Complex differentiability, Holomorphy, Entire

Definition, Proposition \& Theorem w/o proofs

Harmonic Functions

The Riemann sphere

3 points + their images determine Möb uniquely

Real and complex differentiability

Conformal Maps

Complex Analysis I

Definition, Remark \& Theorem w/o proof

Möbius transformation \& group

Complex Analysis I

Definition \& Theorem

MÖBIUs transformations preserving the unit ball / upper half-plane

A function $f: U \rightarrow \mathbb{C}$ is complex differentiable in $z_{0} \in \mathbb{C}$ if it is differentiable in the real sense and one (and hence both) of the following two conditions hold:

- The derivative $\mathrm{d}_{z_{0}} f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is \mathbb{C}-linear as a map on \mathbb{C}.
- The Cauchy-Riemann differential equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ hold in z_{0}.
In this case we have $f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(z_{0}\right)+i \frac{\partial v}{\partial x}\left(z_{0}\right)$.

Holomorphic functions with nonvanishing derivative are conformal, that is, angle-preserving.
For an invertible \mathbb{R}-linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ TFAE

1. F preserves angles.
2. F preserves orthogonal angles: if z and w are orthogonal, then $F(z)$ and $F(w)$ are also orthogonal.
3. F is \mathbb{C}-linear (that is, $F(i z)=i F(z)$ for all $z \in \mathbb{C}$) or F is \mathbb{C}-antilinear (that is, $F(i z)=-i F(z)$).

A real differentiable map on a domain is holomorphic if its derivative in the real sense is everywhere angle and orientation preserving.

A Möbius transformation is a function $f(z)=\frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbb{C}$ are such that $a d-b c \neq 0$.
We can (but do not need to) require that $a d-b c=1$. Then the Möbius transformation determines the coefficients up to a global sign change, i.e. a factor of ± 1.
Our way out of this is to consider the Möbius transformations as functions from $\hat{\mathbb{C}}$ to $\widehat{\mathbb{C}}$ instead of from \mathbb{C} to \mathbb{C} by defining: (if $c \neq 0) f\left(-\frac{d}{c}\right):=\infty$ and $f(\infty)=\frac{a}{c}$ and $f(\infty)=\infty$ if $c=0$. The Möbius transformations form a group of bijective functions from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$ under composition.

The cross-ratio of four points $z_{1}, z_{2}, z_{3}, z_{4} \in \hat{\mathbb{C}}$ is $\operatorname{cr}\left(z_{1}, z_{2}, z_{3}, z_{4}\right):=\frac{z_{1}-z_{2}}{z_{2}-z_{3}} \frac{z_{3}-z_{4}}{z_{4}-z_{1}}$. If one of the points is ∞, this is supposed to be evaluated by cancelling infinities.
The cross-ratio of four points $z_{1}, z_{2}, z_{3}, z_{4} \in \hat{\mathbb{C}}$ is real if and only if the four points lie on a Möbius circle.
For $f \in$ Möb and $z_{1}, z_{2}, z_{3}, z_{4} \in \hat{\mathbb{C}}$ we have $\operatorname{cr}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=$ $\operatorname{cr}\left(f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right)$. Conversely, MöBIUS are the only transformation that preserve the cross ratio: if $\operatorname{cr}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\operatorname{cr}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$, there there exists a $f \in$ Möb with $f\left(z_{j}\right)=w_{j}$ for $j \in\{1, \ldots, 4\}$.

Let $U \subset \mathbb{C}$ be any subset, $f: U \rightarrow \mathbb{C}$ be continuous. If $\gamma:\left[t_{0}, t_{1}\right] \rightarrow U$ is only piecewise continuously differentiable, i.e. if there is a subdivision $t_{0}=\tau_{0}<\tau_{1}<\ldots<$ $\tau_{n}=t_{1}$ such that $\gamma \in \mathcal{C}\left(\left[t_{0}, t_{1}\right]\right)$ is continuously differentiable on $\left[\tau_{j}, \tau_{j+1}\right]$ for $j \in\{0, \ldots, n-1\}$, then $\int_{\gamma} f(z) \mathrm{d} z:=$ $\sum_{j=0}^{n-1} \int_{\gamma\left[\tau_{\tau_{j}}, \tau_{j+1}\right]} f(z) \mathrm{d} z$. If $\gamma:\left[t_{0}, t_{1}\right] \rightarrow U$ be a continuously differentiable curve, then the (contour) integral of f along γ is $\int_{\gamma} f(z) \mathrm{d} z:=\int_{t_{0}}^{t_{1}} f(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t$.

Let $U \subset \mathbb{C}$ be an open subset and $z_{0} \in U$. A function $f: U \rightarrow$ \mathbb{C} is (complex) differentiable on U if the limit

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=: f^{\prime}\left(z_{0}\right) \in \mathbb{C}
$$

exists. In that case, $f^{\prime}\left(z_{0}\right)$ is the derivative of f at z_{0}. If f is differentiable for all $z_{0} \in U$, then it is holomorphic or (complex) analytic. A holomorphic function on \mathbb{C} is an entire function.

A function f defined on an open subset $U \subset \mathbb{C}$ that satisfies the Laplace equation $\Delta f=0$ is a harmonic function.

On a simply connected domain $U \subset \mathbb{C}$, every harmonic function is the real part of a holomorphic function.

Let $f: U \rightarrow \mathbb{C}$ be holomorphic and $h: f(U) \rightarrow \mathbb{R}$ harmonic. Then $h \circ f$ is harmonic.

The Riemann sphere (or: extended complex plane)

$$
\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}
$$

is the complex plane \mathbb{C} with the extra point ∞ added.
The point ∞ corresponds to the north pole of \mathbb{S}^{2} under stereographic projection. The stereographic projection is a bijective map from \mathbb{S}^{2} to $\hat{\mathbb{C}}$. Since \mathbb{S}^{2} has a topology induced by the ambient \mathbb{R}^{3}, the stereographic projection induces a topology on $\hat{\mathbb{C}}$.

If $z_{1}, z_{2}, z_{3} \in \hat{\mathbb{C}}$ are three points and $w_{1}, w_{2}, w_{3} \in \hat{\mathbb{C}}$ are three points, then there is a unique Möbius transformation f satisfying $f\left(z_{i}\right)=w_{i}$ for $i \in\{1,2,3\}$.
Existence. Let g and h be the MÖBIUS transformations sending z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} to 0,1 and ∞ respectively. Then $f:=h^{-1} \circ g$ satisfies $f\left(z_{i}\right)=w_{i}$ for $i \in\{1,2,3\}$.
Uniqueness. 1. Suppose $f \in \operatorname{Möb}$ and $f\left(z_{i}\right)=z_{i}$ for $i \in\{1,2,3\}$. Then $f=$ id. Indeed let $g \in$ Möb be the map with $g\left(z_{1}\right)=0, g\left(z_{2}\right)=1$ and $g\left(z_{3}\right)=\infty$. Then $h:=g \circ f \circ g^{-1} \in$ Möb satisfies $h(0)=0, h(1)=1$, $h(\infty)=\infty$. By previous Lemma, $h=\mathrm{id}$ and thus $f=g^{-1} \circ h \circ g=\mathrm{id}$.
2. Suppose f_{1} and f_{2} are MöbiUS transformations with $f_{j}\left(z_{i}\right)=w_{i}, i \in$ $\{1,2,3\}, j \in\{1,2\}$. Then $f_{2}^{-1} \circ f_{1} \in$ Möb fixed z_{1}, z_{2}, z_{3}, so by the previous step, $f_{2}^{-1} \circ f_{1}$, hence $f_{2}=f_{1}$

The Möbius transformations that map the unit disk

$$
D:=\{z \in \mathbb{C}:|z|<1\}
$$

onto itself are precisely the MÖBIUs transformations of the form

$$
f(z)=e^{i \varphi} \frac{z-z_{0}}{1-\overline{z_{0}} z},
$$

where $z_{0} \in D$ and $\varphi \in \mathbb{R} / 2 \pi \mathbb{Z}$.
The Möbius transformations $f(z)=\frac{a z+b}{c z+d}$ with $f(H)=H$ are characterised by $a, b, c, d \in \mathbb{R}$ and $a d-b c>0$.

