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A function f : U Ñ C is complex differentiable in z0 P C if it

is differentiable in the real sense and one (and hence both) of

the following two conditions hold:

• The derivative dz0f : R2 Ñ R2 is C-linear as a map on C.

• The Cauchy-Riemann differential equations Bu
Bx “

Bv
By and

Bv
Bx “ ´

Bu
By hold in z0.

In this case we have f 1pz0q “
Bu
Bx pz0q ` i

Bv
Bx pz0q.

Let U Ă C be an open subset and z0 P U . A function f : U Ñ

C is (complex) differentiable on U if the limit

lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“: f 1pz0q P C .

exists. In that case, f 1pz0q is the derivative of f at z0. If f

is differentiable for all z0 P U , then it is holomorphic or

(complex) analytic. A holomorphic function on C is an entire

function.

Holomorphic functions with nonvanishing derivative are confor-

mal, that is, angle-preserving.

For an invertible R-linear map F : R2
Ñ R2 TFAE

1. F preserves angles.

2. F preserves orthogonal angles: if z and w are orthogonal, then

F pzq and F pwq are also orthogonal.

3. F is C-linear (that is, F pizq “ iF pzq for all z P C) or F is

C-antilinear (that is, F pizq “ ´iF pzq).

A real differentiable map on a domain is holomorphic if its derivati-

ve in the real sense is everywhere angle and orientation preserving.

A function f defined on an open subset U Ă C that satisfies

the Laplace equation ∆f “ 0 is a harmonic function.

On a simply connected domain U Ă C, every harmonic func-

tion is the real part of a holomorphic function.

Let f : U Ñ C be holomorphic and h : fpUq Ñ R harmonic.

Then h ˝ f is harmonic.

A Möbius transformation is a function fpzq “ az`b
cz`d , where

a, b, c, d P C are such that ad´ bc ‰ 0.

We can (but do not need to) require that ad ´ bc “ 1. Then

the Möbius transformation determines the coefficients up to

a global sign change, i.e. a factor of ˘1.

Our way out of this is to consider the Möbius transformations

as functions from Ĉ to Ĉ instead of from C to C by defining:

(if c ‰ 0) f
`

´d
c

˘

:“ 8 and fp8q “ a
c and fp8q “ 8 if c “ 0.

The Möbius transformations form a group of bijective func-

tions from Ĉ to Ĉ under composition.

The Riemann sphere (or: extended complex plane)

Ĉ :“ CYt8u

is the complex plane C with the extra point 8 added.

The point 8 corresponds to the north pole of S2 under stereo-

graphic projection. The stereographic projection is a bijective

map from S2 to Ĉ. Since S2 has a topology induced by the

ambient R3, the stereographic projection induces a topology

on Ĉ.

The cross-ratio of four points z1, z2, z3, z4 P Ĉ is

crpz1, z2, z3, z4q :“ z1´z2
z2´z3

z3´z4
z4´z1

. If one of the points is 8, this

is supposed to be evaluated by cancelling infinities.

The cross-ratio of four points z1, z2, z3, z4 P Ĉ is real if and

only if the four points lie on a Möbius circle.

For f P Möb and z1, z2, z3, z4 P Ĉ we have crpz1, z2, z3, z4q “

crpfpz1q, fpz2q, fpz3q, fpz4qq. Conversely, Möbius are the

only transformation that preserve the cross ratio: if

crpz1, z2, z3, z4q “ crpw1, w2, w3, w4q, there there exists a f P

Möb with fpzjq “ wj for j P t1, . . . , 4u.

If z1, z2, z3 P Ĉ are three points and w1, w2, w3 P Ĉ are three

points, then there is a unique Möbius transformation f satis-

fying fpziq “ wi for i P t1, 2, 3u.
Existence. Let g and h be the Möbius transformations sending z1, z2, z3 and

w1, w2, w3 to 0, 1 and 8 respectively. Then f :“ h´1
˝ g satisfies fpziq “ wi

for i P t1, 2, 3u.

