20) - w(z), as then h has a simple zero at z.
(2) One can easily determine a (formal) power series for w:
Cm + Cmi1(2 — 20) + cma2(2 — 20)* + cmaa(z — 20)° + . ..
- (wo +wi(z — 20) +wa(z — 20)* +ws(z — 20)° + .. .)m

Comparing coefficients yields (for (z —20)%) ¢, = Wi, (for (2 — 20))

Cme1 = mwy' " twr, (for (2—20)2) cmpa = mwy' ws + (T wy'*w}

and for (z — z0):

_ m _ m _
Cm+s = mwy’ Lws + <2>w6n 2. 2uwiwa + <3>w6" 3wi”.
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From the first equation we get m different possibilities for wy. From
the second equation, we determine w; uniquely, in the third equation

wo and so on.
We obtain m different power series, depending on the m solutions

of ¢, = w(®, which is equivalent to

wo = m’\/ Cm,s
where ¢, # 0, Writing ¢,,, = pew we obtain

2mik
m

0
w0=p1/mexp<ig+ ), keO,....m—1

One can prove that the so obtained power series of w are convergent

in some neighbourhood of z;. TODO g
@ The function z — 2™ act biholomorphically in some neighbourhood B /47\ oy
of any of the numbers w(()k), as its derivative mz"™"1 # 0 there. [] W’/
flanes
Recall that if f'(29) # 0 on a neighbourhood of zy, this neighbourhood 7ol
is mapped bijectively to a neighbourhood of f(zg) bijectively (1 : 1) such 1A
that the inverse map is holomorphic as well. If f'(z9) = 0 and f # 0, et > //w
there exists a m > 1 such that (=1 (z) = 0 but f(™(z) # 0. Then ; {{f?ff#’c(q") fy
there exists a w # f(z0) in a neighbourhood of f(zy) and m point (z)7-, i £ i ot
in the neighbourhood of 2y such that f(z;) = w for ke {1,...,m}, so f £ 0 %ffi@&
is not locally invertible as it maps "m : 1". oy
§™@y¢o
Corollary 6.0.13
A holomorphic function is locally invertible in a neighbourhood of zy if Fig. 19: TODO
and only if f'(z0) # 0.
Remark 6.0.14 This is not true for C* maps f: R*> - R*or f: R* —
3
C: consider f(x,y) = x3+iy 2 (m ) Then det(df(0)) = det(diag(3z2, 1)|(z )= 0)) -
y 9 - 9
3952‘96:0 = 0, but f is locally invertible around the origin.
THEOREM 6.0.7: OPEN MAPPING THEOREM
If f is a non-constant holomorphic function of a domain D, f(D) In German: Satz iiber Gebietstreue.

is a domain, as well.

Proof. Since f is continuous, f(D) is connected. Let wg = f(z) for
z0 € D. As f is non-constant the function g(z) := f(z) —wp has a zero at
z = zp of some finite order m. If m = 1, there’s a locally biholomorphic
(1:1) map (correspondence) between B.(zp) and some neighbourhood of
wq for some € > 0. If m > 1, there is a m : 1 correspondence: for any
w with 0 < |w — wp| < € there are m preimages and wp has the one

preimage zg. ]

Counterexample 6.0.15 This is not true for real C* maps. Consider
f: R > R, 2z~ 22 Then f((—1,1)) = [0,1), which is not open. Such

"folding" of open sets cannot happen for holomorphic maps. o

Fig. 20: TODO
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THEOREM 6.0.8: MAXIMUM PRINCIPLE (VERSION 1)

If f is a non-constant holomorphic function of a domain D, |f]
can not achieve a local maximum at any 29 € D.

Proof. Let zg € D and wg = f(z9). Then there exists a § > 0 such
that Bs(wo) < f(D). In some point wy € Bs(wg) we have |wq| > |wg|.0]

The maximum principle can also be stated in the following way:

THEOREM 6.0.9: MAXIMUM PRINCIPLE (VERSION 2)

Let f: D — C be a holomorphic function on a bounded domain
D and f: D — C continuous. Then |f| achieves its maximum on
the boundary ¢D.

The same proof shows that also R(f) and (f) cannot achieve their
respective maxima at interior points of their domain. Recall that R(f)
and §(f) are harmonic functions.

Corollary 6.0.16 (Maximum principle (harmonic functions))
Let u: D — R be a harmonic function on a bounded domain and w: D —

R continuous. Then u attains its mazimum on D at 0D.
Proof. Exercise. Ol
Let D := {z € C: |z| < 1} be the open unit disc.

THEOREM 6.0.10: SCHWARZ LEMMA

Let f: D — D be a holomorphic function fixing the origin, i.e
with f(0) = 0. Then

IF/(0)] <1 and |f(z)| <|z| VzeD.

If equality holds in either inequality, f is a rotation: f(z) = cz
with |¢| = 1.

Proof. By power series expansion we have

f(z)= Z cnz" =z- Z Cne12" =2 g(2)
n=1

n=0

as ¢g = f(0) = 0. The function g is holomorphic with ¢g(0) = ¢; = f(0).

For r < 1 and all z € D with |z| = r we have

1> f(2)] = [2llg(2)] = rlg(2)]

and thus |g(2)| < 1 for all z € D with |z| = r. By the maximum principle,
<

we have [g(z)| < % on the whole disk {z € D: |z| < r}.

Sending r " 1 yields |g(z)| < 1 for all z € D. This proves both inequalities
as g(0) = f'(0).
If |g(z0)| = 1 for some zg € D, by the maximum principle, g(z) = ¢ for

some constant ¢ with || = 1, as |g(z9)| = |¢| = 1. 0
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Isolated singularities

A great amount of information about a holomorphic function is contained

(concealed) in its singularities.

Again, let f: U — C be a holomorphic function on an open subset U < C.

DEFINITION 7.0.1 (ISOLATED SINGULARITY)

A point zp € C\U is an if there exists a € > 0 such
that B.(z0)\{z0} < U, i.e. if 2g is the only part of B. not belonging to
U.

Example 7.0.2 (Isolated singularity) Consider U := C\{0}. Then

0 is a isolated singularity. o
There are three different types of isolated singularities.

DEFINITION 7.0.3 (REMOVABLE SINGULARITY)

An zp of f is called (German: hebbar) if
there is a w € C such that

f(z), ifzeU,

fiUu{z}>C, z—
w, if z =2z

is a holomorphic function.

Example 7.0.4 (Removable isolated singularities)
(D Let f: C\{0} - C, z — z with U := C\{0}. Then f: C — C is
holomorphic in C = U v {0}.
@ Let g: U — C be a holomorphic function. For zg € U define
f: U\{ZO} N (C, PN g(Z) — g(ZO)’
Z— 20
which is holomorphic and formally not defined for z = 2zy. This can

be repaired: the extension

- z), ifz#z

FUSC 2 f(2) 0
9'(z0), ifz=z

is a holomorphic function.

sin(z)

@ The previous point can be used to show that the functions ==,

= —1
¢=1 and Cos(z) , extended by one, one and zero have a removable

singularity at z = 0. o

DEFINITION 7.0.5 (POLE OF ORDER m)
An isolated singularity zg of f is a if g(z) =
(z — z0)™f(2) has a removable singularity at zg.

Example 7.0.6 (Poles) Let g: U — C be a holomorphic function. For
z0 € U with g(z9) # 0 and m € N define

9(2)

f:U\{z0} > C, z— m,
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which has a pole of order m at zg.

The function z — Zi% has a pole of order 100 at z = 0, whereas z — 5;1301
has a pole of order 99 at z = 0 (cf. example 7.0.4). o

DEFINITION 7.0.7 (ESSENTIAL SINGULARITY)
An isolated singularity zo of f is called if its neither removable

nor a pole.

Remark 7.0.8 (Warning: non-isolated singularities)
Holomorphic functions can have . Our classifica-

tion into three types tells us nothing about them.

Example 7.0.9 (non-isolated singularities)

The function z — (sin (g))_l has poles at + for all n € Z\{0} and at
z = 0. The latter is an non-isolated singularity (an accumulation point
of poles). o

Example 7.0.10 (Natural boundary)
Consider the power series

o0
= Zz2":z+z2+z4+z8+zlﬁ+...

with convergence radius equal to one, which defines a holomorphic func-
tion in D by theorem 4.0.1.

If z — 1 along the real axis, then f(z) — oo and thus z = 1 is a singularity.
We have

fR)=z+ (P +2+ 22+ 20 +..) =2+ f(27).

Thus if z — —1 along the real axis, then f(z) — o0 and thus z = —1 is a

singularity. Similarly we have

flz) = 2+ 22+ f(z4)7

so f(z) — o if z — +i along the imaginary axis. Inductively we obtain

m—1
= Z 2 +f(22 )7
k=0

so f(z) — w0 if z — exp (2% k) for k € {0,1,...,2™71} along the
corresponding radii of D, thus all such points are singularities of f. These

points are dense on S! = 9D, which consists of non-isolated singularities
of f(2). One says that S! is a for f. o

An import tool to study isolated singularities are

LAURENT series

A LAURENT series is a sum of two power series

s} o0 —1
n
Z en(z — 20)" chz—zo + Z en(z — 20)
n=0

n=—0u n=—0o
“

regular part principal part
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The convergence domain of the regular part is
{zeC:|z— 2| <R}

for some R € [0, 0], whereas the convergence domain of the principle

part is

{ZG(C: ! <1}={ze(Cs|zz0>r}

|z — 20| 7
for some r € [0,00]. Thus the convergence convergence domain of the

whole LAURENT series is an annulus:
{zeC:r<|z— 2| <R}

with 7, R € [0, 00]. In particular, we cannot exclude that » > R, in which

case the convergence domain is empty.

rRe ,:‘,: E (==(C. ‘(2;;
~<R R>0o
(‘u\-\('('\\.'n'ﬁ G\
oSk
( relevant o
iSolatedd sing >

X

Fig. 22: Different "annuli" as convergence domains of a LAURENT series.
TODO

A function f holomorphic in an annulus {z : r < |z—zp| < R} with
r < R is represented in this annulus by a convergent LAURENT
SERIES

f(Z) = Z Cn(z - ZO)n7

n [e 6]

where for the coefficients we have the (CAUuCHY-like) formula
1
e 4; B g,

T omi (z — zp)n*!
lz—20l=p

for n € Z and p € (r, R).

Remark 7.0.11 In this case, there is no such representation as ¢, =

(m) . . .
fT(!ZO), just because f is not defined at zo (even for positive n).

Proof. Without loss of generality let zp = 0, such that the convergence
annulus is U= {ze€C:r < |z| < R} # &.

By the CAauchHy formula we have

6= 5= §

¢—zl=e
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for sufficiently small € > 0 (such that {(e C: | —z| =¢} c U.

We now deform the integration path such that the integral does not
change (according to the CAUCHY integral theorem), where we choose &
such that r +¢ < |2] < R— 9.

Fig. 23: TODO

This yields (similarly to the proof the power series expansion)

1
1 =5 ¢ 1 gc - L f Cf(f)zdg
I¢|=R—5 \cl—r+6
1 f©) 1 f©Q)
T omi § ( 1-— % 271'12 3€
I¢|=R—5 I¢|=r+8
- 1 f(0) n g
B Z 2_71'@ Cn+1 d< § f C
n=0 I¢|=R—3 SR
S £(©) S T £(©) m
:7;0 i (il dc )= +m_2_00 27 m1 96
I¢|=R—6 IC|=r+5
& £(©) S T £(©) "
_ngo 5 ot d¢ |2 +m:2_00 5 3@ ot dc¢
[Cl=p [¢l=p
- 1 f(¢) n
- 2 |5 § pac)
neTe I¢l=p

where in the second to last step p € [r + J, R — ¢] is arbitrary and the
step is justified by the CAUCHY theorem. O

Corollary 7.0.12 (CAUCHY-type estimate)
If the function f satisfies |f(z)| < M for all z € B,(20)\{z0}, where
€ (r, R), then

M
len] < —
p’ﬂ
holds for all n e N
Proof. Analogous to the proof of corollary 6.0.9. O

LAURENT series functions that are holomorphic in an annulus. (??77)

What is the connection to isolated singularities?

Consider a domain U punctured at zg, which is an isolated singularity.
Then there exists a € > 0 such that the punctured neighbourhood
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B:(20)\{z0} < U lies in U. This neighbourhood is an annulus (with r = 0),
and f is holomorphic in this neighbourhood. To this neighbourhood, the

previous theorem is applicable:

For any isolated singularity z; of f there exists a corresponding
LAURENT series which converges to f in any punctured disk

around z; lying in U.

If 2y is an isolated singularity of f and f is bounded in some
punctured neighbourhood of 2y, then zj is removable.

Proof. Let |f(z)] < M for some M > 0 and all z € B.(20)\{z20}. By

corollary 7.0.12 we have
M

lenl < —;
p
for all p € (0,e). With p — 0 we get |¢c,| = 0 for all n < 0, i.e. the
LAURENT series of f has no principal part; it is the standard power series:
f(2) =37, en(z — 20)™ Define f(20) := co, then f is holomorphic in

BE(ZO)' Ol

Remark 7.0.13 From the proof we obtain that a isolated singularity zq
is removable if and only if

e the LAURENT series for f(z) around zy has a vanishing principal

part, i.e. |¢,| =0 for n < 0.

e f is bounded in some neighbourhood of zj.
Corollary 7.0.14 (Characterisation of poles)
An isolated singularity of zg of [ is a pole of order m if and only if the
principal part of the LAURENT series expansion for f around zgy is finite:

0

f()= D) enlz—z0)"

n=—m
Equivalently, the poles are characterised by

lim [f(z)] — 0,

zZ—Zz0
as follows from the next theorem.
Corollary 7.0.15 (Characterisation of essential singularities)
An isolated singularity zo of f is essential if and only if the principal
part of the LAURENT series for f around zg is infinite:

0

f(z) = Z en(z —20)"

n=—ao

with |ep| # 0 for infinitely many n < 0.

Example 7.0.16 (exp(z~!) has essential singularity at 0)
Cousider f(z) = exp (%), which has a singularity at zg := 0. From the
power series for z — exp(z) we deduce

RO A ?
JO=25 = Xt~ A e
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Thus the principal part of the LAURENT series of f is infinite, so 2 is an

essential singularity. o

Example 7.0.17 (Singularities of cos ((22 + 1)71))
Consider f(z) := cos (ﬁ

z1 = —1i. As before we have

_ - _ g (22 +1)72F
_;;o( 1 (2k)!

Treating each singularity separately, we seek a LAURENT series at z = zg.
We have (22 + 1) = (z —i)(z + ). Denoting r4(z) := (2 +i)~2¥, which is
holomorphic and thus admits a power series expansion around i: ri(z) =

, which has the two singularities zy := ¢ and

Z;o:o ay ;(z —i)? we have

o 0 - k(z_i)_Qk'Z;i()ak,j(Z_i)j
= ];O;Jak,j(q)ki(%)! = TODO,

SO zp is a essential singularity. Analogously one can show that z; is a

essential singularity as well. o

If 2y is an essential isolated singularity of f: U — C, the image

under f of any punctured neighbourhood of zj is dense in C.

Proof. Assume there exists a w € C and a 6 > 0 such that Bs(w) n

f(Be(20)\{20}) = . Define

We have |f(z) —w| = § TODO: PIC and thus |h(z)| < } for all
B (20)\{#0}. By theorem 7.0.2 zy is a removable singularity for h(z):

o8]
- B ente o

for all z € B.(zp) (cf. remark 7.0.13). Let m > 0 be the first non-vanishing

coefficient, i.e. ¢,, # 0. Then
Z (z—20)" = (z—20) Z Cnam(z2—20)" =t (z—20)"g(2)

with g(z0) = ¢ # 0. Thus g is representable by a power series and thus
holomorphic around zy so ﬁ is holomorphic around z; (ABER cor
6.0.13 UND ¢'(z9) = 0, ODER??) and

1 1
fQy=w+—=w+(z—29) "——.
Therefore f has a pole of order m at zy by corollary 7.0.14. ]
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7.1 RESIDUES AND THE RESIDUE THEOREM

We see that in any neighbourhood of an essential singularity zo one
finds arbitrarily large values of f but also arbitrarily small values of f.
Therefore it is not true that lim,_,, |f(z)| = o0, as the limit does not

exist. Therefore this limit property is characteristic for poles.

7.1 Residues and the residue theorem

Motivation. Recall the formula for the coefficients in a LAURENT

expansion
1 f(z)
= — ———dz.
= omi 3€ (z — zp)nt1 :
|z—z0|=¢
A special value of n is n = —1, because then the integrand is independent
of zg.

DEFINITION 7.1.1 (RESIDUE OF f AT zg)
For an isolated singularity zg of f, the can be defined

in two equivalent ways

e res,_., f(z) = c_1, i.e. the coefficient of the LAURENT series

representation of f(z) at zo with the index n = —1.

o res,_,, f(2) = %(\%Iz—ml:s f(z)dz, where & so small that
B.(z0)\{z0} < U.

Example 7.1.2 (Residues 1) Consider f(z) := <5t. This function
has a pole of order 99 at zy := 0. To compute res,—g f(z) we find the
LAURENT series for f(z) around zero:

) 1 o P 0 Zn—lOO 0 Zk
Z) = —— _ = = —
w0 2 .
200 —opl o~ nl o (k4 100)!
Thus ¢ = —+—— and ¢_ = =L o
k = (k+100)! -1 = 9oI*

Example 7.1.3 (Residues 2)

The previous example can be generalised in the following way: define

f(z) = —22_ where ¢ is a holomorphic function. Then ¢(z) =

(z—z0)™?

