
Technische Universität Berlin

Lecture Notes

Complex Analysis I
Prof. Suris, Summer semester 2020

Contents

List of Figures i

1 Complex Numbers and Functions 3

2 Complex differentiability 5

3 Holomorphic functions 7
3.1 Consequences of the Cauchy-Riemann equations . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Power series 12

5 The Cauchy integral theorem 14

6 Fundamental theorems of Complex Analysis (as corollaries of the Cauchy theorem) 21

7 Isolated singularities 31
7.1 Residues and the residue theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
7.2 Complex integration and residue theorem for analytic continuation . . . . . . . . . . . . . . .43
7.3 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

1



Contents

8 Holomorphic functions as conformal maps 49

9 Möbius transformations 56
9.1 Geometric aspects of Möbius transformations . . . . . . . . . . . . . . . . . . . . . . . . . .58
9.2 Conformal homotopies of domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

10 Schwarz reflection principle and Schwarz-Christoffel formula 68

11 Analytic continuation of holomorphic functions 79
11.1 Continuation along a disk chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
11.2 Continuation along a path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
11.3 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

12 Winding number; global versions of the Cauchy integral theorem and of the residue
theorem 87
12.1 1-cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
12.2 Integral counting zeros and poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

13 Convergence of sequences of holomorphic function. 98

14 Expansion of meromorphic functions into elementary fractions. 102
14.1 Additive decomposition of meromorphic functions . . . . . . . . . . . . . . . . . . . . . . . . .102

Index 106

Lecture notes by Viktor Glombik.

These lecture notes are not endorsed by the professor or the university and make no claim
to accuracy or correctness yada yada yada.

If you find errors please contact v.glombik@gmail.com.

Last edited: April 12, 2022.

2



List of Figures

1 Complex addition and conjugation. . . . . . . . . . . . . . . .4
2 Polar representation in the complex plane. . . . . . . . . . . .4
3 Multiplication of complex numbers. TODO . . . . . . . . . .4
4 Inversion of complex numbers. TODO . . . . . . . . . . . . .4
5 The function fpxq “ exp

`

´ 1
x2

˘

. . . . . . . . . . . . . . . . . .7
6 Illustration of a step in the proof of theorem 4.0.1 . . . . . . .12
7 An open set and a closed curve inside it. TODO . . . . . . .14
8 A piecewise C1 curve. TODO . . . . . . . . . . . . . . . . . .14
9 A curve and a tangent vector. TODO . . . . . . . . . . . . .14
10 TOdo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
11 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
12 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
13 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
14 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
15 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
16 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
17 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
18 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
19 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
20 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
21 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
22 Different "annuli" as convergence domains of a Laurent

series. TODO . . . . . . . . . . . . . . . . . . . . . . . . . . .33
23 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
24 TODO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
25 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
26 There are infinitely many other possible choices, on of the

standard ones being taking the negative real axis as the
ray so ϕ P p´π, πq. . . . . . . . . . . . . . . . . . . . . . . . .42

27 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
28 A possible choice of C. . . . . . . . . . . . . . . . . . . . . . .44
29 We extend the integration contour C considered before by

adding a circle of radius p2N ` 1qπ. The ˆ denote the
singularities of the integrand zs´1

ez´1 . . . . . . . . . . . . . . . .46
30 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

i



List of Figures

31 Here γ1 and γ2 are curves in U , vu are tangent vectors of γi
at z0. We can see that dfpz0q acts on tangent vectors from
Tz0U , i.e. on (equivalence classes of) curve through z0.
Thus dfpz0q is angle preserving if and only if the directed
intersection angles of curves are preserved by f . . . . . . . . .50

32 ]pdfpz0qv,dfpz0qwq “ ]pv, wq for all v, w P Tz0 C, v, w ‰
0 is equivalent to dfpz0q “ p a ´bb a q. . . . . . . . . . . . . . .51

33 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
34 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
35 Horizontal strips of width smaller than 2π are mapped to

a second with opening angle being the width of the strip. . . .52
36 Horizontal strips of width 2π are mapped to slit planes. . . . .52
37 The circle represents the unit circle. TODO . . . . . . . . . .54
38 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
39 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
40 If M ą 0 is large, this is a small neighbourhood of 8. . . . . .57
41 Geometric construction of the stereographic projection. . . . .57
42 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
43 If |c|2 ‰ r2 the circle does not pass the origin. . . . . . . . . .59
44 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
45 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
46 The action of ϕz0 on D. . . . . . . . . . . . . . . . . . . . . . .64
47 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
48 The line compactified by the infinitely remote element is,

topologically, a circle, so the segment ran, a1s is the arc of
the circle passing through 8. . . . . . . . . . . . . . . . . . . .71

49 The domain of the analytically continued function fk is the
plane slit along two rays starting at ak and ak`1. Here, σk
is the mirror reflection at pbkbk`1q. . . . . . . . . . . . . . . .71

50 The half-disk in the upper half plane about ak is mapped to
some neighbourhood of bk in the interior of the polygon Π.
We apply a holomorphic branch of the function pw´ bkq

1
αk :

We have to determine the argument of w´ bk, which lies in
some sector of the opening angle παk. We can choose the
argument arbitrarily up to integer multiples of 2π. For any
such choice this function is well-defined by application of
the formula in polar coordinates. We thus obtain a sector
of the opening angle π. . . . . . . . . . . . . . . . . . . . . . .72

51 b-point means that f takes the value b and simple means
that f ´ b has a simple zero at infinity. . . . . . . . . . . . . .72

52 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
53 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
54 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
55 Double arcs represent angles larger than 180 degrees. In

some cases, the term "interior" angles is thus misleading. . . .76
56 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
57 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
58 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
59 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

ii



List of Figures

60 A circular arc polygon . . . . . . . . . . . . . . . . . . . . . .78
61 In contrast to the polygonal case, we need a modified map:

pw ´ bkq
1
αk ψpwq. . . . . . . . . . . . . . . . . . . . . . . . . . .78

62 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
63 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
64 Two analytic continuations of the logarithm. . . . . . . . . . .80
65 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
66 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
67 TOdo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
68 Result of analytic continuation of ln from a neighbourhood

of z0 “ 1 to a neighbourhood of z1 “ ´1 will be different
for the curve γ1 and γ2. . . . . . . . . . . . . . . . . . . . . . .81

69 Composition of two paths. . . . . . . . . . . . . . . . . . . . .82
70 Inversion of a path. . . . . . . . . . . . . . . . . . . . . . . . .82
71 A homotopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
72 Illustration of rasrbs :“ rabs. . . . . . . . . . . . . . . . . . . .83
73 The reparametrisation ϕ. . . . . . . . . . . . . . . . . . . . . .83
74 The reparametrisation ϕ. . . . . . . . . . . . . . . . . . . . . .83
75 The reparametrisation ψ. . . . . . . . . . . . . . . . . . . . . .84
76 The map π1pX, z0q Ñ π1pX, z1q, ras ÞÑ rγ´srasrγs. . . . . . . .84
77 The homotopy h. . . . . . . . . . . . . . . . . . . . . . . . . .84
78 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
79 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
80 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
81 If ρ ă ε, then the maximal distance of the points of the

boundary of the smaller disk to the boundary of the larger
disk is less than 2ε, while the ε-neighbourhood of A has
distance to the boundary larger than 2ε. . . . . . . . . . . . .86

82 According to the property of δ, the segment asprτk´1, τk`1sq

is contained in the ε-neighbourhood of as0prτk´1, τk`1sq. . . .86
83 In the third picture, nγpcq “ 0 and in the last, nγpdq “ 0 . . .87
84 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
85 todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
86 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
87 The set E0 for a curve considered before. . . . . . . . . . . . .89
88 An open set U with three punctures pzkq3k“1 with circles

pγkq
3
k“1 centered around them, resp., a holomorphic func-

tion f : U Ñ C and a closed curve γ winding once around
all punctures. . . . . . . . . . . . . . . . . . . . . . . . . . . .92

89 A curve in U with its winding numbers. . . . . . . . . . . . . .93
90 A non-simply connected domain. . . . . . . . . . . . . . . . .93
91 The image of f ˝ γ winds thrice around zero, as A bounds

three zeros of f . . . . . . . . . . . . . . . . . . . . . . . . . . .95
92 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
93 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
94 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
95 TODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

iii



List of Figures

Primer on differential forms
Loosely speaking, a differential k-form (or just k-form) is something that
can be integrated over a k-dimensional manifold, where k P N.

For example, x2 dx is a 1-form as
ş

K x
2 dx is valid expression for K “ R

or C. Similarly, x2 dy is also a 1-form. The expression y sinpxq dx^ dy is
a 2-form. The notation ^ will be explained later.

We don’t have to limit ourselves to the real case, and can also consider
complex 1-forms such as fpzqdz, where f : C Ñ C is a function. This
can also be interpreted as a real 2-form by rewriting it as fpzqpdx` i dyq.

Definition 0.0.1 (Differential k-form)
A differential k-form ω maps each point p P Kn to a multilinear alter-
nating map ωppq : pKnqk Ñ K.

Multilinearity of ω means that ω is linear in every component, i.e.
ωppqpλx1 ` x2, y, zq “ λωppqpx1, y, zq ` ωppqpx2, y, zq for λ P K and
x1, x2, y, z P Kn (here k “ 3). Alternating means that if two entries
succeeding each other directly are equal, the differential form is zero, i.e.
ωppqpx, x, zq “ 0.

Differential 0-forms are just (smooth) functions f : Kn Ñ K.

The most basic differential 1-form is of the form

dxippq : Kn Ñ K, px1, . . . , xnq ÞÑ xi

Each 1-form is a linear combination of them:
n
ÿ

i“1

fi dxi,

where fi : Kn Ñ K is smooth and

pfi dxippqq : Kn Ñ K, px1, . . . , xnq ÞÑ fippqxi.

We now "explain" the exterior product exterior product^.

If a is a i-form and b is a j-form, a^ b “ ´b^ a will be a pi` jq-form.
As any differential form is alternating, we especially have a^ a “ 0.

The differential operator d is linear: dpa` bq “ da ` db and fulfills
df dxi “

řn
j“1

Bf
Bxi

dxi ^ dxj .

For xi : Kn Ñ K, px1, . . . , xnq ÞÑ xi, dxi is the differential 1-form coming
from differentiating xi as a 0-form.

Definition 0.0.2 (closed, exact differential form)
A k-form ω is closed closedif dω “ 0 and exact exactif there exists a pk´ 1q-form b

such that db “ ω

1
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Theorem 0.0.1: Poincaré lemma

A closed differential form on a simply connected set U Ă Kn is
exact.

Remark 0.0.3 The simple connectedness above can be replace with
other topological assumptions such as being star-shaped or diffeomorphic
to R2.

Theorem 0.0.2: Stokes
ż

BΩ

ω “

ż

Ω

dω
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1 Complex Numbers and Functions

Complex numbers
21.04.2020It all began with the natural numbers N :“ t1, 2, . . .u. Adding the negative numbers

to the natural numbers yields the integers Z, enabling us to preform the operation
a´ b for a ă b, which in turn can be use to solve the equation x` b “ a for x.

Adding the fractions to the integers yields the rational numbers Q, enabling us to
preform the operation a

b
, which in turn can be use to solve the equation bx “ a for x.

Adding the irrational numbers to Q yields the real numbers R, enabling us to solve
the equation x2 “ 2.

All these sets of numbers can be constructed with the help of equivalence classes.
In order to construct the integers from the natural numbers define the equivalence
relation pa, bq „ pc, dq by a` d “ c` b, yielding the equivalence class a´ b.

For the rational numbers we define pa, bq „ pc, dq by ad “ bc, yielding the equivalence
class a

b
. For the real numbers we use equivalence classes of Cauchy sequences.

But there are still equations we can’t solve such as x2 “ ´1. In order to solve them,

we introduce the complex numbers C, which can be constructed directly, without

using equivalence classes. Within the complex numbers, every algebraic equation has

a solution, C is algebraically closed.

Definition 1.0.1 (C, Version I)
The field C is the set R2 equipped with addition from R2 and the
multiplication

˜

a

b

¸

¨

˜

c

d

¸

:“

˜

ac´ bd

ad` bc

¸

.

The field C contains the subfield tpx, 0q : x P Ru – R. Furthermore,
C – A :“ t

`

a ´b
b a

˘

: a, b P Ru via Φ : AÑ C,
`

a ´b
b a

˘

ÞÑ p
a
b q:

Φ

˜˜

a ´b

b a

¸

`

˜

c ´d

d c

¸¸

“ Φ

˜˜

a` c ´pb` dq

b` d a` c

¸¸

“

˜

a` c

b` d

¸

“

˜

a

b

¸

`

˜

b

d

¸

,

and

Φ

˜˜

a ´b

b a

¸

¨

˜

c ´d

d c

¸¸

“ Φ

˜˜

ac´ bd ´pbc` adq

bc` ad ac´ bd

¸¸

“

˜

ac´ bd

bc` ad

¸

“

˜

a

b

¸

¨

˜

b

d

¸

holds. Furthermore, Φ is linear and bijective.

Definition 1.0.2 (Imaginary unit i)
We define i :“ p0, 1qJ P C.

By definition 1.0.1 we obtain

i2 “

˜

0

1

¸

¨

˜

0

1

¸

:“

˜

0´ 1

0

¸

“ ´1 P R,

thus i is one of the solutions of x2 “ ´1, the other being ´i.

3



Definition 1.0.3 (C, Version II)
We define C :“ tx` iy | x, y P Ru and px, yqJ :“ x` iy for px, yqJ P C.

<

=

z1

z1

z2

z1 ` z2

Fig. 1: Two complex numbers in the com-
plex plane and their sum ("Parallelogram
rule"). Complex conjugation represents a
reflection upon the real line.

Definition 1.0.4 (<px ` iyq, =px ` iyq, |x ` iy|)
We define the real numbers <px ` iyq “ x and =px ` iyq “ y and
|x` iy| :“

a

x2 ` y2 ě 0.

With dpz1, z2q :“ |z1 ´ z2| for z1, z2 P C, C becomes a metric (and
thus a topological) space, giving rise to properties like convergence and
continuity.

Definition 1.0.5 (Complex conjugation)
Complex conjugation is the R-linear map

¨ : CÑ C, x` iy ÞÑ x` iy :“ x´ iy.

With this definition we have z ¨ z “ |z|2 and z´1 “ z
|z|2 for z P C zt0u and

thus <pz´1q “
<pzq

<pzq2`=pzq2 and =pz´1q “ ´
=pzq

<pzq2`=pzq2

Definition 1.0.6 (Polar representation)
For z :“ x` iy P C define (a radius) r :“ |z| and an angle argpzq :“ ϕ P

R {2π Z such that cospϕq “ x
r and sinpϕq “ y

r . Then

z “ rpcospϕq ` i sinpϕqq “ reiϕ

is the polar representation of z.

=

<

z “ |z|eiϕ

|z||z|1{3

|z|1{3eiϕ{3

|z|1{3eipϕ`4πq{3

|z|1{3eipϕ`2πq{3i

1

ϕ

Fig. 2: Polar representation in the complex
plane.

We can now easily interpret multiplication of complex numbers. Let zi :“

rie
iϕi for i P t1, 2u, ri ą 0 and ϕi P r0, 2πq. Then z1 ¨ z2 “ r1r2e

ipϕ1`ϕ2q

holds, which is visualised on the right. This implies |z1 ¨ z2| “ |z1| ¨ |z2|

Fig. 3: Multiplication of complex numbers.
TODO

and argpz1 ¨ z2q “ argpz1q ` argpz2q.

Fig. 4: Inversion of complex numbers.
TODO
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2 Complex differentiability
From now on, let U Ă C be an open set and f : U Ñ C a function.

Definition 2.0.1 (Complex differentiability)
A function f is complex differentiable at z0 P U if the limit

lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“ lim
hÑ0

fpz0 ` hq ´ fpz0q

h
“: f 1pz0q P C .

exists.

Note that h P C. Formally, this is the same definition as for functions
of one real variable. But as C – R2, it is more sensible to compare
the above definition to the definition of differentiability of functions
f : R2

Ą U Ñ R2, which is as follows

Definition 2.0.2 ((Total) differentiability in R2)
Let U Ă R2 be an open set, f : U Ñ R2. Then f is differentiable at
px0, y0q P U if there exists a R-linear map A : R2

Ñ R2 such that

fpx0 ` ε, y0 ` ηq ´ fpx0, y0q “ A

˜

ε

η

¸

` ϕpε, ηq

and lim}pε,ηq}Ñ0
}ϕpε,ηq}
}pε,ηq} “ 0 hold. We write A :“ dfpx0, y0q P R2ˆ2.

Note that there is no definition of division by vectors in R2, so this
definition looks very different to the one above. But we can rewrite the
first definition in a manner similar to the second definition:

fpz0 ` hq ´ fpz0q “ f 1pz0qh` ϕphq with lim
hÑ0

|ϕphq|

|h|
“ 0.

We observe the difference is that in the complex case, A is a C-linear map
and not a R-linear map; it acts on C as a multiplication by the complex
number f 1pz0q.

Lemma 2.0.3 (R- and C-linearity)
A R-linear map A (or its matrix A “

`

a b
c d

˘

) is C-linear (acts as a

multiplication by a complex number x` iy) if and only if A “

˜

x ´y

y x

¸

,

that is: a “ d and b “ ´c.

Proof. Let Ah “ ch with c :“ x` iy P C. This translated to R2 as

A

˜

ε

η

¸

“ px`iyqpε`iηq “ pxε´yηq`ipyε`xηq “

˜

x ´y

y x

¸˜

ε

η

¸

. l

Equipped with this lemma we can now find conditions for complex
differentiability. First, we separate a complex function into its real and
imaginary part:

fpzq “ fpx` iyq “ upx, yq ` ivpx, yq,

5



where u, v : R2
Ą U Ñ R2. The Jacobi matrix of f at z0 :“ px0, y0q is

A :“ dfpz0q “

˜

Bu
Bx

Bu
By

Bv
Bx

Bv
By

¸˜

x0

y0

¸

.

Theorem 2.0.1: Cauchy-Riemann equations

A function f : C Ą U Ñ C is differentiable at z0 :“ px0, y0q P U if
and only if its Jacobi matrix dfpz0q : R2

Ñ R2 is a C-linear, i.e.

Bu

Bx
px0, y0q “

Bv

By
px0, y0q and

Bu

By
px0, y0q “ ´

Bv

Bx
px0, y0q

Example 2.0.4 (Complex differentiability)
• Let fpzq :“ z2 “ px`iyq2 “ x2´y2`ip2xyq. Let upx, yq :“ x2´y2

and vpx, yq :“ 2xy. We have A “
`

2x ´2y
2y 2x

˘

, so f is differentiable
everywhere and thus called entire.

• Let fpzq :“ z2 “ px´ iyq2 “ x2 ´ y2 ´ i2xy. Then A “
`

2x ´2y
´2y ´2x

˘

holds, so f is only differentiable in p0, 0q.

• Let fpzq “ z. Then A “
`

1 ´1
0 0

˘

holds, so f is nowhere differentiable.
˛

Remark 2.0.5 (Formula for the derivative)
In case of complex differentiability, we have

f 1px, yqq “
Bu

Bx
px, yq ` i

Bv

Bx
px, yq “

Bu

Bx
px, yq ´ i

Bv

By
px, yq

“
Bv

By
px, yq ` i

Bv

Bx
px, yq “

Bv

By
px, yq ´ i

Bu

By
px, yq.
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3 Holomorphic functions

Definition 3.0.1 (holomorphic)
A function f is holomorphic holomorphic(analytic) if it is (complex) differentiable
on its entire domain.

Differentiability is a local property, whereas holomorphicity is global.

The following three theorems, which will be proven throughout the course,
showcase that holomorphy strikingly differs from the real case.

Theorem of Goursat. A holomorphic function is infinitely often
differentiable on its domain.
Counterexample 3.0.2 In the real case a function can be differentiable
but have no second derivative: Consider f : RÑ R, x ÞÑ signpxqx2. Then
f 1pxq “ 2|x| is not differentiable in 0. ˛

Power series representation. For holomorphic f and z0 P U there
exists a neighbourhood of z0 such that fpzq “

ř8

n“0
fpnqpz0q

n! pz ´ z0q
n

holds on U .
1

1

Fig. 5: The function fpxq “ exp
´

´ 1
x2

¯

.

Counterexample 3.0.3 (Non-analytic function)
Consider fpxq “ e´1{x2

with fp0q “ 0. Then f P C8 and f pnqp0q “ 0 for
all n P N, so the Taylor expansion in zero is identically zero. ˛

Uniqueness theorem. Let f, g : U Ñ C be holomorphic and J Ă U

have an accumulation point z0. If f “ g holds on J , we have f “ g on U .

The set J could be a open disk, a curve or even a discrete set.
Counterexample 3.0.4 Let J Ă R be an open interval and f, g : J Ñ R
two smooth functions agreeing on a J , then there are infinitely many
extensions of f and g such that f and g don’t coincide globally. ˛

A similar theorem holds for ordinary differential equations: under suitable
assumptions, two solutions agree if and only if they agree in one point.

22.04.2020

3.1 Consequences of the Cauchy-Riemann
equations
Assume fpzq “ upx, yq ` ivpx, yq is holomorphic in U and assume u, v P
C2
pUq (which is actually a consequence of the Goursat theorem). By

the Cauchy-Riemann equations (CR) and the theorem of Schwartz
(S)

B2u

Bx2
`
B2v

By2
“
B

Bx

ˆ

Bu

Bx

˙

`
B

By

ˆ

Bv

By

˙

CR
“

B

Bx

ˆ

Bv

By

˙

`
B

By

ˆ

´
Bv

Bx

˙

S
“
B2v

BxBy
´
B2v

BxBy
“ 0.

holds. Analogously, the Laplace operator of v, ∆v, vanishes as well.

Definition 3.1.1 (Harmonic function)
A C2 function u : R2

Ą U Ñ R2 is a harmonic function harmonic functionif ∆u “ 0.
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3.1 Consequences of the Cauchy-Riemann equations

This yields

Theorem 3.1.1: <pfq, =pfq harmonic

The real and the imaginary part of a holomorphic function are
harmonic functions.

Suppose we have a harmonic function u : R2
Ą U Ñ R2 and we want to

find a function v related to u by the Cauchy-Riemann equations. Then

Bv

Bx
“ ´

Bu

By
and

Bv

By
“
Bu

Bx
(1)

must hold.

The existence of a solution v of this system of two partial differential
equations is called exactness of the one-form

ˆ

´
Bu

By

˙

dx`

ˆ

Bu

Bx

˙

dy (2)

on U .

By the Poincare lemma one only has to check the closedness of the
one-form. A one-form is closed if its Cartan derivative vanishes (cf.
definition 5.0.8), i.e.

d

ˆˆ

´
Bu

By

˙

dx`

ˆ

Bu

Bx

˙

dy

˙

!
“ 0

We have

d

ˆˆ

´
Bu

By

˙

dx`

ˆ

Bu

Bx

˙

dy

˙

“ ∆udx^ dy “ 0,

as u is harmonic.

We can conclude that if u is harmonic, then the one form (2) is closed. If
additionally, U satisfies a topological condition, this form is exact, that
is, the function v exists and is unique up to an additive constant: If there
would be two such function v1 and v2 solving the system (1), we have
B
Bx pv1 ´ v2q “

B
By pv1 ´ v2q “ 0, i.e. v1 ´ v2 is constant. Moreover, this

function v is harmonic by the same argument.

We have just proven the following

Theorem 3.1.2: Conjugate harmonic is unique

For a harmonic function u : U Ñ R2, where U satisfies a topologi-
cal condition, there exists a unique (up to an additive constant)
harmonic function v such that the Cauchy-Riemann equations
are satisfied.

Definition 3.1.2 (Conjugate harmonic function)
The function v from theorem 3.1.2 is a conjugate harmonic function conjugate harmonic function.

Thus the real and imaginary part of a holomorphic function are conjugated
harmonic functions, implying the following A rigid collection is one in which every

element is uniquely determined by less
information about than one would expect.

8



3.1 Consequences of the Cauchy-Riemann equations

Theorem 3.1.3: Rigidity

For a harmonic function u : R2
Ą U Ñ R2, where U satisfies a

topological condition, there exists a holomorphic function f : C Ą
U Ñ C such that u “ <pfq, which is unique determined up to a
imaginary constant.

Corollary 3.1.3 (<pfq “ 0 ùñ f ” C)
If <pfq “ 0 holds, =pfq and thus f is constant.

All of the above results hold with <pfq and =pfq reversed.

Example 3.1.4 Consider

u : C zt0u Ñ R, px, yq ÞÑ lnp
a

x2 ` y2q “
1

2
lnpx2 ` y2q.

Then

B2upx, yq

Bx2
“

y2 ´ x2

px2 ` y2q2
and

B2upx, yq

By2
“

x2 ´ y2

px2 ` y2q2

hold, so ∆u “ 0 holds on U ; u is harmonic.

But as U does not fulfil one of the topological conditions, it is difficult
to find the harmonic conjugate of u. We can solve this by cutting U
along any ray starting at 0, e.g. along the negative real half-axis, yielding
U 1 :“ C zRď0, which is star-shaped and simply connected, so we can
find a harmonically conjugate function in U 1 via the Cauchy-Riemann
equations:

Bvpx, yq

Bx
!
“ ´

Bupx, yq

By
“ ´

y

x2 ` y2
and

Bvpx, yq

By
!
“
Bupx, yq

Bx
“

x

x2 ` y2

The solution (existence guaranteed theorem 3.1.2) is

vpx, yq :“ arctan
´y

x

¯

` C,

where C “ 0 for x ą 0 and C “ π in the second quadrant and C “ ´π
in the third quadrant. We can more conveniently write this as vpx, yq “
argpx` iyq P p´π, πq. Thus

f : U 1 Ñ R, z “ x` iy ÞÑ upx, yq ` ivpx, yq “ lnp|z|q ` i argpzq

is holomorphic. ˛

Corollary 3.1.5 (∆u “ 0 if f holomorphic and ∆ph ˝ fq “ 0)
If f : U Ñ C is a holomorphic function and h : fpUq Ñ R is harmonic,
then h ˝ f : U Ñ R is a harmonic function

Proof. Let z0 P U . On an open neighbourhood of fpz0q, h is the real
part of a holomorphic function H by theorem 3.1.3. By the chain rule,
H ˝ f is differentiable, so it is holomorphic on a small neighbourhood of
z0. Thus <pH ˝ fq “ h ˝ f is harmonic by theorem 3.1.1. l

Remark 3.1.6 The proof only works if f is non constant, because
otherwise the image of the neighbourhood of z0 is not open, so theorem
3.1.3 is not applicable.
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3.1 Consequences of the Cauchy-Riemann equations

The open mapping theorem, which we will prove later, states that any
non-constant holomorphic function is open, i.e. maps open sets to open
sets.

Theorem 3.1.4: Properties of holomorphicity

Let f, g : U Ñ C be holomorphic. Then the functions f ` g, f ¨ g
and f{g are differentiable (provided g does not vanish anywhere
on U for the last).

Corollary 3.1.7 (Properties of holomorphic functions)
• Polynomials are holomorphic in C, i.e. entire.

• A rational function is holomorphic on the complement of the zeros
of its denominator (provided this set is finite).

• If f : U Ñ V Ă C and g : V Ñ C are holomorphic, so is their
composition g ˝ f : V Ñ C.

Remark 3.1.8 The standard formulae for the derivative of a product,
quotient etc. of functions hold.

Wirtinger calculus

Consider functions on R2 (fpx, yq) as depending on new coordinates in
R2 given by z and z: x “ z`z

2 and y “ z´z
2i .

This change of variables induces a change of bases in 1-forms: from
dx and dy we pass to dz and dz via dx “ dz`dz

2 and dy “ dz´dz
2i (as

dz “ dx` i dy and dz “ dx´ idy hold).

For a real-differentiable function f : R2
Ñ C we thus have

df “
Bf

Bx
dx`

Bf

By
dy “

1

2

ˆ

Bf

Bx
´ i
Bf

By

˙

loooooooomoooooooon

“: Bf
Bz

dz `
1

2

ˆ

Bf

Bx
` i
Bf

By

˙

loooooooomoooooooon

“: Bf
Bz

dz

“
Bf

Bz
dz `

Bf

Bz
dz

Separating the real and imaginary part one obtains

Bf

Bz
“

1

2

ˆ

Bf

Bx
` i
Bf

By

˙

“
1

2

ˆ

Bu

Bx
` i
Bv

Bx
` i

ˆ

Bu

By
` i
Bv

By

˙˙

“
1

2

ˆ

Bu

Bx
´
Bv

By

˙

` i
1

2

ˆ

Bv

Bx
`
Bu

By

˙

The bracketed terms are familiar, they come from the Cauchy-Riemann
equations (1). Thus a C1-function f : R2

Ą U Ñ C is holomorphic if and
only if Bf

Bz “ 0 holds in U .

Intuitively, a function on C "depends on" z and z. If f is holomorphic
that means it only "depends on" z and not on z in the sense that Bf

Bz “ 0

holds.

If f is given by an analytic formula involving z and z, this should be
understood literally: the functions fpzq :“ z2, fpzq :“ ez and fpzq :“

sinpzq are holomorphic, while the functions fpzq :“ z, fpzq “ |z|2 “

10



3.1 Consequences of the Cauchy-Riemann equations

zz and fpzq “ ppzq ` rpzq, where p and r are polynomials, are not
holomorphic.
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4 Power series

Recall that a complex power series power series

8
ÿ

n“0

cnpz ´ aq
n with pcnqnPN Ă C, a, z P C

possesses a radius of convergence radius of convergenceR P r0,8s such that for all z P C with
|z ´ a| ă R the series converges absolutely and for |z ´ a| ą R the series
diverges. We have R´1 :“ lim supnÑ8

n
a

|cn| (with obvious modifications
for 0 and 8).