Uniqueness. 1. Suppose f P Möb and fpziq “ zi for i P t1, 2, 3u. Then

f “ id. Indeed let g P Möb be the map with gpz1q “ 0, gpz2q “ 1 and

gpz3q “ 8. Then h :“ g ˝ f ˝ g´1
P Möb satisfies hp0q “ 0, hp1q “ 1,

hp8q “ 8. By previous Lemma, h “ id and thus f “ g´1
˝ h ˝ g “ id.

2. Suppose f1 and f2 are Möbius transformations with fjpziq “ wi, i P

t1, 2, 3u, j P t1, 2u. Then f´1
2 ˝ f1 P Möb fixed z1, z2, z3, so by the previous

step, f´1
2 ˝ f1, hence f2 “ f1.

Let U Ă C be any subset, f : U Ñ C be continuous. If

γ : rt0, t1s Ñ U is only piecewise continuously differentia-

ble, i.e. if there is a subdivision t0 “ τ0 ă τ1 ă . . . ă

τn “ t1 such that γ P Cprt0, t1sq is continuously differentia-

ble on rτj , τj`1s for j P t0, . . . , n ´ 1u, then
ş

γ
fpzqdz :“

řn´1
j“0

ş

γ|rτj,τj`1s

fpzqdz. If γ : rt0, t1s Ñ U be a continuously

differentiable curve, then the (contour) integral of f along γ

is
ş

γ
fpzqdz :“

şt1
t0
fpγptqqγ1ptqdt.

The Möbius transformations that map the unit disk

D :“ tz P C : |z| ă 1u

onto itself are precisely the Möbius transformations of the

form

fpzq “ eiϕ
z ´ z0

1´ z0z
,

where z0 P D and ϕ P R{2πZ.

The Möbius transformations fpzq “ az`b
cz`d with fpHq “ H

are characterised by a, b, c, d P R and ad´ bc ą 0.
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Let f be a holomorphic function on U Ă C, let Q Ă C be a closed rectangular

region, let γ be a C1 parametrisation of its boundary and let Φ: W Ñ C be

a continuously differentiable map on some domain W containing Q with

ΦpQq Ă U . Then
ş

Φ˝γ
fpzq dz “ 0.

We construct a sequence of rectangles Q Ą Q1 Ą Q2 Ą . . . as before with
ˇ

ˇ

ˇ

ş

Φ˝γ
fpzq dz

ˇ

ˇ

ˇ
ď 4k

ˇ

ˇ

ˇ

ş

Φ˝γk
fpzq dz

ˇ

ˇ

ˇ
with γk :“ BQk and γ :“ BQ. But now

we need to estimate diampΦpQkqq and lenpΦ ˝ γkq. To this end, we observe

that since Φ is a C1 function, dΦ is continuous on the compact set Q, so

there exists a C ą 0 s.t. } dΦz} ď C for all z P Q. Hence diampΦpQkqq ď

C diampQkq “ C2´k diampQq and lengthpΦ ˝ γkq ď C lenpγkq “ C2´k.

Let ε ą 0 and let z0 be the image of the point contained in
Ş

kPNQk P U under

Φ. Choose δ ą 0 so small that |Rz0 pzq| ă ε|z´z0| holds for all z with |z´z0| ă

δ but now choose k P N large enough that C2´k diampQq ď δ holds, we have
ˇ

ˇ

ˇ

ş

Φ˝γ
fpzq dz

ˇ

ˇ

ˇ
ď 4k

ˇ

ˇ

ˇ

ş

Φ˝γk
fpzq dz

ˇ

ˇ

ˇ
ď((((

(
4k2´k ¨ 2´kC2 lenpγq diampQq ¨ ε.

Let Q Ă C be a closed rectangular region with sides parallel

to the real and imaginary axes and let γ be a piecewise C1

parametrisation of the boundary of Q with orientation like

here:

If f is holomorphic on U Ą Q, then
ş

γ
fpzqdz “ 0.