> s en(z — 29)"™ and thus

0
k
Z (z — 20)" 2 Ch+m (2 — 20)",
n=0 k=—m
(m=1)(,
thus res,—,, f(2) = -1 = W(Tl()lo)

Consider the function f(z) : % Then ¢(z) = 22 + 52 + 3 and

( ) 7. <&

m = 2 and thus res,—1 =
Example 7.1.4 (Residues 3) Let f(z) := e
ple zero at z = z9. Then TODO res,_,, f(z) =

Consider f(z) = m, which has simple poles at —2 and —3. Then
res,—_o f(2) =1 and res,—_3 f(z) = —1. o

) where ©(z) has a sim-

» (Zo
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7.1 RESIDUES AND THE RESIDUE THEOREM

Example 7.1.5 (Residues 4) Consider f(z) :=sin (). Then zo =777
is an essential singularity. We have

0 ) (1)2n+1 0 )
2 Z ,—2n—1
= 2n+1 n:O 2n+1
and thus res,_q f(2) = (_11!)0 =1. o

Example 7.1.6 (Residues 5) Consider f(z) := 272. At the third or-

der pole zg := 0 we have res,_q f(z) = 0. o

Let U < C be an open subset and f: U\{z1,...,2m} — C a
holomorphic function, where (z)7_, are isolated singularities of
f. Let @ be a closed topological disk in U with a piecewise C!
boundary curve v = 0Q), which does not pass through z1,..., zp.
Then

Proof. For small circles 4 around zj like in figure Fig. 25 we have

jgf dz—Efﬁf dz—22m Zrezskf 2)

ZkEQ 2KEQ

by the CAUCHY theorem. O

JR R(z)dx

where R(x) = SE g is a rational function, where P and @ are polynomials.
In order to ensure convergence of the integral, we demand |R(z)| < Clx|~2
as ¥ — +00, which is equivalent to deg(Q) = deg(P) + 2 and that @ has

no zeros in R.

Example 7.1.7 Consider

™

An example is {; =mor zfil o

dz
241
We will establish the formula

jR R(z)dx = 2772'2 res R(z),

where the sum is taken over all singularities a of R with S(a) > 0.

Proof. When integrating over the real axis we have no closed contour,
so we have to close the integration path artificially. As { R(z)dz =
lim, o §", R(z)dz, we close the (main) path on [—r,7] by adding an
auxiliary path ~,: the boundary of a semi-circle @), with radius r above
the z-axis, connecting the two points (0, £7) in the complex plane. This
new, closed path now is the boundary of a topological disk (WHy?)
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7.1 RESIDUES AND THE RESIDUE THEOREM

By the residue theorem we have for sufficiently large r > 0

JTTR(I) dz +f R(z)dz = 2mi Z res R(z).

- SO
We have
C C 7TC T—00
J R(z)dz| < f Z—sz = gmr= 0,
and thus -
HIEO R(zx)dz+ | R(z)dz= | R(z)dx. O
r— _r Y R

With this formula we have (as —z% has two singularities at +i)

dx . 1 . 1 1

ﬁ = 2mi res 227“ =2nf——————— = 27'('7/% =T,
X z=1

. 4 (2241)

dz
z2=0

where we can use example 7.1.4, as z2 + 1 has a simple zero at .

In this case we knew the antiderivative but in the following case it is very
- log(mz—\/§z+l)+log(12+\/§m+l>—2 tan—1 (17\/§m>+2 tan—1 (\/Echrl) But

complicated: ¢ + F o

with the formula from above we obtain
dx . 1 1
S =2m-| res —/—— 4 TES Y
R TF+ 1 2=eim/a 2% 41 z=edin/a 2% + 1

o 1 1 _2M( _gnin | —omija
= 2mi ((4ei7r/4)3 + (4€3m/4)3> T4 (e te )
_ %Z (6737ri/4 n e*ﬂi/ﬁl) _ %iefmﬂ (efm‘/‘l + em‘/‘i)

v ™

5 (—1i) - 2cos (%) =75

analogously to the previous result.

Lastly, let us consider a function with second-order poles to see that this

is no obstruction to this method:

d
J 7xdx=2m~res_
R

(22 +1)2 z=i (22 +1)2°
As
1
1 _ _Gr?
(22+1)2  (2—1)?
and ﬁ is holomorphic on the upper half-plane, this function is of the
type (55232 from example 7.1.3. We have
1 d 12 21
e P DA P N ) R i ) S T KT

and thus )
f dv _2mi _ 7
R (22 +1)2 4 27
Another example is the integral
0 .2
-1
[[21y,
o r*+1
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7.1 RESIDUES AND THE RESIDUE THEOREM

By parity of the integrand R(z) and the residue theorem, it is equal to

1 21
5 J‘R ?;47_"_1 dz = mi Z ZI‘E% R(Z)

S(a)>0

The singularities of R are the four roots of unity +i and +i/i. The ones
with positive imaginary part will thus be i and /3.

We have
R(:) = (= Vi) ot
Z)=(z—-Vi) ———
(22 +1)(z + Vi)
[y
=R(z)
and
. i—1 Vi(i — 1) 1z )
res R(z) = R(Vi) = =— = ——e'T 2T = X2,
=Vi (2) = B(V3) 2i - 24/i 4 4 4
Similarly, one obtains res,__ s R(z) = —%, so the integral is zero. ©

Lets turn to another class of examples.
Example 7.1.8 (TODO)

Consider
f R(z) cos(z) dz,
R

where R(z) = %, where P and @ are polynomials, Q(x) # 0 for all

z € R and deg(Q) > deg(P) + 2.

Following the same approach as above will not work for the following
reason: Analytic behaviour of the integrand. We have 2cos(z) =
e’” + 7. As above we have to show that the integral over the auxiliary
curve tends to zero, but this is not the case: for z € C with &(z) » 0,
R(iz) « 0, so |e*| « 1 but [e"*| » 1, so the integral over the upper

semi-circle does not vanish.

Furthermore if we are close to +r on the circle, 3(z) is small, so |e?]
is large. But this can be easily fixed as the rational function decays

sufficiently fast at the boundary of R.

The way is to rewrite cos(z) = % = R(e**), so the integral becomes

R (JR R(x)e™® d:c) (7)

As an auxiliary curve we choose a rectangle on top of the real axis with
height 7.

By the residue theorem we have

r4ir —r4ir —r
f R(z)e™ dx + (J + J + J > R(z)e™ dx
R r r+ir —r+ir
= 2mi Z res R(2)e**

S(a)>0

Let

M(r) == max |R(2)| < C rom, 0.
|z|=r r
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7.1 RESIDUES AND THE RESIDUE THEOREM

For £ € [0,7] we have (as |e"| = 1)

6y = 16761 = e8] = o7 = e

z=r+if z=—r+i§

Thus the second and fourth integral can be estimated by

M(r) - JO e Sdé < M(r) — 0.

The third integral (over the horizontal part of the auxiliary curve) can

be estimated by M (r)e™" - 2r 2225 0, so the auxiliary integral vanishes.

By letting » — oo this proves

fR R(z) cos(xz)dx = R | 2mi Z res R(z)e*

z=a
S(a)>0

As an application consider (for a,b€?? TODO)

cos(bz ) etz
f 2( ngU:?R 2mi - res ———
R I+ a z=ia 2° + a

™ _
> = —e %, o
z=1a a

The next class of integrals concern proper RIEMANN integrals.
Example 7.1.9 (TODO)
Consider

eibz
=R (2m' - Tes

z=ia 2Z

27
R(cos(x),sin(z)) dz,
0
where R is a rational function its arguments without singularities on the

real line.

To obtain a closed integration contour we apply the change of variables

z = €', so the non-closed curve over [0, 2] becomes the unit circle.

This change of variables entails

zZ+ % ) z— % dz
cos(z) = 5 sin(x) = 57 and dx = o
and thus
2m 1 1
+12-1\4 .
f R(cos(z),sin(z)) dz = 3€ R (Z 5 z, ‘ 5; Z) R 3€ R(z)dz.
0 i iz
|z|=1 |z|=1

By the residue theorem we have

27
J R(cos(z),sin(z)) dz = 2“2;“2% R(z),

0 a
where the sum is taken over all singularities of R(z) in D.

An application of this result is

JQ’T dz 73@ 1 %714; 1 4
o b+4cos(z) 5+a(z+1)iz i 92 +52+2

|z]=1 |z|=1
The zeros of the denominator are a; = —% and ag = —2. Asonly a; € D
we have
f’f dz 1. 1 1 o
— = - 27 TES ——————— =27 ———— = —
o b+dcos(z) i 2=—1222 + 5242 4z +5 iemy 3
o
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7.1 RESIDUES AND THE RESIDUE THEOREM

The last class of examples will be an introduction to functions we will need
when discussing the EULER-Gamma and the RIEMANN-Zeta functions.

Example 7.1.10 For s € (0,1) consider

J 2 R(z) dz,
R+

where R is a rational function with no poles for = > 0, decays as # for

|z] — oo and has at most one simple pole at z = 0.
For z — oo, this integral behaves like 2—2 = #, which guarantees
convergence as 2 —s > 1 and as % = & (WHY?7?) at 2 — 0T, which

ensures convergences as 1 — s < 1.

For z = re’? € C and s € R we define z° = r*¢**¥. In order for this to be
well-defined we have to choose an interval of length 27 for ¢ = arg(z).
To achieve this we have to cut C along some ray with the origin at 0.
There is no canonical way to do this, we will choose the following: The
ray will extend along the positive real axis, where ¢ = 0 on the upper
part of the cut and ¢ = 27 on the lower part and ¢ € (0,27) as one goes
along the circle.

We choose the following closed integration contour:

Fig. 27: TODO

By the residue theorem we have
f 2°R(z)dz = 27ri2 res z°R(z),
ol a z=a

where the sum is taken over all singularities of R(z) in the interior of
v, which are all singularities if r is large enough except z = 0, which is

always outside of ~.

For the integral over the main part v; (upper straight line) we have ¢ = 0
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Fig. 26: There are infinitely many other

possible choices, on of the standard ones
being taking the negative real axis as the
ray so ¢ € (—m, 7).



7.2 COMPLEX INTEGRATION AND RESIDUE THEOREM FOR ANALYTIC
CONTINUATION

and thus z° = z5:

Ll 2°R(z)dz = JT 2 R(z) dz.

0

For the lower straight part 75 we have ¢ = 27 and thus 2* = 2?7

J. 2°R(z)dz = —f 5 e*™ S R(x) da = —eZmSJ 2°R(z) dx
Y2 0 0

As s > 0 we have

and as s <1

J 2°R(z)dz

T

<r*—=1L =r'— . 21r =
ST3 (7r) -2 i—s

Sending € — 0 and r — o0 we have

(1 — ™) JR+ 2°R(x) dx = 2mi Z res 2°R(z)

a#0
For an application of this formula consider R(x) = ﬁ, ie.
257! 271, 2571 271, i\s
J — 5 res _ T (efrz)s—l
r+ 1+x 1 —€%™5 ;= q=emi 1+ 2 1 —e?7s
_ 2m Comi(s—1) _ —2mi s
- 1— 627ris - 1— 6271'2'5
27, us

emis — e=mis  gin(ms)’
This integral is B(s,1—s) = I'(s)['(1—s), where B is the beta-integral and
I is the gamma function, so we have proven the addition or complement

formula
T

[(s)I'(1—s) = (8)

sin(ms)’ .

7.2 Complex integration and residue theo-

rem for analytic continuation

The gamma function

The I'(s) generalises the factorial, i.e. T'(n 4+ 1) = n! for
n € N. By induction one can show
a0
J z"e”"dx = nl, 9)
0
as we have SSO e dx = —e_"”}fzo = 1 and by integration by parts

o0 o0
f e *dx = ff z"de® = —x"e™"

o 0
+f e *da™
0 0

0
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7.2 COMPLEX INTEGRATION AND RESIDUE THEOREM FOR ANALYTIC
CONTINUATION

EULER observed that the left hand side of the formula (9) is also well
defined for any real n and thus set

0
I'(s) = f e " dx
0
for s > 0 (actually also for s € C with R(s) > 0). By the same steps as
for n € N we can show the functional equation
I(s+1) =sI(s)
for all s > 0. With this formula one can analytically extend I' for s > —1,

then s > —2 and so on.

We will explore another approach to continuation via certain contour

j 25 le7% dz,
CR,E

where Cg . can be seen on the left and z*~! on the upper side of the cut

integrals. Consider

is to be understood as z°~1, where z = 2e*?. On the lower side of the

571627”’(571) _

cut it is to be understood as x x571e2ms for » = ge?™,

On the e-circle around zero we have z = ee'? for ¢ € (0,1) and thus
2571 = g2 1e# (=1 and thus

21
J Es—lei(s—l)ape—e(cos(go)-ki sin(p)) | 66“’07; d‘p
0

2m
= issf exp (i(s — 1) — e(cos(p) + isin(p)) de %0 for R(s) > 0,
0

implying that

R (R
J 2 Tlem dy = — J ¥ e da + 2™ J ¥ te ™ da + O(e®).
Cr,

€ €

Sending ¢ — 0 and R — o0, we find that for £(s) > 0
f 27le™*dz = (2™ — 1)I'(s),
c

where the contour C' can, according to the CAUCHY theorem, be any path
running from +oo along R, above R, then around zero in the positive
direction and then running to +o0 along R below R,.

For any such contour C' and for R(s) > 0 we have
J 2 e dz = (2™ — 1)I['(s).
c

We now define I'(s) for any s € C by this formula:

1

F(S) = 627r7ls -1

J 2Tle7*dz Vs¢ Z.
c
But we know that the integral will vanish for s € Z>o and thus I" has a

removable singularity at those points. Thus I is a holomorphic function
which has simple poles for s € Z .
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functional equation

Fig. 28: A possible choice of C.



7.2 COMPLEX INTEGRATION AND RESIDUE THEOREM FOR ANALYTIC
CONTINUATION

The Zeta function

The RIEMANN ( function is
0
= Z n-
n=1

This series converges absolutely if s > 1 (or s € C with R(s) > 1).

Consider
0 0 _ o0

f z* e dy M:yf (g)s o L yle v dy = L(s)
0 0o \n n ns Jo ns

for R(s) > 0. We thus obtain

0

o0 0
:glL bl_n‘de_ Z e~ dgr

0 5 1
= xs_l =
0 lfe

With exactly the same procedure as before we obtain

for R(s) > 1

s—1
f : Cdz = (P - D0(s)G(s)  for R(s)> 1 (10)
C eZ —
where C' is exactly as before. We use this formula to the right
hand side for all s € C:
1 25 1
= . d 11
) = T ), 2T (1)

which defines ((s) as a holomorphic function with possible isolated singu-
larities at zeros of (e2™** — 1)I'(s), i.e. at s € Nog. We know that ¢ does

not have poles for s € N> 1, so the only possible pole is s = 1.

Around s = 1 we indeed have a simple pole as

1 1 1 1 1
~ dz ~ = .
<) QWi(s—l)-IJCezfl TS s—1

with res;—1 ((s) =1, as 1£

0 _
= Zk=foc s
Let us compute, in particular, ((s) for s = 1 —n, where n € N. By the

integral representation (11) we have

1 Z—’”
((1—n)= (emis (emis — e—mis) — 1) -1'(s) fC o 1 dz.

By (8), the prefactor can be transformed to

1 _I(1-s) L'(n) B
emis . 2isin(ms) - T(s)  2mi-em™is  2mj.emi(l-n)

Thus we have

¢(1—n)= (71)7171 (n—1)! —

=(-D)" . (n-1)- res
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7.2 COMPLEX INTEGRATION AND RESIDUE THEOREM FOR ANALYTIC
CONTINUATION

The sought after residue is the coefficient of z=! in the expansion of

-n . . . . .
EZa =g z~"~! which is the coefficient of 2™ in the expansion of

ezz_—l’ which is an:

z z E by
_ _ = n 2n
e” —1 2+§0(2n)!z ’

where b,, are the BERNOULLI numbers.

Especially we have

O=-3  -2m)=0 (12
and b b
¢(1=2m) = (=1)(2m — 1)! (23;")! = —22—7;1" (13)

for all m € N5g.

Functional equation for the (-function

Fig. 29: We extend the integration contour C' considered before by

adding a circle of radius (2N + 1)7. The x denote the singularities of

Zs—l

e*—1"

the integrand

By the residue theorem we have

zs—l y5—1 451
J dz—J dz=27ri2n=1N( res + Tes )
Cn e?—1 c e*— 1 z=2mni z=—2mni) e* — 1
N xi\ 51 xi\ 51
= 2m Z (27m67> + (27me32 )
n=1
N mwi(s—1) 3mi(s—1)
=(27r)s-i2ns_1 (e T +e 2 )
n=1
N
ris o m(s—1) 1
o (50) $ L

N
= —(27)% - €™ . 2isin (E> Z ! .
2 — nl-s
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7.3 EXERCISE 5

We want to send N — 0, so consider R(1 — s) > 1, i.e. R(s) <0, so the

power series converges.

On Cy, we have |e* — 1| = k > 0, thus ‘62717” < %, so that

s—1 1
j e < (N + RO L)
C

vet—1
< const((2N + 1)m)Re)-1 X=22, o
if R(s) < 0.

Thus
1

nl—s’

s—1 .
J : dz = (2m)° - ™% - 2isin (Ls)
C 2

e —1

iD=

which is RIEMANNs functional equation for {(s):

(62771‘3 _ 1)F(S)C(S) _ (271.)5 . eﬂ'is . 24 sin (%) C(l — 8)7

by (10) for R(s) < 0.

This can be written in a more convenient way: the left hand side is equal
to
e™ . 2isin(ms)T(s)((s),

so the equation becomes
sin(mws)T'(s)¢(s) = (2m)° sin (?) ¢(1—s).