For z with |z ´ a| ă R the series defines a function

f : BRpaq Ñ C, z ÞÑ
8
ÿ

n“0

cnpz ´ aq
n (3)

Theorem 4.0.1: Power series is holomorphic

The function (3) is holomorphic with f 1pzq “
ř8

n“1 ncnpz´aq
n´1,

with Rf “ Rf 1 .

Proof. The last statement follows from n
a

n|cn| “
n
?
n

loomoon

Ñ1

n
a

|cn|.

To prove differentiability, let z0 P BRpaq and without loss of generality
a “ 0. Then there exists a δ ą 0 and a ρ P p0, Rq such that Bδpz0q Ă

Bρp0q holds.
a “ 0

R

ρ

z0
δ

Fig. 6: Illustration of a step in the proof of
theorem 4.0.1

The power series for f converges absolutely in Bδpz0q. For h with |h| ă δ

pz0 ` hq
n ´ zn0
h

“ nzn´1
0 ` h

n
ÿ

k“2

ˆ

n

k

˙

hk´2zn´k0

holds by the binomial theorem. Thus
ˇ

ˇ

ˇ

ˇ

pz0 ` hq
n ´ zn0
h

´ nzn´1
0

ˇ

ˇ

ˇ

ˇ

4‰
ď |h|

n
ÿ

k“2

ˆ

n

k

˙

|h|k´2|z0|
n´k

ď |h|
n
ÿ

k“2

kpk ´ 1q

ˆ

n

k

˙

|h|k´2|z0|
n´k

“ |h|npn´ 1q
n
ÿ

k“2

ˆ

n´ 2

k ´ 2

˙

|h|k´2|z0|
n´k

“ |h|npn´ 1qp|h| ` |z0|q
n´2

ď |h|npn´ 1qρn´2 (cf. Fig. 6)

holds. We can now estimate
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“0

cn
pz0 ` hq

n ´ zn0
h

´

8
ÿ

n“0

ncnz
n´1
0

ˇ

ˇ

ˇ

ˇ

ˇ

with the triangle inequality by
N
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

cn
pz0 ` hqn ´ zn0

h
´ cnnz

n´1
0

ˇ

ˇ

ˇ

ˇ

`

8
ÿ

n“N`1

ˇ

ˇ

ˇ

ˇ

cn
pz0 ` hqn ´ zn0

h
´ cnnz

n´1
0

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooomoooooooooooooooooooooooon

ď|h|¨
ř

8
n“N`1

npn´1qρn´2cn

12



Thus for all ε ą 0 there exists a Nε P N such that

|h| ¨
8
ÿ

n“Nε`1

npn´ 1qρn´2cn ď
ε

2
.

Finally, for this Nε choose δ ą 0 so small that for all h with |h| ă δ

N
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

cn
pz0 ` hq

n ´ zn0
h

´ cnnz
n´1
0

ˇ

ˇ

ˇ

ˇ

ď
ε

2

holds. We have shown

lim
hÑ0

fpz0 ` hq ´ fpz0q

h
“

8
ÿ

n“1

ncnz
n´1
0 ,

thus finishing the proof. l

Corollary 4.0.1 (Trigonometric functions)
The functions

ez :“
8
ÿ

n“0

zn

n!
, cospzq :“

8
ÿ

n“0

p´1qn
z2n

p2nq!
and sinpzq :“

8
ÿ

n“0

p´1qnz2n`1

p2n` 1q!

are entire.

The Euler formula eiz “ cospzq ` i sinpzq follows from the above and
the

Theorem 4.0.2: Power series uniqueness theorem

If f is given by two convergent power series, i.e.

fpzq “
8
ÿ

n“0

cnpz ´ aq
n “

8
ÿ

n“0

bnpz ´ aq
n,

then cn “ bn holds for all n P N.

Proof. This follows from cn “
fpnqpaq
n! “ bn, which follows from theorem

4.0.1 applied inductively. l
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5 The Cauchy integral theorem
28.04.2020The goal of this section is to prove variants of the following theorem.

Theorem 5.0.1: Cauchy integral theorem

For a holomorphic function f : U Ñ C and a closed curve γ in U ,
¿

γ

fpzqdz “ 0. (4)

Fig. 7: An open set and a closed curve
inside it. TODO

Definition 5.0.1 ((closed, piecewise) C1 curve)
A C1 curve in U Ă C is a C1 map γ : R Ą ra, bs Ñ U , where differen-
tiability on the endpoints is understood in a one-sided way.

A piecewise C1 curve is a continuous piecewise C1 map γ : ra, bs Ñ C
that is ra, bs “

Ťm
k“1rtk´1, tks with t0 “ a, tk´1 ă tk and tm “ b holds

such that γ is C1 on rtk´1, tks.

A curve γ is closed if γpaq “ γpbq.

Curves are parametrised curves.

Fig. 8: A piecewise C1 curve. TODODefinition 5.0.2 (
ş

γ
fpzq dz)

For a holomorphic function f and a C1 curve γ : ra, bs Ñ U ,

ż

γ

fpzqdz :“

ż b

a

fpγptqqγ1ptqdt

is the integral of f over γ. We use the sum over the integrals of the
sub-intervals if γ is only piecewise C1.

Fig. 9: A curve and a tangent vector.
TODO

Remark 5.0.3 For a closed curve γ we write
ű

γ
instead of

ş

γ
.

Example 5.0.4 The unit circle can be parametrised by γ : r0, 2πs Ñ S1,
t ÞÑ exppitq. We obtain

¿

γ

z dz “

ż 2π

0

eitieit dt “ i

ż 2π

0

e2it dt “
1

2

“

e4πi ´ e0
‰

“ 0.

Similarly we can show
ű

γ
zm dz “ 0 for all m P Z zt´1u:

¿

γ

dz

z
“

ż 2π

0

ieit

eit
dt “ 2πi. ˛

Definition 5.0.5 (Reparametrisation)
A reparametrisation is a C1-diffeomorphism ϕ : rc, ds Ñ ra, bs, which
is orientation preserving i f ϕ1 ą 0 (in that case ϕpcq “ a and
ϕpdq “ b) and orientation reversing if ϕ1ptq ă 0.

The reparametrised curve is γ̃ :“ γ ˝ ϕ.
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Lemma 5.0.6 (Invariance under reparametrisation)
A reparametrisation of a curve does not change the value of the integral
over that curve if the reparametrisation is orientation preserving and
reverses the sign if it is orientation reversing.

Proof. For orientation preserving ϕ we get
ż

γ̃

fptqdz “

ż d

c

fpγpϕpsqq ¨ pγ ˝ ϕq1psqds

“

ż d

c

fpγpϕpsqq ¨ pγ1pϕpsqq ¨ ϕ1psqds “

ż ϕpdq

ϕpcq

fpγptqqγ1ptqdt

“

ż b

a

fpγptqqγ1ptqdt “

ż

γ

fpzqdz

by the chain rule and the substitution t “ ϕpsq.

For orientation reversing ϕ we get using the same techniques as above

ż

γ̃

fptqdz “

ż d

c

fpγpϕpsqq ¨ pγ1pϕpsqq ¨ ϕ1psqds “

ż ϕpcq

ϕpdq

fpγptqqγ1ptqdt

“ ´

ż b

a

fpγptqqγ1ptqdt “ ´

ż

γ

fpzqdz. l

Consider
ş

γ
x~v,d~x y for a vector field ~vpx, yq :“ pppx, yq, qpx, yqqT, or,

conceptually better
ş

γ
ω for a differential 1-form γ (a natural integrand for

curve integrals) where ω “ ppx, yq dx` qpx, yq dy, and p, q : R2
Ą U Ñ R

are continuous. Then
ż

γ

ω “

ż b

a

pppγptqqx1ptq ` qpγptqγ1ptqqq dt

holds for γptq :“ pxptq, yptqqT.

We now investigate under which conditions integrals of a differential
1-form (or a two dimensional vector field) over closed curves vanish.

Definition 5.0.7 (Exact 1-form)
A 1-form ω (vector field ~v) is called exact (a gradient vector field) if
there exists a 0-form (a function) ϕ : U Ñ R such that

ω “ dϕ “
Bϕpx, yq

Bx
dx`

Bϕpx, yq

By
dy

which is equivalent to

ppx, yq “
Bϕpx, yq

Bx
and qpx, yq “

Bϕpx, yq

By
,

which is equivalent to ~v “ gradpϕq “
´

Bϕpx,yq
Bx , Bϕpx,yq

By

¯T

.

Thus we require ϕ to be a C1-function.
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Theorem 5.0.2:
ű

γ
ω “ 0 if ω exact

The integral of an exact 1-form over a closed curve is equal to 0.

Proof.
¿

γ

ω “

ż b

a

ˆ

Bϕpγptqq

Bx
x1ptq `

Bϕpγqptqq

By
y1ptq

˙

dt

“

ż b

a

d

dt
ϕpγptqq dt “ ϕpγptqq

ˇ

ˇ

ˇ

ˇ

b

t“a

“ 0,

where we use that γ is closed in the last step. l

Definition 5.0.8 (Closed 1-form)
A 1-form ω with C1-coefficients ppx, yq and qpx, yq is called closed if its
Cartan derivative vanishes:

dω “

ˆ

Bp

Bx
dx`

Bp

By
dy

˙

^ dx`

ˆ

Bq

Bx
dx`

Bq

By
dy

˙

^ dy

“

ˆ

Bq

Bx
´
Bp

By

˙

dx^ dy
!
“ 0,

that is, if
Bq

Bx
´
Bp

By
“ 0

holds.

Corollary 5.0.9
Any exact form is closed.

Proof. If ω is an exact 1-form, there exists a ϕ such that ω “ dϕ and
thus dω “ 0 holds. If p “ Bϕ

Bx and q “ Bϕ
By with ϕ P C2

pUq, then

Bq

Bx
´
Bq

By
“
B

Bx

ˆ

Bϕ

By

˙

´
B

By

ˆ

Bϕ

Bx

˙

“ 0

holds by Schwartz’s theorem. l

Any closed form is locally exact, but not necessarily globally, cf. the
Poincare lemma.

In the Cauchy integral theorem we deal with a C-valued 1-form:

ω “ fpzqdz “ fpzqdx` ifpzqdy,

cf. the Wirtinger calculus. The 1-form ω is called holomorphic if f is
a holomorphic function.

To prove the theorem, we show that the 1-form ω “ fpzqdz, where f
is holomorphic and C1 (this is a strong additional assumption) fulfills
dω “ 0.

The holomorphic 1-form is closed (under the additional assumption
f P C1

pUq).
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Proof. Using the Wirtinger calculus we have

dw “

ˆ

Bf

Bz
dz `

Bf

Bz
dz

˙

^ dz “
Bf

Bz
dz ^ dz
looomooon

“0

`
Bf

Bz
loomoon

“0 p‹q

dz ^ dz “ 0,

where in p‹q we use that f is holomorphic. l

Thus
¿

γ

fpzqdz “ 0

for the holomorphic 1-form fpzqdz.

We will now formulate and prove the Cauchy theorem in its most general
form (concerning the assumptions), that is, without the unnecessary
assumption of f P C1.

Theorem 5.0.3: Cauchy theorem for rectangles

Let Q Ă U be a closed rectangle with sides parallel to the coordi-
nate axes and γ :“ BQ the boundary curve of Q consisting of four
line segments. Then (4) holds.

Proof. We subdivide Q into four equal rectangles Q1, . . . , Q4 and label
the boundary curves γ1, . . . , γ4 as in the picture of the right. Consider

Fig. 10: TOdo

the four numbers
ű

γi
fpzq dz for i P t1, . . . , 4u, whose sum is

ű

γ
fpzq dz as

the line segments shared by two curves cancel each other out as they are
traversed in opposite directions.

Let Qp1q be the one of the Qi for which the corresponding integrals has
the largest absolute value and γp1q :“ BQp1q the corresponding boundary
curve. Then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γp1q

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

holds. Subdividing the rectangle Q “ Qp1q, we get a smaller Qp2q and
γp2q :“ BQp2q with

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γp1q

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γp2q

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Continuing this process we obtain a strictly decreasing sequences of boxed
rectangles

Q ) Qp1q ) Qp2q ) Qp3q ) . . .

with boundary curves γpkq :“ BQpkq.

We thus obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γpnq

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for n P N. The centres of the Qpnq form a Cauchy sequence in C, which
is thus convergent to a point z0 :“

Ş

nPNQ
pnq P U .
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As f is differentiable at t0 we have

fpzq “ fpz0q ` f
1pz0qpz ´ z0q `Rpzq, (5)

where |Rpzq|
|z´z0|

zÑz0
ÝÝÝÑ 0.

Let ε ą 0 and choose δ ą 0 such that |Rpzq| ă ε|z ´ z0| holds for all z
with |z ´ z0| ă δ. Then

¿

γpnq

fpzqdz “ fpz0q

¿

γpnq

1 dz ` f 1pz0q

¿

γpnq

pz ´ z0qdz `

¿

γpnq

Rpzqdz

holds by (5). We have
¿

γpnq

1 dz “

¿

γpnq

z ´ z0 dz “ 0,

as the functions z ÞÑ 1 and z ÞÑ z ´ z0 have continuous antiderivatives in
U , namely, z and pz´z0q

2

2 ??. Indeed by the main theorem of calculus
¿

F 1pzqdz “ F pγpnqpbnqq ´ F pγ
pnqpanqq “ 0,

where bn and an are the end- and starting points of the curve. As γpnq is
closed, we have γpnqpanq “ γpnqpbnq.
Remark 5.0.10 Actually the Cauchy theorem follows immediately for
a function possessing an antiderivative, but unfortunately, we cannot
claim yet that any holomorphic function has an antiderivative in U . For
z ÞÑ 1 and z ÞÑ z ´ z0 however we know this to be true.

So we have to estimate
¿

γpnq

fpzqdz “

¿

γpnq

Rpzqdz.

Now we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γpnq

Rpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (6)

Choose n P N so large that for the diameter (largest distance between
two points) of Qpnq, diampQpnqq “ diampQq

2n ă δ holds. Then on γpnq we
have

|Rpzq| ă ε|z ´ z0| ă ε ¨
diampQq

2n

such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γpnq

Rpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε ¨
diampQq

2n
¨
`

2n
,

where ` is the length of γ. Thus by (6),
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď��4
n ¨ ε ¨ diampQq ¨

`

��4n
“ εdiampQq ¨ `

looooomooooon

ă8

εŒ0
ÝÝÝÑ 0

holds. l

28.04.2020
Remark 5.0.11 Many textbooks start with the Cauchy theorem for
triangles, whose proof is analogous to the one above but instead divides
the triangle by bisecting the sides.

Fig. 11: TODO18



Theorem 5.0.4: Cauchy theorem for C1-images of
rectangles

Let Q Ă C be a closed rectangle and ϕ : QÑ U a C1-map. Then
(4) holds for γ :“ ϕpBQq.

Proof. We construct Q Ă Qp1q Ă Qp2q Ă . . . as before with
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¿

ϕ˝γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ϕ˝γpnq

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

with γpnq :“ BQpnq ad γ :“ BQ. Since ϕ is a C1 function of the compact set
Q, there exists a C ą 0 such that } dϕ} ď C. Thus there exists constants
c1, c2 such that diampϕpQpnqqq ď c1ρ2´n and lengthpϕpγpnqqq ď c1`2

´n.

If z0 :“
Ş

nPN ϕpQ
pnqq P U , let ε ą 0 and δε ą 0 so small that |Rpzq| ă

ε|z´ z0| holds for all z with |z´ z0| ă δε. For n P N chosen so large that
c2ρ2´n ă δ holds, we have

ˇ

ˇ

ˇ

ˇ

ż

ϕ˝γ

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď 4n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ϕ˝γpnq

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 4n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ϕ˝γpnq

Rpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă 4n ¨ ε ¨ diampϕpQpnqqq ¨ lengthpϕpγpnqqq

ď 4n ¨ ε ¨ c1ρ ¨ 2
´n ¨ c2 ¨ ` ¨ 2

´n “ εCρ`
εŒ0
ÝÝÝÑ 0. l

Corollary 5.0.12
Let α, β : ra, bs Ñ U be two C1-curves, whose start- and endpoints coincide
such that all line segments between αptq and βptq lie inside U for every
t P ra, bs. Then we have

ż

α

fpzqdz “

ż

β

fpzqdz.

Proof. The above mentioned line segments can be parametrised by

ϕ : ra, bs ˆ r0, 1s, pt, sq ÞÑ p1´ sqαpaq ` sβptq,

which is a C1 map. Let Q :“ ra, bs ˆ r0, 1s. The boundary curve of ϕpQq
consists of four curves: α, hb,´β and ´ha (see Fig. 12). By theorem

Fig. 12: TODO

5.0.4 we have
ż

α

fpzqdz ´

ż

β

fpzqdz “

ż

ha

fpzqdz ´

ż

hb

fpzqdz.

If αpaq “ βpaq and αpbq “ βpbq hold (cf. Fig. 13, the curves ha and hb

Fig. 13: TODO

are constant and thus the right side of the above equation is equal to
zero, which implies the claim. l

If U is not simply connected, i.e. "has holes", the assumption that the
connecting straight line segments lie in U might not be satisfied, cf.
Fig. 14.

Fig. 14: TODO

Corollary 5.0.13
If α, β as above and also closed we have

ű

α
fpzqdz “

ű

β
fpzqdz.
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Fig. 15: TODO

Proof. Sticking to the notation of the proof above in this case we have
ha “ hb, thus their corresponding integrals coincide. l

How can we see (an image of) a rectangle here? Consider the image on
the right, where the distance between ha and hb is very small.

Corollary 5.0.14 (Cauchy theorem of an annulus)
If an annulus tz : r ď |z ´ z0| ď Ru, where r,R ą 0 lies in U we have

¿

|z´z0|“r

fpzqdz “

¿

|z´z0|“R

fpzqdz

Sending r to 0 we particularly get
ű

|z´z0|“R
fpzq dz “ 0 if tz : |z ´ z0| “

Ru Ă U holds.
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6 Fundamental theorems of Complex
Analysis (as corollaries of the
Cauchy theorem)

Theorem 6.0.1: Cauchy integral formula

Suppose D :“ tz : |z´z0| ď ru Ă U . For any a P tz : |z´z0| ă ru

we have
fpaq “

1

2πi

¿

|z´z0|“r

fpzq

z ´ a
dz.

Note that fpzq
z´a is not holomorphic in U but only on Uztau.

Proof. Let ε ą 0. For an eccentric annulus we can still apply corollary
5.0.14:

Fig. 16: TODO

¿

BD

fpzq

z ´ a
dz “

¿

|z´a|“ε

fpzq

z ´ a
dz

TODO: give formal proof of the existence of a parametrisation
of |z ´ z0| “ r and |z ´ a| “ ε such that all segments connecting
corresponding pairs of point do not pass through a. As the right
hand side depends on ε but the other side does not we have

¿

D

fpzq

z ´ a
dz “ lim

εŒ0

¿

|z´a|“ε

fpzq

z ´ a
dz

“ lim
εŒ0

¿

|z´a|“ε

fpzq ´ fpaq

z ´ a
dz

loooooooooooooooomoooooooooooooooon

“0

`fpaq

¿

|z´a|“ε

dz

z ´ a
,

where the first integral vanished as the integrand is bounded and the
length of the integration path, 2π ¨ ε, converges to zero. The second
integral is independent of ε:

¿

|z´a|“ε

dz

z ´ a
“

ż 2π

0

ε ¨ i ¨ eit

εeit
dt “ 2πi,

as z “ a` εeit, t P r0, 2πs is a parametrisation of |z ´ a| “ ε. l

Example 6.0.1 (Applying the Cauchy integral formula)
We can now easily calculate

¿

|z´2i|“2

z2 ´ 1

z2 ` 1
dz,

as we can rewrite fpzq :“ z2´1
z2`1 as gpzq

z´i , as |i ´ 2i| “ 1 ă 2, where
gpzq :“ z2´1

z`i . By theorem 6.0.1 we obtain
¿

|z´2i|“2

z2 ´ 1

z2 ` 1
dz “ 2πigpiq “ ´2π. ˛
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Example 6.0.2 (Partial fraction decomposition)
How can we calculate

¿

|z|“R

fpzq

pz ´ z1qpz ´ z2q
dz,

where z1 ‰ z2 are complex numbers with maxp|z1|, |z2|q ă R?

We want to find functions a, b, such that

fpzq

pz ´ z1qpz ´ z2q
“

apzq

z ´ z1
`

bpzq

z ´ z2
,

which can be rewritten as

fpzq “ z ¨
`

apzq ` bpzq
˘

´ z2apzq ´ z1bpzq.

Assuming apzq “ ´bpzq (to eliminate the z term), we get

fpzq “ ´z2apzq ´ z1bpzq

and thus
apzq “

fpzq

z1 ´ z2
and bpzq “

fpzq

z2 ´ z1

so the integrand becomes

fpzq

pz ´ z1qpz ´ z2q
“

apzq

z ´ z1
`

bpzq

z ´ z2
“

fpzq

pz ´ z1qpz1 ´ z2q
´

fpzq

pz ´ z2qpz1 ´ z2q

and thus, by the Cauchy integral formula we have
ż

|z|“R

fpzq

pz ´ z1qpz ´ z2q
dz “

ż

|z|“R

apzq

pz ´ z1qpz1 ´ z2q
´

apzq

pz ´ z2qpz1 ´ z2q
dz

“ 2πi papz1q ´ apz2qq “ 2πi

ˆ

fpz1q

z1 ´ z2
´

fpz2q

z1 ´ z2

˙

“ 2πi ¨
fpz1q ´ fpz2q

z1 ´ z2
.

Another way to think about this is to imagine that we want to split the
domain which contains the two poles z1 and z2 into two domains with
one pole each as indicated in the figure on the right We can now (this

Fig. 17: TODO

will be made more rigorous later) pull those two regions together into
two ε-balls around z1 and z2, so the integral becomes

¿

|z´z1|“ε

fpzq

pz ´ z1qpz ´ z2q
dz `

¿

|z´z2|“ε

fpzq

pz ´ z1qpz ´ z2q
dz “: ‹.

By theorem 6.0.1,

‹ “ 2πi

ˆ

fpz1q

z1 ´ z2
`

fpz2q

z2 ´ z1

˙

“ 2πi ¨
fpz1q ´ fpz2q

z1 ´ z2
. ˛

Corollary 6.0.3 (Mean value theorem)
If D Ă U holds we have

fpz0q “
1

2π

ż 2π

0

fpz0 ` re
itqdt.
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Proof. With the parametrisation z “ z0 ` re
it for t P r0, 2πs and using

theorem 6.0.1 for a “ z0 we obtain

fpz0q “
1

2πi

¿

|z´z0|“r

fpzq

z ´ z0
dz “

1

2πi

2π
¿

0

fpz0 ` re
itq

reit
r ¨ i ¨ eit dz

“
1

2π

ż 2π

0

fpz0 ` re
itq. l

Theorem 6.0.2: Morera (holomorphicity criterion)

Let f : D Ñ C be a continuous function such that its integral over
any closed curve in D vanishes. Then f is holomorphic.

Proof. We want to find the anti-derivative F of f , i.e. F 1 “ f . By the
theorem of Goursat we can then conclude that f is holomorphic.

For fixed z0 P D define

F pzq :“

ż

γ

fpξqdξ,

where γ is a path in D from z0 to z. This function is well defined, as
for two paths τ and p from z to z0 we have that the integral over the
closed path obtained by concatenating τ with p traversed backwards is
zero and the integral over p traversed backwards is minus the integral of
p, yielding the equality of the integrals.

We now show F 1 “ f . Let z P D and γ be a path from z0 to z. We have

Fig. 18: TODO

F pz ` hq ´ F pzq

h
“

ş

γτ
fpξqdξ ´

ş

γ
fpξqdξ

h
“

ş

τ
fpξqdξ

h

Let ε ą 0. We want to show that there exists a δ ą 0 such that |h| ă δ

implies
ˇ

ˇ

ˇ

ş

τ
fpξq dξ

h ´ fpzq
ˇ

ˇ

ˇ
ă ε. As f is continuous, there exists a δ ą 0

such that |fpz ` ξq ´ fpzq| ă ε holds for all |ξ| ă δ.

For |h| ă δ we have
ˇ

ˇ

ˇ

ˇ

ş

τ
fpξqdξ

h
´ fpzq

ˇ

ˇ

ˇ

ˇ

“
1

|h|

ˇ

ˇ

ˇ

ˇ

ż

τ

fpξqdξ ´ |h|fpzq

ˇ

ˇ

ˇ

ˇ

“
1

|h|

ˇ

ˇ

ˇ

ˇ

ż

τ

fpξqdξ ´

ż

τ

fpzqdξ

ˇ

ˇ

ˇ

ˇ

“
1

|h|

ˇ

ˇ

ˇ

ˇ

ż

τ

fpξq ´ fpzqdξ

ˇ

ˇ

ˇ

ˇ

ď |h|max
τ
|fpξq ´ fpzq| ¨ Lpτq

“ max
τ
|fpξq ´ fpzq| ă ε. l

Theorem 6.0.3: Power series expansion

For z0 P U there exists a unique power series
ř8

n“0 cnpz´z0q
n with

positive convergence radius representing f in some neighbourhood
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of z0. If tz : |z ´ z0| ď ru Ă U holds, the series converges to fpzq
in tz : |z ´ z0| ă ru. Moreover, the Cauchy formula Cauchy formulaholds:

cn “
1

2πi

¿

|z´z0|“r

fpzq

pz ´ z0q
n`1

dz.

Proof. Uniqueness is clear: a sum of a convergent power series is in-
finitely differentiable by theorem 4.0.1 and the series is the Taylor series
for fpzq so that cn “

fpnqpz0q
n! .

Existence. Without loss of generality assume z0 “ 0 and tz : |z| ď ru Ă U .
For all |z| ď r the Cauchy integral formula yields

fpzq “
1

2πi

¿

|ζ|“r

fpζq

ζ ´ z
dζ “

1

2πi

¿

|ζ|“r

fpζq

ζ

1

1´ z
ζ

dζ.

As |z| ă |ζ|, the series 1
1´ zζ

“
ř8

n“0
zn

ζn converges absolutely and uni-
formly for |ζ| “ r. Integrating term by term we obtain

fpzq “
1

2πi

¿

|ζ|“r

fpζq

ζ

8
ÿ

n“0

zn

ζn
dζ “

8
ÿ

n“0

¨

˚

˝

1

2πi

¿

|ζ|“r

fpζq

ζn`1
dζ

˛

‹

‚

zn. l

Example 6.0.4 We can now calculate
¿

|z|“1

ez

zn
dz

for n P N the power series of fpzq :“ ez, which is entire, in zero, has the
coefficients

cn´1 “
1

2πi

¿

|z|“1

ez

zn
dz.

We have ez “
ř8

k“0
zk

k! by corollary 6.0.9 and thus
¿

|z|“1

ez

zn
dz “

2πi

pn´ 1q!
˛

Remark 6.0.5 We can reconstruct the cn and thus fpzq from its values
on |z| “ r only, where r ą 0 is arbitrarily small.
Corollary 6.0.6 (Goursat)
Every holomorphic function is C8.

How can we determine the convergent radius of the power series? We
know that the series converges to fpzq in any open disk around z0, which
lies in U . This is in stark contrast to real analysis:

Example 6.0.7 Let fpzq :“ pz2`1q´1 “
ř8

n“0p´1qnz2n. This function
behaves well in R and one does not see any reason why this series only
converges for z P p´1, 1q. But this becomes obvious in C: f is only
defined on U “ C zt˘1u. The largest open disk in U around zero has
radius 1.

Similarly, the series for fpzq :“ lnp1 ` z2q “
ř8

n“0p´1qn z
2n`2

n`1 has con-
vergence radius 1. ˛

24



Example 6.0.8 Consider the even function

fpzq :“
z

ez ´ 1
`
z

2
“
z

2

ez ` 1

ez ´ 1
“
z

2
coth

´z

2

¯

“

8
ÿ

n“0

b2n
p2nq!

z2n,

where bk are the Bernoulli numbers. Comparing coefficients in
ř8

n“0
b2n
p2nq!z

2n

ř8

n“1
zn

n!

“ z `
z

2
pez ´ 1q

one finds a recurrent solution for b2n, which shows that bn P Q. One
finds b0 “ 1, b2 “ 1

6 , b4 “ ´ 1
30 , b6 “

1
42 . The first impression is

deceptive; the Bernoulli numbers grow exponentially, which we can
show be determining the convergence radius of the power series. The
function is not defined at z “ 0 but by L’Hôpital’s rule, one can show
the corresponding limits agree. Unfortunately, for z “ 2mπi, where
m P Z zt0u, this is not the case. Thus the largest open disk around 0
lying in U has radius 2π, i.e.

2π “
1

lim supnÑ8

ˇ

ˇ

ˇ

b2n
p2nq!

ˇ

ˇ

ˇ

1{n
,

which implies
ˇ

ˇ

ˇ

b2n
p2nq!

ˇ

ˇ

ˇ
„ C
p2πq2n , where C ą 0 is a constant

By the Euler formula ??? we have

b2n
p2nq!

“ 2
p´1qn´1

p2πqn{2
,

where ζpzq :“
ř8

k“0 z
´k is the Zeta function.