1 We show: for ε ą 0,
ˇ

ˇ

ˇ

ş

γ fpzq dz
ˇ

ˇ

ˇ
ď ε. Since f is holomorphic on U, for any z P U we

have fpzq “ fpz0q ` f 1pz0q ¨ pz ´ z0q ` Rz0
pzq, w/ limzÑz0

Rz0
pzq

|z´z0|
“ 0 p‹q. Since

z ÞÑ fpz0q`f
1pz0q ¨ pz´z0q is entire and thus has a global antiderivative, its integral along

the closed curve γ is zero by the FTOC. Therefore
ş

γ fpzq dz “
ş

γ Rz0 pzq dz.

2 Let ε ą 0. Divide Q into four equal subrectangles Q1, . . . , Q4 and let Q1 be that

subrectangle for which the integral along the boundary, γ1, is largest in absolute value.
ˇ

ˇ

ˇ

ş

γ fpzq dz
ˇ

ˇ

ˇ
ď 4

ˇ

ˇ

ˇ

ˇ

ş

γp1q
fpzq dz

ˇ

ˇ

ˇ

ˇ

Now subdivide the rectangle Q1 into four equal subrec-

tangles and let Q2 be the rectangle for which the integral along the boundary γ2 is the

largest. Continuing this process we obtain a infinite sequence of rectangles Qk and boun-

dary curves γk s.t.
ˇ

ˇ

ˇ

ş

γ fpzq dz
ˇ

ˇ

ˇ
ď 4k

ˇ

ˇ

ˇ

ˇ

ş

γk
fpzq dz

ˇ

ˇ

ˇ

ˇ

“ 4k
ˇ

ˇ

ˇ

ˇ

ş

γk
Rz0 pzq dz

ˇ

ˇ

ˇ

ˇ

.
Ş8
k“1 Qk “ tz0u.

3

ˇ

ˇ

ˇ

ˇ

ş

γk
Rz0

pzq dz

ˇ

ˇ

ˇ

ˇ

ď lenpγkq ¨ supzPQk
|Rz0

pzq|. lenpγkq “ 2´k lenpγq. By p‹q, Dδ ą

0 s.t. |Rz0
pzq| ă ε̃|z ´ z0| for all z with |z ´ z0| ă δ, where ε̃ :“ ε

lenpγq diampQq
.

Choose k P N so large that diampQkq “ 2´k diampQq ă δ, then supzPQk
|Rz0

pzq| ď

ε supzPQk
|z ´ z0| ď ε diampQkq “ ε ¨ 2´k diampQq.

ˇ

ˇ

ˇ

ş

γ fpzq dz
ˇ

ˇ

ˇ
ď���4k2´k ¨ lenpγq ¨ ε̃ ¨��2´k ¨ diampQq “ lenpγq ¨ ε̃ ¨ diampQq “ ε.

If f is holomorphic on U and γ is the boundary curve of a triangular

region that is contained in U , then
ş

γ fpzq dz “ 0.

Apply Cauchy’s theorem for C1 images of rectangles to

Φ: r0, 1s2 Ñ U, ps, tq ÞÑ p1´ tq pp1´ sqA` sBq ` t pp1´ sqA` sCq .

If f is holomorphic on U and γ is the boundary circle of a closed disk

that is contained in U , then
ş

γ fpzq dz “ 0.

Let z0 P U be the centre and r ą 0 the radius of the closed disk. Apply

Cauchy’s theorem for C1 images of rectangles to

Φ: r0, 2πs ˆ r0, rs Ñ U, ps, tq ÞÑ z0 ` te
is

A single point does not contribute to the integral and the two paths

cancel each other out.

Two closed curves α, β : r0, 1s Ñ C are freely C1-homotopic

in U Ă C (U only needs to be a subset) if there is a C1-

function H : r0, 1s2 Ñ U such that Hp0, ¨q “ α, Hp1, ¨q “ β

and Hp¨, 0q “ Hp¨, 1q.

If α, β : r0, 1s Ñ C are freely C1-homotopic curves in U and f

is holomorphic on U , then
ş

α
fpzqdz “

ş

β
fpzqdz.

We apply Cauchy’s Theorem for C1-images of rectangles. The image of

the boundary of r0, 1s2 under H is the curve α traced in the opposite

direction, a segment connecting it to β, the curve β and the segment

traced in the other direction.