Cauchy's Integral Theorem of a Rectangle

Cauchy's theorem for triangles and disks

Definition, Theorem w/ proof

Cauchy's integral theorem for \mathcal{C}^{1}-homotopic curves

Corollary w/ proof

CaUChY's integral theorem for annuli

Complex Analysis I

Proof

CaUCHY's integral formula for disks

CaUCHY's integral theorem for \mathcal{C}^{1} images of rectangles

Cauchy's Integral Theorem of a Rectangle

Complex Analysis I

Definition, Theorem w/ proof

Cauchy's Theorem for freely \mathcal{C}^{1}-homotopic curves

Complex Analysis I

Theorem w/o Proof

Cauchy's integral formula for disks

Complex Analysis I

Corollary w/ Proof

Mean value property of holomorphic
functions

Let f be a holomorphic function on $U \subset \mathbb{C}$, let $Q \subset \mathbb{C}$ be a closed rectangular region, let γ be a \mathcal{C}^{1} parametrisation of its boundary and let $\Phi: W \rightarrow \mathbb{C}$ be a continuously differentiable map on some domain W containing Q with $\Phi(Q) \subset U$. Then $\int_{\Phi \circ \gamma} f(z) \mathrm{d} z=0$.
We construct a sequence of rectangles $Q \supset Q_{1} \supset Q_{2} \supset \ldots$ as before with $\left|\int_{\Phi \circ \gamma} f(z) \mathrm{d} z\right| \leqslant 4^{k}\left|\int_{\Phi \circ \gamma_{k}} f(z) \mathrm{d} z\right|$ with $\gamma_{k}:=\partial Q_{k}$ and $\gamma:=\partial Q$. But now we need to estimate $\operatorname{diam}\left(\Phi\left(Q_{k}\right)\right)$ and $\operatorname{len}\left(\Phi \circ \gamma_{k}\right)$. To this end, we observe that since Φ is a \mathcal{C}^{1} function, $\mathrm{d} \Phi$ is continuous on the compact set Q, so there exists a $C>0$ s.t. $\left\|\mathrm{d} \Phi_{z}\right\| \leqslant C$ for all $z \in Q$. Hence $\operatorname{diam}\left(\Phi\left(Q_{k}\right)\right) \leqslant$ $C \operatorname{diam}\left(Q_{k}\right)=C 2^{-k} \operatorname{diam}(Q)$ and length $\left(\Phi \circ \gamma_{k}\right) \leqslant C \operatorname{len}\left(\gamma_{k}\right)=C 2^{-k}$
Let $\varepsilon>0$ and let z_{0} be the image of the point contained in $\bigcap_{k \in \mathbb{N}} Q_{k} \in U$ under Φ. Choose $\delta>0$ so small that $\left|R_{z_{0}}(z)\right|<\varepsilon\left|z-z_{0}\right|$ holds for all z with $\left|z-z_{0}\right|<$ δ but now choose $k \in \mathbb{N}$ large enough that $C 2^{-k} \operatorname{diam}(Q) \leqslant \delta$ holds, we have $\left|\int_{\Phi \circ \gamma} f(z) \mathrm{d} z\right| \leqslant 4^{k}\left|\int_{\Phi \circ \gamma_{k}} f(z) \mathrm{d} z\right| \leqslant 4^{k} 2^{-k} \cdot 2^{-k} C^{2} \operatorname{len}(\gamma) \operatorname{diam}(Q) \cdot \varepsilon$.
(1) We show: for $\varepsilon>0,\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leqslant \varepsilon$. Since f is holomorphic on U, for any $z \in U$ we have $f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \cdot\left(z-z_{0}\right)+R_{z_{0}}(z)$, w/ $\lim _{z \rightarrow z_{0}} \frac{R_{z_{0}}(z)}{\left|z-z_{0}\right|}=0$ ($)$. Since $z \mapsto f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \cdot\left(z-z_{0}\right)$ is entire and thus has a global antiderivative, its integral along the closed curve γ is zero by the FTOC. Therefore $\int_{\gamma} f(z) \mathrm{d} z=\int_{\gamma} R_{z_{0}}(z) \mathrm{d} z$.
(2) Let $\varepsilon>0$. Divide Q into four equal subrectangles Q_{1}, \ldots, Q_{4} and let Q_{1} be that subrectangle for which the integral along the boundary, γ_{1}, is largest in absolute value. $\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leqslant 4\left|\int_{\gamma(1)} f(z) \mathrm{d} z\right|$ Now subdivide the rectangle Q_{1} into four equal subrectangles and let Q_{2} be the rectangle for which the integral along the boundary γ_{2} is the largest. Continuing this process we obtain a infinite sequence of rectangles Q_{k} and boundary curves γ_{k} s.t. $\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leqslant 4^{k}\left|\int_{\gamma_{k}} f(z) \mathrm{d} z\right|=4^{k}\left|\int_{\gamma_{k}} R_{z_{0}}(z) \mathrm{d} z\right| \cdot \cap_{k=1}^{\infty} Q_{k}=\left\{z_{0}\right\}$. (3) $\left|\int_{\gamma_{k}} R_{z_{0}}(z) \mathrm{d} z\right| \leqslant \operatorname{len}\left(\gamma_{k}\right) \cdot \sup _{z \in Q_{k}}\left|R_{z_{0}}(z)\right| \cdot \operatorname{len}\left(\gamma_{k}\right)=2^{-k} \operatorname{len}(\gamma)$. By $(\star), \exists \delta>$ 0 s.t. $\left|R_{z_{0}}(z)\right|<\tilde{\varepsilon}\left|z-z_{0}\right|$ for all z with $\left|z-z_{0}\right|<\delta$, where $\tilde{\varepsilon}:=\frac{\varepsilon}{\operatorname{len}(\gamma) \operatorname{diam}(Q)}$. Choose $k \in \mathbb{N}$ so large that $\operatorname{diam}\left(Q_{k}\right)=2^{-k} \operatorname{diam}(Q)<\delta$, then $\sup _{z \in Q_{k}}\left|R_{z_{0}}(z)\right| \leqslant$ $\varepsilon \sup _{z \in Q_{k}}\left|z-z_{0}\right| \leqslant \varepsilon \operatorname{diam}\left(Q_{k}\right)=\varepsilon \cdot 2^{-k} \operatorname{diam}(Q)$.

```
|\gamma}f(z)\textrm{d}z|\leqslant\mp@subsup{4}{}{k}\mp@subsup{2}{}{k}\cdot\operatorname{len}(\gamma)\cdot\tilde{\varepsilon}\cdot\mp@subsup{2}{}{k}k\cdot\operatorname{diam}(Q)=\operatorname{len}(\gamma)\cdot\tilde{\varepsilon}\cdot\operatorname{diam}(Q)=
```

Two closed curves $\alpha, \beta:[0,1] \rightarrow \mathbb{C}$ are freely \mathcal{C}^{1}-homotopic in $U \subset \mathbb{C}(U$ only needs to be a subset $)$ if there is a \mathcal{C}^{1} function $H:[0,1]^{2} \rightarrow U$ such that $H(0, \cdot)=\alpha, H(1, \cdot)=\beta$ and $H(\cdot, 0)=H(\cdot, 1)$.
If $\alpha, \beta:[0,1] \rightarrow \mathbb{C}$ are freely \mathcal{C}^{1}-homotopic curves in U and f is holomorphic on U, then $\int_{\alpha} f(z) \mathrm{d} z=\int_{\beta} f(z) \mathrm{d} z$.