Thus
ζp2nq “

b2n
p2nq!

p´1qn´122n´1π2n

is a rational multiple of π2n. We have

ζp2q “
8
ÿ

k“1

k´2 “
π2

6
, ζp4q “

π4

90
, ζp6q “

π6

945
, and ζp8q “

π8

9450
.̨

05.05.2020
Corollary 6.0.9 (Cauchy estimate for Taylor coefficients)
For z0 P U and r ą 0, let tz : |z´z0| ď ru Ă U . Assume that |fpzq| ďM

for all z with |z ´ z0| “ r for some M ą 0. For the coefficients of the
power series expansion

fpzq “
8
ÿ

n“0

cnpz ´ z0q
n

we have
|cn| ďM ¨ r´n @n ě 0

Proof. By theorem 6.0.3 we have

|cn| ď
1

2π

¿

|z´z0|“r

|fpzq|

|z ´ z0|
n`1

dz ď
1

2π
¨ p2πrq

M

rn`1
“
M

rn
. l
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Theorem 6.0.4: Liouville

Any bounded entire function is constant.

Proof. For a bounded function f there exists aM ą 0 such that |fpzq| ď
M for all z P C. By corollary 6.0.9 we have

|fpzq|
4‰
ď

8
ÿ

n“0

|cn||z|
n ď

8
ÿ

n“0

M

ˆ

|z|

r

˙n

for all r ą 0. Sending r Ñ8 we obtain |cn| “ 0 for all n ě 1, implying
fpzq “ c0. l

Corollary 6.0.10 (Fundamental theorem of algebra)
Any polynomial ppzq P Crzs of degree n ě 1 has at least one zero (and
thus, inductively, n zeros) in C.

Proof. Let ppzq :“
řn
k“0 akz

k with an ‰ 0 and n ě 1. Then we have

ppzq “ zn
ˆ n

ÿ

k“0

akz
k´n

looooomooooon

|z|Ñ8
ÝÝÝÝÑan

˙

,

implying that lim|z|Ñ8 |ppzq| “ 8. Thus for all M ą 0 there exists
a rM ą 0 such that |ppzq| ě M for all z with |z| ě rM . Towards
contradiction assume ppzq ‰ 0 for all z P C. Set m :“ min|z|ďr |ppzq| ą 0.
Thus the function fpzq :“ 1

ppzq is holomorphic in C with

|fpzq| “
1

|ppzq|
ď max

ˆ

1

m
,

1

M

˙

.

By the Liouville theorem, f and thus p is constant, which is a contra-
diction. l

Theorem 6.0.5: Uniqueness theorem

Let D Ă C be a domain (open and connected) and J Ă D a
subset having an accumulation point in z0 P D. Let f, g : D Ñ C
be holomorphic. If f “ g on J , then f “ g on D.

Proof. 1 It suffices to show that if h :“ f ´ g vanishes on J , it
vanishes on D. As h is holomorphic in D, theorem 6.0.3 implies

hpzq “
8
ÿ

n“0

cnpz ´ z0q
n

for |z´z0| ă ε and some ε ą 0. As z0 is an accumulation point, there
exists a sequence pzkqkPN Ă J converging to z0. Thus hpzkq “ 0 for
all k P N, implying hpzkq

kÑ8
ÝÝÝÑ hpz0q “ c0 “ 0.

2 Assume that there exists a n P N such that cn ‰ 0, take the smallest
of such. Thus

hpzq “ pz ´ z0q
n
8
ÿ

m“0

cn`mpz ´ z0q
m “: pz ´ z0q

nh1pzq,
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where h1pzq :“
ř8

m“0 cn`mpz ´ z0q
m is holomorphic. cn “ 0 is

equivalent to h1pz0q “ 0, thus h1pzq ‰ 0 in some neighbourhood
of z0. In the is neighbourhood, z0 is the only zero of hpzq, which
is a contraction hpznq “ 0 with zn Ñ z0. Thus hpzq “ 0 in some
neighbourhood of z0.

3 Set M :“ tp P D : hpzq “ 0 @z P Bεppqu. Then M ‰ H (z0 P M)
is open. But DzM is open, as well:

• if hppq ‰ 0, then hpzq ‰ 0 in some neighbourhood of p

• if hppq “ 0 but hpnqppq ‰ 0, then there exists a neighbourhood
of p whence p i s the only zero of h.

Thus p P DzM implies that some neighbourhood of p is in DzM ,
so DzM is open.

4 Towards contradiction assume that DzM is empty. Then D is the
union of two open non-empty disjoint sets, which is a contradiction,
thus DzM “ H, i.e. M “ D. l

Definition 6.0.11 (Zero of order m)
The point z0 P U is a zero of f of order m P NYt8u if f pkqpz0q “ 0 for
k P t0, . . . ,m´ 1u but f pmqpz0q ‰ 0.

Remark 6.0.12 If fpz0q “ 0, then z0 always has finite order unless
f ” 0. If a holomorphic function has a zero of infinite order, then f ” 0,
which is not true for C8 function on R: consider fpxq “ exp

`

´ 1
x2

˘

¨1r0,8q,
which has a zero of infinite order at x “ 0.

A simple zero is a zero of order 1, i.e. fpz0q “ 0 ‰ f 1pz0q, which has
the following geometric interpretation. In a neighbourhood of a point
z0, where f 1pz0q ‰ 0, a holomorphic function acts biholomorphic biholomorphically: it
maps some neighbourhood of fpz0q bijectively and the inverse map is
holomorphic, too.

Indeed, f is a local diffeomorphism on U Ă R2 as

detpdfpz0qq “

∣∣∣∣∣a ´b

b a

∣∣∣∣∣ “ a2 ` b2 “ |f 1pz0q|
2 ‰ 0,

where a, b are the real resp. imaginary part of f , dfpz0q is a real two-
dimensional map and f 1 is the complex derivative.

Thus if

fpzq “ w “
8
ÿ

k“0

ckpz ´ z0q
k

with c1 ‰ 0, we have

z “ z0 `

8
ÿ

k“1

akpw ´ ckq
k.

Formally, one can find the coefficients ak inductively by comparison in
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gpfpzqq “ z, i.e

z0 ` a1

`

c1pz ´ z0q ` c2pz ´ z0q
2 ` c3pz ´ z0q

3 ` . . .
˘

` a2

`

c1pz ´ z0q ` c2pz ´ z0q
2 ` . . .

˘2

` a3 pc1pz ´ z0q ` . . .q
3
` . . . “ z,

which yields (for z ´ z0) a1c1 “ 1, (for pz ´ z0q
2) a1c2 ` a1c

2
1 “ 0, (for

pz ´ z0q
3) a1c3 ` 2a2c1c2 ` a3c

3
1 “ 0. We thus have

a1 “ c´1
1 , a2 “

´a1c2
c21

“ ´
c2
c31
,

a3 “
´a1c3 ´ 2a2c1c2

c31
“ ´

c1c3 ` 2c22
c51

.

So we can formally invert power series.

Bonus: Show directly that the power series
ř8

n“0 anpw´z0q
n has a non-

vanishing convergence radius provided the power series
ř8

n“0 cnpz ´ z0q
n

has a non-vanishing converge radius. Hint: Cauchy inequalities.

We have show, that if f 1pz0q ‰ 0, then f acts biholomorphically in some
neighbourhood of z0. This is, of course, true for simple zeros, where the
neighbourhood of z0 is mapped to a neighbourhood of 0.

For m ą 1, the situation is different:

Theorem 6.0.6: Holomorphic m-th root

Let z0 P U be a zero of order m ě 1. Then in some neighbourhood
of z0 there exists a holomorphic function h with a simple zero at
z0: hpz0q “ 0, h1pz0q ‰ 0 such that

fpzq “ phpzqqm

Proof. 1 We have cm ‰ 0 in

fpzq “ pz ´ z0q
m

8
ÿ

n“m

cnpz ´ z0q
n´m “: pz ´ z0q

mgpzq.

Then we have gpz0q “ cm ‰ 0.

It is sufficient to determine a holomorphic m-th root of g, i.e. to
solve

gpzq “ pωpzqqm,

where ω is holomorphic in some neighbourhood of z0. Set hpzq :“

pz ´ z0q ¨ ωpzq, as then h has a simple zero at z0.

2 One can easily determine a (formal) power series for ω:

cm ` cm`1pz ´ z0q ` cm`2pz ´ z0q
2 ` cm`3pz ´ z0q

3 ` . . .

“
`

ω0 ` ω1pz ´ z0q ` ω2pz ´ z0q
2 ` ω3pz ´ z0q

3 ` . . .
˘m

Comparing coefficients yields (for pz´ z0q
0) cm “ ωm0 , (for pz´ z0q)

cm`1 “ mωm´1
0 ω1, (for pz´z0q

2) cm`2 “ mωm´1
0 ω2`

`

m
2

˘

ωm´2
0 ω2

1

and for pz ´ z0q
3:

cm`3 “ mωm´1
0 ω3 `

ˆ

m

2

˙

ωm´2
0 ¨ 2ω1ω2 `

ˆ

m

3

˙

ωm´3
0 ω3

1 .
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From the first equation we get m different possibilities for ω0. From
the second equation, we determine ω1 uniquely, in the third equation
ω2 and so on.

We obtain m different power series, depending on the m solutions
of cm “ ωm0 , which is equivalent to

ω0 “
m
?
cm,

where cm ‰ 0, Writing cm “ ρeiθ we obtain

ω0 “ ρ1{m exp

ˆ

i
θ

m
`

2πik

m

˙

, k P 0, . . . ,m´ 1

One can prove that the so obtained power series of ω are convergent
in some neighbourhood of z0. TODO

3 The function z ÞÑ zm act biholomorphically in some neighbourhood
of any of the numbers ωpkq0 , as its derivative mzm´1 ‰ 0 there. l

06.05.2020Recall that if f 1pz0q ‰ 0 on a neighbourhood of z0, this neighbourhood
is mapped bijectively to a neighbourhood of fpz0q bijectively (1 : 1) such
that the inverse map is holomorphic as well. If f 1pz0q “ 0 and f ı 0,

Fig. 19: TODO

there exists a m ě 1 such that f pm´1qpz0q “ 0 but f pmqpz0q ‰ 0. Then
there exists a w ‰ fpz0q in a neighbourhood of fpz0q and m point pzkqmk“1

in the neighbourhood of z0 such that fpzkq “ w for k P t1, . . . ,mu, so f
is not locally invertible as it maps "m : 1".

Corollary 6.0.13
A holomorphic function is locally invertible in a neighbourhood of z0 if
and only if f 1pz0q ‰ 0.

Remark 6.0.14 This is not true for C8 maps f : R2
Ñ R2 or f : R2

Ñ

C: consider fpx, yq :“ x3`iy
∆
“

˜

x3

y

¸

. Then detpdfp0qq “ detpdiagp3x2, 1q
ˇ

ˇ

px,yq“p0,0q
q “

3x2
ˇ

ˇ

x“0
“ 0, but f is locally invertible around the origin.

Theorem 6.0.7: Open mapping theorem

In German: Satz über Gebietstreue.If f is a non-constant holomorphic function of a domain D, fpDq
is a domain, as well.

Proof. Since f is continuous, fpDq is connected. Let w0 :“ fpz0q for
z0 P D. As f is non-constant the function gpzq :“ fpzq´w0 has a zero at
z “ z0 of some finite order m. If m “ 1, there’s a locally biholomorphic
(1:1) map (correspondence) between Bεpz0q and some neighbourhood of
w0 for some ε ą 0. If m ą 1, there is a m : 1 correspondence: for any
w with 0 ă |w ´ w0| ă ε there are m preimages and w0 has the one
preimage z0. l

Counterexample 6.0.15 This is not true for real C8 maps. Consider
f : R Ñ R, x ÞÑ x2. Then fpp´1, 1qq “ r0, 1q, which is not open. Such
"folding" of open sets cannot happen for holomorphic maps. ˛

Fig. 20: TODO29



Theorem 6.0.8: Maximum principle (version 1)

If f is a non-constant holomorphic function of a domain D, |f |
can not achieve a local maximum at any z0 P D.

Proof. Let z0 P D and w0 :“ fpz0q. Then there exists a δ ą 0 such

Fig. 21: TODO

that Bδpw0q Ă fpDq. In some point w1 P Bδpw0q we have |w1| ą |w0|.l

The maximum principle can also be stated in the following way:

Theorem 6.0.9: Maximum principle (version 2)

Let f : D Ñ C be a holomorphic function on a bounded domain
D and f : D Ñ C continuous. Then |f | achieves its maximum on
the boundary BD.

The same proof shows that also <pfq and =pfq cannot achieve their
respective maxima at interior points of their domain. Recall that <pfq
and =pfq are harmonic functions.
Corollary 6.0.16 (Maximum principle (harmonic functions))
Let u : D Ñ R be a harmonic function on a bounded domain and u : D Ñ

R continuous. Then u attains its maximum on D at BD.

Proof. Exercise. l

Let D :“ tz P C : |z| ă 1u be the open unit disc.

Theorem 6.0.10: Schwarz lemma

Let f : D Ñ D be a holomorphic function fixing the origin, i.e
with fp0q “ 0. Then

|f 1p0q| ď 1 and |fpzq| ď |z| @z P D .

If equality holds in either inequality, f is a rotation: fpzq “ cz

with |c| “ 1.

Proof. By power series expansion we have

fpzq “
8
ÿ

n“1

cnz
n “ z ¨

8
ÿ

n“0

cn`1z
n “: z ¨ gpzq

as c0 “ fp0q “ 0. The function g is holomorphic with gp0q “ c1 “ f 1p0q.
For r ă 1 and all z P D with |z| “ r we have

1 ą |fpzq| “ |z||gpzq| “ r|gpzq|

and thus |gpzq| ď 1
r for all z P D with |z| “ r. By the maximum principle,

we have |gpzq| ď 1
r on the whole disk tz P D : |z| ď ru.

Sending r Õ 1 yields |gpzq| ď 1 for all z P D. This proves both inequalities
as gp0q “ f 1p0q.

If |gpz0q| “ 1 for some z0 P D, by the maximum principle, gpzq “ c for
some constant c with |c| “ 1, as |gpz0q| “ |c| “ 1. l
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7 Isolated singularities
A great amount of information about a holomorphic function is contained
(concealed) in its singularities.

Again, let f : U Ñ C be a holomorphic function on an open subset U Ă C.

Definition 7.0.1 (Isolated singularity)
A point z0 P C zU is an isolated singularity isolated singularityif there exists a ε ą 0 such
that Bεpz0qztz0u Ă U , i.e. if z0 is the only part of Bε not belonging to
U .

Example 7.0.2 (Isolated singularity) Consider U :“ C zt0u. Then
0 is a isolated singularity. ˛

There are three different types of isolated singularities.

Definition 7.0.3 (Removable singularity)
An isolated singularity z0 of f is called removable removable(German: hebbar) if
there is a w P C such that

f̃ : U Y tzu Ñ C, z ÞÑ

$

&

%

fpzq, if z P U,

w, if z “ z0

is a holomorphic function.

Example 7.0.4 (Removable isolated singularities)
1 Let f : C zt0u Ñ C, z ÞÑ z with U :“ C zt0u. Then f̃ : C Ñ C is

holomorphic in C “ U Y t0u.

2 Let g : U Ñ C be a holomorphic function. For z0 P U define

f : Uztz0u Ñ C, z ÞÑ
gpzq ´ gpz0q

z ´ z0
,

which is holomorphic and formally not defined for z “ z0. This can
be repaired: the extension

f̃ : U Ñ C, z ÞÑ

$

&

%

fpzq, if z ‰ z0

g1pz0q, if z “ z0

is a holomorphic function.

3 The previous point can be used to show that the functions sinpzq
z ,

ez´1
z and cospzq´1

z , extended by one, one and zero have a removable
singularity at z “ 0. ˛

Definition 7.0.5 (Pole of order m)
An isolated singularity z0 of f is a pole poleof order m ě 1 if gpzq :“

pz ´ z0q
mfpzq has a removable singularity at z0.

Example 7.0.6 (Poles) Let g : U Ñ C be a holomorphic function. For
z0 P U with gpz0q ‰ 0 and m P N define

f : Uztz0u Ñ C, z ÞÑ
gpzq

pz ´ z0q
m
,
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which has a pole of order m at z0.

The function z ÞÑ ez

z100 has a pole of order 100 at z “ 0, whereas z ÞÑ ez´1
z100

has a pole of order 99 at z “ 0 (cf. example 7.0.4). ˛

Definition 7.0.7 (Essential singularity)
An isolated singularity z0 of f is called essential if its neither removable
nor a pole.

Remark 7.0.8 (Warning: non-isolated singularities)
Holomorphic functions can have non-isolated singularities. Our classifica-
tion into three types tells us nothing about them.

Example 7.0.9 (non-isolated singularities)
The function z ÞÑ

`

sin
`

π
z

˘˘´1 has poles at 1
n for all n P Z zt0u and at

z “ 0. The latter is an non-isolated singularity (an accumulation point
of poles). ˛

Example 7.0.10 (Natural boundary)
Consider the power series

fpzq :“
8
ÿ

n“0

z2n “ z ` z2 ` z4 ` z8 ` z16 ` . . .

with convergence radius equal to one, which defines a holomorphic func-
tion in D by theorem 4.0.1.

If z Ñ 1 along the real axis, then fpzq Ñ 8 and thus z “ 1 is a singularity.
We have

fpzq “ z `
`

z2 ` z4 ` z8 ` z16 ` . . .
˘

“ z ` fpz2q.

Thus if z Ñ ´1 along the real axis, then fpzq Ñ 8 and thus z “ ´1 is a
singularity. Similarly we have

fpzq “ z ` z2 ` fpz4q,

so fpzq Ñ 8 if z Ñ ˘i along the imaginary axis. Inductively we obtain

fpzq “
m´1
ÿ

k“0

z2m ` fpz2mq,

so fpzq Ñ 8 if z Ñ exp
`

2πi
2m ¨ k

˘

for k P t0, 1, . . . , 2m´1u along the
corresponding radii of D, thus all such points are singularities of f . These
points are dense on S1 “ BD, which consists of non-isolated singularities
of fpzq. One says that S1 is a natural boundary natural boundaryfor f . ˛

An import tool to study isolated singularities are

Laurent series

A Laurent series is a sum of two power series

8
ÿ

n“´8

cnpz ´ z0q
n “

8
ÿ

n“0

cnpz ´ z0q
n

loooooooomoooooooon

regular part

`

´1
ÿ

n“´8

cnpz ´ z0q
n

loooooooooomoooooooooon

principal part

.
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The convergence domain of the regular part is

tz P C : |z ´ z0| ă Ru

for some R P r0,8s, whereas the convergence domain of the principle
part is

"

z P C :
1

|z ´ z0|
ă

1

r

*

“ tz P C : |z ´ z0| ą ru

for some r P r0,8s. Thus the convergence convergence domain of the
whole Laurent series is an annulus:

tz P C : r ă |z ´ z0| ă Ru

with r,R P r0,8s. In particular, we cannot exclude that r ą R, in which
case the convergence domain is empty.

Fig. 22: Different "annuli" as convergence domains of a Laurent series.
TODO

12.05.2020

Theorem 7.0.1: Laurent series expansion

A function f holomorphic in an annulus tz : r ă |z´z0| ă Ru with
r ă R is represented in this annulus by a convergent Laurent
series

fpzq “
8
ÿ

n“´8

cnpz ´ z0q
n,

where for the coefficients we have the (Cauchy-like) formula

cn “
1

2πi

¿

|z´z0|“ρ

fpzq

pz ´ z0q
n`1

dz

for n P Z and ρ P pr,Rq.

Remark 7.0.11 In this case, there is no such representation as cn “
fpnqpz0q

n! , just because f is not defined at z0 (even for positive n).

Proof. Without loss of generality let z0 “ 0, such that the convergence
annulus is U :“ tz P C : r ă |z| ă Ru ‰ H.

By the Cauchy formula we have

fpzq “
1

2πi

¿

|ζ´z|“ε

fpζq

ζ ´ z
dζ
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for sufficiently small ε ą 0 (such that tζ P C : |ζ ´ z| “ εu Ă U .

We now deform the integration path such that the integral does not
change (according to the Cauchy integral theorem), where we choose δ
such that r ` δ ă |z| ă R´ δ.

Fig. 23: TODO

This yields (similarly to the proof the power series expansion)

fpzq “
1

2πi

¿

|ζ|“R´δ

fpζq

ζ ´ z
dζ ´

1

2πi

¿

|ζ|“r`δ

fpζq

ζ ´ z
dζ

“
1

2πi

¿

|ζ|“R´δ

fpζq

ζ

1

1´ z
ζ

dζ `
1

2πiz

¿

|ζ|“r`δ

fpζq

1´ ζ
z

dζ

“

8
ÿ

n“0

¨

˚

˝

1

2πi

¿

|ζ|“R´δ

fpζq

ζn`1
dζ

˛

‹

‚

zn `

¨

˚

˝

1

2πi

¿

|ζ|“r`δ

fpζqζn dζ

˛

‹

‚

1

zn`1

“

8
ÿ

n“0

¨

˚

˝

1

2πi

¿

|ζ|“R´δ

fpζq

ζn`1
dζ

˛

‹

‚

zn `
´1
ÿ

m“´8

¨

˚

˝

1

2πi

¿

|ζ|“r`δ

fpζq

ζm`1
dζ

˛

‹

‚

zm

“

8
ÿ

n“0

¨

˚

˝

1

2πi

¿

|ζ|“ρ

fpζq

ζn`1
dζ

˛

‹

‚

zn `
´1
ÿ

m“´8

¨

˚

˝

1

2πi

¿

|ζ|“ρ

fpζq

ζm`1
dζ

˛

‹

‚

zm

“

8
ÿ

n“´8

¨

˚

˝

1

2πi

¿

|ζ|“ρ

fpζq

ζn`1
dζ

˛

‹

‚

zn,

where in the second to last step ρ P rr ` δ,R ´ δs is arbitrary and the
step is justified by the Cauchy theorem. l

Corollary 7.0.12 (Cauchy-type estimate)
If the function f satisfies |fpzq| ď M for all z P Bρpz0qztz0u, where
ρ P pr,Rq, then

|cn| ď
M

ρn

holds for all n P N

Proof. Analogous to the proof of corollary 6.0.9. l

Laurent series functions that are holomorphic in an annulus. (???)
What is the connection to isolated singularities?

Consider a domain U punctured at z0, which is an isolated singularity.
Then there exists a ε ą 0 such that the punctured neighbourhood
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Bεpz0qztz0u Ă U lies in U . This neighbourhood is an annulus (with r “ 0),
and f is holomorphic in this neighbourhood. To this neighbourhood, the
previous theorem is applicable:

For any isolated singularity z0 of f there exists a corresponding
Laurent series which converges to f in any punctured disk
around z0 lying in U .

Theorem 7.0.2: Characterisation of removable
singularities

in German: HebbarkeitssatzIf z0 is an isolated singularity of f and f is bounded in some
punctured neighbourhood of z0, then z0 is removable.

Proof. Let |fpzq| ď M for some M ą 0 and all z P Bεpz0qztz0u. By
corollary 7.0.12 we have

|cn| ď
M

ρn

for all ρ P p0, εq. With ρ Ñ 0 we get |cn| “ 0 for all n ă 0, i.e. the
Laurent series of f has no principal part; it is the standard power series:
fpzq “

ř8

n“0 cnpz ´ z0q
n. Define fpz0q :“ c0, then f is holomorphic in

Bεpz0q. l

Remark 7.0.13 From the proof we obtain that a isolated singularity z0

is removable if and only if

• the Laurent series for fpzq around z0 has a vanishing principal
part, i.e. |cn| “ 0 for n ă 0.

• f is bounded in some neighbourhood of z0.
Corollary 7.0.14 (Characterisation of poles)
An isolated singularity of z0 of f is a pole of order m if and only if the
principal part of the Laurent series expansion for f around z0 is finite:

fpzq “
8
ÿ

n“´m

cnpz ´ z0q
n

Equivalently, the poles are characterised by

lim
zÑz0

|fpzq| Ñ 8,

as follows from the next theorem.
Corollary 7.0.15 (Characterisation of essential singularities)
An isolated singularity z0 of f is essential if and only if the principal
part of the Laurent series for f around z0 is infinite:

fpzq “
8
ÿ

n“´8

cnpz ´ z0q
n

with |cn| ‰ 0 for infinitely many n ă 0.

Example 7.0.16 (exppz´1q has essential singularity at 0)
Consider fpzq :“ exp

`

1
z

˘

, which has a singularity at z0 :“ 0. From the
power series for z ÞÑ exppzq we deduce

fpzq “
8
ÿ

k“0

`

1
z

˘k

k!
“

0
ÿ

k“´8

zk

p´kq!
“ 1`

´1
ÿ

k“´8

zk

p´kq!
.
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Thus the principal part of the Laurent series of f is infinite, so z0 is an
essential singularity. ˛

Example 7.0.17 (Singularities of cos
`

pz2 ` 1q´1
˘

)
Consider fpzq :“ cos

´

1
z2`1

¯

, which has the two singularities z0 :“ i and
z1 :“ ´i. As before we have

fpzq “
8
ÿ

k“0

p´1qk
pz2 ` 1q´2k

p2kq!

Treating each singularity separately, we seek a Laurent series at z “ z0.
We have pz2 ` 1q “ pz ´ iqpz ` iq. Denoting rkpzq :“ pz ` iq´2k, which is
holomorphic and thus admits a power series expansion around i: rkpzq “
ř8

j“0 ak,jpz ´ iq
j we have

fpzq “
8
ÿ

k“0

p´1qk
pz ´ iq´2k ¨

ř8

j“0 ak,jpz ´ iq
j

p2kq!

“

8
ÿ

k“0

8
ÿ

j“0

ak,jp´1qk
pz ´ iqj´2k

p2kq!
“ TODO,

so z0 is a essential singularity. Analogously one can show that z1 is a
essential singularity as well. ˛

Theorem 7.0.3: Casorati-Weierstrass (1876)

If z0 is an essential isolated singularity of f : U Ñ C, the image
under f of any punctured neighbourhood of z0 is dense in C.

Proof. Assume there exists a w P C and a δ ą 0 such that Bδpwq X
fpBεpz0qztz0uq “ H. Define

hpzq :“
1

fpzq ´ w

We have |fpzq ´ w| ě δ TODO: PIC and thus |hpzq| ď 1
δ for all

Bεpz0qztz0u. By theorem 7.0.2 z0 is a removable singularity for hpzq:

hpzq “
8
ÿ

n“0

cnpz ´ z0q
n

for all z P Bεpz0q (cf. remark 7.0.13). Letm ě 0 be the first non-vanishing
coefficient, i.e. cm ‰ 0. Then

hpzq “
8
ÿ

n“m

cmpz´z0q
n “ pz´z0q

m
8
ÿ

n“0

cn`mpz´z0q
n “: pz´z0q

mgpzq

with gpz0q “ cm ‰ 0. Thus g is representable by a power series and thus
holomorphic around z0 so 1

gpzq is holomorphic around z0 (ABER cor
6.0.13 UND g1pz0q “ 0, ODER??) and

fpzq “ w `
1

hpzq
“ w ` pz ´ z0q

´m 1

gpzq
.

Therefore f has a pole of order m at z0 by corollary 7.0.14. l
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7.1 Residues and the residue theorem

We see that in any neighbourhood of an essential singularity z0 one
finds arbitrarily large values of f but also arbitrarily small values of f .
Therefore it is not true that limzÑz0 |fpzq| “ 8, as the limit does not
exist. Therefore this limit property is characteristic for poles.

7.1 Residues and the residue theorem
Motivation. Recall the formula for the coefficients in a Laurent
expansion

cn “
1

2πi

¿

|z´z0|“ε

fpzq

pz ´ z0q
n`1

dz.

A special value of n is n “ ´1, because then the integrand is independent
of z0.

Definition 7.1.1 (Residue of f at z0)
For an isolated singularity z0 of f , the residue residueof f at z0 can be defined
in two equivalent ways

• resz“z0 fpzq “ c´1, i.e. the coefficient of the Laurent series
representation of fpzq at z0 with the index n “ ´1.

• resz“z0 fpzq :“ 1
2πi

ű

|z´z0|“ε
fpzqdz, where ε so small that

Bεpz0qztz0u Ă U .

Example 7.1.2 (Residues 1) Consider fpzq :“ ez´1
z100 . This function

has a pole of order 99 at z0 :“ 0. To compute resz“0 fpzq we find the
Laurent series for fpzq around zero:

fpzq “
1

z100

8
ÿ

n“1

zn

n!
“

8
ÿ

n“1

zn´100

n!
“

8
ÿ

k“´99

zk

pk ` 100q!

Thus ck “ 1
pk`100q! and c´1 “

1
99! . ˛

Example 7.1.3 (Residues 2)
The previous example can be generalised in the following way: define
fpzq :“ ϕpzq

pz´z0qm
, where ϕ is a holomorphic function. Then ϕpzq “

ř8

n“0 cnpz ´ z0q
n and thus

fpzq “
8
ÿ

n“0

cnpz ´ z0q
n´m “

8
ÿ

k“´m

ck`mpz ´ z0q
k,

thus resz“z0 fpzq “ cm´1 “
ϕpm´1q

pz0q
pm´1q! .

Consider the function fpzq :“ z2`5z`3
pz´1q2 . Then ϕpzq “ z2 ` 5z ` 3 and

m “ 2 and thus resz“1 “
ϕ1p1q

1! “ 7. ˛

Example 7.1.4 (Residues 3) Let fpzq :“ 1
ϕpzq , where ϕpzq has a sim-

ple zero at z “ z0. Then TODO resz“z0 fpzq “
1

ϕ1pz0q
.