Two curves α, β : r0, 1s Ñ C are C1-homotopic in U Ă C if D

C1-function H : r0, 1s Ñ U , called homotopy, such that

• Hp0, tq “ αptq, Hp1, tq “ βptq for all t P r0, 1s,

• Hps, 0q “ αp0q “ βp0q, Hps, 1q “ αp1q “ βp1q @s P r0, 1s,

If α, β : r0, 1s Ñ C are C1-homotopic curves in U and f is

holomorphic on U , then
ş

α
fpzqdz “

ş

β
fpzqdz.

Choosing Φ “ H, Cauchy’s theorem for C1 images of rectangles implies
ş

α fpzq dz ´
ş

β fpzqdz “ 0.

Let f be holomorphic in the domain U Ă C, which contains

the closed disk

tz P C : |z ´ z0| ď ru

for z0 P C. Then for every point in the interior of this disk,

i.e. every a P C with |a´ z0| ă r,

fpaq “
1

2πi

ż

|z´z0|“r

fpzq

z ´ a
dz.

If two nested (that is, one is contained in the other and they

don’t intersect) circles with centres z0 and z1 and radii r0 and

r1 are contained in U together with the region between them,

then for all holomorphic functions f on U we have

ż

|z´z0|“r0

fpzqdz “

ż

|z´z1|“r1

fpzqdz.

A special case occurs if z0 “ z1, and then the concentric circles

in U bound an annulus in U .
This is a special case of Cauchy’s Theorem for freely C1-homotopic cur-

ves.

If f is holomorphic on a domain containing the closed disk

with centre z0 and radius r, then

fpz0q “
1

2π

ż 2π

0

fpz0 ` re
itqdt.

With the parametrisation z “ z0 ` reit for t P r0, 2πs and using

Cauchy’s Formula for a “ z0 we obtain fpz0q “
1

2πi

ş

|z´z0|“r

fpzq
z´z0

dz “

1

2π�i
ş2π
0

fpz0`re
itq

�z0`��re
it��́z0

¨ �i ¨��re
it dz “ 1

2π

ş2π
0 fpz0 ` reitq.

Choose ε ą 0 so small that Bεpaq Ă Brpz0q. By Cauchy’s Theorem for Annuli,
ş

|z´z0|“r
fpzq
z´a

dz “
ş

|z´a|“ε
fpzq
z´a

dz, p‹q because the integrand is nevertheless ho-

lomorphic on the annulus (not containing a) bounded by the circles |z ´ z0| “ r and

|z´a| “ ε as it is the quotient of two holomorphic functions. We have
ş

|z´a|“ε
fpzq
z´a

dz “

ş

|z´a|“ε
fpaq`fpzq´fpaq

z´a
dz

“

ż

|z´a|“ε

fpaq

z ´ a
dz

loooooooooooooooomoooooooooooooooon

“:A

`

ż

|z´a|“ε

fpzq ´ fpaq

z ´ a
dz

loooooooooooooooooooooomoooooooooooooooooooooon

“:B

. A “ fpaq
ş

|z´a|“ε
1
z´a

dz “

fpaq
ş2π
0

1

�a`�
�εeit��́a

i��εeit dt “
ş2π
0 i “ 2πi. using the parametrisation γptq “ a ` εeit.

It remains to show that B “ 0. Note that B does not depend on ε as long as ε ą 0 is

small enough: one can immediately see this from Cauchy’s theorem for annuli with con-

centric circles because if we change ε then we get the same result. Hence it is enough

to show that limεŒ0
ş

|z´a|“ε
fpzq´fpaq

z´a
dz “ 0. We have

ş

|z´a|“ε
fpzq´fpaq

z´a
dz “

ş2π
0

fpa`εeitq´fpaq

�a`�
�εeit��́a

i��εeit dt “ i
ş2π
0 fpa ` εe

it
q ´ fpaq

loooooooooooooooomoooooooooooooooon

“:hεptq

dt. Since f is continuous at a,

limεŒ0 hεptq “ 0 uniformly in t P r0, 2πs, because continuous functions on compact sets

are uniformly continuous. Hence limεŒ0
ş2π
0 hεptq dt “ 0.