Using the (8) we obtain

s

= o () -1

Simplification yields

1 ¢(s)
2 (2m)5-1T(1 — s) sin (%)

(1) =

for R(s) < 0.
Comparing this with {(—2m) = 0 and ((1—2m) = —% and substituting
s =1—2m yields

1 ¢(1 - 2m) D e <%ﬂ

2 2m

2m) = _
e 2 (27)=2mD(2m) sin (@) 2 (2m-—-1)!

b
:22m—1 2m -1 m—1_Y2m .
LS R G

In conclusion this yields that

S

¢(2m) = Z —— = (=1)™ 1. _bom_ .92m—1_2m
n=1 n=m ( .

is a rational multiple of 72™.

TODO: Muss woanders hin

7.3 Exercise 5
Let wp e C, f,: C— C for we C and v be a path in C.
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7.3 EXERCISE 5

When do we have

lim [ fo(2)dz = f lim f,(z)dz ?

w—wo 5 WWo

We reduce the problem to the real case:

1
lim | fu(z)de = lim | fu(y(0)'(t)dt

w—owo ), w—wo Jq

lim (J Ry ()7 (1)) i+

w—wo

il SO 1) )

0

Recall the : if for functions g,,: [0,1] - C

we have g,, — ¢ uniformly, i.e.
Ve > 03N, e N:|gn(t) —g(t)] <e ¥n = N Vit e [0,1]

we have
1 1

lim %m&:Jg@&.

If we assume f,, — f., uniformly, we have

|fw(2) = fuo(2)] < e

for some £ > 0 and for all w € Bs(wp) for some 6 > 0 and for all z €77,

We have

IR(fuo (Y)Y () = R(fuo (Y (1)) (1))] =

<
<

R(fuo (Y)Y () = fuoo (Y ()Y (1))
Jo (Y)Y (t) = fuo (v(£))7 (1)
fo(y(1) = fuo (Y)Y (8)| < e- M

for all ¢ € [0, 1], as y is smooth an thus attains its maximum M > 0 on

its compact domain.
Thus the uniform convergence theorem holds for complex functions.

For example, we have exp (ise“) — 1 uniformly: The function z — €*
is continuous, thus for all ¢g > 0 there exists an ¢; > 0 such that

le* — 1] < g for all |z]| < e7.

Thus for € € (0,1) we have |ice| = ¢ < g1 for all ¢ and thus we have
proven uniform convergence. This yields

™

| ’ Y dt =
i j t=_.
lim, . exp (zee ) 5

We have exp (iRe”) —0for R—> wandte (0, g] but not uniformly as

for £ N\ 0 the function gets arbitrarily close to 1, regardless of R.
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Holomorphic functions as conformal

maps

20.05.2020
DEFINITION 8.0.1 (ANGLE-PRESERVING)
A linear map A: R? — R? is angle preserving if angle preserving

L(Av, Aw) = £(v,w)

holds for all v,w € R*\{(0,0)"}, where £ denotes the oriented angle.

I icul have A f 1 i i
n particular we have Av # 0 for v # 0, so any angle preserving map is Fig. 30: TODO

bijective.

Lemma 8.0.2 (angle preserving = multiplication with ¢ € C)
Under the identification R* =~ C, angle preserving maps are exactly

complex multiplications with ¢ := a + ib # 0. We have
(Av, Aw) = r*{v,w) (14)
for all v,w € R? with r = |c| € Rug and thus | Av|| = r|v].

Proof. Set A = ({§). We have Ae; = (a,b)" and Aey = (c,d)" and
thus the angle between ((a,b)" and (c,d)" is 90 degrees as A is angle
preserving. Thus there exists a § > 0 with (c,d)" = 0(—b,a)". We show
that 6 = 1.

Consider the orthogonal vectors x := e; + e and y := e — 7. We have

0= (Az, Ay) = (AerAey) — |Aer | + |Aez|* —(Aerser s
and thus |Ae;| = | Aez|. This implies |6] = 1 and thus = 1.

We have shown that A = (‘g ;b ), which represents multiplication with

a + ib. O]
Corollary 8.0.3

An angle preserving linear map stretches uniformly in all directions.

A geometric interpretation of this corollary is that every circle centered

at zero is mapped to such a circle.

Thus any angle preserving map is a composition of a dilation and a
rotation.
Remark 8.0.4 A uniform stretching in all direction is almost character-

istic for angle preservation:
For a map fulfilling (14) we have ||Av|| = r|v]| for some r > 0 and thus A
is injective. This yields

(Av,w)y — r*v,w)  {(v,w)

[ Ao Aw] — rlolrfw]  follfw]’

which is equivalent to cos(<t(Av, Aw)) = cos(<t(v,w)), where < denotes

non-directed angles (as cos is an odd function). We can only conclude

L(Av, Aw) = + 4L (v, w).
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Hence linear maps fulfilling (14) are either orientation preserving (+)
and therefore angle preserving or orientation reversing (—) and thus
preserving angles up to the sign. Such maps (—) are compositions of

angle preserving maps with reflections.

DEFINITION 8.0.5 ((LOCALLY) CONFORMAL)
A C' map f: U — C of an open set U c C =~ R? is

e locally conformal, if the differential (which is a linear map)
df(z): C—C

is angle preserving for all zy € U.

e conformal if it is locally conformal and acts bijectively: U — f(U)

is one-to-one.

THEOREM 8.0.1: CONFORMAL <= BIHOLOMORPHIC

A function f: U — C is (locally) conformal if and only it is
(locally) biholomorphic.

Proof. ? O

By locally biholomorphic we mean holomorphic and locally invertible
(i.e. f'(z0) # 0 for all zp € U) with a holomorphic inverse map in a
neighbourhood of f(z).

Fig. 31: Here 71 and 7, are curves in U, v, are tangent vectors of ~; at

zo. We can see that df(zp) acts on tangent vectors from TzoU, i.e. on
(equivalence classes of) curve through zg. Thus df(2¢) is angle preserving

if and only if the directed intersection angles of curves are preserved by

f.

RIEMANN states this property as "die Abbildung ist dem Abgebildeten in
den kleinsten Theilen dhnlich.”, i.e. "the image is similar to the original

infinitesimally".

Under a magnifying glass we can inspect the infinitesimal neighoburhoods
of zp and f(z0):
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Fig. 32: £L(df(z0)v,df(z0)w) = £L(v,w) for all v,w e T,, C, v,w # 0 is

equivalent to df(z0) = (¢ °).

What happens with angles (between tangent vectors) under a holomorphic
map at a point zg, where f/(zg) = 07

(TODO: fill details in) If zy is of multiplicity m, that is f/(z) =
o= () = 0 but f0™(2) # 0, then the angles between tangent

vectors at zg are multiplied by m under f.

For example consider f(z) = (z — z9)2. Then the angles at z; will be
doubled under f:

Fig. 33: TODO

Example 8.0.6 (Conformal maps from holomorphic functions)
@ Consider f(2) = ¢, i.e. f(z,y) = (¢*cos(y),e” sin(y)). We have
f'(z) = e* # 0, thus f generates a locally conformal map.

Fig. 34: TODO



Fig. 35: Horizontal strips of width smaller than 27 are mapped to a
second with opening angle being the width of the strip.

The width of 27 is special as exp has period 2mi.

Fig. 36: Horizontal strips of width 27 are mapped to slit planes.

U ={x+iy:ye(a,b)} with b—a > 27, then exp is no longer
injective on U because of the periodicity.

Remark 8.0.7 Non-injectivity in the complex plane is not related
to non-vanishing of derivative: (exp)’ # 0 but exp is not injective.
This is in contrast to continuous functions R — R, which are

invertible if and only they are monotone.

‘ Consider w = f(z) = j—;i on H = {z: §(z) > 0}, which is a typical
representative of a MOBIUS transformation, which are fractions of

linear polynomials.

e We have f(H) = D:

z4+i Z—i 22+1—i(z—7%)
P +1-29(2)
T2+ 14+ 29(2)

z—i Z+i 22+ 1+4i(z—7%)

wl* =

e The map f is injective (common property of MOBIUS trans-

formations):

1
w(z+i) = 2—i = z2(w—1) = —i(w+1) = z =1 rw

1—w’
which is well-defined for jw| <1. WHY NOT w # 1?77
e The map f is surjective: We have to show that for all w € D

. I
the point z =7 - ;=2 € H.
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Indeed,

S(i-ler)
1—w

(23) x(252:2)
1—|wP+w-—-w

%< ||1|2_Z|2 )
RER

as soon as |w|?> < 1, where we use that w — w is purely

imaginary.
Thus f maps H to D bijectively and is holomorphic with f/(z) =
2y 0
(z+1)2 :
Thus f: H — D is a conformal map; H and D are conformally

equivalent.
But, visually, H and D are not "similar".

Let us look at the images of the coordinate lines {z = x¢} and
{y = yo} in H. For y € H we have
. xo+iy—i  wo+i(ly—1)
f(zo +iy) = to iy ti iy D)
_ (w0 +ily —1))(zo — iy + 1))
 (zo +i(y + 1) (xo — iy + 1))
x2 +y? —1— 2ixg

= = U+ 1.
xg + (y +1)2

We have to eliminate y between u and v. We have

2 1)2 -2 1 2 1
_950+(3/2+) (2@/+):1_ 2(y+)2:1+(y+1)g’
xg+ (y+1) x5+ (y+1) Zo

which yields
y+1="21 1,
(@5 + (y + 1)*)v = —2x0

—1)2
<x%+(uv2)-x%>v——2xo.

and thus

Multiplication with -5 yields
0

(u—1)%+0v2=—"v

(u—1)2+<v+1)2—12,

i) n)

and thus

which describes a circle centered at (1, 71%,) with radius \Tlol We

thus get

conformally equivalent.



Fig. 37: The circle represents the unit circle. TODO

For the lines {y = yo} we interchange x and y in the previous
formulas:

Yo +1= UT_]- - X,

(2% + (yo + 1)?)v = —2u,

which implies

2 2(u—1
(u—1)2+02=-Z0= —M.
T Yo+ 1
Rearranging yields
2
1 1
u—1+—) +0°= ———| S
( Yo + 1) (yo +1)2
which represents a circle centered at (1 - yo_l+1’0) with radius

1

Yyo+1°

Fig. 38: TODO

In summary we get
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Fig. 39: TODO



Bl MoOBIUS transformations

26.05.2020

DEFINITION 9.0.1 (MOBIUS TRANSFORMATION)

A MOBIUS transformation is a non-trivial (ad # bc) function

az+b
cz+d

1) =

where a,b,c,d e C.

Remark 9.0.2 If ¢ # 0, we have

refg) e

ifc=0, fisentire: f: C— C.

Remark 9.0.3 The function f depends on three complex parameters,
since we can multiply (a, b, ¢,d) by any A € C* := C\{0} without changing
f

The function f corresponds to an invertible matrix
A= (%) e PGLy(C) := GLy(C)/~,

where PGL is the projective group and (a,b,c,d) ~ (Aa, Ab, Ac, Ad) if
Ae C*.
Lemma 9.0.4

. e -1 _ _dw—b .
A MOBIUS transformation is injective with f~(w) = “onta also being
a MOBIUS transformation.

Proof. We have

b
w:az+ — w(cz+d)=az+b
cz+d
dw—b
— (—cw+a)z=dw—b < = 070
—cw +a
for w in the image of f. O

Remark 9.0.5 The inverse function is described by (%, ) = det(A) -
A~! € GLy(C), so f~! corresponds to (~) A7

Lemma 9.0.6
Iffi~ (2 q) and fo~ (82 32) then fao fr ~ (22 2) (20 3b)-

Proof. We have

b
as - % + b2 (agal + bQCl)Z + (a2b1 + bgdl)
co - BEEM L dy  (cpar + dacr)z + (c2by + dody)

asaq + bocy  agby + body
coay + dQCl Cgbl + d2d1

aq b1
> (Cl dl) . |:|
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Corollary 9.0.7 (M6BIUS group)
MOBIUS transformations build the group Mob(C), which is isomorphic to
PGL2(C) with respect to matriz multiplication.

We now turn to an unsatisfying feature of MOBIUS transformations, which
is that they are not everywhere defined and not surjective for ¢ # 0.

As a way out we introduce a compactification of C, C := C {0}, the
RIEMANN sphere. The set € becomes a topological space if we define the

following sets as a basis of open neighbourhoods of oo:
{zeC:|z| > M} v {0}

With this definition, we can define lim,, 4 2, = © for (2,), < C to be
the case if and only if for all M > 0 there exists an Ny, € N such that
|2n| > My holds for all n = Ny,.

But why do we choose the sphere? Stercographic projections o make
clear that C =~ S? c R,

The inverse stereographic projection o~!: §2 — C, (& n,¢) — x+iy is

constructed as follows:

Fig. 41: The equatorial plane is identified with C. A point = + iy is
connected to (0,0, 1) and the intersection of that ray (starting at (0,0, 1))
with the sphere is the projection onto the sphere (£,7,¢) € S2. Thus
points z € C with |z| > 1 are projected onto the upper hemisphere and
points with |z] < 1 are mapped to the lower hemisphere. All points
in % N C are fixed points of 0. We set ¢=1((0,0,1)) = oo, as for any
sequence of points of S? approaching (0,0, 1) their projections grow in

absolute value.

Adding one line creates two similar triangles: This yields

=& y—n ¢

—1 o €+ Z'I]
for ( #1
For the inverse map o = (67 !)~! we have to solve the equations
S n 2 2 2
Te=TTe YTio¢ ™ E+n"+¢
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RIEMANN sphere

Fig. 40: If M > 0 is large, this is a small
neighbourhood of oo.

Fig. 42: TODO



9.1 GEOMETRIC ASPECTS OF MOBIUS TRANSFORMATIONS

for (£,m,¢). Plugging in £ = (1 — {)x and n = (1 — )y into the third

equation yields
1=+ + 1=+ =1,
which can be rearranged

2 4+y7 -1 |22 -1
2 4y24+1 |22+ 1

¢ =

Thus we have

2x 2y
We summarise:
. 1
0:C—>$? 2z EEE (2z,2y,[2]*> = 1), o~ (0,0,1).

Concerning arithmetic operations in C we define 5 =owand Z =0and
_ ~ oy 0 0 .

z-0 = oo for all z € C\{0}. The quantities o0 — o0, 0-00, § and 2 remain

undefined.

This allows us to extend MOBIUS transformations to C:

az+b
cz+d

f:C—C, 2z

a

by setting f (—4) =0 and f(©0) = ¢

(&

9.1 Geometric aspects of MOBIUS transfor-

mations

Lemma 9.1.1
A f e Mob(C) can be represented as a composition of less than or equal

to siz transformations of one of the following kinds:

1 b
Zz—z+b ~ (O 1> (translation)

0
zaz o~ (g 1) (dilation + rotation)
0
1

1 . .
1mversion
O) (inversion)

1
2=~
z

Proof. Consider the case d # 0. Then

az+b_asz—d°z é_ad—bc z 9
cz+d  cz+d d  d cz+d d
_ad—bc 1 +b
d e+ d
Thus
1 d +d 1 ad —bc 1
Z > — — — — C —_ —_—
inv z d 2 +c z inv C+g S d C+%
ad —bc 1 b_az+b
2 d c+4 d cz+d
+ta
The case d = 0 is a simple exercise. O

o8



9.1 (GEOMETRIC ASPECTS OF MOBIUS TRANSFORMATIONS

THEOREM 9.1.1: LINES AND CIRCLES

A MOBIUS transformation maps lines and circles to lines and

circles.

This means that the image of a line can only be a line or a circle and

similarly for circles.

Proof. The statement is obvious for translations, dilations + rotations,

and only has to be proven for inversions.

A circle with centre ¢ € C and radius r > 0 is given by

2 or zzZ—ze—Zc+|cF =1t (15)

|z —c*=r
1
PE

Substituting w = =, i.e. z = % yields

1

ol

C
+lel* =1,

ww  w w

which can be rearranged to
1—ew— cw+ (|c|* — r*)ww = 0. (16)
In order for (16) to be in the form of (15) we introduce

c - 1 |c|? 1
b= —— and p?:=bb— -
(=2 7 [eP =72 (P =72 [P 12
2
\

(lef* = r2)?

such that (16) becomes
Wi — b — bw + bb = p°.

Thus if [c|? # 72, the image is the circle with centre b = WL—T‘Z and radius
p = f—21-TODO:pics Circles with |c[? = 7* through the origin are
mapped to (by (16))

l—cw—cw=0. (17)

In coordinates ¢ = a + @b and w = x + 4y, (17) becomes
1—(a—1ib)(x —iy) — (a +ib)(x +iy) = 0,
which simplifies to
1—2ax + 2by = 0,

which is the equation of a line (circle through f(0) = o) not going
through the origin. TODO:pics

As z — % is its own inverse, lines not passing the origin are mapped to
circles through the origin.

Showing that lines through the origin are mapped to lines through the
origin is left as an exercise. O

Remark 9.1.2 The above theorem holds for stereographic projections:

all circles and straight lines in ¢ correspond to circles in S2.

Analytic features of MOBIUS transformations
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Fig. 43: If |c|? # r? the circle does not pass
the origin.



9.1 GEOMETRIC ASPECTS OF MOBIUS TRANSFORMATIONS

Lemma 9.1.3
A MOBIUS transformation f € Mdéb(C) is uniquely determined by f(0),

fQ), f(e0).

This can be also formulated as: for any three pairwise distinct numbers
z,y,z € C there is a unique f € M&b(C) with f(0) = =, f(1) = v,
f(o0) = 2.

Proof. With f(z) := 228 we have f(0) = &, f(1) = 2% and f(o0) =

cz+d’

ole

@ If ¢ = 0, we have a,d # 0 and thus

We thus have
f(z) = (f(1) = £(0))z + f(0).

But the value f(o0) still plays a role since it guarantees f(0)

2 = o as a linear function should behave.