Consider fpzq :“ 1
z2`5z`6 , which has simple poles at ´2 and ´3. Then

resz“´2 fpzq “ 1 and resz“´3 fpzq “ ´1. ˛
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7.1 Residues and the residue theorem

Example 7.1.5 (Residues 4) Consider fpzq :“ sin
`

1
z

˘

. Then z0 “???

is an essential singularity. We have

fpzq “
8
ÿ

n“0

p´1qn
`

1
z

˘2n`1

p2n` 1q!
“

8
ÿ

n“0

p´1qn

p2n` 1q!
z´2n´1

and thus resz“0 fpzq “
p´1q0

1! “ 1. ˛

Example 7.1.6 (Residues 5) Consider fpzq :“ z´3. At the third or-
der pole z0 :“ 0 we have resz“0 fpzq “ 0. ˛

13.05.2020

Theorem 7.1.1: Residue formula (Version 1)

Let U Ă C be an open subset and f : Uztz1, . . . , zmu Ñ C a
holomorphic function, where pzkqnk“1 are isolated singularities of
f . Let Q be a closed topological disk in U with a piecewise C1

boundary curve γ “ BQ, which does not pass through z1, . . . , zm.
Then

¿

γ

fpzqdz “ 2πi
ÿ

zkPQ

res
z“zk

fpzq

Fig. 24: TODO.

Proof. For small circles γk around zk like in figure Fig. 25 we have

Fig. 25: TODO

¿

γ

fpzqdz “
ÿ

zkPQ

¿

γk

fpzqdz “
ÿ

zkPQ

2πi ¨ res
z“zk

fpzq

by the Cauchy theorem. l

Example 7.1.7 Consider
ż

R
Rpxqdx,

where Rpxq “ P pxq
Qpxq is a rational function, where P and Q are polynomials.

In order to ensure convergence of the integral, we demand |Rpxq| ď C|x|´2

as xÑ ˘8, which is equivalent to degpQq ě degpP q ` 2 and that Q has
no zeros in R.

An example is
ş

R
dx
x2`1 “ π or

ş

R
dx
x4`1 “

π?
2
.

We will establish the formula
ż

R
Rpxqdx “ 2πi

ÿ

a

res
z“a

Rpzq,

where the sum is taken over all singularities a of R with =paq ą 0.

Proof. When integrating over the real axis we have no closed contour,
so we have to close the integration path artificially. As

ş

RRpxqdx “

limrÑ8

şr

´r
Rpxqdx, we close the (main) path on r´r, rs by adding an

auxiliary path γr: the boundary of a semi-circle Qr with radius r above
the x-axis, connecting the two points p0,˘rq in the complex plane. This
new, closed path now is the boundary of a topological disk (WHy?)
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7.1 Residues and the residue theorem

By the residue theorem we have for sufficiently large r ą 0

ż r

´r

Rpxqdx`

ż

γr

Rpzqdz “ 2πi
ÿ

=paqą0

res
z“a

Rpzq.

We have
ˇ

ˇ

ˇ

ˇ

ż

γr

Rpzqdz

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

γr

C

|z|2
dz

ˇ

ˇ

ˇ

ˇ

“
C

r2
πr “

πC

r
rÑ8
ÝÝÝÑ 0,

and thus
lim
rÑ8

ż r

´r

Rpxqdx`

ż

γr

Rpzqdz “

ż

R
Rpxqdx. l

With this formula we have (as 1
x2`1 has two singularities at ˘i)

ż

R

dx

x2 ` 1
“ 2πi res

z“i

1

z2 ` 1
“ 2πi

1

d
dz

ˇ

ˇ

ˇ

ˇ

z“0

pz2 ` 1q

“ 2πi
1

2i
“ π,

where we can use example 7.1.4, as z2 ` 1 has a simple zero at i.

In this case we knew the antiderivative but in the following case it is very
complicated: C ` ´ log

´

x2´
?

2x`1
¯

`log
´

x2`
?

2x`1
¯

´2 tan´1
´

1´
?

2x
¯

`2 tan´1
´?

2x`1
¯

4
?

2
.But

with the formula from above we obtain
ż

R

dx

x4 ` 1
“ 2πi ¨

ˆ

res
z“eiπ{4

1

z4 ` 1
` res
z“e3iπ{4

1

z4 ` 1

˙

“ 2πi

ˆ

1

p4eiπ{4q3
`

1

p4e3iπ{4q3

˙

“
2πi

4

´

e´3πi{4 ` e´9πi{4
¯

“
πi

2

´

e´3πi{4 ` e´πi{4
¯

“
πi

2
e´πi{2

´

e´πi{4 ` eπi{4
¯

“
πi

2
p´iq ¨ 2 cos

´π

4

¯

“
π
?

2
.

analogously to the previous result.

Lastly, let us consider a function with second-order poles to see that this
is no obstruction to this method:

ż

R

dx

px2 ` 1q2
dx “ 2πi ¨ res

z“i

1

pz2 ` 1q2
.

As
1

pz2 ` 1q2
“

1
pz`iq2

pz ´ iq2

and 1
pz`iq2 is holomorphic on the upper half-plane, this function is of the

type fpzq
pz´iq2 from example 7.1.3. We have

res
z“i

1

pz2 ` 1q2
“

d

dz

ˇ

ˇ

ˇ

ˇ

z“i

1

pz ` iq2
“ ´

2

pz ` iq3

ˇ

ˇ

ˇ

ˇ

z“i

“ ´
2

p2iq3
“

1

4i

and thus
ż

R

dx

px2 ` 1q2
“

2πi

4i
“
π

2
.

Another example is the integral
ż 8

0

x2 ´ 1

x4 ` 1
dx.

39



7.1 Residues and the residue theorem

By parity of the integrand Rpzq and the residue theorem, it is equal to

1

2

ż

R

x2 ´ 1

x4 ` 1
dx “ πi

ÿ

=paqą0

res
z“a

Rpzq.

The singularities of R are the four roots of unity ˘i and ˘i
?
i. The ones

with positive imaginary part will thus be i and i
?
i.

We have

Rpzq “ pz ´
?
iq´1 z2 ´ 1

pz2 ` iqpz `
?
iq

looooooooomooooooooon

“:R̃pzq

and

res
z“
?
i
Rpzq “ R̃p

?
iq “

i´ 1

2i ¨ 2
?
i
“ ´

?
ipi´ 1q

4
“ ´

1

4
ei
π
4 ¨
?

2ei¨
3π
4 “

?
2

4
.

Similarly, one obtains resz“´
?
iRpzq “ ´

?
2

4 , so the integral is zero. ˛

Lets turn to another class of examples.

Example 7.1.8 (TODO)
Consider

ż

R
Rpxq cospxqdx,

where Rpxq “ P pxq
Qpxq , where P and Q are polynomials, Qpxq ‰ 0 for all

x P R and degpQq ě degpP q ` 2.

Following the same approach as above will not work for the following
reason: Analytic behaviour of the integrand. We have 2 cospzq “

eiz ` e´iz. As above we have to show that the integral over the auxiliary
curve tends to zero, but this is not the case: for z P C with =pzq " 0,
<pizq ! 0, so |eiz| ! 1 but |e´iz| " 1, so the integral over the upper
semi-circle does not vanish.

Furthermore if we are close to ˘r on the circle, =pzq is small, so |eiz|
is large. But this can be easily fixed as the rational function decays
sufficiently fast at the boundary of R.

The way is to rewrite cospzq “ eiz`e´iz

2 “ <peizq, so the integral becomes

<
ˆ
ż

R
Rpxqeix dx

˙

(7)

As an auxiliary curve we choose a rectangle on top of the real axis with
height r.

By the residue theorem we have
ż

R
Rpxqeix dx`

ˆ
ż r`ir

r

`

ż ´r`ir

r`ir

`

ż ´r

´r`ir

˙

Rpxqeix dx

“ 2πi
ÿ

=paqą0

res
z“a

Rpzqeiz

Let
Mprq :“ max

|z|ěr
|Rpzq| ď

C

r2

rÑ8
ÝÝÝÑ 0.
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7.1 Residues and the residue theorem

For ξ P r0, rs we have (as |eir| “ 1)

|eiz|
ˇ

ˇ

z“r`iξ
“ |eir´ξ| “ |e´ξ| “ |e´ir´ξ| “ |eiz|

ˇ

ˇ

z“´r`iξ

Thus the second and fourth integral can be estimated by

Mprq ¨

ż r

0

e´ξ dξ ďMprq Ñ 0.

The third integral (over the horizontal part of the auxiliary curve) can
be estimated by Mprqe´r ¨ 2r rÑ8

ÝÝÝÑ 0, so the auxiliary integral vanishes.

By letting r Ñ8 this proves

ż

R
Rpxq cospxqdx “ <

¨

˝2πi
ÿ

=paqą0

res
z“a

Rpzqeiz

˛

‚

As an application consider (for a, b P?? TODO)
ż

R

cospbxq

x2 ` a2
dx “ <

ˆ

2πi ¨ res
z“ia

eibz

z2 ` a2

˙

“ <
ˆ

2πi ¨ res
z“ia

eibz

2z

ˇ

ˇ

ˇ

ˇ

z“ia

˙

“
π

a
e´ab. ˛

The next class of integrals concern proper Riemann integrals.
Example 7.1.9 (TODO)
Consider

ż 2π

0

Rpcospxq, sinpxqq dx,

where R is a rational function its arguments without singularities on the
real line.

To obtain a closed integration contour we apply the change of variables
z “ eix, so the non-closed curve over r0, 2πs becomes the unit circle.

This change of variables entails

cospxq “
z ` 1

z

2
, sinpxq “

z ´ 1
z

2i
and dx “

dz

iz

and thus
ż 2π

0

Rpcospxq, sinpxqq dx “

¿

|z|“1

R

ˆ

z ` 1
z

2
,
z ´ 1

z

2i

˙

dz

iz
“:

¿

|z|“1

R̃pzqdz.

By the residue theorem we have
ż 2π

0

Rpcospxq, sinpxqqdx “ 2πi
ÿ

a

res
z“a

R̃pzq,

where the sum is taken over all singularities of R̃pzq in D.

An application of this result is
ż 2π

0

dx

5` 4 cospxq
“

¿

|z|“1

1

5` 4
2

`

z ` 1
z

˘

dz

iz
“

1

i

¿

|z|“1

1

2z2 ` 5z ` 2
dz

The zeros of the denominator are a1 :“ ´ 1
2 and a2 :“ ´2. As only a1 P D

we have
ż 2π

0

dx

5` 4 cospxq
“

1

i
¨2πi ¨ res

z“´ 1
2

1

2z2 ` 5z ` 2
“ 2π ¨

1

4z ` 5

ˇ

ˇ

ˇ

ˇ

z“´ 1
2

“
2π

3
.

˛
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The last class of examples will be an introduction to functions we will need
when discussing the Euler-Gamma and the Riemann-Zeta functions.

Example 7.1.10 For s P p0, 1q consider
ż

R`
xsRpxqdx,

where R is a rational function with no poles for x ą 0, decays as 1
|x|2 for

|x| Ñ 8 and has at most one simple pole at x “ 0.

For x Ñ 8, this integral behaves like xs

x2 “
1

x2´s , which guarantees
convergence as 2´ s ą 1 and as xs

x “
1

x1´s (WHY??) at xÑ 0`, which
ensures convergences as 1´ s ă 1.

For z “ reiϕ P C and s P R we define zs “ rseisϕ. In order for this to be
well-defined we have to choose an interval of length 2π for ϕ “ argpzq.
To achieve this we have to cut C along some ray with the origin at 0.
There is no canonical way to do this, we will choose the following: The
ray will extend along the positive real axis, where ϕ “ 0 on the upper
part of the cut and ϕ “ 2π on the lower part and ϕ P p0, 2πq as one goes
along the circle.

Fig. 26: There are infinitely many other
possible choices, on of the standard ones
being taking the negative real axis as the
ray so ϕ P p´π, πq.

We choose the following closed integration contour:

Fig. 27: TODO

By the residue theorem we have
ż

γ

zsRpzqdz “ 2πi
ÿ

a

res
z“a

zsRpzq,

where the sum is taken over all singularities of Rpzq in the interior of
γ, which are all singularities if r is large enough except z “ 0, which is
always outside of γ.

For the integral over the main part γ1 (upper straight line) we have ϕ “ 0
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7.2 Complex integration and residue theorem for analytic
continuation

and thus zs “ xs:
ż

γ1

zsRpzqdz “

ż r

0

xsRpxqdx.

For the lower straight part γ2 we have ϕ “ 2π and thus zs “ xse2πis

ż

γ2

zsRpzqdz “ ´

ż r

0

xse2πisRpxqdx “ ´e2πis

ż r

0

xsRpxqdx

As s ą 0 we have
ˇ

ˇ

ˇ

ˇ

ż

γε

zsRpzqdz

ˇ

ˇ

ˇ

ˇ

ď εs
C

ε
¨ Lpγεq “ εs

C

ε
¨ πε “ Cεs

εÑ0
ÝÝÝÑ 0

and as s ă 1
ˇ

ˇ

ˇ

ˇ

ż

γr

zsRpzqdz

ˇ

ˇ

ˇ

ˇ

ď rs
C

r2
Lpγrq “ rs

C

r2
¨ 2πr “

C

r1´s

rÑ8
ÝÝÝÑ 0

Sending εÑ 0 and r Ñ8 we have

p1´ e2πisq

ż

R`
xsRpxqdx “ 2πi

ÿ

a‰0

res
z“a

zsRpzq

For an application of this formula consider Rpxq “ 1
xpx`1q , i.e.

ż

R`

xs´1

1` x
“

2πi

1´ e2πis
res

z“´1“eπi

zs´1

1` z
“

2πi

1´ e2πis
peπiqs´1

“
2πi

1´ e2πis
¨ eπips´1q “

´2πi

1´ e2πis
eπis

“
2πi

eπis ´ e´πis
“

π

sinpπsq
.

This integral is Bps, 1´sq “ ΓpsqΓp1´sq, where B is the beta-integral and
Γ is the gamma function, so we have proven the addition or complement
formula

ΓpsqΓp1´ sq “
π

sinpπsq
. (8)

˛

7.2 Complex integration and residue theo-
rem for analytic continuation

19.05.2020The gamma function

The gamma function gamma functionΓpsq generalises the factorial, i.e. Γpn` 1q “ n! for
n P N. By induction one can show

ż 8

0

xne´x dx “ n!, (9)

as we have
ş8

0
e´x dx “ ´e´x

ˇ

ˇ

8

x“0
“ 1 and by integration by parts

ż 8

0

xne´x dx “ ´

ż 8

0

xn dex “ ´xne´x
ˇ

ˇ

ˇ

ˇ

8

x“0
loooooomoooooon

“0

`

ż 8

0

e´x dxn

“ n

ż 8

0

xn´1e´x dx.
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Euler observed that the left hand side of the formula (9) is also well
defined for any real n and thus set

Γpsq “

ż 8

0

xs´1e´x dx

for s ą 0 (actually also for s P C with <psq ą 0). By the same steps as
for n P N we can show the functional equation functional equation

Γps` 1q “ sΓpsq

for all s ą 0. With this formula one can analytically extend Γ for s ą ´1,
then s ą ´2 and so on.

We will explore another approach to continuation via certain contour
integrals. Consider

ż

CR,ε

zs´1e´z dz,

where CR,ε can be seen on the left and zs´1 on the upper side of the cut
is to be understood as xs´1, where z “ xei¨0. On the lower side of the
cut it is to be understood as xs´1e2πips´1q “ xs´1e2πis for z “ xe2πi.

On the ε-circle around zero we have z “ εeiϕ for ϕ P p0, 1q and thus
zs´1 “ εz´1eiϕps´1q and thus

ż 2π

0

εs´1eips´1qϕe´εpcospϕq`i sinpϕqq ¨ εeiϕi dϕ

“ iεs
ż 2π

0

exp pips´ 1qϕ´ εpcospϕq ` i sinpϕqqdϕ
εÑ0
ÝÝÝÑ 0 for <psq ą 0,

implying that
ż

CRε

zs´1e´z dz “ ´

ż R

ε

xs´1e´x dx` e2πi

ż R

ε

xs´1e´x dx`Opεsq.

Sending εÑ 0 and RÑ8, we find that for <psq ą 0

Fig. 28: A possible choice of C.

ż

C

zs´1e´z dz “ pe2πsi ´ 1qΓpsq,

where the contour C can, according to the Cauchy theorem, be any path
running from `8 along R` above R`, then around zero in the positive
direction and then running to `8 along R` below R`.

For any such contour C and for <psq ą 0 we have
ż

C

zs´1e´z dz “ pe2πis ´ 1qΓpsq.

We now define Γpsq for any s P C by this formula:

Γpsq :“
1

e2πis ´ 1

ż

C

zs´1e´z dz @s R Z .

But we know that the integral will vanish for s P Zě0 and thus Γ has a
removable singularity at those points. Thus Γ is a holomorphic function
which has simple poles for s P Ză0.
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continuation

The Zeta function

The Riemann ζ function is

ζpsq :“
8
ÿ

n“1

n´s.

This series converges absolutely if s ą 1 (or s P C with <psq ą 1).

Consider
ż 8

0

xs´1e´nx dx
nx“y
“

ż 8

0

´ y

n

¯s´1

e´y
dy

n
“

1

ns

ż 8

0

ys´1e´y dy “
Γpsq

ns

for <psq ą 0. We thus obtain

ζpsqΓpsq “
8
ÿ

n“1

ż 8

0

xs´1e´nx dx “

ż 8

0

xs´1
8
ÿ

n“1

e´nx dx

“

ż 8

0

xs´1 e´x

1´ e´x
dx “

ż 8

0

xs´1

ex ´ 1
dx

for <psq ą 1.

With exactly the same procedure as before we obtain
ż

C

zs´1

ez ´ 1
dz “ pe2πis ´ 1qΓpsqζpsq for <psq ą 1, (10)

where C is exactly as before. We use this formula to define the right
hand side for all s P C:

ζpsq :“
1

pe2πis ´ 1qΓpsq

ż

C

zs´1

ez ´ 1
dz, (11)

which defines ζpsq as a holomorphic function with possible isolated singu-
larities at zeros of pe2πis ´ 1qΓpsq, i.e. at s P Ną0. We know that ζ does
not have poles for s P Ną1, so the only possible pole is s “ 1.

Around s “ 1 we indeed have a simple pole as

ζpsq „
1

2πips´ 1q ¨ 1

ż

C

1

ez ´ 1
dz „

1

s´ 1
res
z“0

1

ez ´ 1
“

1

s´ 1
.

with ress“1 ζpsq “ 1, as 1
1´s “

ř0
k“´8 s

´k.

Let us compute, in particular, ζpsq for s “ 1´ n, where n P N. By the
integral representation (11) we have

ζp1´ nq “
1

peπispeπis ´ e´πisq ´ 1q ¨ Γpsq

ż

C

z´n

ez ´ 1
dz.

By (8), the prefactor can be transformed to

1

eπis ¨ 2i sinpπsq ¨ Γpsq
“

Γp1´ sq

2πi ¨ eπis
“

Γpnq

2πi ¨ eπip1´nq
“ p´1qn´1 ¨

pn´ 1q!

2πi
.

Thus we have

ζp1´ nq “ p´1qn´1 ¨ pn´ 1q! ¨
1

2πi

ż

C

z´n

ez ´ 1
dz

“ p´1qn´1 ¨ pn´ 1q! ¨ res
z“0

z´n

ez ´ 1
.
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continuation

The sought after residue is the coefficient of z´1 in the expansion of
z´n

ez´1 “
z

ez´1 ¨ z
´n´1, which is the coefficient of zn in the expansion of

z
ez´1 , which is b2n:

z

ez ´ 1
“ ´

z

2
`

8
ÿ

n“0

b2n
p2nq!

z2n,

where bn are the Bernoulli numbers.

Especially we have

ζp0q “ ´
1

2
, ζp´2mq “ 0 (12)

and
ζp1´ 2mq “ p´1qp2m´ 1q!

b2m
p2mq!

“ ´
b2m
2m

(13)

for all m P Ną0.

Functional equation for the ζ-function

Fig. 29: We extend the integration contour C considered before by
adding a circle of radius p2N ` 1qπ. The ˆ denote the singularities of
the integrand zs´1

ez´1 .

By the residue theorem we have
ż

CN

zs´1

ez ´ 1
dz ´

ż

C

zs´1

ez ´ 1
dz “ 2πi

ÿ

n “ 1N
ˆ

res
z“2πni

` res
z“´2πni

˙

zs´1

ez ´ 1

“ 2πi
N
ÿ

n“1

´

2πne
πi
2

¯s´1

`

´

2πne
3πi
2

¯s´1

“ p2πqs ¨ i
N
ÿ

n“1

ns´1
´

e
πips´1q

2 ` e
3πips´1q

2

¯

“ ´p2πqs ¨ eπis ¨ 2i cos

ˆ

πps´ 1q

2

˙ N
ÿ

n“1

1

n1´s

“ ´p2πqs ¨ eπis ¨ 2i sin
´πs

2

¯

N
ÿ

n“1

1

n1´s
.
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7.3 Exercise 5

We want to send N Ñ8, so consider <p1´ sq ą 1, i.e. <psq ă 0, so the
power series converges.

On CN , we have |ez ´ 1| ě k ą 0, thus 1
|ez´1| ď

1
k , so that

ż

CN

zs´1

ez ´ 1
dz ď

1

k
pp2N ` 1qπq<psq´1 ¨ LpCN q

ď constpp2N ` 1qπq<psq´1 NÑ8
ÝÝÝÝÑ 0,

if <psq ă 0.

Thus
ż

C

zs´1

ez ´ 1
dz “ p2πqs ¨ eπis ¨ 2i sin

´πs

2

¯

N
ÿ

n“1

1

n1´s
,

which is Riemanns functional equation for ζpsq:

pe2πis ´ 1qΓpsqζpsq “ p2πqs ¨ eπis ¨ 2i sin
´πs

2

¯

ζp1´ sq,

by (10) for <psq ă 0.

This can be written in a more convenient way: the left hand side is equal
to

eπis ¨ 2i sinpπsqΓpsqζpsq,

so the equation becomes

sinpπsqΓpsqζpsq “ p2πqs sin
´πs

2

¯

ζp1´ sq.

Using the (8) we obtain
π

Γp1´ sq
ζpsq “ p2πqs sin

´πs

2

¯

ζp1´ sq.

Simplification yields

ζp1´ sq “
1

2

ζpsq

p2πqs´1Γp1´ sq sin
`

πs
2

˘

for <psq ă 0.

Comparing this with ζp´2mq “ 0 and ζp1´2mq “ ´ b2m
2m and substituting

s “ 1´ 2m yields

ζp2mq “
1

2

ζp1´ 2mq

p2πq´2mΓp2mq sin
´

πp1´2mq
2

¯ “
p2πq2m

2

p´1qm

p2m´ 1q!

ˆ

´
b2m
2m

˙

“ 22m´1π2mp´1qm´1 b2m
p2mq!

.

In conclusion this yields that

ζp2mq “
8
ÿ

n“1

1

n2m
“ p´1qm´1 ¨

b2m
p2mq!

¨ 22m´1π2m

is a rational multiple of π2m.

TODO: Muss woanders hin

7.3 Exercise 5
Let ω0 P C, fω : CÑ C for ω P C and γ be a path in C.
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7.3 Exercise 5

When do we have

lim
ωÑω0

ż

γ

fωpzqdz “

ż

γ

lim
ωÑω0

fωpzqdz ?

We reduce the problem to the real case:

lim
ωÑω0

ż

γ

fωpzqdz “ lim
ωÑω0

ż 1

0

fωpγptqqγ
1ptqdt

“ lim
ωÑω0

ˆ
ż 1

0

<pfωpγptqqγ1ptqqdt`

i

ż 1

0

=pfωpγptqqγ1ptqqdt

˙

Recall the uniform convergence theorem: if for functions gn : r0, 1s Ñ C
we have gn Ñ g uniformly, i.e.

@ε ą 0 DNε P N : |gnptq ´ gptq| ă ε @n ě Nε @t P r0, 1s

we have

lim
nÑ8

ż 1

0

gnptqdt “

ż 1

0

gptqdt.

If we assume fω Ñ fω0
uniformly, we have

|fωpzq ´ fω0
pzq| ă ε

for some ε ą 0 and for all w P Bδpω0q for some δ ą 0 and for all z P??.

We have

|<pfωpγptqqγ1ptqq ´ <pfω0
pγptqqγ1ptqq| “ |<pfωpγptqqγ1ptq ´ fω0

pγptqqγ1ptqq|

ď |fωpγptqqγ
1ptq ´ fω0

pγptqqγ1ptq|

ď |fωpγptqq ´ fω0
pγptqq|γ1ptq| ă ε ¨M

for all t P r0, 1s, as γ is smooth an thus attains its maximum M ą 0 on
its compact domain.

Thus the uniform convergence theorem holds for complex functions.

For example, we have exp
`

iεeit
˘

Ñ 1 uniformly: The function z ÞÑ ez

is continuous, thus for all ε0 ą 0 there exists an ε1 ą 0 such that
|ez ´ 1| ă ε0 for all |z| ă ε1.

Thus for ε P p0, ε1q we have |iεeit| “ ε ă ε1 for all t and thus we have
proven uniform convergence. This yields

lim
εÑ0

ż π
2

0

exp
`

iεeit
˘

dt “
π

2
.

We have exp
`

iReit
˘

Ñ 0 for RÑ8 and t P
`

0, π2
‰

but not uniformly as
for tŒ 0 the function gets arbitrarily close to 1, regardless of R.
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8 Holomorphic functions as conformal
maps

20.05.2020

Definition 8.0.1 (angle-preserving)
A linear map A : R2

Ñ R2 is angle preserving angle preservingif

]pAv,Awq “ ]pv, wq

holds for all v, w P R2
ztp0, 0qTu, where ] denotes the oriented angle.

Fig. 30: TODO
In particular we have Av ‰ 0 for v ‰ 0, so any angle preserving map is
bijective.

Lemma 8.0.2 (angle preserving “ multiplication with c P C)
Under the identification R2

– C, angle preserving maps are exactly
complex multiplications with c :“ a` ib ‰ 0. We have

xAv,Aw y “ r2 x v, w y (14)

for all v, w P R2 with r “ |c| P Rą0 and thus }Av} “ r}v}.

Proof. Set A :“ p a cb d q. We have Ae1 “ pa, bq
T and Ae2 “ pc, dq

T and
thus the angle between ppa, bqT and pc, dqT is 90 degrees as A is angle
preserving. Thus there exists a θ ą 0 with pc, dqT “ θp´b, aqT. We show
that θ “ 1.

Consider the orthogonal vectors x :“ e1 ` e2 and y :“ e2 ´ e1. We have

0 “ xAx,Ay y “��
���

�
xAe1, Ae2 y ´ }Ae1}

2 ` }Ae2}
2
((((

(((´xAe1, Ae2 y

and thus }Ae1} “ }Ae2}. This implies |θ| “ 1 and thus θ “ 1.

We have shown that A :“
`

a ´b
b a

˘

, which represents multiplication with
a` ib. l

Corollary 8.0.3
An angle preserving linear map stretches uniformly in all directions.

A geometric interpretation of this corollary is that every circle centered
at zero is mapped to such a circle.

Thus any angle preserving map is a composition of a dilation and a
rotation.
Remark 8.0.4 A uniform stretching in all direction is almost character-
istic for angle preservation:

For a map fulfilling (14) we have }Av} “ r}v} for some r ą 0 and thus A
is injective. This yields

xAv,w y

}Av}}Aw}
“
r2 x v, w y

r}v}r}w}
“
x v, w y

}v}}w}
,

which is equivalent to cosp^pAv,Awqq “ cosp^pv, wqq, where ^ denotes
non-directed angles (as cos is an odd function). We can only conclude

]pAv,Awq “ ˘]pv, wq.
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Hence linear maps fulfilling (14) are either orientation preserving (`)
and therefore angle preserving or orientation reversing (´) and thus
preserving angles up to the sign. Such maps (´) are compositions of
angle preserving maps with reflections.

Definition 8.0.5 ((locally) conformal)
A C1 map f : U Ñ C of an open set U Ă C – R2 is

• locally conformal locally conformal, if the differential (which is a linear map)

dfpz0q : CÑ C

is angle preserving for all z0 P U .

• conformal conformalif it is locally conformal and acts bijectively: U Ñ fpUq

is one-to-one.

Theorem 8.0.1: Conformal ðñ biholomorphic

A function f : U Ñ C is (locally) conformal if and only it is
(locally) biholomorphic.

Proof. ? l

By locally biholomorphic we mean holomorphic and locally invertible
(i.e. f 1pz0q ‰ 0 for all z0 P U) with a holomorphic inverse map in a
neighbourhood of fpz0q.

Fig. 31: Here γ1 and γ2 are curves in U , vu are tangent vectors of γi at
z0. We can see that dfpz0q acts on tangent vectors from Tz0U , i.e. on
(equivalence classes of) curve through z0. Thus dfpz0q is angle preserving
if and only if the directed intersection angles of curves are preserved by
f .

Riemann states this property as "die Abbildung ist dem Abgebildeten in
den kleinsten Theilen ähnlich.", i.e. "the image is similar to the original
infinitesimally".

Under a magnifying glass we can inspect the infinitesimal neighoburhoods
of z0 and fpz0q:
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Fig. 32: ]pdfpz0qv,dfpz0qwq “ ]pv, wq for all v, w P Tz0 C, v, w ‰ 0 is
equivalent to dfpz0q “

`

a ´b
b a

˘

.

What happens with angles (between tangent vectors) under a holomorphic
map at a point z0, where f 1pz0q “ 0?

(TODO: fill details in) If z0 is of multiplicity m, that is f 1pz0q “

. . . “ f pm´1qpz0q “ 0 but f pmqpz0q ‰ 0, then the angles between tangent
vectors at z0 are multiplied by m under f .

For example consider fpzq “ pz ´ z0q
2. Then the angles at z0 will be

doubled under f :

Fig. 33: TODO

Example 8.0.6 (Conformal maps from holomorphic functions)
1 Consider fpzq :“ ez, i.e. fpx, yq “ pex cospyq, ex sinpyqq. We have

f 1pzq “ ez ‰ 0, thus f generates a locally conformal map.