We apply Cauchy's Theorem for \mathcal{C}^{1}-images of rectangles. The image of the boundary of $[0,1]^{2}$ under H is the curve α traced in the opposite direction, a segment connecting it to β, the curve β and the segment traced in the other direction.

Let f be holomorphic in the domain $U \subset \mathbb{C}$, which contains the closed disk

$$
\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leqslant r\right\}
$$

for $z_{0} \in \mathbb{C}$. Then for every point in the interior of this disk, i.e. every $a \in \mathbb{C}$ with $\left|a-z_{0}\right|<r$,

$$
f(a)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{z-a} \mathrm{~d} z .
$$

If f is holomorphic on a domain containing the closed disk with centre z_{0} and radius r, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) \mathrm{d} t
$$

With the parametrisation $z=z_{0}+r e^{i t}$ for $t \in[0,2 \pi]$ and using CAUCHY's Formula for $a=z_{0}$ we obtain $f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{z-z_{0}=r} \frac{f(z)}{z-z_{0}} \mathrm{~d} z=$ $\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i t}\right)}{z 0+r e^{i t}-20_{0}} \cdot h \cdot x e^{i t} \mathrm{~d} z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right)$.

Let $Q \subset \mathbb{C}$ be a closed rectangular region with sides parallel to the real and imaginary axes and let γ be a piecewise \mathcal{C}^{1} parametrisation of the boundary of Q with orientation like here:

If f is holomorphic on $U \supset Q$, then $\int_{\gamma} f(z) \mathrm{d} z=0$.

If f is holomorphic on U and γ is the boundary curve of a triangular region that is contained in U, then $\int_{\gamma} f(z) \mathrm{d} z=0$.
Apply CAUCHY's theorem for \mathcal{C}^{1} images of rectangles to
$\Phi:[0,1]^{2} \rightarrow U, \quad(s, t) \mapsto(1-t)((1-s) A+s B)+t((1-s) A+s C)$.
If f is holomorphic on U and γ is the boundary circle of a closed disk that is contained in U, then $\int_{\gamma} f(z) \mathrm{d} z=0$.
Let $z_{0} \in U$ be the centre and $r>0$ the radius of the closed disk. Apply CAUCHY's theorem for \mathcal{C}^{1} images of rectangles to

$$
\Phi:[0,2 \pi] \times[0, r] \rightarrow U, \quad(s, t) \mapsto z_{0}+t e^{i s}
$$

A single point does not contribute to the integral and the two paths cancel each other out.

Two curves $\alpha, \beta:[0,1] \rightarrow \mathbb{C}$ are \mathcal{C}^{1}-homotopic in $U \subset \mathbb{C}$ if \exists \mathcal{C}^{1}-function $H:[0,1] \rightarrow U$, called homotopy, such that

- $H(0, t)=\alpha(t), H(1, t)=\beta(t)$ for all $t \in[0,1]$,
- $H(s, 0)=\alpha(0)=\beta(0), H(s, 1)=\alpha(1)=\beta(1) \forall s \in[0,1]$,

If $\alpha, \beta:[0,1] \rightarrow \mathbb{C}$ are \mathcal{C}^{1}-homotopic curves in U and f is holomorphic on U, then $\int_{\alpha} f(z) \mathrm{d} z=\int_{\beta} f(z) \mathrm{d} z$.

Choosing $\Phi=H$, CAUCHY's theorem for \mathcal{C}^{1} images of rectangles implies $\int_{\alpha} f(z) \mathrm{d} z-\int_{\beta} f(z) \mathrm{d} z=0$.

If two nested (that is, one is contained in the other and they don't intersect) circles with centres z_{0} and z_{1} and radii r_{0} and r_{1} are contained in U together with the region between them, then for all holomorphic functions f on U we have

$$
\int_{\left|z-z_{0}\right|=r_{0}} f(z) \mathrm{d} z=\int_{\left|z-z_{1}\right|=r_{1}} f(z) \mathrm{d} z .
$$

A special case occurs if $z_{0}=z_{1}$, and then the concentric circles in U bound an annulus in U.
This is a special case of CAUCHY's Theorem for freely \mathcal{C}^{1}-homotopic curves.

Choose $\varepsilon>0$ so small that $B_{\varepsilon}(a) \subset B_{r}\left(z_{0}\right)$. By CAUCHY's Theorem for Annuli, $\int_{\left|z-z_{0}\right|=r} \frac{f(z)}{z-a} \mathrm{~d} z=\int_{|z-a|=\varepsilon} \frac{f(z)}{z-a} \mathrm{~d} z,(\star)$ because the integrand is nevertheless holomorphic on the annulus (not containing a) bounded by the circles $\left|z-z_{0}\right|=r$ and $|z-a|=\varepsilon$ as it is the quotient of two holomorphic functions. We have $\int_{|z-a|=\varepsilon} \frac{f(z)}{z-a} \mathrm{~d} z=$ $\int_{|z-a|=\varepsilon} \frac{f(a)+f(z)-f(a)}{z-a} \mathrm{~d} z$
$\begin{aligned} & =\underbrace{\int_{|z-a|=\varepsilon} \frac{f(a)}{z-a}}_{=: A} \mathrm{~d} z\end{aligned} \underbrace{\int_{|z-a|=\varepsilon} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z}_{=: B} . A=f(a) \int_{|z-a|=\varepsilon} \frac{1}{z-a} \mathrm{~d} z=$, It remains to show that $B=0$. Note that B does not depend on ε as long as $\varepsilon>0$ is small enough: one can immediately see this from CAUCHY's theorem for annuli with concentric circles because if we change ε then we get the same result. Hence it is enough to show that $\lim _{\varepsilon} \backslash 0 \int_{|z-a|=\varepsilon} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z=0$. We have $\int_{|z-a|=\varepsilon} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z=$ $\int_{0}^{2 \pi} \frac{f\left(a+\varepsilon e^{i t}\right)-f(a)}{d x+\varepsilon e^{i t}-a} i \varepsilon e^{i t} \mathrm{~d} t=i \int_{0}^{2 \pi} \underbrace{f\left(a+\varepsilon e^{i t}\right)-f(a)}_{=: h_{\varepsilon}(t)} \mathrm{d} t$. Since f is continuous at a, $\lim _{\varepsilon \searrow 0} h_{\varepsilon}(t)=0$ uniformly in $t \in[0,2 \pi]$, because continuous functions on compact sets are uniformly continuous. Hence $\lim _{\varepsilon} \searrow 0 \int_{0}^{2 \pi} h_{\varepsilon}(t) \mathrm{d} t=0$.