Theorem w/o proof

Complex Version of the Fundamental

Theorem of Calculus

Complex Analysis I

Theorem & Corollary

Holomorphic functions can be represented

by power series

Complex Analysis I

Theorem w/ proof

Liouville

Complex Analysis I

Theorem w/ proof

Cauchy’s Integral Formula for Derivatives

Complex Analysis I

Definition

Order of a zero of a holomorphic function

Complex Analysis I

Theorem w/o proof

Isolated singularities

Complex Analysis I

Theorem w/ proof

Identity Theorem for Holomorphic

Functions

Complex Analysis I

Theorem w/o proof

Local behaviour of a holomorphic function

near a zero

Complex Analysis I

Theorem w proof

Preservation of Domain

Complex Analysis I

Theorem w/ proof

Maximum Principle (Version I)

Complex Analysis I



Let f be a holomorphic function on U . For z0 P U there exists

a unique power series fpzq “
ř8

k“0 ckpz ´ z0q
k with positive con-

vergence radius representing f in some neighbourhood of z0. The

coefficients ck are determined by Cauchy’s coefficient formula

ck “
1

2πi

ş

|z´z0|“r

fpzq

pz´z0qk`1 dz, where the only condition on r is

to be small enough such that tz : |z ´ z0| ď ru Ă U .

The radius of convergence is not smaller than the radius of the

largest open disk around z0 contained in U .

Since power series are differentiable and their derivatives are again power

series, we get (Goursat): every holomorphic function is arbitrarily often

complex differentiable, in particular it is C8 in the real sense.

Let f be holomorphic on a domain U which is star-shaped

with respect to z0 P U . Define

F : U Ñ C, z ÞÑ

ż z

z0

fpuqdu,

where we write
şb

a
for the integral along the straight line seg-

ment from a to b parametrised by γptq “ a ` tpb ´ aq for

t P r0, 1s. Then F is an antiderivative of f , that is, F is holo-

morphic and F 1 “ f .

Under the same conditions as in Cauchy’s Integral Formula

for fpaq, we have

f pkqpaq “
k!

2πi

ż

|z´z0|“r

fpzq

pz ´ aqk`1
dz.

By the Power Series Expansion Theorem, fpzq “
ř8
k“0 ckpz ´ z0qk in

some open disk around z0 and we have two equations for the coefficients:

ck “
f pkqpz0q

k!
“

1

2πi

ż

|z´z0|“r

fpzq

pz ´ z0qk`1
dz.

A bounded entire function (that is |fpzq| ďM for all z P C) is

constant.

The function f is represented by a power series and we can choose 0 as

its centre: for all z P C we have

fpzq “
8
ÿ

k“0

ckz
k.

By Cauchy’s estimate for the coefficients we have

|ck| ď
M

rk
,

for all r ą 0, so ck “ 0 unless k “ 0.

Let U be a domain and let z0 P U be a zero of order k P NY
t8u. Then either (k “ 8 and f “ 0) or there is a holomorphic

function g : U Ñ C such that gpz0q ‰ 0 and

fpzq “ pz ´ z0q
kgpzq.

In particular, zeros of finite order are isolated (x P S is isolated

in S Ă C if there exists a neighbourhood of x in C that doesn’t

contain any other points of S.).

The order or multiplicity of a zero z0 P U of f is ordpf, z0q :“

mintk P N : f pkqpz0q ‰ 0u or ordpf, z0q “ 8 if f pkqpz0q “ 0 for

all k P N.

Let f be a holomorphic function on U , let fpz0q “ 0 and

n :“ ordpf, z0q ă 8. Then there is an open neighbourhood

U0 of z0 and an biholomorphic function h on U0 such that

hpz0q “ 0 and f |U0
“ hn.

In particular, the function f takes any non-zero value w P

fpU0q exactly n times in U0.

Let U be a domain and f1 and f2 be holomorphic on U . If the

set M :“ tz P U : f1pzq “ f2pzqu has an accumulation point

in U , then f1 “ f2.