Fig. 34: TODO
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Fig. 35: Horizontal strips of width smaller than 2π are mapped to a
second with opening angle being the width of the strip.

The width of 2π is special as exp has period 2πi.

Fig. 36: Horizontal strips of width 2π are mapped to slit planes.

If U “ tx` iy : y P pa, bqu with b´ a ą 2π, then exp is no longer
injective on U because of the periodicity.
Remark 8.0.7 Non-injectivity in the complex plane is not related
to non-vanishing of derivative: pexpq1 ‰ 0 but exp is not injective.
This is in contrast to continuous functions R Ñ R, which are
invertible if and only they are monotone.

2 Consider w “ fpzq :“ z´i
z`i on H :“ tz : =pzq ą 0u, which is a typical

representative of a Möbius transformation, which are fractions of
linear polynomials.

• We have fpHq “ D:

|w|2 “
z ´ i

z ` i
¨
z ` i

z ´ i
“
zz̄ ` 1` ipz ´ zq

zz̄ ` 1´ ipz ´ zq

“
|z|2 ` 1´ 2=pzq
|z|2 ` 1` 2=pzq

ă 1.

• The map f is injective (common property of Möbius trans-
formations):

wpz`iq “ z´i ðñ zpw´1q “ ´ipw`1q ðñ z “ i¨
1` w

1´ w
,

which is well-defined for |w| ă 1. WHY NOT w ‰ 1??

• The map f is surjective: We have to show that for all w P D
the point z “ i ¨ 1`w

1´w P H.
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Indeed,

=
ˆ

i ¨
1` w

1´ w

˙

“ <
ˆ

1` w

1´ w

˙

“ <
ˆ

p1` wqp1´ wq

|1´ w|2

˙

“ <
ˆ

1´ |w|2 ` w ´ w

|1´ w|2

˙

“ <
ˆ

1´ |w|2

|1´ w|2

˙

ą 0

as soon as |w|2 ă 1, where we use that w ´ w is purely
imaginary.

Thus f maps H to D bijectively and is holomorphic with f 1pzq “
2i

pz`iq2 ‰ 0.

Thus f : H Ñ D is a conformal map; H and D are conformally
equivalent. conformally equivalent.

But, visually, H and D are not "similar".

Let us look at the images of the coordinate lines tx “ x0u and
ty “ y0u in H. For y P H we have

fpx0 ` iyq “
x0 ` iy ´ i

x0 ` iy ` i
“
x0 ` ipy ´ 1q

x0 ` ipy ` 1q

“
px0 ` ipy ´ 1qqpx0 ´ ipy ` 1qq

px0 ` ipy ` 1qqpx0 ´ ipy ` 1qq

“
x2

0 ` y
2 ´ 1´ 2ix0

x2
0 ` py ` 1q2

“: u` iv.

We have to eliminate y between u and v. We have

u “
x2

0 ` py ` 1q2 ´ 2py ` 1q

x2
0 ` py ` 1q2

“ 1´
2py ` 1q

x2
0 ` py ` 1q2

“ 1`py`1q
v

x0
,

which yields
$

&

%

y ` 1 “ u´1
v ¨ x0,

px2
0 ` py ` 1q2qv “ ´2x0

and thus
ˆ

x2
0 `

pu´ 1q2

v2
¨ x2

0

˙

v “ ´2x0.

Multiplication with v
x2
0
yields

pu´ 1q2 ` v2 “ ´
2

x0
v

and thus

pu´ 1q2 `

ˆ

v `
1

x0

˙2

“
1

x2
0

,

which describes a circle centered at
´

1,´ 1
x0

¯

with radius 1
|x0|

. We
thus get
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Fig. 37: The circle represents the unit circle. TODO

For the lines ty “ y0u we interchange x and y in the previous
formulas:

$

&

%

y0 ` 1 “ u´1
v ¨ x,

px2 ` py0 ` 1q2qv “ ´2x,

which implies

pu´ 1q2 ` v2 “ ´
2

x
v “ ´

2pu´ 1q

y0 ` 1
.

Rearranging yields
ˆ

u´ 1`
1

y0 ` 1

˙2

` v2 “
1

py0 ` 1q2
, ˛

which represents a circle centered at
´

1´ 1
y0`1 , 0

¯

with radius
1

y0`1 :

Fig. 38: TODO

In summary we get
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Fig. 39: TODO
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9 Möbius transformations
26.05.2020

Definition 9.0.1 (Möbius transformation)
A Möbius transformation is a non-trivial (ad ‰ bc) function

fpzq :“
az ` b

cz ` d

where a, b, c, d P C.

Remark 9.0.2 If c ‰ 0, we have

f : C z
"

´
d

c

*

Ñ C z
!

´
a

c

)

if c “ 0, f is entire: f : CÑ C.
Remark 9.0.3 The function f depends on three complex parameters,
since we can multiply pa, b, c, dq by any λ P C˚ :“ C zt0u without changing
f .

The function f corresponds to an invertible matrix

A :“
`

a b
c d

˘

P PGL2pCq :“ GL2pCq{„,

where PGL is the projective group and pa, b, c, dq „ pλa, λb, λc, λdq if
λ P C˚.

Lemma 9.0.4
A Möbius transformation is injective with f´1pwq “ dw´b

´cw`a also being
a Möbius transformation.

Proof. We have

w “
az ` b

cz ` d
ðñ wpcz ` dq “ az ` b

ðñ p´cw ` aqz “ dw ´ b ðñ z “
dw ´ b

´cw ` a

for w in the image of f . l

Remark 9.0.5 The inverse function is described by
`

d ´b
´c a

˘

“ detpAq ¨

A´1 P GL2pCq, so f´1 corresponds to („) A´1.

Lemma 9.0.6
If f1 „

`

a1 b1
c1 d1

˘

and f2 „
`

a2 b2
c2 d2

˘

then f2 ˝ f1 „
`

a2 b2
c2 d2

˘`

a1 b1
c1 d1

˘

.

Proof. We have

a2 ¨
a1z`b1
c1z`d1

` b2

c2 ¨
a1z`b1
c1z`d1

` d2

“
pa2a1 ` b2c1qz ` pa2b1 ` b2d1q

pc2a1 ` d2c1qz ` pc2b1 ` d2d1q

„

˜

a2a1 ` b2c1 a2b1 ` b2d1

c2a1 ` d2c1 c2b1 ` d2d1

¸

“

˜

a2 b2

c2 d2

¸˜

a1 b1

c1 d1

¸

. l
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Corollary 9.0.7 (Möbius group)
Möbius transformations build the group MöbpCq, which is isomorphic to
PGL2pCq with respect to matrix multiplication.

We now turn to an unsatisfying feature of Möbius transformations, which
is that they are not everywhere defined and not surjective for c ‰ 0.

As a way out we introduce a compactification of C, Ĉ :“ CYt8u, the
Riemann sphere Riemann sphere. The set Ĉ becomes a topological space if we define the
following sets as a basis of open neighbourhoods of 8:

tz P C : |z| ąMu Y t8u.

With this definition, we can define limnÑ8 zn “ 8 for pznqn Ă C to be
the case if and only if for all M ą 0 there exists an NM P N such that
|zn| ąMN holds for all n ě NM .

Fig. 40: If M ą 0 is large, this is a small
neighbourhood of 8.

But why do we choose the sphere? Stereographic projections σ make
clear that Ĉ – S2 Ă R3.

The inverse stereographic projection σ´1 : S2 Ñ Ĉ, pξ, η, ζq ÞÑ x` iy is
constructed as follows:

Fig. 41: The equatorial plane is identified with C. A point x ` iy is
connected to p0, 0, 1q and the intersection of that ray (starting at p0, 0, 1q)
with the sphere is the projection onto the sphere pξ, η, ζq P S2. Thus
points z P C with |z| ą 1 are projected onto the upper hemisphere and
points with |z| ă 1 are mapped to the lower hemisphere. All points
in S2 X C are fixed points of σ. We set σ´1pp0, 0, 1qq “ 8, as for any
sequence of points of S2 approaching p0, 0, 1q their projections grow in
absolute value.

Adding one line creates two similar triangles: This yields

Fig. 42: TODO

x´ ξ

x
“
y ´ η

y
“
ζ

1
,

which in turn yields 1´ ζ “ ξ
x “

η
y . Thus

σ´1pξ, η, ζq :“
ξ ` iη

1´ ζ

for ζ ‰ 1

For the inverse map σ “ pσ´1q´1 we have to solve the equations

x “
ξ

1´ ζ
, y “

η

1´ ζ
and ξ2 ` η2 ` ζ2 “ 1
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9.1 Geometric aspects of Möbius transformations

for pξ, η, ζq. Plugging in ξ “ p1 ´ ζqx and η “ p1 ´ ζqy into the third
equation yields

x2p1´ ζq2 ` y2 ` p1´ ζq2 ` ζ2 “ 1,

which can be rearranged

ζ “
x2 ` y2 ´ 1

x2 ` y2 ` 1
“
|z|2 ´ 1

|z|2 ` 1
.

Thus we have

ξ “ xp1´ ζq “
2x

|z|2 ` 1
and η “ xp1´ ζq “

2y

|z|2 ` 1
.

We summarise:

σ : ĈÑ S2, z ÞÑ
1

|z|2 ` 1

`

2x, 2y, |z|2 ´ 1
˘

, 8 ÞÑ p0, 0, 1q.

Concerning arithmetic operations in Ĉ we define z
0 “ 8 and z

8
“ 0 and

z ¨8 “ 8 for all z P Ĉzt0u. The quantities 8´8, 0 ¨8, 0
0 and 8

8
remain

undefined.

This allows us to extend Möbius transformations to Ĉ:

f : ĈÑ Ĉ, z ÞÑ
az ` b

cz ` d

by setting f
`

´d
c

˘

“ 8 and fp8q “ a
c .

9.1 Geometric aspects of Möbius transfor-
mations
Lemma 9.1.1
A f P MöbpCq can be represented as a composition of less than or equal
to six transformations of one of the following kinds:

z ÞÑ z ` b „

˜

1 b

0 1

¸

(translation)

z ÞÑ az „

˜

a 0

0 1

¸

(dilation ` rotation)

z ÞÑ
1

z
„

˜

0 1

1 0

¸

(inversion)

Proof. Consider the case d ‰ 0. Then

az ` b

cz ` d
“
az ´ bc

d z

cz ` d
`
b

d
“
ad´ bc

d
¨

z

cz ` d
`
b

d

“
ad´ bc

d
¨

1

c` d
z

`
b

d
.

Thus

z ÞÝÑ
inv

1

z
ÞÝÑ
¨d

d

z
ÞÝÑ
`c

c`
d

z
ÞÝÑ
inv

1

c` d
z

ÞÝÑ
1

¨
ad´bc
d

ad´ bc

d

1

c` d
z

ÞÝÑ
1

` b
d

ad´ bc

d

1

c` d
z

`
b

d
“
az ` b

cz ` d
.

The case d “ 0 is a simple exercise. l
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9.1 Geometric aspects of Möbius transformations

Theorem 9.1.1: Lines and circles

A Möbius transformation maps lines and circles to lines and
circles.

This means that the image of a line can only be a line or a circle and
similarly for circles.

Proof. The statement is obvious for translations, dilations + rotations,
and only has to be proven for inversions.

A circle with centre c P C and radius r ą 0 is given by

|z ´ c|2 “ r2 or zz̄ ´ zc̄´ z̄c` |c|2 “ r2. (15)

Substituting w “ 1
z , i.e. z “

1
w yields

1

ww
´
c̄

w
´
c

w
` |c|2 “ r2,

which can be rearranged to

1´ cw ´ cw ` p|c|2 ´ r2qww “ 0. (16)

In order for (16) to be in the form of (15) we introduce

b :“
c̄

|c|2 ´ r2
and ρ2 :“ bb´

1

|c|2 ´ r2
“

|c|2

p|c|2 ´ r2q2
´

1

|c|2 ´ r2

“
r2

p|c|2 ´ r2q2

such that (16) becomes

ww ´ bw ´ bw ` bb “ ρ2.

Thus if |c|2 ‰ r2, the image is the circle with centre b “ c̄
|c|2´r2 and radius

ρ “ r
||c|2´r2| .TODO:pics Circles with |c|2 “ r2 through the origin are

Fig. 43: If |c|2 ‰ r2 the circle does not pass
the origin.

mapped to (by (16))
1´ c̄w ´ cw “ 0. (17)

In coordinates c “ a` ib and w “ x` iy, (17) becomes

1´ pa´ ibqpx´ iyq ´ pa` ibqpx` iyq “ 0,

which simplifies to
1´ 2ax` 2by “ 0,

which is the equation of a line (circle through fp0q “ 8q not going
through the origin.TODO:pics

As z ÞÑ 1
z is its own inverse, lines not passing the origin are mapped to

circles through the origin.

Showing that lines through the origin are mapped to lines through the
origin is left as an exercise. l

Remark 9.1.2 The above theorem holds for stereographic projections:
all circles and straight lines in Ĉ correspond to circles in S2.

Analytic features of Möbius transformations
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9.1 Geometric aspects of Möbius transformations

Lemma 9.1.3
A Möbius transformation f P MöbpCq is uniquely determined by fp0q,
fp1q, fp8q.

This can be also formulated as: for any three pairwise distinct numbers
x, y, z P Ĉ there is a unique f P MöbpCq with fp0q “ x, fp1q “ y,
fp8q “ z.

Proof. With fpzq :“ az`b
cz`d , we have fp0q “

b
d , fp1q “

a`b
c`d and fp8q “ a

c .

1 If c “ 0, we have a, d ‰ 0 and thus

fp1q “
a

d
`
b

d
“
a

d
` fp0q.

We thus have
fpzq “

`

fp1q ´ fp0q
˘

z ` fp0q.

But the value fp8q still plays a role since it guarantees fp8q “
a
c “ 8 as a linear function should behave.

2 If d “ 0, we have b, c ‰ 0 and fp1q “ a
c `

b
c , implying

b

c
“ fp1q ´ fp8q,

so
fpzq “

az ` b

cz
“
a

c
`
b

c

1

z
“ fp8q ` pfp1q ´ fp8qq

1

z
.

Again, fp0q “ 8 is implicitly needed.

3 If c, d ‰ 0 we have

fp1q “
a` b

c` d
“

a
c `

b
c

1` d
c

“
fp8q ` b

c ¨
d
c

1` d
c

“
fp8q ` fp0qdc

1` d
c

,

so d
c is a Möbius transformation of fp1q, whose coefficients are

determined by fp0q and fp8q:

fp1q ¨

ˆ

1`
d

c

˙

“ fp8q ` fp0q
d

c
ðñ

d

c
“
fp8q ´ fp1q

fp1q ´ fp0q
,

where both numerator and denominator are non-zero since by the
injectivity of the Möbius transformation fp0q, fp1q and fp8q are
different.

Thus

fpzq “
a
c z `

b
c

z ` d
c

“
fp8qz ` fp0qdc

z ` d
c

“
fp8qz ` fp0q ¨ fp8q´fp1qfp1q´fp0q

z ` fp8q´fp1q
fp1q´fp0q

.

(18)
l

Why is f P MöbpCq unique? Let f ‰ g P MöbpCq with fp0q “ gp0q “ x,
fp1q “ gp1q “ y and fp8q “ gp8q “ z, then the map g´1 ˝ f has three
fixed points: 0, 1 and 8. But this is a contradiction to the following
lemma.
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9.1 Geometric aspects of Möbius transformations

Lemma 9.1.4 (Fixed points of Möbius transformation)
A non-identical Möbius transformation has either two fixed points or
one fixed point.

Proof. The equation for z P Ĉ to be a fixed point of f is

az ` b

cz ` d
“ z or c2 ` pd´ aqz ´ b “ 0 (19)

If 8 is a fixed point, we would have c “ 0, as fp8q “ a
c “ 8 implies

a ‰ 8 and c “ 0. We thus have fpzq “ ãz` b̃ with ã :“ a
d and b̃ :“ b

d and
finite fixed points would be defined by ãz ` b̃ “ z. This linear equation
has a unique solution if ã ‰ 1. If ã “ 1, there are no further fixed points
if b̃ ‰ 0 (one fixed point, 8, altogether) or any z P C is a fixed point if
b̃ “ 0 and then fpzq “ z.

If c ‰ 0, 8 is not a fixed point. The finite fixed points are roots of the
quadratic equation (19). l

Let us return to the formula for f P MöbpCq with fp0q “ w1, fp1q “ w2,
fp8q “ w3. A easy computation shows that (18) can be written as
(w “ fpzq)

w ´ w1

w1 ´ w2
¨
w2 ´ w3

w3 ´ w
“ z.

Indeed, this defines w as a Möbius transformation of z. For w “ w1 we
get z “ 0. For w “ w2 we get p´1q2 “ 1 and for w “ w3 we get z “ 8.

Lemma 9.1.5
Let z1, z2, z3 and w1, w2, w3 triples of pairwise distinct elements of Ĉ.
Then there exists a unique Möbius transformation f P MöbpĈq with
fpzkq “ wk for k P t1, 2, 3u given by

w ´ w1

w1 ´ w2
¨
w2 ´ w3

w3 ´ w
“

z ´ z1

z1 ´ z2
¨
z2 ´ z3

z3 ´ z

Proof. Clear, this defines a Möbius transformation of z with the values
fpzkq “ wk for k P t1, 2, 3u. Uniqueness follows as before. l

Definition 9.1.6
The cross-ratio cross-ratio(German: Doppelverhältnis) of a, b, c, d P Ĉ is

qpa, b, c, dq :“
a´ b

b´ c
¨
c´ d

d´ a
.

There are different definitions of the cross-ratio in different textbooks.

The previous lemma yields the following theorem.
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9.1 Geometric aspects of Möbius transformations

Theorem 9.1.2: Möbius transformations preserve
cross-ratios

A Möbius transformation preserves the cross-ratio:

qpfpzq, fpz1q, fpz2q, fpz3qq “ qpz, z1, z2, z3q

holds for any four points z, z1, z2, z3 P Ĉ and any Möbius trans-
formation f .

We conclude with an example using the geometric properties of Möbius
transformations for proving geometric statements.

Given two circles C1 and C2 touching in a point A, build a sequence of
circles touching C1 and C2 and neighbouring ones.

Fig. 44: todo

One can now easily prove that the touching points of the small circles are
concircular, i.e. lie on a circle, with Möbius transformations: Preform
a Möbius transformation f with fpAq “ 8. Then fpC1q and fpC2q

will be two parallel lines (lines as they pass through A and parallel as
they only intersect in 8). All smaller circles are mapped to equal circles
between those lines.

Fig. 45: todo

Their touching points all lie on a line parallel to fpC1q and fpC2q. The
preimage of this midpoint-line is a circle passing through A.
Example 9.1.7 (Steiner porism (relative of the Poncelet porism))
Let C1 and C2 be two circles, where C1 is in the interior of C2. Play the
following game: starting with a circle D0 touching C1 and C2 as on the
right, build a sequence pDkq

n
k“1 of circles touching C1 and C2.

Will this chain of touching circles close up? The answer apparently
depends on C1 and C2 and the choice of D0. ˛

Theorem 9.1.3: Steiner

If the chain closes for one choice of D0, it closed for any choice of
D0.

Proof. Apply a Möbius transformation f such that fpC1q and fpC2q

become concentric circles (why is this possible?). For concentric circles
C1 and C2, the statement is obvious. l

Lemma 9.1.8 (todo)
Four points z0, z1, z2, z3 P C lie on a circle (or a line) if and only if
qpz0, z1, z2, z3q P R.

Proof. Preform a Möbius transformation f P MöbpCq such that

fpz1q “ 0, fpz2q “ 1 and fpz3q “ 8.

The image of the circle uniquely determined by z1, z2, z3 is the line
through 0 and 1, which is the real axis of the complex plane. Thus
fpz0q lies on the image of the circle if and only if fpz0q P R. But
qpfpz0q, 0, 1,8q “ fpz0q. l
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9.2 Conformal homotopies of domains

9.2 Conformal homotopies of domains

Lemma 9.2.1 (todo)
For z0 P D, the Möbius transformation

ϕz0 : DÑ D, z ÞÑ
z0 ´ z

1´ zz0

is a conformal map and can be characterised as the one with ϕz0p0q “ z0

and ϕz0pz0q “ 0.

Proof. 1 We show that ϕz0 maps D to D. Then |ϕz0pzq| ă 1 is
equivalent to

|z0 ´ z|
2 ă |1´ zz0|

2

ðñ pz0 ´ zqpz0 ´ zq ă p1´ zz0qp1´ zz0q

ðñ |z0|
2
((((

((
´z0z ´ z0z ` |z|

2 ă 1((((
((

´z0z ´ z0z ` |z|
2|z0|

2

ðñ p1´ |z|2qp1´ |z0|
2q ą 0,

which is true due to z0, z P D.

2 We show that ϕz0 is surjective by showing pϕz0q´1 “ ϕz0 . The
matrix representing ϕz0 is

`

´1 z0
´z0 1

˘

. Thus

pϕz0q
´1 „

˜

´1 z0

´z0 1

¸´1

“
1

z0z0 ´ 1

˜

1 ´z0

z0 ´1

¸

“
1

1´ |z0|
2

˜

´1 z0

´z0 1

¸

.

(One can also show ϕz0pϕz0pzqq “ z.)

3 Lastly, we check that ϕ1z0 ‰ 0 for z P D. We have

ϕ1z0pzq “
´p1´ zz0q ` z0pz0 ´ zq

p1´ zz0q
2

“
|z0|

2 ´ 1

p1´ zz0q
2
‰ 0. l

A different argumentation for 1. would be that ϕz0 maps BD “ S1 to
itself: For z P S1 we have

|ϕz0 | “

ˇ

ˇ

ˇ

ˇ

z ´ z0

1´ z0z

ˇ

ˇ

ˇ

ˇ

“ |z| ¨

ˇ

ˇ

ˇ

ˇ

1´ z0z
´1

1´ z0z

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1´ z0z

1´ z0z

ˇ

ˇ

ˇ

ˇ

“ 1.

The unit circle divides the Riemann sphere into two parts. By continuity,
D is mapped either to D or tz P Ĉ : |z| ą 1u. If suffices to check one
point: ϕz0pz0q “ 0 P D.

Theorem 9.2.1

All conformal maps f : DÑ D are of the form

fpzq “ eiθϕz0

for some θ P R and z0 P D.
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9.2 Conformal homotopies of domains

Proof. For a conformal map f : D Ñ D there exists a z0 P D with
fpz0q “ 0. Define g :“ f ˝ ϕz0 . Then g : D Ñ D is a conformal map
fixing the origin: gp0q “ fpϕz0p0qq “ fpz0q “ 0. By the Schwarz
lemma, |g1p0q| ď 1. Applying the Schwarz lemma to g´1 we find
|pg´1q1p0q| “ 1

|g1p0q| ď 1. Thus |g1p0q| “ 1. By the Schwarz lemma,
gpzq “ eiθz with θ P R. l

Definition 9.2.2 (Conformal automorphism)
For an open domain U Ă Ĉ

AutpUq “ tf : U Ñ U : f conformal.u

is the set of conformal automorphism conformal automorphisms of U .

The previous theorem showed that

AutpDq “
 

eiθϕz0 : θ P R, z0 P D
(

The geometric action of ϕz0 can be represented as follows: Applying a
concentric orthogonal coordinate system (polar coordinates) to D yields

Fig. 46: The action of ϕz0 on D.

We have seen that D and H are conformally equivalent by ψpzq :“
z´i
z`i . Conformal automorphisms of H can be obtained from conformal
automorphisms of D by conjugation via the conformal map ψ:

ψ´1 ˝AutpDq ˝ ψ “ AutpHq.

Theorem 9.2.2: Conformal automorphism on H

AutpHq “
"

z ÞÑ
az ` b

cz ` d
: a, b, c, d P R with ad ą bc

*

.

02.06

Proof. For f P ψ´1 ˝AutpDq˝ψ we have, as ψ „
`

1 ´i
1 i

˘

and
`

1 ´i
1 i

˘´1
“
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9.2 Conformal homotopies of domains

1
2

`

1 1
i ´i

˘

,

f „

˜

1 1

i ´i

¸˜

eiθ ´eiθz0

´z0 1

¸˜

1 ´i

1 i

¸

“

˜

1 1

i ´i

¸˜

eiθp1´ z0q ´ieiθp1` z0q

1´ z0 ipz0 ` 1q

¸

“

˜

eiθp1´ z0q ` p1´ z0q ´ieiθp1` z0q ` ip1` z0q

ieiθp1´ z0q ´ ip1´ z0q eiθp1` z0q ` p1` z0q

¸

“ ei
θ
2

˜

ei
θ
2 p1´ z0q ` e

i θ2 p1´ z0q ´ipei
θ
2 p1` z0q ´ e

i θ2 p1` z0q

ipei
θ
2 p1´ z0q ´ e

i θ2 p1´ z0q ei
θ
2 p1` z0q ` e

i θ2 p1` z0q

¸

“ ei
θ
2

˜

z1 ` z1 ´ipz2 ´ z2q

ipz1 ´ z1q z2 ` z2

¸

,

where
z1 :“ ei

θ
2 p1´ z0q and z1 :“ ei

θ
2 p1` z0q.

As z ` z P R and z ´ z P C zR for all z P C, this is a matrix with real
entries. In this representation, ad´ bc “ 5 ‰ 0.

It is left to the reader to check that any Möbius transformation z ÞÑ az`b
cz`d

with a, b, c, d P R and ad ą bc maps H conformally to H.

It is easy to see that BH “ R (compactification of the real line) is
mapped to itself. It now suffices to check that there exists on z P H with
fpzq P H. l

What is AutpCq?

Theorem 9.2.3: Conformal automorphisms of C

AutpCq “ tz ÞÑ az ` b : a ‰ 0u.

Proof. Let f P AutpCq. We show that fpzq “ az`b. Set gpzq :“ fpz´1q.
As f is entire, g has an isolated singularity at z0 “ 0. It cannot be an
essential singularity by the Casorati-Weierstrass theorem, since small
punctured neighbourhoods of zero Bεp0qzt0u for ε ą 0 are mapped to
open sets not containing fpB 1

ε
p0qq, thus their images are not dense in C.

Therefore, for all z with |z| P p0, rq we have

gpzq “ f
`

z´1
˘

“

8
ÿ

k“´n

ckz
k

and thus

fpzq “
8
ÿ

k“´n

ckz
´k

for |z| ą 1
r (punctured neighbourhood of 8). By theorem 6.0.3 we have

ck “
1

2πi

¿

fpzqzk´1 dz

for k ě 1, implying ck “ 0 for k ě 1 by the Cauchy theorem, as f is
holomorphic. Thus f is a polynomial: fpzq “

řn
k“0 c´kz

k. It can only
be bijective (conformal) if n “ 1. l
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9.2 Conformal homotopies of domains

We will now make a couple of remarks about the properties of holomorphic
functions at 8.

Definition 9.2.3 (Differentiability at 8 I)
A function f : Ĉ Ą U Ñ Ĉ with fp8q ‰ 8 is differentiable at 8 if the
function gpzq :“ fpz´1q is differentiable at z “ 0.

Example 9.2.4 (Differentiability at 8 I)
Consider the Möbius transformation fpzq “ az`b

cz`d for c ‰ 0 (so that
fp8q ‰ 8). It is differentiable at z “ 8, as gpzq “

a
z`b
c
z`d

“ bz`a
dz`c is

differentiable at zero and we have gp0q “ a
c and

g1pzq “
bpdz ` cq ´ dpbz ` aq

pdz ` cq2
“

bc´ ad

pdz ` cq2

and thus g1p0q “ bc´ad
c2 . ˛

Definition 9.2.5 (Differentiability at 8 II)
A function f : Ĉ Ą U Ñ Ĉ with fpz0q “ 8 is differentiable at z0 ‰ 8

if g :“ 1
f with gpz0q “ 0 is differentiable at z0.

Example 9.2.6 (Differentiability at 8 II) Again consider fpzq “
az`b
cz`d at z0 :“ ´d

c for c ‰ 0 (so that fpz0q ‰ 8). Then s gpzq “ cz`d
az`b is

differentiable at z0 and we have

g1pzq “
cpaz ` bq ´ apcz ` dq

paz ` bq2
“

bc´ ad

paz ` bq2

and thus g1pz0q “
bc´ad

ap´ dc q`b
2
“ 1

bc´ad ‰ 0. ˛

In conclusion, Möbius functions are holomorphic functions on the Rie-
mann sphere.

Definition 9.2.7 (Isolated singularity at 8)
A function f : Ĉ Ą U Ñ Ĉ has an isolated singularity at z “ 8 if
gpzq :“ f

`

z´1
˘

has an isolated singularity at 0. The type of singularity
of f at 8 is, by definition, identical to the the type of singularity of g
at zero.

Example 9.2.8 (Isolated singularity at 8) Consider a polynomial
fpzq :“

řm
k“0 am´kz

k with a0 ‰ 0 has an isolated singularity at 8, which
is a pole of order m:

gpzq “
0
ÿ

k“´m

am`kz
k.

Consider a rational function fpzq “
řm
k“0 am´kz

k

řm
k“0 bm´kz

k with a0, b0 ‰ 0. At
z “ 8, f has

• a pole of order m´ n if m ă n

• a removable singularity if m ď n

– a zero of order n´m if m ă n
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9.2 Conformal homotopies of domains

– a removable singularity if m “ n with fp8q “ a0
b0
.