Complex Version of the Fundamental Theorem of Calculus

Liouville

Order of a zero of a holomorphic function

Identity Theorem for Holomorphic Functions

Holomorphic functions can be represented by power series

Let f be a holomorphic function on U. For $z_{0} \in U$ there exists a unique power series $f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ with positive convergence radius representing f in some neighbourhood of z_{0}. The coefficients c_{k} are determined by CaUCHY's coefficient formula $c_{k}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} \mathrm{~d} z$, where the only condition on r is to be small enough such that $\left\{z:\left|z-z_{0}\right| \leqslant r\right\} \subset U$.
The radius of convergence is not smaller than the radius of the largest open disk around z_{0} contained in U.
Since power series are differentiable and their derivatives are again power series, we get (Goursat): every holomorphic function is arbitrarily often complex differentiable, in particular it is \mathcal{C}^{∞} in the real sense.

Under the same conditions as in CaUCHY's Integral Formula for $f(a)$, we have

$$
f^{(k)}(a)=\frac{k!}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{(z-a)^{k+1}} \mathrm{~d} z .
$$

By the Power Series Expansion Theorem, $f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ in some open disk around z_{0} and we have two equations for the coefficients:

$$
c_{k}=\frac{f^{(k)}\left(z_{0}\right)}{k!}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} \mathrm{~d} z
$$

Let U be a domain and let $z_{0} \in U$ be a zero of order $k \in \mathbb{N} \cup$ $\{\infty\}$. Then either $(k=\infty$ and $f=0)$ or there is a holomorphic function $g: U \rightarrow \mathbb{C}$ such that $g\left(z_{0}\right) \neq 0$ and

$$
f(z)=\left(z-z_{0}\right)^{k} g(z)
$$

In particular, zeros of finite order are isolated ($x \in S$ is isolated in $S \subset \mathbb{C}$ if there exists a neighbourhood of x in \mathbb{C} that doesn't contain any other points of S.).

Let f be a holomorphic function on U, let $f\left(z_{0}\right)=0$ and $n:=\operatorname{ord}\left(f, z_{0}\right)<\infty$. Then there is an open neighbourhood U_{0} of z_{0} and an biholomorphic function h on U_{0} such that $h\left(z_{0}\right)=0$ and $\left.f\right|_{U_{0}}=h^{n}$.
In particular, the function f takes any non-zero value $w \in$ $f\left(U_{0}\right)$ exactly n times in U_{0}.

If f is holomorphic and nonconstant on a domain U, then $|f|$ does not attain a supremum on U.

[^0]Let f be holomorphic on a domain U which is star-shaped with respect to $z_{0} \in U$. Define

$$
F: U \rightarrow \mathbb{C}, \quad z \mapsto \int_{z_{0}}^{z} f(u) \mathrm{d} u
$$

where we write \int_{a}^{b} for the integral along the straight line segment from a to b parametrised by $\gamma(t)=a+t(b-a)$ for $t \in[0,1]$. Then F is an antiderivative of f, that is, F is holomorphic and $F^{\prime}=f$.

A bounded entire function (that is $|f(z)| \leqslant M$ for all $z \in \mathbb{C}$) is constant.

The function f is represented by a power series and we can choose 0 as its centre: for all $z \in \mathbb{C}$ we have

$$
f(z)=\sum_{k=0}^{\infty} c_{k} z^{k} .
$$

By Cauchy's estimate for the coefficients we have

$$
\left|c_{k}\right| \leqslant \frac{M}{r^{k}}
$$

for all $r>0$, so $c_{k}=0$ unless $k=0$.

The order or multiplicity of a zero $z_{0} \in U$ of f is $\operatorname{ord}\left(f, z_{0}\right):=$ $\min \left\{k \in \mathbb{N}: f^{(k)}\left(z_{0}\right) \neq 0\right\}$ or $\operatorname{ord}\left(f, z_{0}\right)=\infty$ if $f^{(k)}\left(z_{0}\right)=0$ for all $k \in \mathbb{N}$.

Let U be a domain and f_{1} and f_{2} be holomorphic on U. If the set $M:=\left\{z \in U: f_{1}(z)=f_{2}(z)\right\}$ has an accumulation point in U, then $f_{1}=f_{2}$.

The set M is the set of zeros of the holomorphic function $f_{1}-f_{2}$. If it has an accumulation point in U, that is if there is a sequence $\left(z_{j}\right)_{j \in \mathbb{N}} \subset M$ with limit in U, then that is a zero of infinite order as the set of finite order zeros is isolated. Hence $f_{1}-f_{2}=0$ by the Theorem of Isolated Singularitities.

If f is holomorphic and not constant on a domain U, then $f(U)$ is also a domain.

[^1]
Schwarz's Lemma

Schwarz's Lemma

Proof

Casorati-Weierstrass

Definition

Meromorphic / holomorphic except for ...

1. $\left|f^{\prime}(0)\right| \leqslant 1$,
2. $|f(z)| \leqslant|z|$.

If we have $\left|f^{\prime}(0)\right|=1$ or there is a point $z_{0} \in D$ where $\left|f\left(z_{0}\right)\right|=$ $\left|z_{0}\right|$, then f is a rotation, that is $f(z)=a z$ for some $a \in \mathbb{C}$ with $|a|=1$.

Let f be holomorphic on U. A point $z_{0} \in \mathbb{C} \backslash U$ is a isolated singularity of f if there is an open neighbourhood U_{0} of z_{0} such that $U_{0} \cap U=U_{0} \backslash\left\{z_{0}\right\}$, that is, there is an $\varepsilon>0$ such that

$$
\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<\varepsilon\right\} \subset U .
$$

An isolated singularity is "point-shaped holeïn the domain of definition.
An isolated singularity z_{0} of $f: U \rightarrow \mathbb{C}$ is removable if there is a holomorphic function \tilde{f} on $U \cup\left\{z_{0}\right\}$ (still open!) such that $f=\left.\tilde{f}\right|_{U}$.

Let z_{0} be an isolated singularity of a holomorphic function f. There are three possibilities:

1. f is bounded in a neighbourhood of z_{0} and z_{0} is a removable singularity.
2. $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$. Then z_{0} is a pole of f and there exist a number $m \in \mathbb{N}$ such that $z \mapsto\left(z-z_{0}\right)^{m} f(z)$ has a removable singularity at z_{0}. The smallest such exponent m is the order of the pole.
3. If none of the above holds, z_{0} is an essential singularity.

If z_{0} is an essential singularity of a holomorphic function f on U, then the set of values that f takes on any open neighbourhood of z_{0} is dense in \mathbb{C}.
Great PiCARD: In any neighbourhood of an essential singularity, a holomorphic function takes all values in \mathbb{C} or all values in \mathbb{C} except for one.
Whereas for poles, where the function values tend to infinity when approaching a singularity, near an essential singularity, the set of values of the function is dense, that is, no matter how small a neighbourhood of the singularity we choose, we can come arbitrarily close to any complex number. In a sense, any small neighbourhood of the essential singularity gets splatted over the whole complex plane.

Let f be holomorphic on U and let z_{0} be an isolated singularity of f or a just $z_{0} \in U$. The order of f at z_{0} is $\operatorname{ord}\left(f, z_{0}\right):=$ $\sup \left\{m \in \mathbb{Z}: z \mapsto \frac{f(z)}{\left(z-z_{0}\right)^{m}}\right.$ has rem. sing. at $\left.z_{0}\right\} \in \mathbb{Z} \cup\{ \pm \infty\}$ with the convention $\sup (\mathbb{Z})=\infty$ and $\sup (\varnothing)=-\infty$.