@ If d = 0, we have b,c # 0 and f(1) = & + %, implying

aztb _a bl sy 4 (F(1) - fleo)) L.

Ccz c cz z

f(z) =

Again, f(0) = oo is implicitly needed.
@) If ¢,d # 0 we have

ol

i e s _ f)+f0)%
) = =1+4= d - 14+ 4 ’

o) % is a MOBIUS transformation of f(1), whose coeflicients are

determined by f(0) and f(0):
fleo) = F(1)
f@) = f(0)”

where both numerator and denominator are non-zero since by the
injectivity of the MOBIUS transformation f(0), f(1) and f(c0) are

10 (1+2) = 1)+ 70% o 4 -

different.
Thus
" f(@)—£(1
)= 2t e @21 fOF f(@)z+ 10) - F5~f
d d 7))
S S 2+ T D=10)
(18)

O

Why is f € Mob(C) unique? Let f # g € Mob(C) with f(0) = g(0) = z,
f(1) = g(1) = y and f(0) = g(0) = 2, then the map g~! o f has three
fixed points: 0, 1 and oo. But this is a contradiction to the following

lemma.
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9.1 GEOMETRIC ASPECTS OF MOBIUS TRANSFORMATIONS

Lemma 9.1.4 (Fixed points of MOBIUS transformation)
A non-identical MOBIUS transformation has either two fixed points or

one fized point.

Proof. The equation for z € C to be a fixed point of f is

az+b
cz+d

z or >4+ (d—a)z—b=0 (19)
If o is a fixed point, we would have ¢ = 0, as f(o0) = ¢ = o0 implies
a # oo and ¢ = 0. We thus have f(z) = az+b with @ := ¢ and b= b and
finite fixed points would be defined by az + b = z. This linear equation
has a unique solution if @ # 1. If a = 1, there are no further fixed points
if b0 (one fixed point, oo, altogether) or any z € C is a fixed point if
b =0 and then f(z) = .

If ¢ # 0, o0 is not a fixed point. The finite fixed points are roots of the
quadratic equation (19). O

Let us return to the formula for f € Mob(C) with f(0) = wq, f(1) = wa,

f(0) = ws. A easy computation shows that (18) can be written as

(w = f(2))

w — w1 wWo — W3

w1 — Wa w3 —w
Indeed, this defines w as a MOBIUS transformation of z. For w = w; we

get z = 0. For w = wy we get (—1)2 = 1 and for w = w3 we get z = .

Lemma 9.1.5
Let z1, 29, 23 and wy,wq, ws triples of pairwise distinct elements of C.

Then there exists a unique MOBIUS transformation f € Maob(C) with
f(zk) = wy for k€ {1,2,3} given by

w — W1 Wy — W3 zZ— 2z zZ9 — 23

w1 — W2 w3 —w Z1 — 29 zZ3 — X%

Proof. Clear, this defines a MOBIUS transformation of z with the values
f(zk) = wy, for k € {1,2,3}. Uniqueness follows as before. O

DEFINITION 9.1.6

The cross-ratio (German: Doppelverhdltnis) of a,b,c,d € Cis

a—b c—d

q(a,b,c,d) == o d—a

There are different definitions of the cross-ratio in different textbooks.

The previous lemma yields the following theorem.
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9.1 (GEOMETRIC ASPECTS OF MOBIUS TRANSFORMATIONS

THEOREM 9.1.2: MOBIUS TRANSFORMATIONS PRESERVE

CROSS-RATIOS
A Mobius transformation preserves the cross-ratio:
q(f(2), f(21), f(22), f(23)) = q(2, 21, 22, 23)

holds for any four points z, z1, 29, 23 € C and any MOBIUS trans-
formation f.

We conclude with an example using the geometric properties of MOBIUS

transformations for proving geometric statements.

Given two circles C; and Cs touching in a point A, build a sequence of

circles touching C; and Cy and neighbouring ones.

One can now easily prove that the touching points of the small circles are
concircular, i.e. lie on a circle, with MOBIUS transformations: Preform
a MOBIUS transformation f with f(A) = co. Then f(C1) and f(Cb)
will be two parallel lines (lines as they pass through A and parallel as
they only intersect in o0). All smaller circles are mapped to equal circles
between those lines.

Their touching points all lie on a line parallel to f(C1) and f(Cs). The
preimage of this midpoint-line is a circle passing through A.

Example 9.1.7 (STEINER porism (relative of the PONCELET porism))
Let € and C5 be two circles, where C is in the interior of Cs. Play the
following game: starting with a circle Dy touching C; and Cy as on the
right, build a sequence (Dy)7_, of circles touching Cy and Cs.

Will this chain of touching circles close up? The answer apparently
depends on C; and Cy and the choice of Dy. o

THEOREM 9.1.3: STEINER

If the chain closes for one choice of Dy, it closed for any choice of
Dy.

Proof. Apply a MOBIUS transformation f such that f(Cy) and f(Cs)
become concentric circles (why is this possible?). For concentric circles
C1 and C5, the statement is obvious. O

Lemma 9.1.8 (todo)
Four points zg, 21, 22,23 € C lie on a circle (or a line) if and only if
q(20, 21,22, 23) € R.

Proof. Preform a MOBIUS transformation f € M6b(C) such that

f(z1) =0, f(22) =1 and f(z3) = 0.

The image of the circle uniquely determined by zi,z9, 23 is the line
through 0 and 1, which is the real axis of the complex plane. Thus
f(z0) lies on the image of the circle if and only if f(zp) € R. But
q(f(zo),O, 1?00) = f(ZO) 0
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9.2 CONFORMAL HOMOTOPIES OF DOMAINS

9.2 Conformal homotopies of domains

Lemma 9.2.1 (todo)
For zy € D, the MOBIUS transformation

zZ0 — %

Yz D—D, ZHl—zEO

is a conformal map and can be characterised as the one with ¢,,(0) = zg

and ¢z, (20) = 0.

Proof. (1) We show that ¢,, maps D to D. Then |p, (2)] < 1 is
equivalent to
|20 — 2| < |1 — 2Zo)?
> (20— 2)(Z0— %) < (1 — 2Z0)(1 — Zz0)
> |20/2=262—707 + |2|* < 1=262—%07 + |2|?|20]?
= (1-[z")(1~|20f*) > 0,
which is true due to zg, z € D.

@) We show that ¢, is surjective by showing (¢.,)~" = ¢.,. The

matrix representing ¢, is (__310 zl"). Thus

-1
-1 z 1 1 —z
-1 0 0
(9020) (—ZO 1) 2020 — 1 <ZO -1 )
B 1 -1 Z0
Cl—|x2\—z 1)/

(One can also show ¢, (¢, (%)) = z.)

@ Lastly, we check that ¢} # 0 for z € D. We have

, _ —(1—2’20)4—50(20—2) _ |Zo|2—1
Peo(2) = (1= 220)? BT PR

A different argumentation for 1. would be that (., maps 0D = S! to
itself: For z € S' we have

zZ— 20

=|z|- =1.

1— zgz~1
|9020| =

‘1—202

1—2pz 1—Zpz 1— 20z

The unit circle divides the RIEMANN sphere into two parts. By continuity,
D is mapped either to D or {z € C : |z| > 1}. If suffices to check one
point: ¢, (z9) = 0€ D.

THEOREM 9.2.1

All conformal maps f: D — D are of the form
f(Z) = ew(pZo

for some 0 € R and zg € D.
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9.2 CONFORMAL HOMOTOPIES OF DOMAINS

Proof. For a conformal map f: D — D there exists a zg € D with
f(z0) = 0. Define g := fop,,. Then g: D — D is a conformal map
fixing the origin: ¢(0) = f(¢2,(0)) = f(20) = 0. By the SCHWARZ
lemma, |¢’(0)] < 1. Applying the SCHWARZ lemma to g~' we find
l(g71)"(0)| = v < 1. Thus |¢/(0)] = 1. By the SCHWARZ lemma,

)l = 7o
g(z) = €z with 6 e R. O

DEFINITION 9.2.2 (CONFORMAL AUTOMORPHISM)
For an open domain U C

Aut(U) ={f: U - U : f conformal.}

is the set of conformal automorphisms of U.

The previous theorem showed that

Aut(D) = {ep., : 0 € R,zp € D}

The geometric action of ¢, can be represented as follows: Applying a

concentric orthogonal coordinate system (polar coordinates) to D yields

Fig. 46: The action of ¢, on D.

We have seen that D and H are conformally equivalent by ¢(z) =

z—:_z Conformal automorphisms of H can be obtained from conformal

automorphisms of D by conjugation via the conformal map :

Y~ o Aut(D) 0 = Aut(H).

THEOREM 9.2.2: CONFORMAL AUTOMORPHISM ON H

Aut(H) = {z'—> 9z ¥b . b deR with ad>bc}.
cz+d

Proof. For f € ¢~1oAut(D)oy we have, as ¢ ~ (1 7°) and (1} _.i)_l =
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9.2 CONFORMAL HOMOTOPIES OF DOMAINS

1
5(%21%
i~ 11 e —etfz\ (1 —i
T —1 —Zo 1 1
(11 (1 —2) —ie?(1+ )
i =i 1—-% i(Zo + 1)
(e =2)+ (1 -2) —ie”(1+2) +i(1+ %)
Z'Cie(]. — ZO) — ’L(]. — Eo) ew(l + Zo) + (]. + Eo)
_— €5 (1—z) +e5(1—Z0) —i(e’s(1+2)—es(1+7)
(€8 (1—2) — e (1—%)  e5(1+2)+es(l+%)
_s [ atA —i(22 — Z2)
i(Zl 721) 22 + Z2 ’
where

21 = ei%(l —20) and 21 = eig(l + zp).

As z+zeRand z—z € C\R for all z € C, this is a matrix with real

entries. In this representation, ad — bc = 5 # 0.

It is left to the reader to check that any MOBIUS transformation z — %j:s

with a,b,c,d € R and ad > bc maps H conformally to H.

It is easy to see that JH = R (compactification of the real line) is
mapped to itself. It now suffices to check that there exists on z € H with

f(z) e H. O

What is Aut(C)?

THEOREM 9.2.3: CONFORMAL AUTOMORPHISMS OF C

Aut(C) = {z—az+b:a +#0}.

Proof. Let f € Aut(C). We show that f(z) = az+b. Set g(z) :== f(z71).
As f is entire, g has an isolated singularity at zg = 0. It cannot be an
essential singularity by the Casorati-Weierstrass theorem, since small
punctured neighbourhoods of zero B.(0)\{0} for ¢ > 0 are mapped to
open sets not containing f(B 1 (0)), thus their images are not dense in C.

Therefore, for all z with |z| € (0,7) we have

and thus .
f(z)= Z cpzk
k=—n

for |z| > % (punctured neighbourhood of o). By theorem 6.0.3 we have

1

Ck = -
21

3€f(z)zk71 dz

for k£ > 1, implying ¢x = 0 for £ > 1 by the CAUCHY theorem, as f is
holomorphic. Thus f is a polynomial: f(z) = >;_,c_kz". It can only

be bijective (conformal) if n = 1. O
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9.2 CONFORMAL HOMOTOPIES OF DOMAINS

We will now make a couple of remarks about the properties of holomorphic
functions at co.

DEFINITION 9.2.3 (DIFFERENTIABILITY AT oo I)

A function f: C > U — C with f(o0) # o is differentiable at oo if the
function g(z) := f(z71) is differentiable at z = 0.

Example 9.2.4 (Differentiability at oo I)
Counsider the MOBIUS transformation f(z) = ‘CLZZIZ for ¢ # 0 (so that
f(o0) # ). It is differentiable at z = oo, as g(z) = SHb _ bata g

differentiable at zero and we have g(0) = % and

o

+d dz+c

wln

J(2) = b(dz + ¢) — d(bz + a) _ be—ad

(dz + ¢)? (dz + ¢)?

and thus ¢/(0) = beed,

DEFINITION 9.2.5 (DIFFERENTIABILITY AT oo IT)
A function f: C > U — C with f(zp) = o is differentiable at zy # o0

if g == % with g(z9) = 0 is differentiable at z.

Example 9.2.6 (Differentiability at co II) Again consider f(z) =

gjis at zg == —< for ¢ # 0 (so that f(z9) # o). Then s g(z) = Zzii is
differentiable at zy and we have
'(2) = claz +b) —a(cz+d)  bc—ad
g = (az + b)? ~ (az +b)2
and thus ¢'(zg) = a(lfif;ilﬂ = =7 #0. o

In conclusion, MOBIUS functions are holomorphic functions on the RIE-
MANN sphere.

DEFINITION 9.2.7 (ISOLATED SINGULARITY AT o0)
A function f: C > U — C has an isolated singularity at z = oo if
g(z) = f (z_l) has an isolated singularity at 0. The type of singularity

of f at o is, by definition, identical to the the type of singularity of g
at zero.

Example 9.2.8 (Isolated singularity at o) Consider a polynomial
f(z) = ZZ;O A —1 2" with ag # 0 has an isolated singularity at oo, which
is a pole of order m:

m k
Consider a rational function f(z) = % with ag,bp # 0. At
k=0 "m—
z = o0, f has

e apole of order m —nif m <n
e a removable singularity if m <n

—azeroofordern—mifm<n
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9.2 CONFORMAL HOMOTOPIES OF DOMAINS

— a removable singularity if m = n with f(o0) = 32.

MOBIUS transformations are a special case (m =n = 1). o
Example 9.2.9 The exponential function f := exp has an essential

singularity at z = o by corollary 7.0.15, as g(z) = 22:_00 (_Z—;), has an
infinite principle part. o
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SCHWARZ reflection principle and
SCHWARZ-CHRISTOFFEL formula

The SCHWARZ-CHRISTOFFEL formula is an explicit conformal map from
H to a regular polygon.

For the proof of the theorem of the SCHWARZ reflection principle, we
will need the following theorem, which is, in a sense, an inverse for the
CAUCHY integral theorem.

THEOREM 10.0.1: MORERA (1886)

Let U < C be an open subset and f: U — C a continuous function.
Suppose that for any closed triangle A < U,

§ f(z)dz =0. (20)
0A

Then f is holomorphic.

\ J

Proof. Since holomorphy is a local property, we can assume without
loss of generality that U = {z € C: |z| < r}. For z € U define

F) = | Q) de,
0
where the integration domain is the line between 0 and z, parametrised
by v: [0,1] = U, t — tz.

Consider A to be the closed triangle whose vertices are 0, z and zy. By
(20)

F(2) = Flz0) = f £(0)dC,

where the last integral is along the straight line segment from zy to z,
parametrised by 3: [0,1] —» U, t — (1 —t)2o + t2.

Thus .
F(z) — F(z) = L Fll=t)zg +t2) - (2 — 20) dt,

implying )

Fz) = Flz) :f FI(L = t)z0 + t2) dt.

zZ— 20 0

Thus )

i D=L ) dt = S,

zZ—20 zZ— 20 0

Thus F is a holomorphic function in U with F'(z) = f(z). By the
GOURSAT theorem, the derivative of a holomorphic function is also
holomorphic. O

How can one use this theorem to construct holomorphic functions and

conformal maps?
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THEOREM 10.0.2: SCHWARZ REFLECTION PRINCIPLE

Let G € H be a domain such that 0G o K, where K < R is
an interval on the real axis. Let f: G — C be holomorphic,
extendable to a continuous function f: G — C (G being the

topological closure of G). Suppose that f takes real values on K:
f(K) c R. Define

f(2), z€ @,
F(z) = ﬁ, ze1(G),
f(Z) = %7 z€e K,

where 7 denotes complex conjugation and thus 7(G) represents

reflection of G at the real axis.

Then F' is holomorphic.

\ J

Proof. Let f: 7(G) — C be defined by f := 70 fo f, ie. f(z) =
f(Z). We show that f is holomorphic. Indeed, f is real differentiable,
with differential given by the chain rule (all maps are linear and thus

representable by matrices):

-y )6 )l 2)-6 )

which is a matrix of the multiplication by a complex number a — ib =
a+ b, if f'(Z) = a + ib.

It remains to prove that F is differentiable in K. To do this (or, to prove
holomorphicity of F') we apply MORERA’s theorem. Let A be a triangle
intersecting G and 7(G) (and K) and let v := 0A. Set Ay == An(GUK),
Ay = An (7(G) u K) and ~; := 0A; for i € {1,2}. We then have

%Fdz:ngdz+§Fdz=1ir%3€fdz+ ;Ffdz,

Y 71 Y2 ,yis) 755)

where the last equality follows from continuity of F and %,(5) = 8A§5) for
ie{l,2 and AP i= ANG{S(2) = e} and AY) = An7(G) N {S(2) <
—e}.

By the CAUCHY theorem, both integrals are zero, so §7 Fdz=0 O

Remark 10.0.1 (Generalisation) It is not important, that K < R
and f(K) < R. One can equally well assume in the SCHWARTZ reflection
principle that K < Cy and f(K) < Cy, where Cy and C are generalised
circles (i.e. circles or lines). Think of such situations as K < R and
arg(f(z)) = a (K is mapped to a ray) or R(f(z)) = a (K is mapped to a
vertical line) or I(f(z)) = b (horizontal line) or |f(z)| = 1 (unit circle).

In such situations, one sets

~

(Z)v S C';7
o1(f(o0(2))), z € 0o(G),
f(z) =(o10fo000)(2), z€K,

where oy and o7 are geometric reflection at Cy and C; respectively.

F(z) =
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Corollary 10.0.2
Let f,g: H — C be continuous such that the restrictions flg and g|m are
holomorphic. If f =g on (0, %) c R, then f =g on H.

Proof. Let h: G — C be defined by h := f — g, where G := K x R, and
K :=(0,%) cR. Then K < G and h(K) < R and h is holomorphic on

G and continuous on G.