Möbius transformations are a special case (m “ n “ 1). ˛

Example 9.2.9 The exponential function f :“ exp has an essential
singularity at z “ 8 by corollary 7.0.15, as gpzq “

ř0
k“´8

zk

p´kq! has an
infinite principle part. ˛
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10 Schwarz reflection principle and
Schwarz-Christoffel formula
The Schwarz-Christoffel formula is an explicit conformal map from
H to a regular polygon.

For the proof of the theorem of the Schwarz reflection principle, we
will need the following theorem, which is, in a sense, an inverse for the
Cauchy integral theorem.

Theorem 10.0.1: Morera (1886)

Let U Ă C be an open subset and f : U Ñ C a continuous function.
Suppose that for any closed triangle ∆ Ă U ,

¿

B∆

fpzqdz “ 0. (20)

Then f is holomorphic.

Proof. Since holomorphy is a local property, we can assume without
loss of generality that U “ tz P C : |z| ă ru. For z P U define

F pzq :“

ż z

0

fpζqdζ,

where the integration domain is the line between 0 and z, parametrised
by γ : r0, 1s Ñ U , t ÞÑ tz.

Consider ∆ to be the closed triangle whose vertices are 0, z and z0. By
(20)

F pzq ´ F pz0q “

ż z

z0

fpζqdζ,

where the last integral is along the straight line segment from z0 to z,
parametrised by β : r0, 1s Ñ U , t ÞÑ p1´ tqz0 ` tz.

Thus

F pzq ´ F pz0q “

ż 1

0

fpp1´ tqz0 ` tzq ¨ pz ´ z0qdt,

implying
F pzq ´ F pz0q

z ´ z0
“

ż 1

0

fpp1´ tqz0 ` tzqdt.

Thus

lim
zÑz0

F pzq ´ F pz0q

z ´ z0
“

ż 1

0

fpz0qdt “ fpz0q.

Thus F is a holomorphic function in U with F 1pzq “ fpzq. By the
Goursat theorem, the derivative of a holomorphic function is also
holomorphic. l

How can one use this theorem to construct holomorphic functions and
conformal maps?
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Theorem 10.0.2: Schwarz reflection principle

Let G Ă H be a domain such that BG Ą K, where K Ă R is
an interval on the real axis. Let f : G Ñ C be holomorphic,
extendable to a continuous function f : G Ñ C (G being the
topological closure of G). Suppose that f takes real values on K:
fpKq Ă R. Define

F pzq :“

$

’

’

&

’

’

%

fpzq, z P G,

fpzq, z P τpGq,

fpzq “ fpzq, z P K,

where τ denotes complex conjugation and thus τpGq represents
reflection of G at the real axis.
Then F is holomorphic.

Proof. Let f̃ : τpGq Ñ C be defined by f̃ :“ τ ˝ f ˝ f , i.e. f̃pzq “

fpzq. We show that f̃ is holomorphic. Indeed, f̃ is real differentiable,
with differential given by the chain rule (all maps are linear and thus
representable by matrices):

df̃pzq “ τ ˝ dfpzq ˝ τ “

˜

1 0

0 ´1

¸˜

a ´b

b a

¸˜

1 0

0 ´1

¸

“

˜

a ´b

b a

¸

,

which is a matrix of the multiplication by a complex number a ´ ib “

a` ib, if f 1pzq “ a` ib.

It remains to prove that F is differentiable in K. To do this (or, to prove
holomorphicity of F ) we apply Morera’s theorem. Let ∆ be a triangle
intersecting G and τpGq (and K) and let γ :“ B∆. Set ∆1 :“ ∆XpGYKq,
∆2 :“ ∆X pτpGq YKq and γi :“ B∆i for i P t1, 2u. We then have

¿

γ

F dz “

¿

γ1

F dz `

¿

γ2

F dz “ lim
εÑ0

¿

γ
pεq
1

f dz `

¿

γ
pεq
2

F f̃ dz,

where the last equality follows from continuity of F and γpεqi :“ B∆
pεq
i for

i P t1, 2u and ∆
pεq
1 :“ ∆XGXt=pzq ě εu and ∆

pεq
2 :“ ∆XτpGqXt=pzq ď

´εu.

By the Cauchy theorem, both integrals are zero, so
ű

γ
F dz “ 0 l

Remark 10.0.1 (Generalisation) It is not important, that K Ă R
and fpKq Ă R. One can equally well assume in the Schwartz reflection
principle that K Ă C0 and fpKq Ă C1, where C0 and C1 are generalised
circles (i.e. circles or lines). Think of such situations as K Ă R and
argpfpzqq “ α (K is mapped to a ray) or <pfpzqq “ a (K is mapped to a
vertical line) or =pfpzqq “ b (horizontal line) or |fpzq| “ 1 (unit circle).

In such situations, one sets

F pzq :“

$

’

’

&

’

’

%

fpzq, z P G,

σ1pfpσ0pzqqq, z P σ0pGq,

fpzq “ pσ1 ˝ f ˝ σ0qpzq, z P K,

where σ0 and σ1 are geometric reflection at C0 and C1 respectively.
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Corollary 10.0.2
Let f, g : HÑ C be continuous such that the restrictions f |H and g|H are
holomorphic. If f ” g on p0, 1

2 q Ă R, then f ” g on H.

Proof. Let h : GÑ C be defined by h :“ f ´ g, where G :“ KˆR` and
K :“ p0, 1

2 q Ă R. Then K Ă BG and hpKq Ă R and h is holomorphic on
G and continuous on G.

By the Schwarz reflection principle, h admits a holomorphic extension
H : GYKYτpGq “ KˆRÑ C with H “ f´g on G. By the Uniqueness
theorem, f ´ g ” 0 on G and thus by the Uniqueness theorem, f ´ g ” 0

on H. l

Corollary 10.0.3
Let f : G Ñ C be continuous, f |G holomorphic with |fpzq ´ i| “ 1

for all z P I Ă BG X R, which is an interval. Then there exists a
F : GY I Y τpGq Ñ C such that

F pzq “
fpzq

1´ ifpzq
.

Proof. We have
fpIq “ tz P C : |z ´ i| “ 1u,

which is a circle. A reflection with respect to fpIq is given by σ1pzq :“
z

1´iz . By the generalisation of Schwarz reflection principle (remark
10.0.1), there exists a holomorphic extension F : GY I Y τpGq of f with
F pzq “ σ1pfpzqq for z P τpGq, i.e.

F pzq “
fpzq

1´ ifpzq

for z P τpGq. By the Uniqueness theorem, F pzq “ fpzq

1´ifpzq
for z P

YI Y τpGq l

Remark 10.0.4 The formula for reflection with respect to a circle can
be derived as follows. The inverse at the unit circle is given by

Φpreiϕq :“
1

r
eiϕ “

reiϕ

r2
“

z

zz
“

1

z

for z “ reiϕ. For the circle above, we obtain

Φpz ´ iq ` i “
1

z ´ i
` i “

1

z ` i
` i “

iz

z ` i
“

z

1´ iz
.

Application to the Schwarz-Christoffel formula

It deals with a conformal map from the upper half plane to a polygon
Π with vertices pbkqnk“1. We will denote the angles by pπαkqnk“1 with
0 ă αk ă 2 for all k P t1, . . . , nu.

Fig. 47: todoThe existence of a conformal map f : H Ñ Π is a consequence of the
Riemann mapping theorem, which we will prove later.
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Theorem 10.0.3: Riemann mapping theorem

Any open connected, and simply connected subset of C is confor-
mally equivalent to D (or to H).

The following theorem will not be proven in this course.

Theorem 10.0.4: Caratheodory

Let γ be a Jordan curve, i.e. a continuous closed curve without
self-intersections. Let G be the interior of γ: γ “ BG. Then
any conformal map G Ñ D extends to a holomorphic map to a
homeomorphism G “ GY γ Ñ D :“ tz P C : |z| ď 1u.

03.06.2020By a1, . . . , an P RYt8u we denote the preimages of b1, . . . , bn. The
intervals rak, ak`1s correspond to rbk, bk`1s under (the extension to a
homeomorphism of) f for k P Z {nZ.

Fig. 48: The line compactified by the in-
finitely remote element is, topologically, a
circle, so the segment ran, a1s is the arc of
the circle passing through 8.

Theorem 10.0.5

We have
f2pzq

f 1pzq
“

n
ÿ

k“1

αk
z ´ ak

(21)

if all ak are finite, where f2pzq
f 1pzq is the logarithmic derivative of f 1.

If there is an ak “ 8, we can, without loss of generality reorder
them such that an “ 8 and then we have

f2pzq

f 1pzq
“

n´1
ÿ

k“1

αk
z ´ ak

.

Proof. Continue f by reflection at pak, ak`1q. We have n functions
Fig. 49: The domain of the analytically
continued function fk is the plane slit along
two rays starting at ak and ak`1. Here, σk
is the mirror reflection at pbkbk`1q.

f1, . . . , fn, which coincide on H (their image is always Π) but not on H´:
for z P H´ we have fkpzq “ σkpfpzqq, f`pzq “ σ`pfpzqq and these values
lie in different copies of Π, i.e. in σkpΠq, resp. in σ`pΠq.

However, they are related in a simple way, as σ2
k “ id and thus pσk ˝

fkqpzq “ σ2
kpfpzqq “ fpzq: for z P H´ we have

f` “ σ` ˝ σk ˝ fk.

A composition of two reflection at two different lines in the plane is a
Euclidean motion, so σ` ˝σk ˝fk “ pfk` q, with p, q P C, where |p| “ 1.

On H´ we thus have
f2`
f 1`
“
pf2k
pf 1k

“
f2k
f 1k
.

Thus, we obtain the function

ϕ :“

$

&

%

f2

f 1 , z P H,
f2k
f 1k
, z P H´ Y pak, ak`1q.

The function ϕ is holomorphic in C zta1, . . . , anu, i.e. ϕ has isolated
singularities at a1, . . . , an. We determine the behaviour of ϕ near ak.
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The composition of the two maps, hk, maps a half disk holomorphically

Fig. 50: The half-disk in the upper half
plane about ak is mapped to some neigh-
bourhood of bk in the interior of the poly-
gon Π. We apply a holomorphic branch of

the function pw´ bkq
1
αk : We have to deter-

mine the argument of w ´ bk, which lies in
some sector of the opening angle παk. We
can choose the argument arbitrarily up to
integer multiples of 2π. For any such choice
this function is well-defined by application
of the formula in polar coordinates. We
thus obtain a sector of the opening angle
π.

to a half disk. It is extendable to a continuous function on the topological
closure. By applying the Schwarz reflection principle to hk, we get a
function, which maps a neighbourhood Uk Q ak holomorphically to a disk
around zero. We denote this extension by hk. Thus hk has a simple zero
at ak, and can thus be written as

hkpzq “ pz ´ akqh̃kpzq,

where h̃k is holomorphic with h̃kpakq ‰ 0. But as hkpzq “ pfpzq ´ bkq
1
αk ,

we have

fpzq “ bk`phkpzqq
αk “ bk`pz´akq

αkph̃kpzqq
αk “ bk`pz´akq

αkgkpzq

for some holomorphic function gk with gkpakq ‰ 0.

By differentiation we get

f 1pzq “ αkpz ´ akq
αk´1gkpzq ` pz ´ akq

αkg1kpzq

“ pz ´ akq
αk´1pαkgkpzq ` pz ´ akqg

1
kpzqq

“ pz ´ akq
αk´1g̃kpzq,

where g̃k is holomorphic with g̃kpakq ‰ 0.

By differentiation we obtain

f2pzq

f 1pzq
“
pz ´ akq

αk´1g̃1kpzq ` pz ´ akq
αk´2pαk ´ 1qg̃kpzq

pz ´ akqαk´1g̃kpzq

“
g̃1kpzq

g̃kpzq
`
αk ´ 1

z ´ ak
,

where g̃1k
g̃k

is holomorphic in a neighbourhood of ak. Thus f2pzq
f 1pzq has a

simple pole at ak with the residue αk ´ 1. All this holds for finite ak.

Thus if all ak are finite, the function

f2pzq

f 1pzq
´

n
ÿ

k“1

αk ´ 1

z ´ ak

is holomorphic around a1, . . . , an, i.e. it is an entire function.

To apply Liouville’s theorem, we determine the behaviour of this
function for z Ñ8, which can be done by geometric considerations: f can
be extended continuously to 8, mapping 8 to some point b P BΠ, where
b ‰ bk for all k, on some side of the polygon. Consider a neighbourhood
of 8 in H, i.e. the outside of a large half disk in H, which is mapped by f
to a half disk in the interior of Π. By the Schwarz reflection principle,
f can be holomorphically extended to the map in Fig. 51, whose domain
is a neighbourhood of 8 in Ĉ, which is mapped to a neighbourhood of b
biholomorphically. Thus the function f ´ b has a simple zero at infinity.

Fig. 51: b-point means that f takes the
value b and simple means that f ´ b has a
simple zero at infinity.

Thus
fpzq “ b`

gpzq

z
,

where g is holomorphic with gp8q ‰ 0. Differentiating the Laurent
series gpzq “

ř8

k“0 ckz
´k´1 term by term, we obtain

f 1pzq “ ´
c0
z2
´

2c1
z3
´

3c2
z4
´ . . . “ ´

c0
z2

ˆ

1`O
ˆ

1

z

˙˙

.
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Thus

f2pzq “
2c0
z3
`

6c1
z4
`

12c2
z5

` . . . “
2c0
z3

ˆ

1`O
ˆ

1

z

˙˙

.

and thus
f2pzq

f 1pzq
“ ´

1

z

ˆ

1`O
ˆ

1

z

˙˙

for z Ñ8. Thus f2pzq
f 1pzq is a holomorphic function around 8 with a zero

of order 1 there.

Summarising: if all ak are finite then

f2pzq

f 1pzq
´

8
ÿ

k“1

αk ´ 1

z ´ ak

is an entire function with a simple zero at 8. By Liousville’s theorem,

f2pzq

f 1pzq
“

8
ÿ

k“1

αk ´ 1

z ´ ak

if all ak are finite.

Moreover, the coefficient by 1
z gives

řn
k“1 αk ´ 1 “ ´2, i.e.

řn
k“1 αk “

n´ 2.

If an “ 8, we consider a neighbourhood of 8 in H, which is mapped by
f conformally to a neighbourhood of the vertex bn in the interior of Π

with opening angle παn. Everything can be extended to a map on the
topological closure. This neighbourhood is mapped to a half disk around
zero by the map pw ´ bnq

1
αn .

By the Schwarz reflection principle, hn :“ pf ´ bnq
1
αn can be extended

to a holomorphic function, whose domain is a neighbourhood of 8, which
is mapped to a neighbourhood of zero.

Thus we can write hnpzq “
h̃npzq
z , where h̃n is a holomorphic function

with h̃np8q ‰ 0q. We thus have

fpzq “ bn `
gnpzq

zαn

with gn “ h̃αnn , which is holomorphic with gnp8q ‰ 0. By differentiating
the Laurent series of gn as before we obtain

f 1pzq “ ´
αnc0
zαn`1

´
pαn ` 1qc1
zαn`2

´ . . . “ ´
αnc0
zαn`1

ˆ

1`O
ˆ

1

z

˙˙

.

and

f2pzq “
αnpαn ` 1qc0

zαn`2
`
pαn ` 1qpαn ` 2qc1

zαn`3
` . . .

“
αnpαn ` 1qc0

zαn`2

ˆ

1`O
ˆ

1

z

˙˙

and thus
f2pzq

f 1pzq
“ ´

αn ` 1

z

ˆ

1`O
ˆ

1

z

˙˙

for z Ñ8.
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Summarising: if an “ 8, then

f2pzq

f 1pzq
´

n´1
ÿ

k“1

αk ´ 1

z ´ ak
,

is holomorphic around the removable singularities a1, . . . , an´1 and an “
8 and is equal to zero at infinity. By the Liouville theorem,

f2pzq

f 1pzq
“

n´1
ÿ

k“1

αk ´ 1

z ´ ak
,

if an “ 8. Comparing the terms of order 1
z yields

řn´1
k“1pαk ´ 1q “

´pαn ` 1q, i.e.
řn
k“1 αk “ n´ 2. l

Corollary 10.0.5 (Traditional form of the Schwarz-Christoffel formula)
We have

fpzq “ c

ż z

0

pζ ´ a1q
α1´1pζ ´ a2q

α2´1 ¨ . . . ¨ pζ ´ anq
αn´1 dζ ` c0,

where c, c0 are constants and the last factor pζ ´ anq
αn´1 is omitted if

an “ 8.

Proof. (We assume ak ‰ 8 for all k P t1, . . . , nu) If we don’t worry
about defining the logarithm for complex numbers, we can rewrite

f2pzq

f 1pzq
“ plog ˝f 1q1pzq

and thus (21) is equivalent to (by the fundamental theorem of calculus)

plog ˝f 1qpzq “

ż

γz

n
ÿ

k“1

αk ´ 1

ξ ´ ak
dξ ` c0,

where γz : r0, 1s Ñ C, t ÞÑ tz and c0 is a constant. We write
ş

γz
:“

şz

0

We thus have

plog ˝f 1qpzq “
n
ÿ

k“1

pαk ´ 1q

ż z

0

1

ξ ´ ak
dξ ` c0

“

n
ÿ

k“1

pαk ´ 1q

ż z

0

log1pξ ´ akqdξ ` c0

“

n
ÿ

k“1

pαk ´ 1qplogpz ´ akq ` ckq ` c0,

where pckqnk“1 are constants. Exponentiating both sides yields

f 1pzq “ c̃0 ¨
n
ź

k“1

exp ppαk ´ 1qplogpz ´ akq ` ckqq

“ c̃0 ¨
n
ź

k“1

ppz ´ akq exppckqq
αk´1 “ c̃ ¨

n
ź

k“1

ppz ´ akqq
αk´1

where c̃0 :“ ec0 and c̃ :“ c̃0 ¨
śn
k“1 exppckq

αk´1. Integration yields

fpzq “ c̃ ¨

ż z

0

n
ź

k“1

ppz ´ akqq
αk´1 dz ` C,

where C is a constant. l
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We now show the complex version of the fundamental theorem of calculus
we used in the proof above.

Proof. We have
ż z

0

f 1pzqdz “

ż 1

0

f 1pγptqqγ1ptqdt “

ż 1

0

pf ˝ γq1ptqdt.

Writing f ˝ γ “ u` iv and applying the real Fundamental Theorem of
Calculus yields
ż 1

0

pf ˝ γq1ptqdt “

ż 1

0

u1ptqdt` i

ż 1

0

v1ptqdt

“ up1q ´ up0q ` ipvp1q ´ vp0qq “ pf ˝ γqp1q ´ pf ˝ γqp0q

“ fpzq ´ fp0q. l

Given a polygon Π, we know α1, . . . , αn, but we don’t know c, c1 and
a1, . . . , an. How can they be determined knowing Π? The map f : HÑ Π

is not unique, since it can be composed with any conformal automorphism
of H, the set of which has three real parameters, as we can choose a, b, c, d

such that ad´ bc “ 1 (rewrite as
ˆ

a
z0
z` b

z0
c
z0
z` d

z0

˙

, where z0 :“
?
ad´ bc.) and

then three parameters uniquely determine the fourth one (cf. theorem
9.2.2). Thus we can choose three of a1, . . . , an, say a1, a2, a3 arbitrarily,
but the positions of a4, . . . , an are then defined uniquely. Finding them
(called accessing parameters) is very complicated, i.e. outside of the reach
of this course.

We will now discuss an inverse problem (in a sense): given a1, . . . , an P R
with a1 ă a2 ă . . . ă an and α1, . . . , αn P p0, 2q such that

řn
k“1 αk “

n´ 2, what is the image of the upper half plane under the map z ÞÑ fpzq,
where

fpzq “

ż z

0

pζ ´ a1q
α1´1pζ ´ a2q

α2´1 ¨ . . . ¨ pζ ´ anq
αn´1 dζ. (22)

Since all exponents αk ´ 1 lie in p´1, 1q, one can choose for each factor
pζ ´ akq

αk´1 a holomorphic branch, i.e. a function, which is holomorphic
in H and continuous on the topological closure of H, H “ H Y R. For
instance, we declare

argpζ ´ akq “

$

&

%

0, ζ P R, ζ ą ak,

π, ζ P R, ζ ă ak,

such that argpζ ´ akq P p0, πq for all ζ P H such that argppζ ´ akq
αkq P

p´π, πq.

At infinity, the integrand behaves as

ζ
řn
k“1 αk´1

ˆ

1`O
ˆ

1

ζ

˙˙

“ ζ´2

ˆ

1`O
ˆ

1

ζ

˙˙

,

such that (22) converges absolutely and does not depend on the choice
of integration path in H connecting 0 and 8.

We determine the behaviour of f on the boundary of H, i.e. for z P R.
The argument of the integrand is constant in every interval pak, ak`1q
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for k P t1, . . . , n´ 1u and in pan,8q and p´8, anq. Therefore, as Z runs
along such an interval, its image fpzq runs along a straight line. Thus
fpRq is a polygonal line (“ polygon??). Set bk :“ fpakq. The vector
connecting bk and bk`1, understood as bk`1 ´ bk, is given by

fpak`1q ´ fpakq “

ż ak`1

ak

pt´ a1q
α1´1 . . . pt´ akq

αk´1
looooooooooooooooomooooooooooooooooon

PR`

. . . pt´αnq
αn´1 dt

and has the argument

pαk`1 ´ 1qπ ` . . .` pαn ´ 1qπ,

as argpaq “ 0 for a P R.

Fig. 52: todo

Since bk ´ bk´1 has the argument

pαk ´ 1qπ ` . . .` pαn ´ 1qπ,

we see that at bk, the polygonal line makes a turn by the angle πp1´αkq
counterclockwise, as this is the difference between the arguments.

Moreover, in
ş8

an
pt´ a1q

α1´1 . . . pt´ anq
αn´1 dt, the integrand is ą 0 and

has argument 0. In
şa1
´8
pt´a1q

α1´1 . . . pt´anq
αn´1 dt, the integrand has

the argument

pα1 ´ 1qπ ` . . .` pαn ´ 1qπ “ ´2π.

Thus, b1´ bn “
´

ş8

an
`
şa1
´8

¯

has argument zero. Thus the corresponding
side of the polygonal line is parallel to the positive real axis.

Fig. 53: todoSummarising: the image of the real axis under f is a closed polygo-
nal curve consisting of n segments rbk´1, bks for k P Z {nZ with the
("interior") angles παk at the vertices bk “ fpakq for k P t1, . . . , nu.

09.06.2020In particular if all αk P p0, 1q, the polygonal line is a simple (i.e. no
self-intersections) curve which bounds a convex polygon. Then H is
mapped by f to this polygon.

Fig. 54: TODO

If αk P p1, 2q for some k, the polygonal line might be simple (but then it
bounds a non-convex polygon) or even have self-intersections.

Fig. 55: Double arcs represent angles larger than 180 degrees. In some
cases, the term "interior" angles is thus misleading.

Remark 10.0.6 One could consider also the case where a1 ă . . . ă an

are real and αk P p0, 2q with
řn
k“1 αk ă n ´ 2 and still consider (22).

This should be interpreted as the case with n ` 1 vertices, an`1 “ 8
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and αn`1 :“ n´ 1´
řn
k“1 αk, such that

řn`1
k“1 αk “ pn` 1q ´ 2 “ n´ 1.

Then one sets

bn`1 “

ż 8

0

pt´ a1q
α1´1 . . . pt´ anq

αn´1 dt

and has
bn`1 ´ bn “

ż 8

an

pt´ a1q
α1´1 . . . pt´ anq

αn´1 dt

with argument zero and

b1 ´ bn`1 “

ż a1

´8

pt´ a1q
α1´1 . . . pt´ anq

αn´1 dt

with argument equal to

pα1 ´ 1qπ ` . . .` pαk ´ 1qπ “

˜

n
ÿ

k“1

αk ´ n

¸

π “ p1´ αn`1qπ,

yielding the picture on the right.

Fig. 56: todo
In general, it is difficult to decide where the polygonal curve fpRYt8uq
is simple (if there are αn P p1, 2q). Simple cases are the following ones:

• If n “ 3, ´8 ă a1 ă a2 ă a3 ă 8 and 0 ă α1, α2, α3 ă 2 with
α1 ` α2 ` α3 “ 1. Then αl P p0, 1q are angles of a Euclidean
triangle.

Fig. 57: TODO
• If n “ 4 and ´8 ă a1 ă . . . ă a4 ă 8 and 0 ă α1, . . . , α4 ă 2

with α1 ` . . .` α4 “ 2. Then no more than one of the αk can be
greater than 1. If all four are smaller than one, we have a convex
quadrilateral, while if one αk P p1, 2q, we still have a simple curve,
but a non-convex quadrilateral.

Fig. 58: TODO

Remark 10.0.7 (Generalisation) Similarly to remark 10.0.1, it is not
necessary to reflect upon the real axis. For example, one can write down
an analogon of the Schwarz-Christoffel formula for a conformal map
f : D Ñ Π. For this, we use the same formula but with a1, . . . , an P

BD “ S1.

If a1, a2, a3 are three arbitrary points on S1 and α1, α2, α3 P p0, 1q with
α1 ` α2 ` α3 “ 1, then (22) is the sought after map.

For any a1, a2, a3 P C, we obtain a conformal map of a disk bounded by
the circle through a1, a2, a3 to a triangle.

Example 10.0.8 What is the image of D under the map

fpzq “

ż z

0

p1` ζ5q
2
5

p1´ ζ5q
4
5

dζ.

The preimages of the vertices of the polygonal line are ωk :“ e
2πi
5 k for

k P t0, . . . , 4u with the corresponding αk ´ 1 “ ´ 4
5 , i.e. αk “

1
5 ă 1 and

ξk “ e
πi
5 p2k`1q, where k P t0, . . . , 4u, with α` ´ 1 “ 2

5 , i.e. αk “
7
5 ą 1,

where ` “ k ` 5.

We have

fpωkq “ ωk

ż 1

0

p1` t5q
2
5

p1´ t5q
4
5

dt “: Aωk
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with some A ą 1. We have

fpξkq “ ξk

ż 1

0

p1´ t5q
2
5

p1` t5q
4
5

dt “ Bξk

with B ă 1. ˛

Fig. 59: todo

Example 10.0.9 (Circular arc polygons)
An example of a circular arc polygon Π can be seen in the figure on the
right.

Fig. 60: A circular arc polygon

Again, let bk “ fpakq with ak P R be the "vertices" of Π and consider
fk : C z

`

p´8, akq Y pak`1,8q
˘

Ñ C, fkpzq :“ σkpfpzqq (and fjpzq :“

σjpfpzqq) which are obtained with the Schwarz reflection principle.

How do we reflect about circular arcs? The reflection about the unit
circle is σpzq :“ 1

z . The reflection about a circle centered at the origin
with radius r ą 0 is σrpzq “ r2

z .

The reflection about a circle centered at c P C with radius r ą 0 thus is

σc,rpzq “
r2

z ´ c
` c.

As before we have fj “ σj ˝ σk ˝ fk. We have

pσj ˝ σkqpzq “
r2
k

σjpzq ´ ck
` ck “

r2
k

r2j
z´cj

` cj ´ ck

` ck

“
r2
kpz ´ ckq

r2
j ` pcj ´ ckqpz ´ cjq

` ck

“

`

r2
k ` ck c̃

˘

z `
`

ckpr
2
j ´ r

2
k ´ cj c̃q

˘

pcj ´ ckq z ` r2
j ´ cj c̃

,

where c̃ :“ cj ´ ck, which is a Möbius transform. We can thus write
fk “ α ˝ fj , where α P Möb. We now use the Schwarzian derivative
(see 10.0.10) S, which fulfils Spfkq “ Spα ˝ fjq “ Spfjq.

Fig. 61: In contrast to the polygonal case,

we need a modified map: pw´ bkq
1
αk ψpwq.

Tedious calculations yield

Spfqpzq “
n
ÿ

i“1

p1´ αiq
2

2pz ´ aiq2
`

βi
z ´ ai

,

where the βi are accessory parameters, which depend on ψ.

With clever integration, we can deduce f from Spfq. ˛

Example 10.0.10 (Schwarzian derivative) todo from HW ˛
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11 Analytic continuation of holomorphic
functions
We have already encountered analytic continuation by

• means of contour integrals (Γ- and ζ function)

• the Schwartz reflection principle.

We now turn to a general approach.

11.1 Continuation along a disk chain
Motivation. Let f0 : C0 Ñ C, where C0 is an open disk around c0, be
a holomorphic function. Then f0 is represented by a convergent power
series centered at c0 by theorem 6.0.3.

Fig. 62: todo

For any c1 P C0, consider a power series for f0 centered at c1. It
can happen that this series converges in a disk of a radius larger than
distpc1, BC0q.

In this case, we obtain a function f1 : C1 Ñ C for a disk C1 centered at
c1, which is not contained in C0. Thus f1 is obtained from f0 by analytic
continuation along a disk chain pC0, C1q.

By the uniqueness theorem, we have f0|C0XC1 “ f1|C0XC1 .

Definition 11.1.1 (Disk chain)
A disk chain disk chainis a finite sequence of open disks pC0, . . . , Cnq with the
centres c0, . . . , cn such that for any k P t1, . . . , nu we have ck´1, ck P

Ck´1 X Ck.

Fig. 63: TODO

Definition 11.1.2 (Analytic cont. along a disk chain)
A holomorphic function fn : Cn Ñ C is a analytic continuation analytic continuationof a
holomorphic function f0 : C0 Ñ C along the disk chain pC0, . . . , Cnq

if there is a sequence of holomorphic functions fk : Ck Ñ C for k P
t0, . . . , nu such that fk´1|Ck´1XCk “ fk|Ck´1XCk for all k P t1, . . . , nu.

We now investigate under which conditions such a continuation exists.