[^2]Types of isolated singularities at ∞

CAUCHY formula for LAURENT coefficients

Function element and Direct analytic continuation

Analytic continuation of local inverse of a holomorphic function

From direct continuation to continuation along a curve

Analytic continuation along curves
Laurent series

Theorem

Cauchy's Integral Formula for Annuli

Definitions \& Remark

Analytic continuation along a sequence of domains, Global analytic function, branch

Complex Analysis I

Complex Analysis I

Lemma w/o Proof

Analytic continuation of the derivative

A Laurent series with centre z_{0} is a series of the form $\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$. More precisely, a Laurent series is composed of two ordinary series: the nonsingular part $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ and the principal part $\sum_{k=1}^{\infty} a_{-k}\left(z-z_{0}\right)^{-k}=$ $\sum_{k=-\infty}^{-1} a_{k}\left(z-z_{0}\right)^{k}$. If both series converge, then $\sum_{k=-\infty}^{\infty} a_{k}(z-$ $\left.z_{0}\right)^{k}$ also denotes the sum of the limits.

One can differentiate and integrate Laurent series term by term.

Let $z_{0} \in \mathbb{C}$ and let f be holomorphic on the annulus $A:=\{z \in$ $\left.\mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$ for $0 \leqslant r<R \leqslant \infty$. If $z \in \mathbb{C}$ is such that $r<\rho_{1}<\left|z-z_{0}\right|<\rho_{2}<R$, then

$$
f(z)=\frac{1}{2 \pi i}\left(\int_{\left|z-z_{0}\right|=\rho_{2}} \frac{f(u)}{u-z} \mathrm{~d} u-\int_{\left|z-z_{0}\right|=\rho_{1}} \frac{f(u)}{u-z} \mathrm{~d} u\right)
$$

Function elements (f, U) and (\tilde{f}, U) are analytic continuations of each other, if there exists a finite sequence $(f, U)=\left(f_{1}, U_{1}\right),\left(f_{2}, U_{2}\right), \ldots$, $\left(f_{n}, U_{n}\right)=\left(\tilde{f}, \tilde{U}_{n}\right)$ of function elements such that $\left(f_{j}, U_{j}\right)$ and $\left(f_{j}, U_{j+1}\right)$ are direct analytic continuations of each other for all $j \in\{1, \ldots, n-1\}$. In this case we say that (\tilde{f}, \tilde{U}) is an analytic continuation of (f, U) along the sequence of domains U_{1}, \ldots, U_{n}.
This defines an equivalence relation on the set of function elements, where $(f, U) \sim(\tilde{f}, \tilde{U})$ if and only if (f, U) and (\tilde{f}, \tilde{U}) are analytic continuations of each other.
An equivalence class of \sim as described above is a global analytic function. A function element of an equivalence class is a branch of the global analytic function.

Let $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{C}$ be a continuous curve. A function element (\tilde{f}, \tilde{U}) is an analytic continuation of a function element (f, U) along γ if there is a family of function elements $\left(\left(f_{t}, U_{t}\right)\right)_{t \in\left[t_{0}, t_{1}\right]}$ such that

1. $\left(f_{t_{0}}, U_{t_{0}}\right)=(f, U)$ and $\left(f_{t_{1}}, U_{t_{1}}\right)=(\tilde{f}, \tilde{U})$,
2. $\gamma(t) \in U_{t}$ for all $t \in\left[t_{0}, t_{1}\right]$ (In particular, $\gamma\left(t_{0}\right) \in U$ and $\gamma\left(t_{1}\right) \in \tilde{U}$.) and there exists a $\varepsilon>0$ such that for each $t^{\prime} \in\left[t_{0}, t_{1}\right]$ with $\left|t-t^{\prime}\right|<\varepsilon$ we have $\gamma\left(t^{\prime}\right) \in U_{t}$ and $f_{t^{\prime}}$ agrees with f_{t} on $U_{t} \cap U_{t^{\prime}}$.

If the derivative $\left(f^{\prime}, U\right)$ of a function element (f, U) can be analytically continued along a curve $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{C}$, then (f, U) can be analytically continued along γ.

Let f be holomorphic on some domain U. Then $\infty \in \hat{\mathbb{C}}$ is an isolated singularity of f if there is a number $R \geqslant 0$ such that $\{z \in \mathbb{C}:|z|>R\} \subset U$ (equivalently: if $\mathbb{C} \backslash U$ is bounded and hence compact).
Motivation. To classify the isolated singularities at ∞, note the following. If $z_{0} \in \mathbb{C}^{*}$ is a removable singularity, a pole of order m or a essential singularity of f, then $\frac{1}{z_{0}}$ is a singularity of the same type of the function $g(z):=f\left(\frac{1}{z}\right)$.
If ∞ is an isolated singularity of a holomorphic f, then we say that f has a removable singularity / pole of order $m /$ essential singularity at ∞ if $z \mapsto f\left(\frac{1}{z}\right)$ has a removable singularity / pole of order m / essential singularity at 0 .

If the LaURENT series $\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ converges on the domain $\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$ and represents a holomorphic function f there, then $a_{n}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\rho} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z$ for all $n \in \mathbb{N}$ and any $\rho \in(r, R)$.

Assume $z_{0}=0$. As we can integrate LaURENT series term-by-term, for $\xi \in(0, R)$ we get $\int_{|z|=\xi} \frac{f(z)}{z^{n+1}} \mathrm{~d} z=\int_{|z|=\xi} \sum_{k=-\infty}^{\infty} a_{k} \frac{z^{k}}{z^{n+1}} \mathrm{~d} z=$ $\sum_{k=-\infty}^{\infty} a_{k} \int_{|z|=\xi} z^{k-n-1} \mathrm{~d} z$, so every summand except the n-th one vanishes and we get $\int_{|z|=\xi} \frac{f(z)}{z^{n+1}} \mathrm{~d} z=2 \pi i a_{n}$.

A function element is a pair (f, U) consisting of a domain $U \subset \mathbb{C}$ and a holomorphic function f on U.
Function elements (f, U) and (\tilde{f}, \tilde{U}) are direct analytic continuations of each other if $U \cap \tilde{U} \neq \varnothing$ and $f \equiv \tilde{f}$ on $U \cap \tilde{U}$.

This definition of direct analytic continuation is inherently symmetric.

Let f be an entire function and (g, U) be a function element such that $f(g(z))=z$ for all $z \in U$. If (\tilde{g}, \tilde{U}) is a analytic continuation of (g, U), then $f(\tilde{g}(z))=z$ for all $z \in \tilde{U}$.
The general case follows directly from the special case that (\tilde{g}, \tilde{U}) is a direct analytic continuation of (g, U), because any non-direct analytic continuation is a sequence of direct analytic continuations and if the property of being a local inverse of f is preserved from one direct continuation to the other, then it is preserved for all steps. So assume (\tilde{g}, \tilde{U}) is a direct analytic continuation of (g, U), that is $U \cap \tilde{U} \neq \varnothing$ and $g \equiv \tilde{g}$ on $U \cap \tilde{U}$. Hence for $z \in U \cap \tilde{U}$ we have $f(\tilde{g}(z))=f(g(z))=z$. So $f \circ g$ and the identity function $z \mapsto z$ agree on $U \cap \tilde{U} \subset \tilde{U}$. By Identity Theorem for Holomorphic Functions $f \circ \tilde{g}$ and $z \mapsto z$ agree of the domain \tilde{U}.