By the SCHWARZ reflection principle, h admits a holomorphic extension
H: GUKUT(G) = K xR — C with H = f—g on G. By the Uniqueness
theorem, f — ¢ =0 on G and thus by the Uniqueness theorem, f —g=0
on H. O]

Corollary 10.0.3
Let f: G — C be continuous, f|c holomorphic with |f(z) —i| = 1
for all z € I ¢ 0G n R, which is an interval. Then there exists a
F:GulIuTt(G)— C such that

Pz = 1@

1-if(2)
Proof. We have
fI)={zeC: |z —i] =1},

which is a circle. A reflection with respect to f(I) is given by o1(z) :=
z
-z

10.0.1), there exists a holomorphic extension F': Gu I U 7(G) of f with
F(z) = 01(f (%)) for z € 7(G), i.e.

By the generalisation of SCHWARZ reflection principle (remark

F(z) = Li

1-if(z)
for z € 7(G). By the Uniqueness theorem, F(z) = 15?3@ for z €
ul uT(G) O

Remark 10.0.4 The formula for reflection with respect to a circle can

be derived as follows. The inverse at the unit circle is given by

. 1. re'¥ z 1
D(re'?) = =¥ = — = — =
r r 2z Z
for z = re*?. For the circle above, we obtain
1 1 iz z
O(z—i)+i= - ti=———Fi=_—"= —.
z—1 zZ4+1 zZ+1 11—z

Application to the SCHWARZ-CHRISTOFFEL formula

It deals with a conformal map from the upper half plane to a polygon = IS w
IT with vertices (bg)7_,. We will denote the angles by (max)}_, with //// ///' e Q‘%\.
{ i ! i

O<ap<2forall ke{l,...,n}. f""i N

The existence of a conformal map f: H — II is a consequence of the Fig. 47: todo

RIEMANN mapping theorem, which we will prove later.
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THEOREM 10.0.3: RIEMANN MAPPING THEOREM

Any open connected, and simply connected subset of C is confor-

mally equivalent to D (or to H).

The following theorem will not be proven in this course.

THEOREM 10.0.4: CARATHEODORY

Let v be a JORDAN curve, i.e. a continuous closed curve without
self-intersections. Let G be the interior of v: v = 0G. Then
any conformal map G — D extends to a holomorphic map to a

homeomorphism G = Gu~y — D:={2¢eC: |z| <1}.

By aiy,...,a, € Ru{w} we denote the preimages of by,...,b,. The
intervals [ag, ag4+1] correspond to [bg,bgy1] under (the extension to a
homeomorphism of) f for k€ Z /nZ.

THEOREM 10.0.5

We have

f//(z) _ Zn: ay (21)

f'z)  Hz—a

if all ay are finite, where J;,,I((ZZ)) is the logarithmic derivative of f’.

If there is an ay = o0, we can, without loss of generality reorder
them such that a,, = o0 and then we have
2 N\ o

AC)

\. J

Proof. Continue f by reflection at (ag,ar+1). We have n functions
fi,--+, fn, which coincide on H (their image is always IT) but not on H_:
for z € H_ we have fi(2) = o0r(f(Z)), fe(z) = 0¢(f(Z)) and these values
lie in different copies of II, i.e. in o (IT), resp. in op(I1).

However, they are related in a simple way, as a,% = id and thus (oj o
Ix)(z) = 02(f(Z)) = f(Z): for z € H_ we have

fe=o0¢00%0 f.

A composition of two reflection at two different lines in the plane is a

EUCLIDEAN motion, so oy00 0 fi, = pfi + ¢, with p, g € C, where |p| = 1.

On H_ we thus have
oo
i »ofi fi
Thus, we obtain the function
J;—,,,, z e H,
SO = f;q;,
T z€ H_ U (ag, ak+1)-

The function ¢ is holomorphic in C\{as,...,a,}, i.e. ¢ has isolated

singularities at a1,...,a,. We determine the behaviour of ¢ near ay.
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Fig. 48: The line compactified by the in-
finitely remote element is, topologically, a

circle, so the segment [an,a1] is the arc of
the circle passing through co.

&) < r(?
b L ()
a(H)=H-  ~ - ﬁ\/fJ
Fig. 49: The domain of the analytically
continued function f, is the plane slit along

two rays starting at ay and ag41. Here, oy,
is the mirror reflection at (bgbgy1)-



The composition of the two maps, hg, maps a half disk holomorphically
to a half disk. It is extendable to a continuous function on the topological
closure. By applying the SCHWARZ reflection principle to hy, we get a
function, which maps a neighbourhood Uy 3 aj holomorphically to a disk
around zero. We denote this extension by hi. Thus hy has a simple zero

at ay, and can thus be written as

hi(2) = (2 — ak)hy(2),
where Ay, is holomorphic with f(az) # 0. But as hy(z) = (f(z) — bk)i,
we have
F(2) = b+ (hi(2)* = b+ (z—ap) (h(2))** = b+ (z2—ar)“* gr(2)

for some holomorphic function g with gg(ay) # 0.
By differentiation we get

F'(2) = ap(z — ap) ™ gi(2) + (2 — ar)** g;.(2)
(2 = ap) ™ Hawgr(2) + (2 — ar)gi(2))

ap—1~

Gr(2),

= (z —ay)
where g, is holomorphic with gx(ag) # 0.

By differentiation we obtain

f"(2) _ (2= ap)* g (2) + (2 — ar)™ *(ar — 1)gr(2)
f(2) (z —ap)** 1 gi(z)

71.(2) N ap — 1

ge(2)  z—ai’

where g—:’: is holomorphic in a neighbourhood of ax. Thus J}l,l((j)) has a

simple pole at a; with the residue ap — 1. All this holds for finite ay.

Thus if all a; are finite, the function

1"(2) 2o — 1
z

!
z
f ( ) k=1
is holomorphic around ay, ..., a,, i.e. it is an entire function.

To apply LIOUVILLE’s theorem, we determine the behaviour of this
function for z — oo, which can be done by geometric considerations: f can
be extended continuously to co, mapping oo to some point b € 011, where
b # by, for all k, on some side of the polygon. Consider a neighbourhood
of oo in H, i.e. the outside of a large half disk in H, which is mapped by f
to a half disk in the interior of II. By the SCHWARZ reflection principle,
f can be holomorphically extended to the map in Fig. 51, whose domain
is a neighbourhood of oo in (f:, which is mapped to a neighbourhood of b

biholomorphically. Thus the function f — b has a simple zero at infinity.

Thus
f) =0+ 29,

where g is holomorphic with g(o0) # 0. Differentiating the LAURENT

series g(2) = Y5, ckz *71 term by term, we obtain
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Fig. 50: The half-disk in the upper half

plane about aj is mapped to some neigh-

bourhood of by in the interior of the poly-

gon II. We apply a holomorphic branch of
1

the function (w —by,) *k : We have to deter-
mine the argument of w — by, which lies in
some sector of the opening angle may. We
can choose the argument arbitrarily up to
integer multiples of 27r. For any such choice
this function is well-defined by application
of the formula in polar coordinates. We
thus obtain a sector of the opening angle
.

> + PN
\ 2y S
<
G
£ _
p. e #
/<~ )
s e Sipk ¢ pornt <t D2

Fig. 51: b-point means that f takes the
value b and simple means that f — b has a
simple zero at infinity.



Thus

2cg  6cq 12¢c5 2¢o 1
F// _ - S _ = -
(2) 23 z4 25 23 <1 © <z)> '

and thus 02 ) )
ZCE (1 o <z>)

for z — o0. Thus ?,/((ZZ)) is a holomorphic function around oo with a zero

of order 1 there.

Summarising: if all aj, are finite then

S & a1
Flo) A

is an entire function with a simple zero at co. By LIOUSVILLE’s theorem,

f"(z) _ i ay —1
’ - —
f (Z) k=1 Z ag
if all a4, are finite.
Moreover, the coefficient by 1 gives Y} ap — 1= —2,ie. Y ap =

n— 2.

If a,, = o0, we consider a neighbourhood of o0 in H, which is mapped by
f conformally to a neighbourhood of the vertex b, in the interior of 11
with opening angle 7wa,,. Everything can be extended to a map on the
topological closure. This neighbourhood is mapped to a half disk around

zero by the map (w — bn)ﬁ

By the SCHWARZ reflection principle, h,, :== (f — bn)a%l can be extended
to a holomorphic function, whose domain is a neighbourhood of oo, which
is mapped to a neighbourhood of zero.

Thus we can write h,(z) = h"z(z), where h,, is a holomorphic function

with h,(c0) # 0). We thus have

1) = by + 222

2%n

with g, = izf{n, which is holomorphic with g, (o) # 0. By differentiating
the LAURENT series of g,, as before we obtain

sy anco (an + 1)y _apl 1
f(z)f—zanﬂ— proes R 1+0 2

no o Qnlan +1)co | (an +1)(an +2)c
f (Z) - Za"’+2 + Zan+3

(o + 1)eg 1
e (o))

7o - (e ()

and thus

for z — o0.
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Summarising: if a,, = 00, then

[z nz_]l o — 1

f'(2) =7

is holomorphic around the removable singularities a1, ...,a,—1 and a, =
o0 and is equal to zero at infinity. By the LIOUVILLE theorem,

) N
frz) 2

if a,, = 0. Comparing the terms of order I yields S o — 1) =
—(an +1),1e. Y0 _jap=n—2. O

Corollary 10.0.5 (Traditional form of the SCHWARZ-CHRISTOFFEL formula)
We have

f(z) = CL (= al)al_l(( — ag)o‘2_1 (e an)o‘"_l d¢ + cg,

where c,cq are constants and the last factor (¢ — a,)* 1 is omitted if
Gy = 0.

Proof. (We assume ay # o for all k € {1,...,n}) If we don’t worry

about defining the logarithm for complex numbers, we can rewrite

/()
f'(2)

and thus (21) is equivalent to (by the fundamental theorem of calculus)

= (logof')'(2)

(logof)( f

cio$
where 7, : [0,1] — C, t — ¢z and ¢y is a constant. We write S’y =

We thus have
(log o f")( 2 (ap — 1 f

= Z(akfl)‘[) log’ (&€ — ax) dé + ¢

d¢ + ¢
et

= Zn]( ar — 1)(log(z — ag) + cx) + co,

Fi(z) =& | [ exp ((an — 1)(log(z — ax) + c1)

n n
=[] —a el =& [ —am

where ¢y := e and ¢ := ¢ - [ [, _; exp(cg)®* 1. Integration yields

= J 1_[ z—ag))* tdz + C,

where C' is a constant. O

74



We now show the complex version of the fundamental theorem of calculus

we used in the proof above.

Proof. We have
1

LZ f'(z)dz = Ll F ()Y (t)dt = f (f on)(t) dt.

0
Writing f oy = u + iv and applying the real Fundamental Theorem of
Calculus yields

1

f(f o) (t)dt = Jl o' (t) dt + ZJ V' (t) dt

0 0 0
= u(1) = u(0) +i(v(1) —v(0)) = (f o ¥)(1) = (f ©7)(0)
= f(z) = £(0). O
Given a polygon II, we know aj,...,a,, but we don’t know ¢, ¢ and

ai,...,a,. How can they be determined knowing I1? The map f: H — II
is not unique, since it can be composed with any conformal automorphism

of HI, the set of which has three real parameters, as we can choose a, b, ¢, d

a

b
such that ad — be = 1 (rewrite as ( i >, where 2y = v/ad — be.) and

c d
ETRa)

then three parameters uniquely determine the fourth one (cf. theorem
9.2.2). Thus we can choose three of ay,...,an, say a1, as, as arbitrarily,
but the positions of ay, ..., a, are then defined uniquely. Finding them
(called accessing parameters) is very complicated, i.e. outside of the reach

of this course.

We will now discuss an inverse problem (in a sense): given aq,...,a, € R
with a1 < as < ... < a, and aq,...,q, € (0,2) such that >} | a; =
n — 2, what is the image of the upper half plane under the map z — f(2),
where

f(z) = JZ(C —a)M ¢ —a) T L (C—an)™ TG (22)

0

Since all exponents aj — 1 lie in (—1, 1), one can choose for each factor
(¢ — ax)*~! a holomorphic branch, i.e. a function, which is holomorphic
in H and continuous on the topological closure of H, H = H u R. For

instance, we declare

0, CeR,(>a,
T, CER,C<G;€,

arg(¢ —ay) =

such that arg(¢ — ag) € (0,7) for all ¢ € H such that arg((¢ — ap)**) €

(—m,m).

At infinity, the integrand behaves as

oo (3) - (0(2)

such that (22) converges absolutely and does not depend on the choice

of integration path in H connecting 0 and co.

We determine the behaviour of f on the boundary of H, i.e. for z € R.
The argument of the integrand is constant in every interval (ay, ax+1)
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for ke {1,...,n—1} and in (an,©) and (=00, a,). Therefore, as Z runs
along such an interval, its image f(z) runs along a straight line. Thus
f(R) is a polygonal line (= polygon??). Set by := f(ax). The vector

connecting by and b1, understood as by1 — by, is given by

A +1

Flasr) = flar) = f (t—a)® o (t—ap)™ (- ap) At

ay,

eRy

and has the argument
(g1 — D+ ...+ (a, — ),y

as arg(a) = 0 for a € R.

Since by, — bx—1 has the argument

(ap — D7+ ...+ (ay — 1)y

Fig. 52: todo
we see that at by, the polygonal line makes a turn by the angle (1 — )
counterclockwise, as this is the difference between the arguments.
Moreover, in {° (t —a;)* ... (t —a,)* "' dt, the integrand is > 0 and
has argument 0. In {* (t—a1)®~'...(t —a,)* ! dt, the integrand has
the argument

(o —)m+ ...+ (o, — )7 = —2m.
@ g

Thus, by — b, = (Szcn +§“ OO) has argument zero. Thus the corresponding \‘k‘) /‘ 2R
side of the polygonal line is parallel to the positive real axis. SR g TG
Summarising: the image of the real axis under f is a closed polygo- Fig. 53: todo

nal curve consisting of n segments [by_1,b;] for k € Z /nZ with the

("interior") angles way, at the vertices by, = f(ay) for k€ {1,...,n}. 7
In particular if all a € (0,1), the polygonal line is a simple (i.e. no ég\ /@\ é)‘
self-intersections) curve which bounds a convex polygon. Then H is % /

mapped by f to this polygon.

If ay € (1,2) for some k, the polygonal line might be simple (but then it }___,[. ¢
bounds a non-convex polygon) or even have self-intersections. €

Fig. 54: TODO

Fig. 55: Double arcs represent angles larger than 180 degrees. In some

cases, the term "interior" angles is thus misleading.
Remark 10.0.6 One could consider also the case where a1 < ... < a,
are real and oy, € (0,2) with >}, ax < n — 2 and still consider (22).

This should be interpreted as the case with n + 1 vertices, a,+1 = ©
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and ay,41 :==n—1— Y, _, ay, such that ZZ: ap=Mm+1)—2=n—-1.
Then one sets

Q0
b1 = j (t—a)™ . (t—ay)*tdt
0

and has -
bns1 — by = f (t—a)™ o (t—a,)*tdt

an

with argument zero and

a1
by 7bn+1 = f (tfal)alil ...(tfan)anil de

—0
with argument equal to

n

(o =D+ ...+ (g — )7 = (Z:ozk—n>7r=(l—oznﬂ)w7

k=1
yielding the picture on the right.

In general, it is difficult to decide where the polygonal curve f(R u{oo})
is simple (if there are o, € (1,2)). Simple cases are the following ones:

elfn=3 —w0<a <ay <az <o and 0 < a1,as, a3 < 2 with
a1 + az + a3 = 1. Then o; € (0,1) are angles of a EUCLIDEAN

triangle.

elfn=4and —0o<a; <...<ag<wand 0 < ay,...,aq < 2
with a1 + ...+ a4 = 2. Then no more than one of the «;, can be
greater than 1. If all four are smaller than one, we have a convex
quadrilateral, while if one oy, € (1,2), we still have a simple curve,
but a non-convex quadrilateral.

Remark 10.0.7 (Generalisation) Similarly to remark 10.0.1, it is not

necessary to reflect upon the real axis. For example, one can write down

an analogon of the SCHWARZ-CHRISTOFFEL formula for a conformal map

f: D — II. For this, we use the same formula but with ay,...,a, €
oD =S!'.

If a1, as, a3 are three arbitrary points on S* and ay, as, az € (0,1) with
aq + ag + ag =1, then (22) is the sought after map.

For any a1, as,as € C, we obtain a conformal map of a disk bounded by

the circle through a1, a2, as to a triangle.
Example 10.0.8 What is the image of D under the map

- [ Lt

dc.
o (1-¢°)3 ‘

|| oo

<,

The preimages of the vertices of the polygonal line are wy = e* Tk for

ke {0,...,4} with the corresponding aj — 1 = —%, ie. ap = % <1 and
& = e D) where k € {0,...,4}, with ap — 1 = %, ie. qi = % > 1,
where ¢ = k + 5.
We have ) )
(1+1t°)5
W) =W ———dt = Aw
Fleoe) kL (1—15)% g

7

¢
T (‘(\_,.1“) ( . /4« _,,g“ﬁ)

SN Gi=h % - —

é. bin =50

Fig. 56: todo

£ £ v &+ /—\é;f//?f/9'\(s'

SR R By

Fig. 57: TODO

a klcicean %w\c.L.SQ( : 4
S

Fig. 58: TODO



with some A > 1. We have

[SIFN SIS

f6) - | g_i; dt = Be,

4t // e
with B < 1. o @/

Example 10.0.9 (Circular arc polygons)

An example of a circular arc polygon II can be seen in the figure on the Fig. 59: todo
right.