Example 11.1.3 (trivial situation) Let f : U Ñ C be a holomorphic
function and C0 Ă U be a (small) disk. Set f0 :“ f |C0 . Then f0 can
be analytically continued along any disk chain in U . By the uniqueness
theorem, the resulting fn : Cn Ñ C will not depend on the disk chain
connecting C0 to Cn. ˛

Lemma 11.1.4 (Analytic continuation of the derivative)
If f 10 can be analytically continued along a given disk chain. Then f0 can
be analytically continued along the same disk chain.

Proof. Let g0 :“ f 10 and gk : Ck Ñ C be its continuation along a disk
chain pCkqnk“0. We proceed by induction. Induction hypothesis: Suppose
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11.2 Continuation along a path

there is an analytic continuation of f0 along pCkqmk“0 for m ď n. This is
trivially true for m “ 0 (base case).

Induction step: By the uniqueness theorem f 1k “ gk for k P t0, . . . ,mu.
The function gm`1 : Cm`1 Ñ C is holomorphic and is given by a con-
vergent power series in Cm`1. Therefore it possesses a holomorphic
antiderivative FM`1 : Cm`1 Ñ C with F 1m`1 “ gm`1 (obtained by term
by term integration of the power series). On Cm X Cm`1 we have

F 1m`1 ´ f
1
m “ gm`1 ´ gm “ 0

by 11.1.2. Thus Fm`1 ´ fm :“ a is constant on Cm X Cm`1.

Set fm`1 :“ Fm`1 ´ a, which is an antiderivative of gm`1 on Cm`1 and
fm`1 ´ fm “ Fm`1 ´ a´ fm “ 0 holds on Cm X Cm`1. l

Corollary 11.1.5
Let g : U Ñ C be a holomorphic function and f0 : C0 Ñ C be its an-
tiderivative in a disk C0 Ă U . Then f0 can be analytically continued
along any disk chain in U .

Example 11.1.6 (Continuing the logarithm) Let U :“ C zt0u and
g : U Ñ C, z ÞÑ 1

z , which is a holomorphic function. Then f0pzq :“ lnpzq

is represented by a convergent power series

lnpzq “
8
ÿ

n“1

p´1qn`1

n
pz ´ 1qn

in C0 :“ tz P C : |z ´ 1| ă 1u. The function f0 can be analytically
continued along any disk chain in C zt0u by corollary 11.1.5.

Warning: This does not define lnpzq as a holomorphic function in C zt0u.
Indeed, if this were true, there would exist a holomorphic antiderivative
of g in C zt0u, which is not the case because of

ű

|z|“r
dz
z “ 2πi ‰ 0.

What is going wrong?
Fig. 64: Two analytic continuations of the
logarithm.

We can analytically continue f0 along two disks chains pC0, . . . , Cnq and
pC0, C̃1, . . . , C̃mq with C̃m “ Cn but it is not guaranteed (and it is not
true in general) that fn “ f̃m. ˛

10.06.2020

11.2 Continuation along a path

Definition 11.2.1 (Disk chain along path)
Let γ : rt0, t1s Ñ C be a continuous curve, i.e. a path. A disk chain
pC0, . . . , Cnq goes along γ if the centres pckqnk“1 of pCkqnk“0 lies on γ,
i.e. are given by ck “ γpτkq with t0 “ τ0 ă τ1 ă . . . ă τn “ t1 and the
piece γ|rτk´1,τks lies in Ck´1 X Ck.

Fig. 65: todo

Lemma 11.2.2 (Independence of disk chain choice)
Let γ be as above and pC0, C1, . . . , Cnq and pC0, C̃1, C̃mq be two disk
chains along γ such that cn “ c̃m “ γpt1q. Let g : Cn Ñ C and g̃ : C̃m Ñ

C be analytic continuations of a holomorphic function f : C0 Ñ C along
these disk chains. Then g ” g̃ on the smaller of the disks Cn and C̃m.

80



11.2 Continuation along a path

Fig. 66: todo

Proof. For any t P rτk´1, τks, let Pt be the power series for fk centered
at γptq, which is the same as the power series for fk´1 centered at γptq,
as fk and fk´1 coincide in Ck X Ck´1.

For any t P rt0, t1s there is a ε ą 0 such that for all s with |s´ t| ă ε, the
power series are correlated in the following sense: the power series Ps is
the power series expansion of the holomorphic function Pt centered at
γpsq.

We say that the system of power series pPtqtPrt0,t1s is locally consistent.
Recall that this systems corresponds to analytic continuation along the
disk chain pCkqnk“0.

We define analogously P̃t for f̃k, k P t1, . . . ,mu, obtained by analytic
continuation along the disk chain pC0, C̃1, C̃mq. We want to show that
Pt ” P̃t for all t P rt0, t1s.

Set M :“ tt P rt0, t1s : Pt ” P̃tu, which is nonempty as t0 P M . M is
relatively open in rt0, t1s due to local consistency, butM is also (relatively)
closed in rt0, t1s, since if s is an accumulation point of M , then Ps ´ P̃s
has a zero of infinite order at γpsq (similar to the proof of the uniqueness
theorem), i.e Ps “ P̃s and thus s P M . Since rt0, t1s is connected, we
have M “ rt0, t1s. In particular, t1 PM , i.e. Pt1 “ P̃t1 . l

This lemma allows us to speak about analytic continuation along contin-
uous curves.
Corollary 11.2.3
Let g : U Ñ C be a holomorphic function and let f0 : C0 Ñ C be an anti-
derivative of g in a disk C0 Ă U . Then f0 can be analytically continued
along any continuous curve in U .

Fig. 67: TOdo

Proof. It is sufficient to show that for any continuous curve γ : rt0, t1s Ñ

U , there exists a disk chain going along γ with all disks contained in U .

Let r :“ distpγprt0, t1sq,C zUq ą 0, as γprt0, t1sq is compact and C zU is
closed. Let ε ą 0 such that |γptq ´ γpsq| ă r for all t, s with |t´ s| ă ε

(possible due to uniform continuity of γ).

Choose a subdivision of rt0, t1s with τk ´ τk´1 ă ε for all k P t1, . . . , nu.
Define a chain of disks of radius f with centres γpτkq. All these disks are
in U . l

With this definition of analytic continuation along a continuous curve
we still face the same problem as before: the result of the analytic
continuation to z1 P U can depend on the choice of a curve from z0 to z1

(even if analytic continuation is guaranteed along any continuous curve).
This is the case for ln, see figure on the right.

Fig. 68: Result of analytic continuation of
ln from a neighbourhood of z0 “ 1 to a
neighbourhood of z1 “ ´1 will be different
for the curve γ1 and γ2.

There are, however, sufficient conditions under which the result of an-
alytic continuation along two curves γ1 and γ2 in U coincide, given by
the Monodromy theorem. It states that γ1 should be continuously
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11.3 Homotopy

deformable to γ2, while staying in U .

11.3 Homotopy
We take a small excursion to topology. It will be convenient to choose
specific parametrisations for curves, by fixing the definition domain to
be r0, 1s.

Let X be a topological space.

Fig. 69: Composition of two paths.

Definition 11.3.1 (Path)
A path in X is a continuous map γ : r0, 1s Ñ X.

Let a, b : r0, 1s Ñ X be two paths with ap1q “ bp0q. Then their compo-
sition ab : r0, 1s Ñ X exists and is given by

abptq :“

$

&

%

ap2tq, t P
“

0, 1
2

‰

,

bp2t´ 1q, t P
“

1
2 , 1

‰

.

The inverse path is a´ptq :“ ap1´ tq for t P r0, 1s.

A path a is closed if ap0q “ ap1q.

Fig. 70: Inversion of a path.

Remark 11.3.2 The composition of two closed paths is closed. The
inversion of a closed path is closed.

Fig. 71: A homotopy.

Definition 11.3.3 (Homotopy)
Two paths a, b in X with apiq “ bpiq “: zi, i P t0, 1u are homotopic

homotopicif there is a homotopy h between a and b, i.e. a continuous map
h : r0, 1s2 Ñ X such that

hpi, sq “ zi for i P t1, 2u @s P r0, 1s

hpt, 0q “ aptq, hpt, 1q “ bptq @t P r0, 1s.

We then write a » b.

Lemma 11.3.4 (Equivalence relation)
The relation » is an equivalence relation.

Proof. Let a, b, c be paths in X.

1 Reflexivity. We have a » a via hp¨, sq :“ a for all s P r0, 1s.

2 Symmetry. If a » b via h, then b » a via pt, sq ÞÑ hpt, 1´ sq.

3 Transitivity. If a » b via h1 and b » c via h2, then a » c via

hpt, sq :“

$

&

%

h1pt, 2sq, s P r0, 1
2 s,

h2pt, 2s´ 1q, s P r 12 , 1s.

(check continuity) l

We write ras for the equivalence class of a with respect to ».
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11.3 Homotopy

The composition can be lifted to the equivalence classes. If a, b are paths
with ap1q “ bp0q and a » a1 via h1 and b » b1 via h2, then ab » a1b1 via

hpt, sq “

$

&

%

h1p2t, sq, t P r0, 1
2 s,

h2p2t´ 1, sq, t P r 12 , 1s.

(check continuity) We thus define rasrbs :“ rabs.

Fig. 72: Illustration of rasrbs :“ rabs.

Lemma 11.3.5 (Homotopy and reparametrisation)
We have a » a˝ϕ for any continuous map ϕ : r0, 1s Ñ r0, 1s with ϕpiq “ i

for i P t0, 1u.

Proof. Define hpt, sq :“ α
`

p1´ sqt` sϕptq
˘

(check continuity!). l

Lemma 11.3.6 (Associativity of homotopy classes)
If ap1q “ bp0q and bp1q “ cp1q, then pabqγ “ apbcq and thus rabsrcs “
rasprbsrcsq

Proof. We have

`

pabqc
˘

ptq “

$

&

%

pabqp2tq, t P r0, 1
2 s,

cp2t´ 1q, t P r 12 , 1s.
“

$

’

’

&

’

’

%

ap4tq, t P r0, 1
4 s,

bp4t´ 1q, t P r 14 ,
1
2 s,

cp2t´ 1q, t P r 12 , 1s.

and

`

apbcq
˘

ptq “

$

&

%

ap2tq, t P r0, 1
2 s,

pbcqp2t´ 1q, t P r 12 , 1s.
“

$

’

’

&

’

’

%

ap2tq, t P r0, 1
2 s,

bp4t´ 2q, t P r 12 ,
3
4 s,

cp4t´ 3q, t P r 34 , 1s.

Thus
`

pabqc
˘

ptq “
`

apbcq
˘

pϕptqq with

ϕptq “

$

’

’

&

’

’

%

2t, t P r0, 1
4 s,

t, t P r 14 ,
1
2 s,

t
2 , t P r 12 , 1s,

l

Fig. 73: The reparametrisation ϕ.

Lemma 11.3.7 (constant path and homotopy)
If z1 is a constant path, then bptq “ z1 for all t P r0, 1s, then az1 » a and
thus rasrz1s “ ras.

Proof. We have

paz1qptq “

$

&

%

ap2tq, t P r0, 1
2 s,

z1, t P r 12 , 1s.
“ apϕptqq

with

ϕptq :“

$

&

%

2t, t P r0, 1
2 s,

1, t P r 12 , 1s.
l

Fig. 74: The reparametrisation ϕ.

83



11.3 Homotopy

Lemma 11.3.8 (Composition with inverse)
We have aa´ » z0 and thus rasra´s “ rz0s.

Proof. We have

paa´qptq “

$

&

%

ap2tq, t P r0, 1
2 s,

ap2p1´ tq, t P r 12 , 1s.
“ apψptqq,

where

ψptq :“

$

&

%

2t, t P r0, 1
2 s,

2p1´ tq, t P r0, 1
2 s.

Let
hpt, sq :“ app1´ sqψptqq,

which clearly is continuous. l

Fig. 75: The reparametrisation ψ.

The only thing which does not allow use to declare the set of equivalence
classes of paths to a group with respect to composition is that the
composition is not always defined.

However we can always compose closed paths with the same starting
point.

Definition 11.3.9 (Fundamental group)
For z0 P X, π1pX, z0q is the group consisting of equivalence classes of
closed paths in X starting and ending at z0 with respect to homotopy.
The group operation is the composition and the neutral element is rz0s.
π1pX, z0q is the (first) fundamental group fundamental groupof X.

The first fundamental group does not depend on z0, we have π1pX, z0q –

π1pX, z1q for all z0, z1 P X if there is a path γ in X from z0 to z1, as you
can see on the right. Thus in a path connected topological space, all

Fig. 76: The map π1pX, z0q Ñ π1pX, z1q,
ras ÞÑ rγ´srasrγs.

first fundamental groups are isomorphic.

Definition 11.3.10 (Null-homotopic, simply connected)
A path is null-homotopic null-homotopicif it is homotopic to a constant path z0.

A path-connected topological space is simply connected simply connectedif any closed
path in X is null-homotopic.

Example 11.3.11 (Star-shaped domains are simply connected)
A star-shaped domain is simply connected.

A domain U is star-shaped with respect to z0 P U if for any z1 P U with
rz0, z1s Ă U we have p1´ sqz1 ` sz0 P U for all s P p0, 1q.

A (double) slit plane is star-shaped.

If a is a path in U with ap0q “ ap1q “ z0, we can set hpt, sq :“ p1 ´

sqaptq ` sz0. ˛

Fig. 77: The homotopy h.

Example 11.3.12 The punctured plane C zt0u is not simply connected,
as a loop enclosing the origin is not null-homotopic. ˛
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11.3 Homotopy

Lemma 11.3.13 (Contractability)
Let X Ă C. The following are equivalent.

1 for all x0 P X, π1pX,x0q is trivial, i.e. contains only the neural
element.

2 X is simply connected.

3 every continuous function f : S1 Ñ X extends continuously to a
map F : DÑ X.

Proof. " 1 ùñ 2 ": Let γ : r0, 1s Ñ X be a closed curve starting
in x0. Then rγs P π1pX,x0q. Let cx0 : r0, 1s Ñ X be the constant path.
Then rcx0s P π1pX,x0q and thus rcx0s “ rγs by 1 , i.e. cx0 » γ.

" 2 ùñ 3 ": Let f : S1 Ñ X be a continuous function and γ : r0, 1s Ñ

S1, t ÞÑ e2πit be a parametrisation of S1. Then f ˝ γ : r0, 1s Ñ X is a
closed curve, as γ is. By 2 , there is a homotopy H : r0, 1s2 Ñ X such
that Hp¨, 1q “ f ˝ γ and Hp¨, 0q “ cx0 for some x0 P X.

Let Ψ: r0, 1q ˆ p0, 1s Ñ D zt0u, pϕ, rq ÞÑ re2πiϕ, which is a homeomor-
phism. Thus F̃ : D zt0u Ñ X, t ÞÑ H̃pΨ´1ptqq, where H̃ :“ H|r0,1sˆp0,1s,
is continuous. Define

F : DÑ X, z ÞÑ

$

&

%

F̃ pzq, z P D zt0u,

x0, z “ 0.

It remains to show that F is continuous in zero. For ε ą 0 we have

F´1pBεpx0qq “ F̃´1pBεpx0qq Y t0u “ ψpH̃´1pBεpx0qqq Y t0u.

Choose δ : dist
`

r0, 1s2zH̃´1pBεpx0qq, r0, 1s ˆ t0u
˘

ą 0, then Bδp0q Ă

ψpH̃´1pBεpx0qqq.

" 3 ùñ 1 ": Let γ P π1pX,x0q with γ : r0, 1s Ñ X, which induces
a map f : S1 Ñ X, e2πit ÞÑ γptq (well defined as γp0q “ γp1q and
e2πi0 “ e2πi). By 3 there exists a continuous extension F : D Ñ X.
Define

H : r0, 1s Ñ r0, 1s Ñ X, ps, tq ÞÑ fpse2πitq.

(endpoints aren’t fixed) l

16.06.2020

Theorem 11.3.1: Mondodromy theorem

Let U Ă C be an open set, C0 Ă U a disk with the centre c0
and f : C0 Ñ C a holomorphic function, admitting an analytic
continuation along any path in U starting at c0.
Let a0, a1 be two holomorphic paths in U starting at c0 and
ending at c1. If g0, g1 : C1 Ñ C are obtained from f via analytic
continuation along a0, a1, respectively (C1 is a disk with centre
at c1), then g0 “ g1.

In short: analytic continuations along homotopic paths lead to the same
results.

Fig. 78: TODO
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11.3 Homotopy

Proof. We want to show that g0 “ g1, by showing that all gs, s P r0, 1s
coincide. We will show that gs is locally constant, i.e. for all s P r0, 1s
there is a δ ą 0 such that gs “ gs0 for all s with |s´ s0| ă δ.

We identify gs with its Taylor series around z1, in order not to have to
book-keep the definition domains of gs.

Consider gs0 together with a disk chain along as0 We show that if δ is

Fig. 79: TODO

small and |s´ s0| ă δ, then as0 is so close to as such that we can use the
chain along as0 to produce a disk chain along as by suitably shrinking the
disks of the original chain: Ckpsq Ă Ckps0q; then gkpsq will be obtained
by restricting gkps0q to Ckpsq, so that gkpsq will be locally constant.

1 Consider Ckps0q and A :“ as0prτk´1, τksq, which is a compact set.
Let a :“ distpA, BCkps0q ą 0 (due to definition of the disk chain.

Fig. 80: TODO

Set ε :“ a
3 ą 0. Then for all z P Bεpckps0qq, the largest open

disk with center z contained in Ckps0q contains the ε neighbour-
hood of A. Take ε to be the minimal one for all n ` 1 disks

Fig. 81: If ρ ă ε, then the maximal distance
of the points of the boundary of the smaller
disk to the boundary of the larger disk is
less than 2ε, while the ε-neighbourhood of
A has distance to the boundary larger than
2ε.

C0ps0q, C1ps0q, . . . , Cnps0q.

2 Choose δ ą 0 such that |asptq ´ as0ptq| ă ε for all t P r0, 1s as soon
as |s ´ s0| ă δ. This is possible due the following compactness
argument. For any t P r0, 1s there exists a δptq such that |aspt1q ´
as0ptq| ă ε as soon as |t1 ´ t| ă δptq and |s´ s0| ă δptq (a square-
shaped neighbourhood of pt, s0q). Since r0, 1s ˆ ts0u is compact
and covered by the union of all such square neighbourhoods, there
exists a finite subcover, i.e. a covering by a finite number of such
squares |t´ tj |yδptjq and |s´ s0| ă δptjq. Choose δ :“ minj δptjq.

3 With ε found in step 1 and δ found in step 2, consider some
s P Bδps0q. Set cjpsq :“ αspτjq for j P t0, . . . , nu. According

Fig. 82: According to the property of δ, the
segment asprτk´1, τk`1sq is contained in
the ε-neighbourhood of as0 prτk´1, τk`1sq.

to the property of ε, the largest open disk with the center ckpsq
contained in Ckps0q covers αsprτk´1, τk`1sq. Those disks constitute
a disk chain along as. l
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12 Winding number; global versions of
the Cauchy integral theorem and of
the residue theorem
We will continue to study properties of integrals of holomorphic functions
over closed curves, in particular, the question whether such integrals
vanish. This question has aspects related to homotopy but also aspects
related to homology.

In this section, we assume all curves to be piecewise C1 rather than merely
continuous.

The winding number (German: Umlaufszahl) nγpaq of a closed curve
shows the number of revolutions of a closed curve γ around a point
a P C zImpγq.

Fig. 83: In the third picture, nγpcq “ 0 and
in the last, nγpdq “ 0

Take, for definiteness, a “ 0, otherwise, translate everything by a in the
complex plane.

Definition 12.0.1 (Winding number)
Let γ : rt0, t1s Ñ C zt0u with γpt0q “ γpt1q. Take a subdivision t0 “

τ0 ă τ1 ă . . . ă τm “ t1, which is so fine that for any k P t1, . . . ,mu the
piece of the curve γprτk´1, τksq lies in an open half plane through zero
(see figure). Then there is a well defined angle θk P p´π, πq between the
ray r0, γpτk´1qq and the ray r0, γpτkqq:

γpτkq

|γpτkq|
“ eiθk

γpτk´1q

|γpτk´1q|
.

The winding number of γ is

nγp0q “
1

2π

n
ÿ

k“1

θk.

Fig. 84: todo

The number nγp0q does not change by a refinement of the subdivision
(i.e. adding a point). Since any two subdivisions admit a common
refinement (by taking the union) this implies that nγp0q is independent
of the subdivision.

Lemma 12.0.2
We have nγp0q P Z.

Proof. We have

γpt1q

|γpt1q|
“

γpt0q

|γpt0q|
“ exp

˜

i
n
ÿ

k“1

θk

¸

γpt0q

|γpt0q|

Thus exp pi
řn
k“1 θkq “ 1, i.e i

řn
k“1 θk P 2πiZ, i.e 1

2π

řn
k“1 P Z. l
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Lemma 12.0.3 (nγp0q is homotopy invariant)
If h : rt0, t1sˆr0, 1s Ñ C zt0u is a continuous homotopy between two curves
such that for any s P r0, 1s, hpt0, sq “ hpt1, sq, and, setting γsptq :“ hpt, sq,
all γs are piecewise C1, then nγsp0q does not depend on s.

Proof. We have that s ÞÑ nγs is a continuous, integer-valued function.
Thus it is constant. l

Corollary 12.0.4
We have that nγp0q is invariant under continuous orientation preserving
reparametrisations: if ϕ : rτ0, τ1s Ñ rt0, t1s is a continuous bijection with
τ0 ă τ1, then nγ˝ψp0q “ nγp0q.

Lemma 12.0.5 (a ÞÑ nγpaq is locally constant)
If a changes continuously not meeting Impγq, then nγpaq does not change.
In particular, for a in any connected component of C zImpγq, nγpaq is
constant.

Proof. As above. l

This gives the easiest recipe ("traffic rule") for determining the winding
number of a curve around a point by tracing it in different connected
components of C zImpγq by taking into account that in the unbounded
component ("far away" from γ), we have nγpaq “ 0: If a cross γ from
the "right side of the road" to the "left side", then the winding number
increases by 1.

Fig. 85: todo

Theorem 12.0.1: todo

For any closed curve γ and any point a P C zImpγq, we have

nγpaq “
1

2πi

¿

γ

dz

z ´ a
.

Proof. Without loss of generality let a “ 0. We define the integral
via analytic continuation of a local antiderivative of 1

z over a disk chain
running along γ. The centres of disks serve as a subdivision from the
definition of nγp0q. The logarithms are given by lnpreiϕq :“ lnprq ` iϕ

for r ą 0 and ϕ are arguments within a half plane, so that
ż

γprτk´1,τksq

dz

z
“ lnp|γpτkq|q ´ lnp|γpτk´1q|q ` iθk.

Upon summation over k P t1, . . . , nu the real part vanishes by telescoping
so that

¿

γ

dz

z
“ i

m
ÿ

k“1

θk “ 2πinγp0q. l

17.06.2020
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Definition 12.0.6 (Homologous to zero)
Let U Ă C be an open set. A closed curve γ in U is homologous to zero

homologous to zeroif nγpaq “ 0 for all a P C zU , i.e. if γ does not wind around any point
from C zU .

Remark 12.0.7 (null homotopic curve ùñ homologous to zero)
A null homotopic curve is homologous to zero. The converse need
not hold: Consider C zt0, 1u and the curve on the right. We have

Fig. 86: TODO

nγp0q “ nγp1q “ 0 and thus γ is homologous to zero in C zt0, 1u. One
can show that γ is not null-homotopic.

Definition 12.0.8 (Homologous paths)
Two closed paths γ1, γ2 are homologous homologousin U (we write γ1 „ γ2) if
nγ1paq “ nγ2paq for all a P C zU .

Theorem 12.0.2: Cauchy integral formula
(Global version)

Let G Ă C be a domain, γ : rt0, t1s Ñ G with γpt0q “ γpt1q a
closed curve in G homologous to zero in G. Let f : GÑ C be a
holomorphic function. Then for any point z P GzImpγq

1

2πi

¿

γ

fpζq

ζ ´ z
dζ “ nγpzqfpzq.

A topological proof of this result can be found in the books by Lang
and Jähnich, respectively.

Proof. Set
E0 :“ tz P C zImpγq : nγp0q “ 0u.

The set E0 Ă C is open (consisting of several connected components).

Fig. 87: The set E0 for a curve considered
before.

By assumption, C zG Ă E0 and thus E0 YG “ C. For any z P GX E0,
we have

1

2π

¿

γ

dζ

ζ ´ z
“ nγpzq “ 0

by theorem 12.0.1 and thus
¿

γ

fpζq

ζ ´ z
dζ “

¿

γ

fpζq ´ fpzq

ζ ´ z
dζ.

Set

g : GˆGÑ C, ζ, z ÞÑ:“

$

&

%

fpζq´fpzq
ζ´z , z ‰ ζ,

f 1pzq, z “ ζ.

The integrand gpζ, zq has the following properties:

• For any fixed ζ P G, the function z ÞÑ gpζ, zq is holomorphic (and
analogously for z).
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• As a function on GˆG, it is continuous, which is obvious for z ‰ ζ.
For pζ, zq close to pz0, z0q we have

gpζ, zq ´ gpz0, z0q “
fpζq ´ fpzq

ζ ´ z
´ f 1pz0q

“
1

ζ ´ z

ż ζ

z

f 1pξq ´ f 1pz0qdξ,

where
şζ

z
is taken over the straight line segment from z to ζ.

Hence 1
|ζ´z| cancels with the length of segment, while the integrand

tends to 0 as pζ, zq Ñ pz0, z0q.

Define

F : CÑ C, z ÞÑ

$

’

’

’

’

&

’

’

’

’

%

¿

γ

gpζ, zqdζ, z P G,

¿

γ

fpζq

ζ ´ z
dζ, z P E0,

which is well defined, as both expressions coincide on E0 XG.

We will show that F is holomorphic onG and on E0, then it is holomorphic
on C by the uniqueness theorem, i.e. an entire function.

For |z| Ñ 8 we have

|F pzq| ď Lpγq max
ζPImpγq

|fpζq| ¨
1

z ´maxζPImpγq |ζ|

|z|Ñ8
ÝÝÝÝÑ 0.

By Liouville’s theorem, F ” 0. For z P GzImpγq, this yields the
statement.

We will use the Morera theorem to show that F is holomorphic. Let
∆ Ă G be a closed triangle. We have

¿

B∆

F pzqdz “

¿

B∆

¨

˝

¿

γ

gpζ, zqdζ

˛

‚dz “

¿

γ

¨

˝

¿

B∆

gpζ, zqdz

˛

‚

loooooooomoooooooon

“0

dζ “ 0.

We can exchange the order of integration, since both integration domains
are compact and g is continuous on GˆG (Fubini theorem). The inner
integral vanishes by the Cauchy theorem as z ÞÑ gpζ, zq is holomorphic.l

Theorem 12.0.3: Cauchy integral theorem
(Global version)

Let G Ă C be a domain, γ : rt0, t1s Ñ G a (piecewise C1) closed
curve with γpt0q “ γpt1q, which is homologous to zero in G and
f : GÑ C a holomorphic function. Then

¿

γ

fpζqdζ “ 0.

Proof. Let a P GzImpγq. By theorem 12.0.2

1

2πi

¿

γ

fpζq

ζ ´ a
dζ “ nγpaqfpaq
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and
1

2πi

¿

γ

ζ ¨ fpζq

ζ ´ a
dζ “ nγpaqafpaq.

Subtracting both yields

1

2πi

¿

γ

fpζqdζ “
1

2πi

¿

γ

ζ ¨ fpζq

ζ ´ a
dζ ´

1

2πi

¿

γ

afpζq

ζ ´ a
dζ

“ nγpaqafpaq ´ a ¨ nγpaqfpaq “ 0. l

Theorem 12.0.4: Residue theorem (Global ver-
sion)

Let G Ă C be a domain, S Ă G a discrete set (without
accumulation points), f : GzS Ñ C a holomorphic function,
γ : rt0, t1s Ñ GzS a closed curve in G not passing through any
point of S, homologous to zero in G, i.e. nγpzq “ 0 for all z P C zG.
Then there are no more than finitely many points a P S for which
nγpaq ‰ 0 and we have

¿

γ

fpζqdζ “ 2πi ¨
ÿ

aPS

nγpaq ¨ res
z“a

fpzq.

Proof. 1 Suppose that nγpaq ‰ 0 for infinitely many points a P S.
Then there should be an accumulation point a0 of these points
(all z with nγpzq ‰ 0 lie in a bounded part of C (the curve γ is
compact)). But a0 R GzS as f is holomorphic in GzS and a0 R S

as S is discrete.

Thus a0 R G, i.e. a0 P C zG, so nγpa0q “ 0. Since a ÞÑ nγpaq is
locally constant, there exists a ε ą 0 such that nγpaq “ 0 for all
a P Bεpa0q, which is a contradiction to the definition a0.

Thus there are only finitely many a P S with nγpaq ‰ 0, say
S0 “ taku

r
k“1.

2 Let ϕjpzq :“
Aj
z´aj

`
Bj

pz´ajq2
`

Cj
pz´ajq3

` . . . for j P t1, . . . , ru be the
principal parts of the Laurent expansions of fpzq around aj .

Consider

gpzq :“ fpzq ´
r
ÿ

j“1

ϕjpzq,

which is holomorphic on GzpSzS0q. By the Cauchy theorem, we
have

¿

γ

gpzqdz “ 0

and thus
¿

γ

fpzqdz “
r
ÿ

j“1

¿

γ

ϕjpzqdz “
r
ÿ

j“1

¿

γ

Aj
z ´ aj

dz,
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12.1 1-cycles

where in the last step we use that Bj
pz´ajq2

`
Cj

pz´ajq3
` . . . have

antiderivatives holomorphic in Gztaju. Lastly,

r
ÿ

j“1

¿

γ

Aj
z ´ aj

dz “ 2πi
r
ÿ

j“1

Ajnγpajq. l

12.1 1-cycles
We will now further generalise the last three theorems.