Suppose there is a finite family $(f, U)=$ $\left(f^{(0)}, U^{(0)}\right),\left(f^{(1)}, U^{(1)}\right) \ldots\left(f^{(n)}, U^{(n)}\right)=(\tilde{f}, \tilde{U})$ such that

1. $\left(f^{(j)}, U^{(j)}\right)$ and $\left(f^{(j+1)}, U^{(j+1)}\right)$ are direct analytic continuations of each other for every $j \in\{0, \ldots, n-1\}$,
2. there is a subdivision $t_{0}=\tau_{0}<\tau_{1}<\ldots<\tau_{n}=t_{1}$ such that $\gamma\left(\tau_{j}\right) \in U^{(j)}$ for all $j \in\{0, \ldots, n\}$ and $\gamma\left(\left[\tau_{j}, \tau_{j+1}\right]\right) \subset$ $U^{(j)} \cup U^{(j+1)}$ for all $j \in\{0, \ldots, n-1\}$.

Then (\tilde{f}, \tilde{U}) is an analytic continuation of (f, U) along γ.

Integral along a continuous curve

0-chain, C_{0}, boundary map, cycle, support of a 1-chain

Homotopy and null homotopic curve

Definition \& Theorem w/o proof

Loop, fundamental group

Theorem \& Corollary w/o proofs

Monodromy Theorem and the Homotopy-Version of Cauchy's Integral Theorem

Winding number of a closed curve is constant on connected components

Two curves $c_{0}, c_{1}:[0,1] \rightarrow X$ in a topological space X are homotopic (in X) if there exists a homotopy between them, that is, a continuous map $H:[0,1] \times[0,1] \rightarrow X$ for which $H(\cdot, 0)=c_{0}$ and $H(\cdot, 1)=c_{1}$ as well as $H(0, \cdot)=c_{0}(0)=c_{1}(0)$ and $h(1, \cdot)=c_{0}(1)=c_{1}(1)$ (same starting- and endpoint).

A closed curve $c:[0,1] \rightarrow X$ is null homotopic if it is homotopic to the constant curve at $c_{1}(t)=c(0)=c(1)$.

Let X be a topological space and $x_{0} \in X$ a (base)point. A curve $c:[0,1] \rightarrow X$ is a loop at x_{0} if $c(0)=x_{0}=c(1)$. Then homotopy is an equivalence relation on the set of loops at x_{0}. The set of equivalence classes, $\pi_{1}\left(X, x_{0}\right)$, together with the well-defined operation $\left[c_{1} c_{2}\right]=\left[c_{1}\right]\left[c_{2}\right]$, where c_{1} and c_{2} are loops at x_{0}, is the fundamental group of X with base point x_{0}. The neutral element is the class of constant curves [x_{0}], i.e. the set of null-homotopic loops at x_{0}. The inverse of $[c]$ is [$\left.c^{\mathrm{inv}}\right]$.
$\pi_{1}(X, y)$ depends on y if X is not path-connected.

Let $U \subset \mathbb{C}$ be a domain and let $\left(f_{0}, U_{0}\right)$ be a function element, $z_{0} \in U \cap U_{0}$ and suppose $\left(f_{0}, U_{0}\right)$ can be continued analytically along every curve in U starting at z_{0}. If c and \tilde{c} are homotopic curves starting at z_{0} and $\left(f_{1}, U_{1}\right)$ and $\left(\tilde{f}_{1}, \tilde{U}_{1}\right)$ are analytic continuations of $\left(f_{0}, U_{0}\right)$ along c and \tilde{c} respectively, then f_{1} and \tilde{f}_{1} agree in some open neighbourhood of $z_{1}:=c(1)=\tilde{c}(1)$.

Corollary: If f is holomorphic on $U \subset \mathbb{C}$ and c_{1} and c_{2} are homotopic curve in U, then $\int_{c_{1}} f(z) \mathrm{d} z=\int_{c_{2}} f(z) \mathrm{d} z$. In particular, $\int_{c} f(z) \mathrm{d} z=0$ if c is null homotopic.

If B is some set, then one can define the free Abelian group generated by B as the group $\left(\mathbb{Z}^{(B)},+\right)$, where $\mathbb{Z}^{(B)}$ is the set of functions $B \rightarrow \mathbb{Z}$ (mapping a shopping item to its multiplicity), which are zero for all but finitely many elements and + means pointwise addition.
The confusing part: interpret an element $b_{0} \in B$ also as the characteristic function $\varphi_{b_{0}}: B \rightarrow \mathbb{Z}$, with $\varphi_{b_{0}}(b)=1$ if $b=b_{0}$ and 0 else. Then we can write any element in the free Abelian group generated by B as a finite "formal" linear combination $\sum_{j=1}^{k} n_{j} b_{j}$ for $\left(n_{j}\right)_{j=1}^{k} \subset \mathbb{Z}$.

The winding number or winding index of a closed curve $\gamma:[0,1] \rightarrow \mathbb{C}$ around a point $z_{0} \in \mathbb{C} \backslash \gamma([0,1])$ is $\nu_{\gamma}\left(z_{0}\right):=$ $\operatorname{Ind}_{\gamma}\left(z_{0}\right):=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-z_{0}} \mathrm{~d} z \in \mathbb{Z}$.

The winding number $\operatorname{Ind}_{\gamma}$ is constant on connected components of $\mathbb{C} \backslash \gamma([0,1])$.

For $z_{0} \in \mathbb{C} \backslash \gamma([0,1])$, the winding number depends continuously on z_{0} and takes integer values. Hence it is constant on connected components of its image. To see continuity, note that $\frac{1}{z-z_{0}}-\frac{1}{z-z_{1}} \left\lvert\,=\frac{\left|z_{0}-z_{1}\right|}{\left|z-z_{0}\right|\left|z-z_{1}\right|}\right.$ and that $\frac{1}{\left|\gamma-z_{0} \| \gamma-z_{1}\right|}$ is bounded on $[0,1]$.

Let f be a holomorphic function on $U, \gamma:\left[t_{0}, t_{1}\right] \rightarrow U$ be a continuous curve in $U, D_{0} \subset U$ be an open disk around $\gamma\left(t_{0}\right)$ and F_{0} be an antiderivative of f on D_{0} (which exists because f is represented by a power series on D_{0}). Let (F_{1}, D_{1}) be an analytic continuation of $\left(F_{0}, D_{0}\right)$ along γ (which exists by a Lemma because $\left(F_{0}^{\prime}, D_{0}\right)=\left(\left.f\right|_{D_{0}}, D_{0}\right)$ can be trivially continued along $\left.\gamma\right)$. Define the integral of f along γ by $\int_{\gamma} f(z) \mathrm{d} z:=F_{1}\left(\gamma\left(t_{1}\right)\right)-F_{0}\left(\gamma\left(t_{0}\right)\right)$. The RHS does not depend on any choice involved in the construction.

If γ is piecewise continuously differentiable, then the above integral agrees with our original Definition.

The composition of $c_{1}, c_{2}:[0,1] \rightarrow X$ with $c_{1}(1)=c_{2}(0)$ is

$$
c_{1} c_{2}:[0,1] \rightarrow X, \quad t \mapsto \begin{cases}c_{1}(2 t), & \text { for } t \in\left[0, \frac{1}{2}\right] \\ c_{2}(2 t-1), & \text { for } t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

The inverse of a curve $c:[0,1] \rightarrow X$ is the curve $c^{\mathrm{inv}}:[0,1] \rightarrow$ $X, t \mapsto c(1-t)$.