Again, let by = f(ax) with ai € R be the "vertices" of IT and consider

fer C\((=0,ax) U (ar+1,%)) = C, fr(2) = ox(f(2)) (and f;(2) :=

0;(f(Z))) which are obtained with the SCHWARZ reflection principle.

How do we reflect about circular arcs? The reflection about the unit
circle is o(z) = % The reflection about a circle centered at the origin
2
T

with radius r > 0 is 0,.(2) = %.

The reflection about a circle centered at ¢ € C with radius r» > 0 thus is

2

+c.

Oer(2) = g
Fig. 60: A circular arc polygon

As before we have f; = 0; 00y 0 fi. We have

2 2

r T
(ojook)(2) = ( )k +ocp = = k + ¢k
Ti\=) = Ck == +c—
2,
_ rp(z —ck) e

i+ (g — )z —¢j)
(r,% + ckE) zZ+ (ck(rjz — r% - cjé))

(Ej —Ek)z+rj2- —CjE

)

where ¢ := c¢; — ¢, which is a MOBIUS transform. We can thus write
fx = ao fj, where o € Méb. We now use the SCHWARZIAN derivative
(see 10.0.10) S, which fulfils S(fx) = S(a o f;) = S(f;).

Tedious calculations yield Fig. 61: In contrast to the polygonal case,
1

1—;)? i
0 8

)
Z — Q;

we need a modified map: (w — by) “k ¥ (w).

where the (; are accessory parameters, which depend on .

With clever integration, we can deduce f from S(f). o

Example 10.0.10 (SCHWARZIAN derivative) todo from HW o
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Analytic continuation of holomorphic
functions

We have already encountered analytic continuation by
e means of contour integrals (I'- and ¢ function)
e the SCHWARTZ reflection principle.

We now turn to a general approach.

11.1 Continuation along a disk chain

Motivation. Let fy: Cy — C, where Cj is an open disk around ¢y, be
a holomorphic function. Then f; is represented by a convergent power
series centered at ¢y by theorem 6.0.3.

For any c¢; € Cy, consider a power series for f; centered at c¢;. It

can happen that this series converges in a disk of a radius larger than
diSt(Cl, 600)

In this case, we obtain a function f;: C; — C for a disk C centered at
c1, which is not contained in Cy. Thus f; is obtained from fj by analytic

continuation along a disk chain (Cp, Cy).

By the uniqueness theorem, we have folc,~c, = filconc, -

DEFINITION 11.1.1 (DISK CHAIN)

A disk chain is a finite sequence of open disks (Cy,...,C,) with the
centres co, . ..,c, such that for any k € {1,...,n} we have cx_1,¢x €
Ck,1 N Ck.

DEFINITION 11.1.2 (ANALYTIC CONT. ALONG A DISK CHAIN)
A holomorphic function f,: C,, — C is a analytic continuation of a
holomorphic function fy: Cy — C along the disk chain (Cy,...,C,)
if there is a sequence of holomorphic functions fr: Cy — C for k €
{0,...,n} such that fr_1|c,_1~ncw = felon_1nc, forall ke {1,... n}.

We now investigate under which conditions such a continuation exists.

Example 11.1.3 (trivial situation) Let f: U — C be a holomorphic
function and Cy < U be a (small) disk. Set fy = f|c,. Then fy can
be analytically continued along any disk chain in U. By the uniqueness
theorem, the resulting f,: C;, — C will not depend on the disk chain
connecting Cy to C),. o

Lemma 11.1.4 (Analytic continuation of the derivative)
If f can be analytically continued along a given disk chain. Then fo can

be analytically continued along the same disk chain.

Proof. Let go := f} and gi: Cx, — C be its continuation along a disk
chain (C%)}_,. We proceed by induction. Induction hypothesis: Suppose
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11.2 CONTINUATION ALONG A PATH

there is an analytic continuation of fy along (C)j", for m < n. This is

trivially true for m = 0 (base case).

Induction step: By the uniqueness theorem f; = gi for k € {0,...,m}.
The function g,,+1: Cpe1 — C is holomorphic and is given by a con-
vergent power series in C,,y+1. Therefore it possesses a holomorphic
antiderivative Fary1: Cpqp1 — C with F), | = g1 (obtained by term

by term integration of the power series). On C,, N Cypi1 we have
i1 = fon = 9mi1 — gm =0
by 11.1.2. Thus F,,11 — fm = a is constant on Cp, N Chpyy1-

Set fin+1 = Fmmt1 — @, which is an antiderivative of g,,4+1 on C,,+1 and
Jm+1— fm = Finy1 —a — frn = 0 holds on Cp, 0 Cpy1. O

Corollary 11.1.5
Let g: U — C be a holomorphic function and fo: Cy — C be its an-
tiderivative in a disk Cy < U. Then fy can be analytically continued

along any disk chain in U.

Example 11.1.6 (Continuing the logarithm) Let U := C\{0} and
g:U—>C, z— %, which is a holomorphic function. Then fo(z) = In(z)
is represented by a convergent power series

& (-

In(z) = Z T(Z -n"

n=1
in Cy = {2 € C:|z—1] < 1}. The function fy can be analytically
continued along any disk chain in C\{0} by corollary 11.1.5.

Warning: This does not define In(z) as a holomorphic function in C\{0}.
Indeed, if this were true, there would exist a holomorphic antiderivative
of g in C\{0}, which is not the case because of §|Z‘:r & = 2rmi # 0.

What is going wrong?

We can analytically continue f; along two disks chains (Cy,...,C,) and
(Co, Ch,..., C~'m) with C,, = C,, but it is not guaranteed (and it is not
true in general) that f, = fy. o

11.2 Continuation along a path

DEFINITION 11.2.1 (DISK CHAIN ALONG PATH)

Let ~y: [to,t1] — C be a continuous curve, i.e. a path. A disk chain
(Co,...,Cp) goes along ~ if the centres (cx)}_; of (Ck)p_, lies on 7,
i.e. are given by ¢, = y(7) with tg = 79 < 71 < ... < T, = t; and the
piece Y|ir,_, .7, lies in Cr 1 N C.

Lemma 11.2.2 (Independence of disk chain choice)

Let vy be as above and (Co,Cy,...,Cp) and (Cy, Cy,Cp) be two disk
chains along vy such that ¢, = ¢, = y(t1). Let g: Cp, > C and §: Cpp —
C be analytic continuations of a holomorphic function f: Cy — C along
these disk chains. Then g = § on the smaller of the disks C,, and Ch,.
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Fig. 64: Two analytic continuations of the

logarithm.
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11.2 CONTINUATION ALONG A PATH

Proof. For any ¢ € [1;_1, k], let P; be the power series for f; centered
at y(t), which is the same as the power series for f;_1 centered at v(t),

as fr and fr_1 coincide in Cy N Cg_1.

For any ¢ € [to, t1] there is a € > 0 such that for all s with |s —¢| < ¢, the
power series are correlated in the following sense: the power series P; is
the power series expansion of the holomorphic function P; centered at
V(s).

We say that the system of power series (Pt)te[to,tl] is locally consistent.

Recall that this systems corresponds to analytic continuation along the
disk chain (C)7_,-

We define analogously P, for fy, k € {1,...,m}, obtained by analytic
continuation along the disk chain (Cy, C'l, ém) We want to show that
P,=P forallte [to,t1]-

Set M := {t € [to,t1] : P, = P,}, which is nonempty as to € M. M is
relatively open in [¢g, t1] due to local consistency, but M is also (relatively)
closed in [tg,t1], since if s is an accumulation point of M, then Py — P,
has a zero of infinite order at ~y(s) (similar to the proof of the uniqueness
theorem), i.e P, = P, and thus s € M. Since [to,t;] is connected, we
have M = [to,t1]. In particular, t; € M, i.e. Py, = Pt1~ O

This lemma allows us to speak about analytic continuation along contin-
uous curves.

Corollary 11.2.3

Let g: U — C be a holomorphic function and let fy: Cy — C be an anti-
derivative of g in a disk Cy < U. Then fy can be analytically continued

along any continuous curve in U.

Proof. It is sufficient to show that for any continuous curve v: [tg,t1] —
U, there exists a disk chain going along v with all disks contained in U.

Let r = dist(vy([to,t1]), C\U) > 0, as v([to, t1]) is compact and C\U is
closed. Let € > 0 such that |y(t) —y(s)| < r for all t,s with |t — s| <&
(possible due to uniform continuity of +).

Choose a subdivision of [tg,t1] with 7, — 7,—1 < e for all k € {1,...,n}.
Define a chain of disks of radius f with centres y(7x). All these disks are
in U. O

With this definition of analytic continuation along a continuous curve
we still face the same problem as before: the result of the analytic
continuation to z; € U can depend on the choice of a curve from zy to zq
(even if analytic continuation is guaranteed along any continuous curve).
This is the case for In, see figure on the right.

There are, however, sufficient conditions under which the result of an-
alytic continuation along two curves v; and - in U coincide, given by
the MONODROMY theorem. It states that ; should be continuously
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for the curve 1 and 2.



11.3 HomoTorPYy

deformable to 72, while staying in U.

11.3 Homotopy

We take a small excursion to topology. It will be convenient to choose
specific parametrisations for curves, by fixing the definition domain to
be [0, 1].

Let X be a topological space.

DEFINITION 11.3.1 (PATH)

A path in X is a continuous map ~: [0,1] — X.

Let a,b: [0,1] — X be two paths with a(1) = b(0). Then their compo-

sition ab: [0,1] — X exists and is given by

2t), telo,1],

ab(t) == a(2t) [0, 3]

The inverse path is a= (¢) = a(1 —t) for ¢ € [0, 1].
A path a is closed if a(0) = a(1).

Remark 11.3.2 The composition of two closed paths is closed. The

inversion of a closed path is closed.

DEFINITION 11.3.3 (HOMOTOPY)
Two paths a,b in X with a(i) = b(i) = z;, i € {0,1} are homotopic
if there is a homotopy h between a and b, i.e. a continuous map
h:[0,1]*> — X such that
h(i,s) = z; for i € {1,2} Vs € [0,1]
h(t,0) = a(t), h(t,1) = b(t) Vt € [0,1].

We then write a ~ b.

Lemma 11.3.4 (Equivalence relation)

The relation ~ is an equivalence relation.

Proof. Let a,b,c be paths in X.
@ Reflexivity. We have a ~ a via h(-,s) := a for all s € [0,1].
@ Symmetry. If a ~ b via h, then b ~ a via (¢,s) — h(t,1 — s).

@ Transitivity. If a ~ b via hy and b ~ ¢ via hs, then a ~ ¢ via

=
NI

]’Ll(t,28), SG[
ha(t,2s — 1), se|

I,
1.

)

h(t,s) ==

N[

(check continuity) O

We write [a] for the equivalence class of a with respect to ~.
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11.3 HomoTorPYy

The composition can be lifted to the equivalence classes. If a, b are paths
with a(1) = b(0) and a ~ ay via hy and b ~ by via hg, then ab ~ a1b; via

h(t,s) _ {h1(2t,8), te [ ], \}

1. %@

B ot
(check continuity) We thus define [a][b] := [ab]. E B,

=)
=

)

ha(2t—1,s), te|

N[

Lemma 11.3.5 (Homotopy and reparametrisation) & 4

We have a ~ aop for any continuous map @: [0,1] — [0, 1] with p(i) =1

forie {0,1}. Fig. 72: Illustration of [a][b] := [ab].
Proof. Define h(t,s) :== a((1 — s)t + sp(t)) (check continuity!). O

Lemma 11.3.6 (Associativity of homotopy classes)
If a(1) = b(0) and b(1) = ¢(1), then (ab)y = a(bc) and thus [ab][c] =
la]([b][c])

Proof. We have

(ab)c) (t) = =b(dt—1), tels 3],
((eh)e) c(2t—1), tel},1] (=1 Lz
c2t—1), teli,1]
and
a(2t), te[0,2],
a(2t), te[o,1], (26) [1 23]
(a(bo))(t) = U2 =<bat—-2), teld, 3],
(be)2t— 1), te[d1]
c(4t—3), te[3,1].
Thus ((ab)c)(t) = (a(be))(p(t)) with
2t, te[0,1],
p(t) =4t telg 3], 0
L te[s.1],
Lemma 11.3.7 (constant path and homotopy) i
If z1 is a constant path, then b(t) = z1 for all t € [0,1], then az1 ~ a and iy 1> t
thus [a] [Zl] B [a] Fig. 73: The reparametrisation ¢.
Proof. We have
a(2t), telo,3],
(az1)(t) = = a(p(t)) ;
n, te[b1] € )
A
with
A
2t, tel0,3],
p(t) = 2 O
1, tels,1]
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11.3 HomoTorPYy

Lemma 11.3.8 (Composition with inverse)
We have aa™ ~ zy and thus [a][a™] = [z0].

Proof. We have

where
b(t) = 2t, te o, %],
2(1—-1t), tel0,3]
Let
h(t, s) = a((1 = s)y(t)),
which clearly is continuous. O]

The only thing which does not allow use to declare the set of equivalence
classes of paths to a group with respect to composition is that the
composition is not always defined.

However we can always compose closed paths with the same starting
point.

DEFINITION 11.3.9 (FUNDAMENTAL GROUP)

For zp € X, m1(X, z0) is the group consisting of equivalence classes of
closed paths in X starting and ending at zy with respect to homotopy.
The group operation is the composition and the neutral element is [2¢].
71(X, 29) is the (first) fundamental group of X.

The first fundamental group does not depend on zg, we have m (X, 29) =~
m1 (X, z1) for all 2, 21 € X if there is a path v in X from zg to 21, as you
can see on the right. Thus in a path connected topological space, all

first fundamental groups are isomorphic.

DEFINITION 11.3.10 (NULL-HOMOTOPIC, SIMPLY CONNECTED)
A path is null-homotopic if it is homotopic to a constant path z.

A path-connected topological space is simply connected if any closed
path in X is null-homotopic.

Example 11.3.11 (Star-shaped domains are simply connected)
A star-shaped domain is simply connected.

A domain U is star-shaped with respect to zg € U if for any z; € U with
[20,21] € U we have (1 — s)z1 + sz9 € U for all s € (0,1).

A (double) slit plane is star-shaped.
If a is a path in U with a(0) = a(1) = 2, we can set h(t,s) = (1 —
s)a(t) + szo. o

Example 11.3.12 The punctured plane C\{0} is not simply connected,

as a loop enclosing the origin is not null-homotopic. o
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Fig. 75: The reparametrisation .
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—e
=
[

25 i

Fig. 76: The map 71 (X, z0) — 71 (X, z1),
[a] = [v~1la][~]-

null-homotopic

simply connected

Fig. 77: The homotopy h.



11.3 HomoTorPYy

Lemma 11.3.13 (Contractability)
Let X < C. The following are equivalent.

@ for all xg € X, m1(X, o) is trivial, i.e. contains only the neural

element.
@ X is simply connected.

@ every continuous function f: S' — X extends continuously to a
map F: D — X.

Proof. ") = @": Let v: [0,1] — X be a closed curve starting
in zyg. Then [y] € m (X, z0). Let ¢z, : [0,1] — X be the constant path.
Then [c,,] € 71 (X, x0) and thus [c,,] = [7] by @), i.e. ¢z ~ 7.

"@ — @": Let f: S - X be a continuous function and 7: [0,1] —
St, t + e*™ be a parametrisation of S'. Then fo~v:[0,1] — X is a
closed curve, as v is. By @, there is a homotopy H: [0,1]> — X such
that H(-,1) = f oy and H(-,0) = ¢, for some zy € X.

Let ¥: [0,1) x (0,1] — D\{0}, (¢,r) = 7€, which is a homeomor-
phism. Thus F: D\{0} — X, t — H(U~'(t)), where H := Hl10,11x(0,1]5
is continuous. Define

F(z), z € D\{0},

To, z=0.

F: D> X, z—

It remains to show that F' is continuous in zero. For ¢ > 0 we have
F~(Bx(20)) = F~'(Bc(0)) v {0} = ¢(H " (Bc(0))) v {0}.

Choose §: dist ([0, 1]2\H~Y(B:(20)),[0,1] x {0}) > 0, then B5(0)
Y(H1(B:(20)))-

"@ — @": Let y e m (X, ) with v: [0,1] — X, which induces
amap f:S! — X, €™ s 4(t) (well defined as v(0) = (1) and
e?m0 = ¢2m) By (@) there exists a continuous extension F: D — X.
Define

H:[0,1] - [0,1] = X, (s,t) — f(se*™).

(endpoints aren’t fixed) O

THEOREM 11.3.1: MONDODROMY THEOREM

Let U < C be an open set, Cy < U a disk with the centre cg
and f: Cy — C a holomorphic function, admitting an analytic
continuation along any path in U starting at cg.

Let ag,a; be two holomorphic paths in U starting at ¢y and
ending at ¢;. If gg,g1: C1 — C are obtained from f via analytic
continuation along ag, a;, respectively (C is a disk with centre
at ¢1), then gy = g1.

. J

In short: analytic continuations along homotopic paths lead to the same

results.
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11.3 HomoTorPYy

Proof. We want to show that go = g1, by showing that all g4, s € [0, 1]

coincide. We will show that g, is locally constant, i.e. for all s € [0, 1]

there is a 0 > 0 such that g, = gs, for all s with |s — sg| < 6.

We identify ¢gs; with its TAYLOR series around zj, in order not to have to

book-keep the definition domains of gj.

Consider gs, together with a disk chain along as, We show that if J is

small and |s — so| < 4, then as, is so close to as such that we can use the

chain along as, to produce a disk chain along as by suitably shrinking the

disks of the original chain: Cy(s) € Ck(sg); then gi(s) will be obtained

by restricting gr(so) to Ck(s), so that gi(s) will be locally constant.

@ Consider Cy(so) and A == ag,([Tx_1,7%]), which is a compact set.