Motivation. Consider an open set U with three punctures, and a
holomorphic function f : U Ñ C. Consider a closed curve γ in U which

Fig. 88: An open set U with three punc-
tures pzkq3k“1 with circles pγkq3k“1 centered
around them, resp., a holomorphic function
f : U Ñ C and a closed curve γ winding
once around all punctures.

winds once around the punctures. Let γ1, . . . , γ3 be small circles centered
at z1, z2, z3.

It is reasonable to expect that

¿

γ

fpzqdz “
3
ÿ

k“1

¿

γk

fpzqdz.

In this particular case we can prove this by "homotoping" the curve γ
into some curve which runs along the circles and then runs between the
circles in both directions, such that the contributions cancel each other
out.

We would like to say that γ1, . . . , γ3 together constitute a "path" winding
once wound z1, z2, z3. But this is not a path in the sense used until now,
since they form a disconnected set.

The following terminology remedies this.

Definition 12.1.1 (1-chain / cycle)
Let γ1, . . . , γm be (closed) C1 curves and pkjqmj“1 Ă Zm. A formal sum

γ “
m
ÿ

j“1

kjγj

is a (closed) 1-chain 1-chain(closed 1-chain = 1-cycle).

By definition,
ż

γ

fpzqdz “
n
ÿ

j“1

kj

¿

γj

fpzqdz.

Definition 12.1.2 (Winding number of a 1-cycle)
The winding number of a 1-cycle γ :“

řm
j“1 kjγj is

nγpaq :“
m
ÿ

j“1

kjnγj paq “
1

2πi

¿

γ

dz

z ´ a
.
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12.1 1-cycles

Definition 12.1.3 (Homologous 1-cycles)
Two 1-cycles γ and η are homologous in U , and we write γ „ η, if
nγpaq “ nηpaq for all a P C zU .

A 1-cycle γ is homologous to zero and we write γ „ 0 if nγpaq “ 0 for
all a P C zU .

Example 12.1.4 Let U :“ C ztz1, z2, z3u and consider the curve on the
right. We have γ „ γ1 ` 2γ2 ` 2γ3 in U . For any holomorphic function

Fig. 89: A curve in U with its winding
numbers.

f : U Ñ C we have
¿

γ

fpzqdz “

¿

γ1

fpzqdz ` 2

¿

γ2

fpzqdz ` 2

¿

γ3

fpzqdz. ˛

Theorem 12.1.1: todo

Let U Ă C be and open set and γ a 1-cycles in U homologous to
zero in U . Let z1, . . . , zm be distinct points in U and γ1, . . . , γm

small (so they stay in U) circles around z1, . . . , zm oriented coun-
terclockwise.
Then in Ū :“ Uztz1, . . . , zmu we have γ „

řm
j“1 kjγj and for any

holomorphic function f : Ū Ñ C we have
¿

γ

fpzqdz “
m
ÿ

j“1

kj

¿

γj

fpzqdz.

Often, we have to integrate over boundaries of non-simply connected
domains G which consists of several components, as on the right. In

Fig. 90: A non-simply connected domain.

this case we say that BG “ γ0 ´ γ1 ´ γ2 ´ γ3, which is a 1-cycle.

Definition 12.1.5 (Boundary)
A 1-cycle γ is the boundary of an open set G Ă C if nγ “ 1G (i.e
nγpaq “ 1 for a P G and nγpaq “ 0 if a P C zpGY Impγqq).

Remark 12.1.6 All three theorems (Cauchy formula and theorem,
residue theorem) hold literally true if one replaces closed curves by
1-cycles.

23.06.2020

Theorem 12.1.2: Cauchy integral theorem
(Global 1-cycle version)

Let G Ă C be a domain, γ a 1-cycle in G homologous to zero in
G (γ „

G
0) and f : GÑ C be a holomorphic function. We have

1

2πi

¿

γ

fpζq

ζ ´ z
dζ “ nγpzqfpzq.
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12.2 Integral counting zeros and poles

Theorem 12.1.3: Cauchy integral theorem
(Global 1-cycle version)

Let G Ă C be a domain, γ „
G
G a 1-cycle and f : G Ñ C a

holomorphic function. Then
¿

γ

fpζqdζ “ 0.

Theorem 12.1.4: Residue theorem (Global 1-
cycle version)

Let G Ă C be a domain, f : GzS Ñ C a holomorphic function
up to a discrete set S Ă G of isolated singularities and γ „

G
0 a

1-cycle not hitting any point of S. We have
¿

γ

fpζqdζ “ 2πi ¨
ÿ

aPS

nγpaq ¨ res
z“a

fpzq,

the sum is finite.

12.2 Integral counting zeros and poles
An application of those theorem is the integral counting zeros and poles
of a meromorphic function.

Definition 12.2.1 (Meromorphic function)
Let G Ă C be a domain. Then f : G Ñ C is meromorphic meromorphic, if it
is holomorphic in G up to poles (has nothing worse than isolated
singularities in G, which are not essential).

Remark 12.2.2 If f is meromorphic, so is its logarithmic derivative f 1

f ,
as this function has poles at poles and zeros of f .

Let z0 P G be a pole or a zero of f . In a small punctured neighbourhood
Bεpz0qztz0u, we have a Laurent series expansion (pole) or a power series
expansion (zero) of f :

fpzq “ pz ´ z0q
kf̃pzq,

where f̃ is holomorphic and non-vanishing in Bεpz0q.

If z0 is a pole of order k0 ą 0, then k “ ´k0 ă 0. If z0 is a zero of order
k0 ą 0, then k “ k0 ą 0.

In any case we have

f 1pzq

fpzq
“
pz ´ z0q

kf̃ 1pzq ` kpz ´ z0q
k´1f̃pzq

pz ´ z0q
kf̃pzq

“
k

z ´ z0
`
f̃ 1pzq

f̃pzq

has a pole of order one at z0 with residue k and f̃ 1pzq

f̃pzq
is holomorphic in

the punctured neighbourhood of z0.

Applying the residue theorem to f 1

f yields the following theorem.
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12.2 Integral counting zeros and poles

Theorem 12.2.1: todo

Let f : G Ñ C be a meromorphic function in a domain G Ă C,
which does not hit any pole or zero of f and bounds an open set
A. Then

1

2πi

¿

γ

f 1pzq

fpzq
dz “ Z ´ P,

where Z is the number of zeros of f in A and P the number of
poles, both counted with orders.

For any of the closed curves η in the 1-cycle γ we have
¿

η

f 1pzq

fpzq
dz “

ż t1

t0

f 1pηptqq

fpηptqq
η1ptqdt “

ż

f˝η

dz

z
“ 2πi ¨ nf˝ηp0q.

We can thus reformulate the above theorem:

Theorem 12.2.2

Under the conditions of the previous theorem, we have

Z ´ P “ nf˝γp0q.

Fig. 91: The image of f ˝ γ winds thrice
around zero, as A bounds three zeros of f .

Theorem 12.2.3: Rouché

Let f, g : GÑ C be holomorphic functions in a domain G and γ
a (simple, i.e. without intersections) 1-cycle in G and a boundary
of an open set A in G.
Suppose that |gpzq| ă |fpzq| for all z P Impγq. Then Zf “ Zf`g.

Proof. For any closed curve γk of which γ consists, the curves f ˝ γk
and pf ` gq ˝ γk are homotopic in C zt0u via pt, sq ÞÑ fpγkptqq` sgpγkptqq.
Therefore, f ˝γk „

C zt0u
pf`gq˝γk and have equal winding number around

zero. l

Corollary 12.2.3 (Fundamental Theorem of Algebra)
A non-constant n-th degree polynomials has n zeros (counting multiplici-
ties).

Proof. Consider ppzq :“ zn`
řn
k“0 akz

n´k “: fpzq`gpzq for fpzq :“ zn

and gpzq :“
řn
k“0 akz

n´k.

On a circle of radius R ą 0, with sufficiently large R, we have |fpzq| ą
|gpzq|, so in BRp0q, p has as many zeros as f , n.

These are all zeros of p (no further zeros outside of the disk because
|fpzq| ą |gpzq| for |z| ą R). l

Example 12.2.4 Let fpzq :“ λ ´ z ´ e´z with λ ą 1. Then f has
exactly one zero z0 with <pz0q ą 0.

Let z0 be a zero of f with <pz0q ą 0, then λ´ z0 “ e´z0 . Then we have

|λ´ z0| “ |e
´z0 | “ |ei=pzq||e´<pzq| “ e´<pzq ă 1,
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12.2 Integral counting zeros and poles

i.e. z0 P B1pλq.

Let gpzq :“ ´e´z and hpzq :“ λ´ z and γ : r0, 2πs Ñ BBλp1q, t ÞÑ λ` eit.

For z P BBλp1q we have

|hpzq| “ |λ´ pλ` eitq| “ 1 ą e´<pzq “ |gpzq|.

By Rouché’s theorem, h and f have the same numbers of zeros in Bλp1q,
and h has one zero, λ. Since all zeros of f with positive real part, have
to lie in Bλp1q, we have shown the claim. ˛

Corollary 12.2.5 (Modified Rouchés theorem)
Let f, g : GÑ C be holomorphic functions in a domain G and γ a 1-cycle
in G a boundary of an open set A in G.

Suppose that |gpzq| ă |fpzq| ` |pf ` gqpzq| for all z P Impγq. Then
Zf “ Zf`g.

Proof. Consider h :“ 1 ` g
f . If z0 is a zero of f , we have |gpz0q| “

|fpz0q| ` |pf ` gqpz0q|, violating the above condition, so z0 R Impγq.

Applying theorem 12.2.1 to h yields 1
2πi

ű

γ
h1pzq
hpzq dz “ Zh ´ Ph. We have

h1pzq

hpzq
“

g1pzqfpzq´gpzqf 1pzq
f2pzq

1` gpzq
fpzq

“
g1pzqfpzq ´ gpzqf 1pzq

f2pzq ` gpzqfpzq

“
g1pzqfpzq ´ f 1pzqfpzq ` f 1pzqfpzq ´ gpzqf 1pzq

f2pzq ` gpzqfpzq

“
f 1pzq ` g1pzq

fpzq ` gpzq
´
f 1pzq

fpzq

and thus

Zh ´ Ph “ Zf`g ´ Pf`g ´ pZf ´ Pf q “ Pf ´ Pf`g.

We have
¿

γ

h1pzq

hpzq
dz “

ż

h˝γ

1

z
dz “ 2πi ¨ nh˝γp0q.

We can show nh˝γp0q “ 0 by showing h ˝ γ doesn’t touch the negative
real line, i.e. hpzq ‰ r ď 0 for all z P Impγq.

Towards contradiction assume hpz0q “ r ď 0 for some z0 P Impγq. Then

1´ r “ | ´ 1` r| “

ˇ

ˇ

ˇ

ˇ

´1` 1`
gpz0q

fpz0q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

gpz0q

fpz0q

ˇ

ˇ

ˇ

ˇ

ă
|fpz0q| ` |pf ` gqpz0q|

|fpz0q|

“ 1`

ˇ

ˇ

ˇ

ˇ

1`
|gpz0q|

|fpz0q|

ˇ

ˇ

ˇ

ˇ

“ 1` |hpz0q| “ 1` |r| “ 1´ r,

which is a contradiction. l

Corollary 12.2.6
Let f be a non-constant rational function. For any a P Ĉ, the number
of a-points of f , i.e. #tf´1paq counted with multiplicitiesu Ă Ĉ does not
depend on a.

For a “ 0 we get the number of zeros and for a “ 8 the number of poles.
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12.2 Integral counting zeros and poles

Proof. It suffices to show that P “ Z, because then one applies the
claim to fpzq ´ a.

Assume that fp8q R t0,8u. Otherwise, consider gpzq :“ f
`

z0 `
1
z

˘

with
fpz0q R t0,8u, which has gp8q “ fpz0q.

Let γr be a circle of sufficiently large radius r ą 0 around zero. By
theorem 12.2.2 we have Z ´ P “ nf˝γr p0q. For r Ñ8, f ˝ γr converges
uniformly against a constant path fp8q P C zt0u which does not wind
around zero, i.e. nf˝γr “ 0 and thus Z “ P . l
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13 Convergence of sequences of
holomorphic function.
In real analysis, a uniform limit of a sequence of differentiable functions
may only be continuous, whereas in complex analysis, a uniform limit of
holomorphic functions is holomorphic. To prove this, we will exploit the
fact that the derivative of a holomorphic function can be expressed as an
integral.

In the following, let U Ă C be an open set.

Definition 13.0.1 (Locally uniform convergence)
A sequence of holomorphic functions pfn : U Ñ CqnPN converges locally
uniform to f : U Ñ C if one of the following conditions is satisfied.

• For any compact subset K Ă U , we have fn Ñ f uniformly on K.

• For any z0 P U , there exists r ą 0 such that fn Ñ f uniformly in
Brpz0q.

Lemma 13.0.2
Both conditions are equivalent.

Proof. " ùñ ": For any z0 P U there is a compact neighbourhood
Brpz0q Ă U . On this closed disk, convergence is uniform, therefore, also
on Brpz0q.

"ðù ": The disks pBrpz0qpz0q Ă Uqz0PK cover K. Take a finite subcover-
ing. On each of those disks, we have fn Ñ f uniform and thus this also
holds on their finite (!) union. l

Theorem 13.0.1: Weierstrass

Let pfn : U Ñ CqnPN be a sequence of holomorphic functions,
converging locally uniform to f : U Ñ C. Then f is holomorphic
and f pkqn

nÑ8
ÝÝÝÑ f pkq locally uniform for all k P N.

Proof. 1 To prove that f is holomorphic, we use Morera’s theorem.
For a closed triangle ∆ Ă U we have

¿

B∆

fpzqdz “

ż

B∆

´

lim
nÑ8

fnpzq
¯

dz “ lim
nÑ8

ż

B∆

fnpzqdz “ 0,

as B∆ is compact, so we can exchange integration with the limit.
The last equality is by Cauchy’s theorem.

2 We prove f 1n
nÑ8

ÝÝÝÝÝÝÑ
loc. unif.

f 1, the statement then follows by induction.

By the Cauchy formula we have

f 1npzq ´ f
1pzq “

1

2πi

¿

|ζ´z0|“2r

fnpζq ´ fpζq

pζ ´ zq2
dζ.
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Let z0 P U and choose r ą 0 so small that B2rpz0q Ă U . Then the

Fig. 92: TODO

above formula holds true for all z P Brpz0q.

We have |fnpζq´fpζq| ă ε for all ζ with |ζ´z0| “ 2r and sufficiently
large n P N. We also have |ζ´z| ą r for |z´z0| ă r and |ζ´z0| “ 2r.

This yields

|f 1npzq ´ f
1pzq| ă

1

2π
2π ¨ 2r ¨

ε

r2
“

2ε

r
,

which implies locally uniform convergence of f 1. l

Theorem 13.0.2: Hurwitz

Let G Ă C be a domain, pfn : GÑ CqnPN a sequence of holomor-
phic functions converging locally uniform to f . Take a P C and
consider the a-points of fn. If all fn have at most m a-points
in G (counted with multiplicities), then either f has at most m
a-points in G or f |G ” a.

Proof. Without loss of generality let a “ 0.

Suppose that f has m ` 1 zeros in G and f ı 0. As f is holomorphic,
all of its zeros are of finite order. Thus all zeros are isolated (any zero
has a neighbourhood free of further zeros).

Fig. 93: TODO

Let z1, . . . , z` be geometrically distinct zeros of f , where ` ď m ` 1.
Choose ε ą 0 so small that Bεpzjq are disjoint.

Let K :“
Ť`
i“1 BBεpziq and set m :“ minzPK |fpzq| ą 0. Due to the

uniform convergence fn Ñ f on K (as K is compact), there exists a
N P N such that |fnpzq ´ fpzq| ă m for all z P K, n ą N . As |fpzq| ě m

for all z P K by definition of m, we have by Rouché’s theorem that
fnpzq has in

Ť`
i“1Bεpziq as many zeros as fpzq, i.e. m` 1 – to many.l

Remark 13.0.3 It may happen that f ” const, i.e. consider fnpzq :“ z
n ,

which converges to zero.
Remark 13.0.4 The claim is not true in the real analysis. Consider
fnpxq :“ x2 ` 1

2 , which has no zeros, but fpxq “ limnÑ8 fnpxq “ x2 has
one zero.

Fig. 94: TODO

24.06.2020

Lemma 13.0.5 (Pointwise ùñ locally uniform)
Let pfn : GÑ CqnPN be a locally bounded sequence of holomorphic func-
tions on a domain G. If fn

nÑ8
ÝÝÝÑ f converges pointwise on a dense

subset J Ă G, then fn converges locally uniform.

Proof. 1 We want to show the second condition: that for all z0 P G

there exists an r ą 0 (and n0??) such that

|fnpzq ´ fmpzq| ă ε for all m,n ě n0 and @z P Brpz0q.

For this take a nearby point a P J and write

|fnpzq´fmpzq|
4‰
ď |fnpaq´fmpaq|`|fnpzq´fnpaq|`|fmpaq´fmpzq|.
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We will show that for holomorphic functions, local boundedness of
a sequence implies equicontinuity, i.e. good expressions (bounds)
for the last two terms, independent of n,m.

2 For a given z0, take r ą 0 so small that B2rpz0q Ă G. By the local
boundedness, there is a M ą 0 such that |fnpzq| ďM for all n P N
and for all z P B2rpz0q.

For all z, z1 P Brpz0q and for all n P N we have (by the Cauchy
formula)

fnpzq ´ fnpz
1q “

1

2πi

¿

|ζ´z0|“2r

fnpζq

ζ ´ z
´
fnpζq

ζ ´ z1
dζ

“
z ´ z1

2πi

¿

|ζ´z0|“2r

fnpζq

pζ ´ zqpζ ´ z1q
dζ

and thus (as |ζ ´ z|, |ζ ´ z1| ą r)

|fnpzq ´ fnpz
1q| ď

|z ´ z1|

2π
¨M ¨

2π ¨ 2r

r2
“

2M

r
¨ |z ´ z1|,

so pfnqnPN is locally equi-Lipschitz-continuous.

3 Let ε ą 0. In a compact neighbourhood Brpz0q we can choose a
finite εr

6M -net of points from J , i.e. a finite set a1, . . . , a` of points
from J such that any z P Brpz0q lies at a distance of at most εr

6M

from this set.

Choose n0 P N such that |fnpajq ´ fmpajq| ă
ε
3 for all n,m ě n0

and for all j P t1, . . . , `u. Then for any z P Brpz0q an for any
n,m ď n0 we have

|f ´ npzq ´ fmpzq|
4‰
ď |fnpajq ´ fmpajq| ` |fnpzq ´ fnpajq|

` |fmpajq ´ fmpzq|

ď
ε

3
`

2M

r
|z ´ aj | `

2M

r
|z ´ aj |

ď
ε

3
`

4M

r

εr

6M
“ ε. l

The Montel theorem is a functional analogon of the Bolzano-Weierstrass
theorem (bounded sequence in C contains convergent subsequence). Noth-
ing like this is true in the real analysis.

Theorem 13.0.3: Montel’s theorem

A locally bounded sequence of holomorphic functions pfn : GÑ

CqnPN on a domain G Ă C possesses a locally uniform convergent
subsequence.

Proof. Choose a countable dense set panqnPN in G.

1 A numerical sequence pfnpa1qqnPN Ă C is bounded due to the local
boundedness of pfnqnPN. By the Bolzano-Weierstrass theorem,
this sequence has a convergent subsequence pfnj pa1qqjPN. Take the
corresponding subsequence of functions pfnj qjPN :“ pf1,jqjPN.
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2 A numerical sequence pf1,jpa2qqjPN Ă C is bounded as before. Thus
it contains a convergent subsequence pf1,jkpa2qqkPN. Take the cor-
responding sequence of functions pf1,jkqkPN “: pf2,kqkPN.

3 Continuing this process yields a sequence of sequences pfk,nqnPN
converging at z “ ak.

4 The diagonal sequence pfn,nqnPN converges (pointwise) at all points
pakqkPN. Indeed, by construction, all entries fn,n with n ě k belong
to the subsequence of fn,k, which converges at ak.

Since J Ă G is dense, lemma 13.0.5 implies that pfn,nqnPN converges
locally uniform on G. l

Corollary 13.0.6
Let pfn : GÑ CqnPN be a locally bounded sequence of holomorphic func-
tions on a domain G Ă C. If pfnqnPN converges pointwise on a subset
J Ă G having an accumulation point in G, then it converges locally
uniform in G.

Note that the claims of the corollary is much stronger (not subsequence,
but whole sequence converges) than the Montel theorem, but this is
only possible as we have a strong assumption (pointwise convergence on
J).

Proof. By the Montel theorem, there is a subsequence which converges
(locally uniform) to a (by the Weierstrass theorem) holomorphic
function f : GÑ C. We want to to show that this is true for the whole
sequence pfnqnPN, not just for a subsequence.

Suppose that for some z0 P G, the sequence of numbers pfnpz0qqnPN does
not converge to fpz0q. Then this sequence has a subsequence pfnkpz0qqkPN

such that limkÑ8 fnkpz0q “ w ‰ fpz0q.

By the Montel theorem, this subsequence possesses subsubsequence
pfnkj qjPN locally uniform converging to a holomorphic (Weierstrass)
function g : GÑ C. By construction, gpz0q “ w ‰ fpz0q. But g coincides
with f on J , which is a contradiction to the Uniqueness theorem. l
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14 Expansion of meromorphic functions
into elementary fractions.

14.1 Additive decomposition of meromor-
phic functions
An algebraic result: Any rational function f can be represented as

fpzq “
ÿ̀

k“1

hkpzq ` ppzq,

where the principal parts principal partshk have on pole each and p is a polynomial
(has a pole at 8).

This can be extended to meromorphic functions with finitely many poles:
Let hjpzq be the principal parts of Laurent series expansion of f at zj ,
we see that

fpzq ´
ÿ̀

k“1

hkpzq

has only removable singularities at pzkq`k“1. After a suitable expansion
to pzkq`k“1, this function has no singularities and is holomorphic in C, i.e.
entire:

fpzq “
ÿ̀

k“1

hkpzq ` ppzq,

where p is an entire function.

A general meromorphic function has infinitely many poles. The sum of
the principal parts at all part must not converge.
Example 14.1.1 (The cotangent)
Consider fpzq :“ π cotpπzq “ π cospπzq

sinpπzq , which is an automorphic function
on C with simple poles at n P Z with the residues

res
z“n

π cospπzq

sinpπzq
“

π cospπzq
d
dz sinpπzq

ˇ

ˇ

ˇ

ˇ

z“n

“ 1,

so that the principal parts are hnpzq :“ 1
z´n for n P Z. However, the

series
ř

kPZ
1

z´k
:“ limN1,N2Ñ8

řN2

k“´N1

1
z´k is divergent in the sense

that the limit does not exists.

Interestingly, the principal value

lim
NÑ8

N
ÿ

n“´N

1

z ´ n
“ lim
NÑ8

1

z
`

N
ÿ

k“1

1

z ´ n
`

1

z ` n

“ lim
NÑ8

1

z
`

N
ÿ

k“1

2z

z2 ´ n2
“

1

z
`

8
ÿ

k“1

2z

z2 ´ n2

converges. (Whole story in the book "Elliptic functions according to
Eisenstein and Kronecker" by A. Weil)

In order to improve convergence of
ř

kPZ
1

z´k in a general situation we
observe that, in a neighbourhood

1

z ´ n
“ ´

1

n´ z
“ ´

1

n
`

1´ z
n

˘ “ ´
1

n

ˆ

1`
z

n
`
z2

n
` . . .

˙
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14.1 Additive decomposition of meromorphic functions

and thus
1

z ´ n
`

1

n
“ ´

z

n2
`Opn´3q,

and the series of those expressions converge. To show the convergence
we observe

ˇ

ˇ

ˇ

ˇ

1

z ´ n
`

1

n

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

z

npz ´ nq

ˇ

ˇ

ˇ

ˇ

“
|z|

|n|2
ˇ

ˇ1´ z
n

ˇ

ˇ

ď
2r

|n|2

as soon as |z| ď r and |n| ě 2r. Thus

hpzq :“
1

z
`

ÿ

n‰0

ˆ

1

z ´ n
`

1

n

˙

is absolutely convergent and locally uniform convergent in C zZ. So by
introducing the corrections 1

n , which are independent of z, we modified
a diverging series into a convergent series, so the resulting function is a
meromorphic function with simple poles at all integers with residue one.
Is this the function we started with?

No, but by construction, it follows that π cotpπzq ´ hpzq has only remov-
able singularities at n P Z, so an entire function (after the singularities
have been removed):

π cotpπzq “
1

z
`

ÿ

n‰0

ˆ

1

z ´ n
`

1

n

˙

` ppzq,

where p is an entire function. ˛

Theorem 14.1.1: Mittag-Löffler

Let panqnPN Ă C be a sequence with ak ‰ aj for k ‰ j and without
accumulation points (and thus |an| Ñ 8). For each an, let there
be given a function

hnpzq :“
dn
ÿ

k“1

c
pnq
k

pz ´ anqk

with dn ě 1. Then there exists a meromorphic function f : CÑ C
with poles exactly at an and with principal parts there hnpzq. Such
f is defined up to addition of an entire function.

Proof. For r ą 0, find n0 P N such that |an| ą 2r for n ě n0. For
n ě n0, expand hn in a power series around z “ 0 (it has convergence
radius an). We can take a Taylor polynomial Tn (a suitable partial
sum of the power series) such that

|hnpzq ´ Tnpzq| ď
1

2n

for all z P C with |z| ă |an|
2 . This ensure that the series

ř8

n“n0
hnpzq ´

Tnpzq converges absolutely and uniformly on Brp0q.

Thus the series
8
ÿ

k“1

hkpzq ´ Tkpzq

converges locally uniform in C zpanqnPN. The limit function is mero-
morphic with prescribed poles and principle parts at all poles, as the
corrections Tn are polynomials. l

103



14.1 Additive decomposition of meromorphic functions

Remark 14.1.2 The orders of the polynomials Tnpzq are not fixed,
varying them leads to alternative meromorphic functions with the same
poles and principal parts, compare to

h̃pzq “
1

z
`

ÿ

n‰0

ˆ

1

z ´ n
`

1

n
`

z

n2

˙

“ hpzq `
ÿ

n‰0

z

n2
“ hpzq `

π2

3
z.

30.06.2020Let us determine the entire function

gpzq :“ π cotpπzq ´

¨

˝

1

z
`

ÿ

nPZ zt0u

ˆ

1

z ´ n
`

1

n

˙

˛

‚

The series can be differentiated term by term, so that

g1pzq “
π
`

´π sin2
pπzq ´ π cos2pπzq

˘

sin2
pπzq

´

¨

˝´
1

z2
`

ÿ

nPZ zt0u
´

1

pz ´ nq2

˛

‚

“ ´
π2

sin2
pπzq

`
ÿ

nPZ

1

pz ´ nq2
,

where
ř

nPZ
1

pz´nq2 converges uniformly in C zZ.

The function g1 is a 1-period function, so it is sufficient to consider it
in a vertical strip of length one, in this case tz P C : 0 ď <pzq ď 1u, as
pictured on the right

Fig. 95: TODO

We have

| sinpπpx` iyqq|2 “
1

4

ˇ

ˇeiπxe´πy ´ e´iπxeπy
ˇ

ˇ

2

“
1

4

ˇ

ˇcospπxq
`

e´πy ´ eπy
˘

` i sinpπxq
`

e´πy ` eπy
˘
ˇ

ˇ

2

“
1

4
cos2pπxq

`

e´πy ´ eπy
˘2

`
1

4
sin2

pπxq
`

e´πy ` eπy
˘2
q

“
1

4

`

e´2πy ` e2πy ´ 2 cos2pπxq ` 2 sin2
pπxq

˘

“
1

4

`

e´2πy ` e2πy ´ 2 cosp2πxq
˘

ě
1

4

`

e´2πy ` e2πy ´ 2
˘

“ sinh2
pπyq.

The first term in g1 is bounded for x P r0, 1s if |y| ě r, by π2

sinh2pπrq
.

Similarly for such x and y we have

|px`´y ´ nq2| “ px´ nq2 ` y2 ě

$

&

%

n2 ` r2, if n ď 0,

pn´ 1q2 ` r2, if n ě 1,

and thus
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nPN

1

pz ´ nq2

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

n“0

1

n2 ` r2
`

8
ÿ

n“1

1

pn´ 1q2 ` r2
ă 8.

There follows that |g1pzq| is bounded for x P r0, 1s and |y| ě r. But g1 is an
entire function, so it also bounded on the compact set x P r0, 1s, |y| ď r,
so g1 is bounded in the strip and thus everywhere. By Liouville’s
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14.1 Additive decomposition of meromorphic functions

theorem, g1 is constant. Sending r Ñ8 in the previous estimate we find
g1pzq “ 0. This yields

π2

sin2
pπzq

“
ÿ

nPZ

1

pz ´ nq2
,

from which one can for example find
ř8

k“1
1
k2 “

π2

6 .

It follows that

π cotpπzq “
1

z
`

ÿ

n‰0

ˆ

1

z ´ n
`

1

n

˙

` const.

By absolute convergence, we can reorder the sum to obtain

ÿ

n‰0

ˆ

1

z ´ n
`

1

n

˙

“

8
ÿ

n“1

ˆ

1

z ´ n
`

1

n
`

1

z ` n
´

1

n

˙

“

8
ÿ

n“1

2z

z2 ´ n2
.

As the left hand side is an odd function, the constant has to be zero.

24:21
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