Let $c_{1}, c_{2}, c_{3}:[0,1] \rightarrow X$ be curves with $c_{1}(1)=c_{2}(0)$ and $c_{2}(1)=c_{3}(0)$. Then $\left(c_{1} c_{2}\right) c_{3}$ is homotopic to $c_{1}\left(c_{2} c_{3}\right)$.

Let X be a nonempty path-connected topological space, e.g. a domain. Then the following are equivalent:

1. Every closed curve $c:[0,1] \rightarrow X$ is null homotopic in X.
2. For every $x_{0} \in X, \pi_{1}\left(X, x_{0}\right)=\{1\}$.
3. There is a point $x_{0} \in X$ such that $\pi_{1}\left(X, x_{0}\right)=\{1\}$.
4. Any curves $c_{1}, c_{2}:[0,1] \rightarrow X$ with $c_{1}(0)=c_{2}(0)$ and $c_{1}(1)=c_{2}(1)$ are homotopic.

If one of the above statements hold, X is simply connected.

A 1-chain c in an open set $U \subset \mathbb{C}$ is a formal linear combination $c=n_{1} \odot c_{1} \oplus \ldots \oplus n_{k} \odot c_{k}$ of curves $c_{j}:[0,1] \rightarrow U$, where $n_{J} \in \mathbb{Z}$ for $j \in\{1, \ldots, k\}$. The Abelian group of 1 -chains in U is $C_{1}(U)$.
For a holomorphic function f on U, the integral of f along c is $\int_{c} f(z) \mathrm{d} z:=\sum_{j=1}^{k} n_{j} \int_{c_{j}} f(z) \mathrm{d} z$.

A 0 -chain in U is a formal linear combination $\oplus_{j=1}^{k} n_{j} \odot z_{j}$ of points $\left(z_{j}\right)_{j=1}^{k} \subset U$ with integer coefficients $\left(n_{j}\right)_{j=1}^{k} \subset \mathbb{Z}$. The Abelian group of 0 -chains in U is $C_{0}(U)$.

The boundary map $\partial: C_{1}(U) \rightarrow C_{0}(U)$ is the group homomorphism, where the 1-chain $\bigoplus_{j=1}^{k} n_{j} \odot c_{j}$ is mapped to $\partial c:=\oplus_{j=1}^{k} n_{j} \oplus\left(c_{j}(1) \ominus c_{j}(0)\right)$.

A 1-chain c is closed if $\partial c=0$. A cycle is a closed 1-chain. The support $|c|$ of a 1 -chain in U is $\bigcup_{\substack{j=1 \\ n_{j} \neq 0}}^{k} c_{j}([0,1]) \subset U$.

Winding number of a cycle

Complex Analysis I

Theorem w/o proof

Cauchy's Integral Theorem (Winding number / homology version)

Complex Analysis I

Zero homogolous cycle

Cauchy's Integral Formula (Winding number version)

Definition \& Theorem

Residue

Proof

Residue Theorem

Complex Analysis I

A cycle c in an open set $U \subset \mathbb{C}$ is zero homogolous in U if $\operatorname{Ind}_{c}(z)=0$ for all $z \in \mathbb{C} \backslash U$.

Let f be a holomorphic function on $U \subset \mathbb{C}$, let $a \in U$ and let c be a cycle in $U \backslash\{a\}$ that is zero-homologous in U. Then

$$
\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{z-a} \mathrm{~d} z=\operatorname{Ind}_{c}(a) \cdot f(a)
$$

1. Suppose the holomorphic function f has an isolated singularity at z_{0} (or is holomorphic at z_{0}, too). The residue of f at z_{0} is

$$
\operatorname{Res}_{z_{0}}(f):=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\varepsilon} f(z) \mathrm{d} z
$$

where $\varepsilon>0$ is so small that $\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right| \leqslant \varepsilon\right\} \subset U$.
2. Equivalently, if the LaURENT series around z_{0} representing f is $\sum_{k \in \mathbb{Z}} a_{k}\left(z-z_{0}\right)^{k}$, then $\operatorname{Res}_{z_{0}}(f)=a_{-1}$.

Let f be meromorphic on $U \subset \mathbb{C}$ and c be a cycle that bounds a compact set $K \subset U$ such that ∂K doesn't contain any zero or poles of f. Then

$$
\frac{1}{2 \pi i} \int_{c} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=Z-P
$$

where Z is the number of zeros of f in $\stackrel{\circ}{K}$ and P the number of poles, each counted with multiplicity according to their order. Proof: Apply Residue Theorem to $\frac{f^{\prime}}{f}$, as $\operatorname{Res}\left(\frac{f^{\prime}}{f}, z\right)=\operatorname{ord}(f, z)$.

The winding number of a cycle c in \mathbb{C} around a point $z_{0} \in$ $\mathbb{C} \backslash|c|$ is $\operatorname{Ind}_{c}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{c} \frac{1}{z-z_{0}} \mathrm{~d} z \in \mathbb{Z}$.

Let U be a domain in \mathbb{C} and c be a cycle in U. The following statements are equivalent.

1. c is zero homologous in U
2. $\int_{c} f(z) \mathrm{d} z=0$ for all holomorphic functions f on U.

Let $K \subset \mathbb{C}$ be a compact set. A cycle c bounds K if $|c| \subset \partial K$ and if

$$
\operatorname{Ind}_{c}(z)= \begin{cases}1, & \text { if } z \in \stackrel{\circ}{K} \\ 0, & \text { if } z \notin K\end{cases}
$$

Let f holo on U except for a set $S \subset U$ of isolated singularities and c a 0 -homologous cycle in U with $|c| \cap S \neq \varnothing$.

$$
\frac{1}{2 \pi i} \int_{c} f(z) \mathrm{d} z=\sum_{a \in S} \operatorname{Ind}_{c}(a) \operatorname{Res}_{a}(f)
$$

where the sum is finite because $\operatorname{Ind}_{c}(a) \neq 0$ only for finitely many $a \in S$.
Corollary: If c bounds a compact subset $K \subset U$, then

$$
\frac{1}{2 \pi i} \int_{c} f(z) \mathrm{d} z=\sum_{a \in S \cap K} \operatorname{Res}_{a}(f) .
$$

If f has a poles of order 1 at z_{0}, then $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=$ $\operatorname{Res}_{f}\left(z_{0}\right)$.

If $f=\frac{g}{h}$, where h has a simple zero at z_{0} and $g\left(z_{0}\right) \neq 0$, then f has a first order pole at z_{0} and $\operatorname{Res}_{f}\left(z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}$.

If f has a pole of order n at z_{0}, then

$$
\operatorname{Res}_{f}\left(z_{0}\right)=a_{-1}=\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!}\left(\frac{\mathrm{d}}{\mathrm{~d} z}\right)^{n-1}\left[\left(z-z_{0}\right)^{n} f(z)\right]
$$

Dog on a leash

Complex Analysis I

Definition \& Lemma w/o proof

Uniform convergence on compact sets

Complex Analysis I

Theorem w/o proof idea \& Corollary

Multiplicities of values in the limit (Hurwitz)

Complex Analysis I

Theorem \& preparatory Lemmas w/o proofs

Montel

Complex Analysis I

Theorem w/o Proof

Rouché's Theorem

Theorem w/ Proof

Uniform convergence on compact sets

Complex Analysis I

Definition

Locally bounded function sequence

Definition \& Examples

Conformally equivalent domains

Complex Analysis I

Proof

Let γ be a closed curve bounding a compact region $K \subset U$ and f and g be holomorphic functions on U such that $|g(z)|<$ $|f(z)|$ for all $z \in|\gamma|$. Then f and $f+g$ have the same number of zeros (counted with multiplicities) in $\stackrel{\circ}{K}$.