86

Let a = dist(A4, dC%(so) > 0 (due to definition of the disk chain.

Set € := § > 0. Then for all z € B.(ck(s0)), the largest open
disk with center z contained in Cy(sp) contains the £ neighbour-
hood of A. Take ¢ to be the minimal one for all n + 1 disks
Co(s0),C1(s0), - -+, Cn(s0).

Choose § > 0 such that |as(t) — as, (t)| < e for all ¢ € [0, 1] as soon
as |s — sp| < §. This is possible due the following compactness
argument. For any ¢ € [0, 1] there exists a §(¢) such that |as(t') —
as,(t)| < € as soon as |t —t| < §(t) and |s — so| < d(¢) (a square-
shaped neighbourhood of (¢, s¢)).

and covered by the union of all such square neighbourhoods, there

Since [0,1] x {so} is compact

exists a finite subcover, i.e. a covering by a finite number of such
squares |t — t;|yd(t;) and |s — so| < 6(t;). Choose ¢ := min; 6(¢;).
With e found in step 1 and ¢ found in step 2, consider some
S € Bg(SO).
to the property of €, the largest open disk with the center c(s)

Set ¢;(s) == as(r;) for j € {0,...,n}. According

contained in Ci(so) covers as([Tg—1, Tk+1]). Those disks constitute

a disk chain along as. O

c;_‘ =k ()

Fig. 79: TODO

Fig. 80: TODO

]

/ /L 5= e

| =)

€ - gl Goclisod
4 A

A

Fig. 81: If p < ¢, then the maximal distance
of the points of the boundary of the smaller
disk to the boundary of the larger disk is
less than 2e, while the e-neighbourhood of
A has distance to the boundary larger than
2e.

Fig. 82: According to the property of §, the
segment as([Tk—1,7k+1]) is contained in
the e-neighbourhood of as, ([Tk—1, Tk+1])-



Winding number; global versions of
the CAUCHY integral theorem and of
the residue theorem

We will continue to study properties of integrals of holomorphic functions
over closed curves, in particular, the question whether such integrals
vanish. This question has aspects related to homotopy but also aspects

related to homology.

In this section, we assume all curves to be piecewise C* rather than merely

continuous.

The winding number (German: Umlaufszahl) n(a) of a closed curve
shows the number of revolutions of a closed curve v around a point
a € C\Im(vy).

Take, for definiteness, a = 0, otherwise, translate everything by a in the

complex plane.

DEFINITION 12.0.1 (WINDING NUMBER)

Let v: [to,t1] — C\{0} with ~(t9) = v(¢1). Take a subdivision tg =
To <71 <...<Tm =ty, which is so fine that for any k € {1,...,m} the
piece of the curve y([75—1,7x]) lies in an open half plane through zero
(see figure). Then there is a well defined angle 8, € (—m, 7) between the

ray [0,7(7k—1)) and the ray [0,7(7k)):

() _ e ¥(Te—1)
1y (7) I(Te—1)|

The winding number of ~ is

1 n
ny(0) = o~ > k.
k=1

The number n.(0) does not change by a refinement of the subdivision
(i.e. adding a point). Since any two subdivisions admit a common
refinement (by taking the union) this implies that n.(0) is independent

of the subdivision.

Lemma 12.0.2
We have n,(0) € Z.

Proof. We have

() _ Al _ (N 7(to)
Al o)l p( ;9> 2 (to)]

Thus exp (i >,_, 0k) = 1,i.eid,_, 0 € 2MiZ, i.e 5= > _, € Z. O
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Ny (c) =75
b J.d ‘ _{(—:

Fig. 83: In the third picture, n(c) = 0 and
in the last, n,(d) =0

Fig. 84: todo



Lemma 12.0.3 (n4(0) is homotopy invariant)
If h: [to, t1]x[0,1] — C\{0} is a continuous homotopy between two curves
such that for any s € [0,1], h(to, s) = h(t1,s), and, setting v,(t) = h(t,s),

all s are piecewise C', then N, (0) does not depend on s.

Proof. We have that s +— n,_ is a continuous, integer-valued function.
Thus it is constant. O

Corollary 12.0.4

We have that n(0) is invariant under continuous orientation preserving
reparametrisations: if ¢: [t0, 71| — [to,t1] is a continuous bijection with
To < T1, then Ny (0) = n,(0).

Lemma 12.0.5 (a — ny(a) is locally constant)

If a changes continuously not meeting Im(vy), then n(a) does not change.

In particular, for a in any connected component of C\Im(vy), n(a) is

constant.
Proof. As above. O

This gives the easiest recipe ("traffic rule") for determining the winding
number of a curve around a point by tracing it in different connected
components of C\Im(v) by taking into account that in the unbounded
component ("far away" from 7), we have n,(a) = 0: If a cross v from
the "right side of the road" to the "left side", then the winding number

increases by 1.

THEOREM 12.0.1: TODO

For any closed curve v and any point a € C\Im(+y), we have

dz

w0 = omi f 2 —a’

~

Proof. Without loss of generality let a = 0. We define the integral
via analytic continuation of a local antiderivative of % over a disk chain
running along . The centres of disks serve as a subdivision from the
definition of n,(0). The logarithms are given by In(re®) = In(r) + ip
for r > 0 and ¢ are arguments within a half plane, so that

dz ;
J([ Dz = In([y(7x)]) — In(|y(7x-1)|) + 6.
YUTk—1,Tk

) z
Upon summation over k € {1,...,n} the real part vanishes by telescoping
so that
dz o
— =1 0r = 2min~(0).
P ;1 k min-(0) 0
) —
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DEFINITION 12.0.6 (HOMOLOGOUS TO ZERO)
Let U < C be an open set. A closed curve v in U is homologous to zero

if ny(a) = 0 for all a € C\U, i.e. if v does not wind around any point
from C\U.

Remark 12.0.7 (null homotopic curve = homologous to zero)
A null homotopic curve is homologous to zero. The converse need
not hold: Consider C\{0,1} and the curve on the right. = We have
n(0) = ny(1) = 0 and thus v is homologous to zero in C\{0,1}. One
can show that ~ is not null-homotopic.

DEFINITION 12.0.8 (HOMOLOGOUS PATHS)

Two closed paths 71,72 are homologous in U (we write v, ~ 72) if
N, (@) = N4, (a) for all a e C\U.

THEOREM 12.0.2: CAUCHY INTEGRAL FORMULA

(GLOBAL VERSION)

Let G < C be a domain, v: [tg,t1] — G with v(tg) = v(¢t1) a
closed curve in G homologous to zero in G. Let f: G — C be a
holomorphic function. Then for any point z € G\Im(~)

=§ ©) ¢ = f(2).

2 )] ( —z

J

A topological proof of this result can be found in the books by LANG
and JAHNICH, respectively.

Proof. Set
Ey := {z e C\Im(y) : n,(0) = 0}.

The set Ey < C is open (consisting of several connected components).

By assumption, C\G < Ej and thus Ey u G = C. For any z € G n Ej,
we have . A
%%C—z =n,(2)=0
¥

by theorem 12.0.1 and thus

§19 o §L0=10

(—2 (—z2
¥
Set
F(O=f(2)
bl # b
g:GxG—>C, (,z—:= ¢== e
f'(2), z=(.

The integrand ¢((, z) has the following properties:

e For any fixed ¢ € G, the function z — g((, 2z) is holomorphic (and

analogously for z).
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Fig. 87: The set Eg for a curve considered
before.



e As a function on G x G, it is continuous, which is obvious for z # (.
For (¢, z) close to (zp, z0) we have

f(C)*f(Z)

9(¢,2) — (20, 20) = = ['(20)

ff F'(20) dé.

—z
where SC is taken over the straight line segment from z to (.

Hence == C 7 cancels with the length of segment, while the integrand
tends to 0 as ((,z) — (20, 20)-

Define
émcada eq,

3{5&% e By
(—=z
b

which is well defined, as both expressions coincide on Eg n G.

F:C->C, z—

We will show that F is holomorphic on G and on Ejy, then it is holomorphic

on C by the uniqueness theorem, i.e. an entire function.

For |z| — oo we have

[F(2)] < L(y) max [f(¢)]-

¢elm(y) Z — MaX¢elm(v) I<]

0.

By LIOUVILLE’s theorem, F = 0. For z € G\Im(vy), this yields the
statement.

We will use the MORERA theorem to show that F' is holomorphic. Let
A < G be a closed triangle. We have

ng(z)dz - 3€ jﬁg(g,z)dg dz zjﬁ jﬁg(g,z)dz dc = 0.
oA 0A

v v VA
=0
We can exchange the order of integration, since both integration domains
are compact and g is continuous on G x G (FUBINI theorem). The inner
integral vanishes by the CAUCHY theorem as z — ¢((, z) is holomorphic.[]

THEOREM 12.0.3: CAUCHY INTEGRAL THEOREM

(GLOBAL VERSION)

Let G c C be a domain, v: [tg,t;] — G a (piecewise C*) closed
curve with ~y(¢9) = ~(t1), which is homologous to zero in G and
f: G — C a holomorphic function. Then

§ﬂ0d4=0

\. J

Proof. Let a € G\Im(y). By theorem 12.0.2

QMJQCiadc— (@) (a)
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and

L ¢ fQ) o
o § < 4= @asta)
v
Subtracting both yields

1 1 [¢-f(0) 1 [af(Q)
%jﬁf@dc:%j{i Lo ac- - T
— n(@)af(a) — a-ny(a)f(a) = 0. 0

THEOREM 12.0.4: RESIDUE THEOREM (GLOBAL VER-

SION)

Let G < C be a domain, S < G a discrete set (without
accumulation points), f: G\S — C a holomorphic function,
v: [to,t1] — G\S a closed curve in G not passing through any
point of S, homologous to zero in G, i.e. ny(z) = 0 for all z € C\G.
Then there are no more than finitely many points a € S for which

n,(a) # 0 and we have

§HO U =2mi - 3 (@) res £(2).

aeS

. J

Proof. @ Suppose that n.(a) # 0 for infinitely many points a € S.
Then there should be an accumulation point ag of these points
(all z with n,(z) # 0 lie in a bounded part of C (the curve 7 is
compact)). But ag ¢ G\S as f is holomorphic in G\S and ag ¢ S
as S is discrete.

Thus ap ¢ G, i.e. ag € C\G, so ny(ag) = 0. Since a — n,(a) is
locally constant, there exists a ¢ > 0 such that n,(a) = 0 for all

a € Bc(ap), which is a contradiction to the definition ay.

Thus there are only finitely many a € S with n,(a) # 0, say
So = {ak}i_;-

@) Let pj(z) = Ay (foj)g + (ngj)3 +...for je{1,...,r} be the

zZ—aj;

principal parts of the LAURENT expansions of f(z) around a;.

Consider

o) = 1)~ Y 9i(2)

which is holomorphic on G\(S\Sp). By the CAUCHY theorem, we
have

and thus
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12.1 1-CYCLES

where in the last step we use that (z_ngjj)z + (Z_C(jjp + ... have
antiderivatives holomorphic in G\{a;}. Lastly,

2§2_ajdz—2mzx4n7aj). N

12.1 1-cycles

We will now further generalise the last three theorems.

Motivation. Consider an open set U with three punctures, and a
holomorphic function f: U — C. Consider a closed curve v in U which
winds once around the punctures. Let 71,...,7v3 be small circles centered

at 21, 29, 23.

It is reasonable to expect that

§f 3{5f(z> dz.

’Yk

In this particular case we can prove this by "homotoping" the curve
into some curve which runs along the circles and then runs between the
circles in both directions, such that the contributions cancel each other

out.

We would like to say that ~1,...,~s together constitute a "path" winding
once wound 27, 2o, z3. But this is not a path in the sense used until now,

since they form a disconnected set.

The following terminology remedies this.

DEFINITION 12.1.1 (1-CHAIN / CYCLE)

Let 71, .. .,%m be (closed) C* curves and (k; )ity < Z™. A formal sum
m
v= 2k
j=1

is a (closed) 1-chain (closed 1-chain = 1l-cycle).

By definition, .
| #ras - X jﬁ

DEFINITION 12.1.2 (WINDING NUMBER OF A 1-CYCLE)
The winding number of a 1-cycle v = 37" | k;jv; is

1 dz
k; .
Z n% 27rz Z—a
F
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Fig. 88: An open set U with three punc-
tures (z5)3_, with circles (y;)3_, centered
around them, resp., a holomorphic function
f: U — C and a closed curve v winding
once around all punctures.
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12.1 1-CYCLES

DEFINITION 12.1.3 (HOMOLOGOUS 1-CYCLES)

Two 1-cycles v and n are homologous in U, and we write v ~ 7, if
ny(a) = ny(a) for all a € C\U.

A 1-cycle v is homologous to zero and we write v ~ 0 if n,(a) = 0 for
allae C\U.

Example 12.1.4 Let U := C\{z1, 22, 23} and consider the curve on the
right. We have v ~ 71 + 2v2 + 273 in U. For any holomorphic function
f: U — C we have

jgf(z)dz=jﬁf(z)dz+2j€f(z)dz+2j€f(z)dz. o

THEOREM 12.1.1: TODO

Let U < C be and open set and y a 1-cycles in U homologous to

zero in U. Let z1, ..., 2, be distinct points in U and 71, ...,Vm
small (so they stay in U) circles around z, ..., 2, oriented coun-
terclockwise.

Then in U := U\{21, ..., 2n} we have y ~ 3" | k;j7; and for any
holomorphic function f: U — C we have

jgf(z) dz = ikj jgf(z) dz.

. J

Often, we have to integrate over boundaries of non-simply connected
domains G which consists of several components, as on the right. In
this case we say that 0G = 9 — v1 — 72 — 3, which is a 1-cycle.

DEFINITION 12.1.5 (BOUNDARY)
A 1l-cycle ~ is the boundary of an open set G < C if n, = 1g (i.e
ny(a) =1 for a € G and n(a) =0 if a € C\(G U Im(7y))).

Remark 12.1.6 All three theorems (CAUCHY formula and theorem,
residue theorem) hold literally true if one replaces closed curves by

1-cycles.

THEOREM 12.1.2: CAUCHY INTEGRAL THEOREM

(GLOBAL 1-CYCLE VERSION)

Let G < C be a domain, v a 1-cycle in G homologous to zero in
G (v > 0) and f: G — C be a holomorphic function. We have

1
o § L ac = o 162)
J
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Fig. 89: A curve in U with its winding

numbers.

Fig. 90: A non-simply connected domain.
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12.2 INTEGRAL COUNTING ZEROS AND POLES

THEOREM 12.1.3: CAUCHY INTEGRAL THEOREM

(GLOBAL 1-CYCLE VERSION)

Let G < C be a domain, ~ 5 G a l-cycle and f: G — C a
holomorphic function. Then

$ 1O =0

THEOREM 12.1.4: RESIDUE THEOREM (GLOBAL 1-

CYCLE VERSION)

Let G < C be a domain, f: G\S — C a holomorphic function
up to a discrete set S < G of isolated singularities and ~y 5 0a
1-cycle not hitting any point of S. We have

aesS

§ IO = 2mi- 3 mafa) - 1es ),

the sum is finite.

12.2 Integral counting zeros and poles

An application of those theorem is the integral counting zeros and poles

of a meromorphic function.

DEFINITION 12.2.1 (MEROMORPHIC FUNCTION)

Let G < C be a domain. Then f: G — C is meromorphic, if it
is holomorphic in G up to poles (has nothing worse than isolated
singularities in G, which are not essential).

Remark 12.2.2 If f is meromorphic, so is its logarithmic derivative f7l,

as this function has poles at poles and zeros of f.
Let zgp € G be a pole or a zero of f. In a small punctured neighbourhood
B.(20)\{#0}, we have a LAURENT series expansion (pole) or a power series

expansion (zero) of f:

f(z) = (2= 20)" f(2),
where f is holomorphic and non-vanishing in B.(zp).

If zg is a pole of order kg > 0, then k = —kg < 0. If 2 is a zero of order
k0>0,thenk:k0>0.

In any case we have

f/(Z) _ (Z — zo)kf’(z) + k(z — Zo)k_lf(z) _ k + f:(Z)
f

f(z) (= 20)* f(2) =2 f(2)

()

has a pole of order one at zy with residue k£ and H®)

is holomorphic in
the punctured neighbourhood of z.

Applying the residue theorem to fTI yields the following theorem.
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12.2 INTEGRAL COUNTING ZEROS AND POLES

THEOREM 12.2.1: TODO

Let f: G — C be a meromorphic function in a domain G < C,

which does not hit any pole or zero of f and bounds an open set

A. Then " 7(2)
z

v

where Z is the number of zeros of f in A and P the number of

poles, both counted with orders.

For any of the closed curves 7 in the 1-cycle v we have

fEO s [ 2Oy |

d
f = 270 - Nfon(0).

f to J(0(1) fon

We can thus reformulate the above theorem:

Under the conditions of the previous theorem, we have

Z —P= nfO,Y(O).

THEOREM 12.2.3: ROUCHE

Let f,g: G — C be holomorphic functions in a domain G and ~y
a (simple, i.e. without intersections) 1-cycle in G and a boundary
of an open set A in G.

Suppose that |g(z)| < |f(2)] for all z € Im(v). Then Zy = Z;4,.

Proof. For any closed curve «y; of which v consists, the curves f o~y

and (f + g) o are homotopic in C\{0} via (¢, s) — f(v(t)) + sg(7k(t)).

Therefore, f o~y C\~{0} (f +g) ok and have equal winding number around
ZEero. ]

Corollary 12.2.3 (Fundamental Theorem of Algebra)
A non-constant n-th degree polynomials has n zeros (counting multiplici-
ties).