Since the functions have no poles, the numbers of zeros are winding numbers of $c_{1}:=f \circ \gamma$ and $c_{2}:=f \circ \gamma+g \circ \gamma$ around 0 (by zero and poles counting integral thm). But since $\left|c_{1}-c_{2}\right|=|g \circ \gamma|<|f \circ \gamma|=\left|c_{1}\right|$, the winding numbers are equal by the Dog-on-a-leash Lemma.

Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of holomorphic functions on U that converges uniformly on compact sets to the function f. Then f is also holomorphic on U and the sequence $\left(f_{n}^{\prime}\right)_{n \in \mathbb{N}}$ converges uniformly on compact sets to f^{\prime}.

We show that $\int_{\partial \Delta} f(z) \mathrm{d} z=0$ for every closed triangular region $\Delta \subset U$. By Cauchy's Theorem and uniform convergence $\int_{\partial \Delta} f(z) \mathrm{d} z=$ $\int_{\partial \Delta} \lim _{n \rightarrow \infty} f_{n}(z) \mathrm{d} z=\lim _{n \rightarrow \infty} \underbrace{\int_{\partial \Delta} f_{n}(z) \mathrm{d} z}=0$. CAUCHY's integral formula for the derivative yields $\left|f_{n}^{\prime}(z)-f(z)\right|=\left|\frac{1}{2 \pi i} \int_{\left|u-z_{0}\right|=r} \frac{f_{n}(u)-f(u)}{(u-z)^{2}} \mathrm{~d} u\right| \leqslant$ $\frac{2\langle r}{2 \pi} \frac{\max \left\{\left|f_{n}(u)-f(u)\right|:\left|u-z_{0}\right|=r\right\}}{\min \left\{|u-z|^{2}:\left|u-z_{0}\right|=r\right\}}=\frac{r}{\left|r-\left|z-z_{0}\right|^{2}\right.} \max u \in \mathbb{C}:\left|f_{n}(u)-f(u)\right|$, where $z_{0} \in U$ and $r>0$ are chosen such that $\left|z-z_{0}\right|<r$ and $\{u \in \mathbb{C}$: $\left.\left|u-z_{0}\right|=r\right\} \subset U$,

A sequence $\left(f_{n}: U \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ is locally bounded if every $z_{0} \in$ U has an open neighbourhood U_{0} so that there is a number $m \in \mathbb{R}$ for which $\left|f_{n}(z)\right| \leqslant M$ for all $z \in U_{0}$ and $n \in \mathbb{N}$.

Two domains U and \tilde{U} in \mathbb{C} are biholomorphically or conformally equivalent if there is a bijective holomorphic function $f: U \rightarrow \tilde{U}$.
(In this case f^{-1} is also holomorphic.)

By Liouville, \mathbb{C} and D aren't conformally equivalent, while D and H are (as there is a MöBius transformation between them).

Let $c_{1}, c_{2}:[0,1] \rightarrow \mathbb{C}$ be two closed curves and $z_{0} \in \mathbb{C} \backslash\left(\left|c_{1}\right| \cup\right.$ $\left.\left|c_{2}\right|\right)$ Furthermore assume that for all $t \in[0,1]$:

$$
\begin{equation*}
\left|c_{1}(t)-c_{2}(t)\right|<\left|c_{1}(t)-z_{0}\right| . \tag{1}
\end{equation*}
$$

Then $\operatorname{Ind}_{c_{1}}\left(z_{0}\right)=\operatorname{Ind}_{c_{2}}\left(z_{0}\right)$.

A sequence $\left(f_{n}: U \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ of functions converges uniformly on compact sets to a function $f: U \rightarrow \mathbb{C}$ if one of the following conditions is satisfied.

- For any compact subset $K \subset U$, we have $f_{n} \rightarrow f$ uniformly on K.
- $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to f, that is, for any $z_{0} \in U$, there exists an open neighbourhood on which $f_{n} \rightarrow f$ converges uniformly.

Suppose $a \in \mathbb{C}$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of holomorphic functions on U that converges uniformly on compact sets to the function f. Suppose further that each function f_{n} takes the value a at most m times (counting multiplicities). Then f takes the value a at most m times (counting multiplicities) or f is constant.
Corollary: The limit function of a sequence of injective holomorphic functions than converges uniformly on compact sets is also injective or constant.

Use Rouche's Theorem.

Every locally bounded sequence of holomorphic functions has a subsequence that converges uniformly on compact sets.

First we prove: A locally bounded sequence of holomorphic functions $\left(f_{n}: U \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ is locally equi-LiPSCHITZ-continuous.
If $\left(f_{n}: U \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ is a locally bounded sequence of holomorphic functions, which converges pointwise on a dense subset $A \subset U$, then $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on compact sets.

Every nonempty simply connected domain $U \subsetneq \mathbb{C}$ is conformally equivalent to the open unit disk D.

Two Riemann maps $U \rightarrow D$ differ by post-composition with a Möbius transformation mapping D onto D.

Preparatory Lemma: if $U \subset \mathbb{C}$ is a simply connected domain and $0 \notin U$, then there exists an injective holomorphic function ρ on U such that $(\rho(z))^{2}=z$ for all $z \in U$.

Proof idea: $\mathcal{F}:=\{f: U \rightarrow \mathbb{C}: f$ is holomorphic, injective, $f(U) \subset$ $D, f(0)=0\}$. Claim. There exists a function $f \in \mathcal{F}$ for which $\left|f^{\prime}(0)\right|$ is maximal among functions in \mathcal{F}. This is a biholomorphic map onto D.

[^0]: Let $z_{0} \in U$ and $w_{0}:=f\left(z_{0}\right)$. As $f(U)$ is open by the Open Mapping Theorem, it contains an open disk of radius $\varepsilon>0$ around w_{0} which is not contained in the closed disk $\left\{w \in \mathbb{C}:|w| \leqslant\left|w_{0}\right|\right\}$. Hence the ε-disk contains the point $w_{1}=f\left(z_{1}\right)$ with $\left|f\left(z_{1}\right)\right|=\left|w_{1}\right|>\left|w_{0}\right|$.

[^1]: The image $f(U)$ is connected because it is the image of the connected set U under the continuous function f.
 Suppose $w_{0}=f\left(z_{0}\right) \in f(U)$. We have to show that $f(U)$ contains an open neighbourhood of w_{0}. Since f is not constant, the function $g(z):=$ $f(z)-f\left(z_{0}\right)$ has a zero of finite order at z_{0}. Hence there is an open neighbourhood W of z_{0} such that g takes any nonzero value in W at least once. So f takes any value in the open neighbourhood $f\left(z_{0}\right)+W$ at least once.

[^2]: Consistency of the Definition: if $\operatorname{ord}\left(f, z_{0}\right)=m \geqslant 0$, then f has at most a removable singularity at z_{0}. After removing the singularity (if necessary), f has a zero of order m at z_{0}. If $\operatorname{ord}\left(f, z_{0}\right)=m<0$ and $m \neq-\infty$, then f has a pole of order $-m>0$. If $\operatorname{ord}\left(f, z_{0}\right)=-\infty$, then f has an essential singularity at z_{0}.