Proof. Consider p(z) = 2" +>_,apz""% = f(2) +g(z) for f(2) == 2"
and g(2) = Y, _arz""F.
On a circle of radius R > 0, with sufficiently large R, we have |f(z)| >

lg(2)|, so in Br(0), p has as many zeros as f, n.

These are all zeros of p (no further zeros outside of the disk because
[f(2)] > lg(2)] for |2| > R). O
Example 12.2.4 Let f(z) :== A — 2z — e # with A\ > 1. Then f has
exactly one zero zo with £(z) > 0.

Let zg be a zero of f with R(2p) > 0, then A — zg = e7*°. Then we have

A= 20| = [e7%| = [¢"¥3)]|e TR = 7R < 1,
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Fig. 91: The image of f o~ winds thrice
around zero, as A bounds three zeros of f.



12.2 INTEGRAL COUNTING ZEROS AND POLES

ie. Zo € Bl()\)
Let g(z) := —e~% and h(z) := A—z and v: [0,27] — 0Bx(1), t — A+ ¢’
For z € dBx(1) we have

A(z)] = A= (A + ") = 1> e ™ = Jg()].

By ROUCHE’s theorem, h and f have the same numbers of zeros in B)(1),
and h has one zero, A. Since all zeros of f with positive real part, have

to lie in By (1), we have shown the claim. o

Corollary 12.2.5 (Modified ROUCHESs theorem)
Let f,g: G — C be holomorphic functions in a domain G and v a 1-cycle

i G a boundary of an open set A in G.

Suppose that |g(2)| < |f(z)| + |(f + 9)(2)| for all z € Im(y). Then
Zs=Zpiq.

Proof. Consider h := 1+ 4. If 2 is a zero of f, we have |g(z0)| =
[f(z0)| + |(f + 9)(20)], violating the above condition, so zo ¢ Im(y).

Applying theorem 12.2.1 to h yields ﬁ N };/((ZZ)) dz = Zp — P,. We have

f'(2)+4'(z) _ f'(?)

and thus
Zn =P =Zsrg = Prrg = (25 = Py) = Py = Prig.

We have

!
Iz) dz = J 1dz = 271 - Npor (0).
h

O’YZ

We can show nj,0~(0) = 0 by showing h o« doesn’t touch the negative
real line, i.e. h(z) #r <0 for all z € Im(%).

Towards contradiction assume h(zg) = r < 0 for some zy € Im(y). Then

g =g 90) :‘gm) £ (o)l +1(f +9)(z0)

tor=l=t+r] ‘ PG T o) < 7o)l
_1—0—’1—0—|?Z§;|’—l+|h(20)|—1+|r_1—r,

which is a contradiction. O

Corollary 12.2.6

Let f be a non-constant rational function. For any a € (f:, the number
of a-points of f, i.e. #{f~(a) counted with multiplicities} = C does not
depend on a.

For a = 0 we get the number of zeros and for a = o0 the number of poles.
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12.2 INTEGRAL COUNTING ZEROS AND POLES

Proof. It suffices to show that P = Z, because then one applies the
claim to f(z) — a.

Assume that f(c0) ¢ {0,00}. Otherwise, consider g(z) := f (2o + 1) with
f(ZO) ¢ {07 OO}, which has g(OO) = f(ZO)

Let v, be a circle of sufficiently large radius » > 0 around zero. By
theorem 12.2.2 we have Z — P = ny.,,(0). For r — o0, f o+, converges

uniformly against a constant path f(c0) € C\{0} which does not wind
around zero, i.e. nf.,, = 0 and thus Z = P. O
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Convergence of sequences of
holomorphic function.

In real analysis, a uniform limit of a sequence of differentiable functions
may only be continuous, whereas in complex analysis, a uniform limit of
holomorphic functions is holomorphic. To prove this, we will exploit the
fact that the derivative of a holomorphic function can be expressed as an

integral.

In the following, let U < C be an open set.

DEFINITION 13.0.1 (LOCALLY UNIFORM CONVERGENCE)
A sequence of holomorphic functions (f,,: U — C),en converges locally
uniform to f: U — C if one of the following conditions is satisfied.

e For any compact subset K < U, we have f,, — f uniformly on K.

e For any zg € U, there exists r > 0 such that f,, — f uniformly in
BT(ZO)-

Lemma 13.0.2

Both conditions are equivalent.

Proof. " = ": For any zy € U there is a compact neighbourhood

B, (z9) < U. On this closed disk, convergence is uniform, therefore, also
on B, (zp).

" <= ": The disks (B, (s)(20) © U)zpex cover K. Take a finite subcover-
ing. On each of those disks, we have f,, — f uniform and thus this also
holds on their finite (!) union. O

THEOREM 13.0.1: WEIERSTRASS

Let (fn: U — C)pen be a sequence of holomorphic functions,
converging locally uniform to f: U — C. Then f is holomorphic
and fflk) 22%, (k) Jocally uniform for all k € N.

Proof. @ To prove that f is holomorphic, we use MORERA’s theorem.
For a closed triangle A ¢ U we have

§ f(z)dz = f ( lim fn(z)) dz = lim fu(z)dz =0,
on e o Joa
0A
as 0A is compact, so we can exchange integration with the limit.
The last equality is by CAUCHY’s theorem.

—

@ We prove f/ ——=%_, ' the statement then follows by induction.

loc. unif.
By the CAUCHY formula we have
1 () —
RE -0 -5 § =
[(—zo|=27
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Let zo € U and choose 7 > 0 so small that Bs,(29) = U. Then the
above formula holds true for all z € B, ().

We have |f,,(¢)— f(¢)] < ¢ for all ¢ with |(—zo| = 2r and sufficiently
large n € N. We also have |(—z| > r for |z—zp| < r and [(—zo| = 2.

This yields

lfr(2) = f'(2)] < %%-21” : 7% -

which implies locally uniform convergence of f. O

THEOREM 13.0.2: HURWITZ

Let G < C be a domain, (f,: G — C),en a sequence of holomor-
phic functions converging locally uniform to f. Take a € C and
consider the a-points of f,. If all f, have at most m a-points
in G (counted with multiplicities), then either f has at most m
a-points in G or f|g = a.

Proof. Without loss of generality let a = 0.

Suppose that f has m + 1 zeros in G and f % 0. As f is holomorphic,
all of its zeros are of finite order. Thus all zeros are isolated (any zero
has a neighbourhood free of further zeros).

Let z1,...,2; be geometrically distinct zeros of f, where £ < m + 1.
Choose € > 0 so small that B.(z;) are disjoint.

Let K = Uf=1 0B:(z;) and set m = min,ck |f(z)| > 0. Due to the
uniform convergence f,, — f on K (as K is compact), there exists a
N e N such that |f,(2) — f(z)] <mforall ze K,n> N. As |f(z)| =m
for all z € K by definition of m, we have by ROUCHE’s theorem that
fn(2) has in Ule B:(z;) as many zeros as f(z), i.e. m + 1 — to many.[]

Remark 13.0.3 It may happen that f = const, i.e. consider f,(z) == Z,
which converges to zero.

Remark 13.0.4 The claim is not true in the real analysis. Consider
fa(z) == 2? + 1, which has no zeros, but f(z) = lim,_,s fn(z) = 22 has

one zero.

Lemma 13.0.5 (Pointwise = locally uniform)
Let (frn: G — C)pen be a locally bounded sequence of holomorphic func-
tions on a domain G. If f, 2=55 f converges pointwise on a dense

subset J < G, then f, converges locally uniform.

Proof. @ We want to show the second condition: that for all zp € G
there exists an r > 0 (and ng??) such that

|fn(z) = fm(2)] <e forallm,n>=mny and Vze B.(z).

For this take a nearby point a € J and write

@)= I E 1@~ Fin(@) a2~ Fu@) | Fnl@)— Fon ().
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We will show that for holomorphic functions, local boundedness of
a sequence implies equicontinuity, i.e. good expressions (bounds)
for the last two terms, independent of n, m.

@ For a given zp, take r > 0 so small that Bs,(29) = G. By the local
boundedness, there is a M > 0 such that |f,(z)] < M for allne N
and for all z € By, (2).

For all z,2' € B,(zp) and for all n € N we have (by the CAUCHY

formula)
[¢—z0|=2r
=7 fn(Q)
2w o f]?_Q Wdc

and thus (as |¢ — z|,|¢ — 2'| > r)

z—2 2w - 2r 2M
Fule) — Fule < 2220y ]

2m 72 r
80 (fn)nen is locally equi-LIPSCHITZ-continuous.

() Let ¢ > 0. In a compact neighbourhood B,(z) we can choose a

finite g37-net of points from J, i.e. a finite set a1, ..., a, of points
from J such that any z € B,(zo) lies at a distance of at most e

from this set.

Choose ng € N such that |f,(a;) — fm(a;)| < § for all n,m = ng
and for all j € {1,...,¢}. Then for any z € B,(z) an for any

n,m < ng we have

1 =1() = Fn(2)] S 1Fnlas) = Fona)] + 1fu(2) — fula)
U fm(ag) = fn(2)]

e 2
<§+T|z—aj|+—|z—a]|
<s+4Msr_ 0
=3 r 6M

The MONTEL theorem is a functional analogon of the BOLZANO-WEIERSTRASS
theorem (bounded sequence in C contains convergent subsequence). Noth-

ing like this is true in the real analysis.

THEOREM 13.0.3: MONTEL’S THEOREM

A locally bounded sequence of holomorphic functions (f,: G —
C)nen on a domain G < C possesses a locally uniform convergent

subsequence.

Proof. Choose a countable dense set (a)nen in G.

(D) A numerical sequence (f,,(a1))neny © C is bounded due to the local
boundedness of (f;,)nen. By the BOLZANO-WEIERSTRASS theorem,
this sequence has a convergent subsequence (fy,,(a1))jen. Take the

corresponding subsequence of functions (fy,)jen = (f1,5)jen-

100



(@) A numerical sequence (f; j(az));en < C is bounded as before. Thus
it contains a convergent subsequence (fi ;, (a2))ken. Take the cor-

responding sequence of functions (f1 j, )ken =t (f2,k)ken-

@ Continuing this process yields a sequence of sequences (fin)nen

converging at z = ag.

@ The diagonal sequence (fy, n)nen converges (pointwise) at all points
(ak)ken. Indeed, by construction, all entries f,, ,, with n > k belong
to the subsequence of f, ., which converges at ay.

Since J < G is dense, lemma 13.0.5 implies that (fy, 5 )nen converges

locally uniform on G. O

Corollary 13.0.6

Let (fr,: G — C)pen be a locally bounded sequence of holomorphic func-
tions on a domain G < C. If (fn)nen converges pointwise on a subset
J © G having an accumulation point in G, then it converges locally

uniform in G.

Note that the claims of the corollary is much stronger (not subsequence,
but whole sequence converges) than the MONTEL theorem, but this is
only possible as we have a strong assumption (pointwise convergence on
J).

Proof. By the MONTEL theorem, there is a subsequence which converges
(locally uniform) to a (by the WEIERSTRASS theorem) holomorphic
function f: G — C. We want to to show that this is true for the whole

sequence ( fn)nen, not just for a subsequence.

Suppose that for some 2o € G, the sequence of numbers (f,,(z0))nen does
not converge to f(zp). Then this sequence has a subsequence (f,,, (20)) ken
such that limg_,o fn, (20) = w # f(20).

By the MONTEL theorem, this subsequence possesses subsubsequence
( o, )jen locally uniform converging to a holomorphic (WEIERSTRASS)
function g: G — C. By construction, g(z9) = w # f(z9). But g coincides
with f on J, which is a contradiction to the Uniqueness theorem. Ol
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Expansion of meromorphic functions

into elementary fractions.

14.1 Additive decomposition of meromor-
phic functions

An algebraic result: Any rational function f can be represented as
¢
f(z) = > hi(2) + pl2),
k=1

where the hi have on pole each and p is a polynomial
(has a pole at o0).

This can be extended to meromorphic functions with finitely many poles:
Let h;(z) be the principal parts of LAURENT series expansion of f at z;,

we see that ,
F(z) = hi(2)
k=1

has only removable singularities at (zk)ﬁzl. After a suitable expansion
to (zk)f;:l, this function has no singularities and is holomorphic in C, i.e.

entire: ,
f(z) = > hi(2) + pl2),
k=1
where p is an entire function.

A general meromorphic function has infinitely many poles. The sum of
the principal parts at all part must not converge.
Example 14.1.1 (The cotangent)

Consider f(z) := mcot(rz) = 7-[-2101?((77:5;’

on C with simple poles at n € Z with the residues

which is an function

meos(mz)  mcos(mz) _q
z=n sin(mrz) %sin(wz) n ’
so that the principal parts are h,(z) := ﬁ for n € Z. However, the
series Y cp —p = limn, Nyooo Z,ivj_Nl —L- is divergent in the sense
that the limit does not exists.
Interestingly, the principal value
N N
1 1 1 1
lim ) = lim - +
N—oow &= z—-n N-owz ~f=2z-n zZ+n
N ©
1 2z 1 2z
= J\}lm ol 5,2 Z 2 _ 2
—wz  H 2P —n A e A

converges. (Whole story in the book "Elliptic functions according to
Eisenstein and Kronecker" by A. Weil)

In order to improve convergence of >}, _, ﬁ in a general situation we

observe that, in a neighbourhood

1 1 1 1( z 22 )
. S ——(1+ 2424
n n n
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14.1 ADDITIVE DECOMPOSITION OF MEROMORPHIC FUNCTIONS

and thus . )
z
+-—=—=4+0n?),
z—n n n? (™)

and the series of those expressions converge. To show the convergence

we observe
1 1

zZ—n n

__ A 2
21— 2] Inf?

z

n(z —n)

as soon as |z| < r and |n| = 2r. Thus

-1 3 (50

is absolutely convergent and locally uniform convergent in C\ Z. So by

introducing the corrections %, which are independent of z, we modified
a diverging series into a convergent series, so the resulting function is a
meromorphic function with simple poles at all integers with residue one.

Is this the function we started with?

No, but by construction, it follows that 7 cot(wz) — h(z) has only remov-
able singularities at n € Z, so an entire function (after the singularities

have been removed):

7 cot(nz) = % + ), < L i) +p(2),

0 zZ—n

where p is an entire function. o

Let (an)nen < C be a sequence with ay, # a; for k # j and without
accumulation points (and thus |a,| — o). For each a,, let there

be given a function

n

&
hn(z) = —
k=1 (2 —an)

with d,, = 1. Then there exists a meromorphic function f: C — C
with poles exactly at a,, and with principal parts there h,(z). Such
f is defined up to addition of an entire function.

Proof. For r» > 0, find ng € N such that |a,| > 2r for n > ny. For
n = ng, expand h, in a power series around z = 0 (it has convergence
radius a,). We can take a TAYLOR polynomial T, (a suitable partial

sum of the power series) such that

1
|hn(2) — Ta(2)] < on
for all z € C with |z| < |“2—”| This ensure that the series ZZ;”O hn(2) —

T,.(z) converges absolutely and uniformly on B,.(0).
Thus the series

D h(z) — Te(2)
k=1

converges locally uniform in C\(a,)nen. The limit function is mero-
morphic with prescribed poles and principle parts at all poles, as the

corrections T}, are polynomials. O
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14.1 ADDITIVE DECOMPOSITION OF MEROMORPHIC FUNCTIONS

Remark 14.1.2 The orders of the polynomials T, (z) are not fixed,
varying them leads to alternative meromorphic functions with the same

poles and principal parts, compare to

E(Z):i‘FE( ! +Tll+:2>=h(z)+2;=h(z)+7;z.

n#0 £-n

Let us determine the entire function

g(z) = meot(nz) — §+ D (zanrTlL)

nez\{0}

The series can be differentiated term by term, so that

() = m(—m sin2(?rz2) — meos?(mz)) B Z
sin®(mz) nez {0} (z — n)
2 1
= —_—— + —,
sin?(7z) 7§Z (z —n)?
where »} (E=mE 77,)2 converges uniformly in C\ Z.

The function ¢’ is a 1-period function, so it is sufficient to consider it
in a vertical strip of length one, in this case {z € C: 0 < R(2) < 1}, as
pictured on the right

We have
|sin(r(z + iy)|” = i (i g
i lcos(mz) (7™ — €™) + isin(rz) (¢~ + )|
_ ECOSZ(M) (=™ — em)?
+ isnﬂ (rz) (7™ + e™)?)
= i (e72™ + €*™ — 2 cos®(mx) + 2sin®(7z))
= i (e72™ + €°™ — 2 cos(27z))
> i (e72™ + €*™ — 2) = sinh®(7y).

The first term in ¢’ is bounded for z € [0,1] if |y| = r, by

smh2 (mr) "

Similarly for such x and y we have

5 n? 4+ r2, if n <0,

\Y

(@ +—y—n)?|=(z-n)"+y
(n—1)2+72% ifn=>1,

and thus

o0

<Zn2+r2 Z (n—1)2 (n—1)2+r2 =%

1
2 (z—n)?

neN

There follows that |¢’(z)]| is bounded for « € [0,1] and |y| = r. But ¢’ is an
entire function, so it also bounded on the compact set z € [0,1], |y| <7,
so ¢’ is bounded in the strip and thus everywhere. By LIOUVILLE’s
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Fig. 95: TODO
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theorem, ¢’ is constant. Sending r — o0 in the previous estimate we find
¢'(z) = 0. This yields

1
sin?(wz) Z

—n)2’
nez (Z Tl)

1 2

from which one can for example find 2/?:1 == 5

It follows that

0 zZ—n

1 1 1
mweot(mz) = ~ + Z ( + n> + const.

By absolute convergence, we can reorder the sum to obtain

1 1 = 1 1 1 1 o 22
Z<_ +>_Z<_ LT oE —>_22_2~
Z\z—n n —\z—-n n z+n n =P -n
As the left hand side is an odd function, the constant has to be zero
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