The set M is the set of zeros of the holomorphic function f1´f2. If it has

an accumulation point in U , that is if there is a sequence pzjqjPN Ă M

with limit in U , then that is a zero of infinite order as the set of finite

order zeros is isolated. Hence f1 ´ f2 “ 0 by the Theorem of Isolated

Singularitities.

If f is holomorphic and nonconstant on a domain U , then |f |

does not attain a supremum on U .

Let z0 P U and w0 :“ fpz0q. As fpUq is open by the Open Mapping

Theorem, it contains an open disk of radius ε ą 0 around w0 which is

not contained in the closed disk tw P C : |w| ď |w0|u. Hence the ε-disk

contains the point w1 “ fpz1q with |fpz1q| “ |w1| ą |w0|.

If f is holomorphic and not constant on a domain U , then

fpUq is also a domain.

The image fpUq is connected because it is the image of the connected

set U under the continuous function f .

Suppose w0 “ fpz0q P fpUq. We have to show that fpUq contains an

open neighbourhood of w0. Since f is not constant, the function gpzq :“

fpzq ´ fpz0q has a zero of finite order at z0. Hence there is an open

neighbourhood W of z0 such that g takes any nonzero value in W at

least once. So f takes any value in the open neighbourhood fpz0q `W

at least once.
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Let f : D Ñ D be holomorphic with fp0q “ 0. Then

1. |f 1p0q| ď 1,

2. |fpzq| ď |z|.

If we have |f 1p0q| “ 1 or there is a point z0 P D where |fpz0q| “

|z0|, then f is a rotation, that is fpzq “ az for some a P C
with |a| “ 1.

If z0 is an isolated singularity of a holomorphic function f : U Ñ C, then

the following statements are equivalent.

1. The singularity z0 is removable.

2. f is bounded in a neighbourhood of z0: there is a ε ą 0 and a M ě 0

such that |fpzq| ďM for all z P U with |z ´ z0| ă ε.

3. We have lim
zÑz0

pz ´ z0qfpzq “ 0.

” 1 ùñ 2 ”: If z0 is removable, then by Definition there exists a

holomorphic continuation f̃ , which is bounded in a neighbourhood of z0

because it is continuous. As f “ f̃ |U , the statement follows.

” 2 ùñ 3 ”: is clear by the normal rules of doing limits.

” 3 ùñ 1 ”: more tricky.

Let f be holomorphic on U . A point z0 P C zU is a isolated

singularity of f if there is an open neighbourhood U0 of z0

such that U0 X U “ U0ztz0u, that is, there is an ε ą 0 such

that

tz P C : 0 ă |z ´ z0| ă εu Ă U.

An isolated singularity is ”point-shaped holëın the domain of

definition.

An isolated singularity z0 of f : U Ñ C is removable if there

is a holomorphic function f̃ on UYtz0u (still open!) such that

f “ f̃ |U .

We only have to prove that only at most one of the possibilities can hold,

since by construction of 3 , every isolated singularity must fall in one of

the three categories.

The statement 1 holds by the Riemann’scher Hebbarkeitssatz.

2 : Suppose limzÑz0 |fpzq| “ 8. Then 1
f

is bounded in a neighbourhood

of z0, as limzÑz0
1

|fpzq|
“ 0. Hence z0 is a removable singularity of 1

f
.

After removing the singularity, one obtains a holomorphic function g :“ 1
f

and gpz0q “ 0. If m is the order of the zero, gpzq “ pz´ z0qmhpzq, where

h is a holomorphic function with hpz0q ‰ 0. Hence pz ´ z0qmfpzq “

pz ´ z0qm
1

pz´z0qmhpzq
“ 1

hpzq
has a removable singularity at z0. (We

also see that the order of the pole is the order of the zero of 1
f

after the

singularity has been removed.)

Let z0 be an isolated singularity of a holomorphic function f .

There are three possibilities:

1. f is bounded in a neighbourhood of z0 and z0 is a removable

singularity.

2. limzÑz0 |fpzq| “ 8. Then z0 is a pole of f and there exist a

number m P N such that z ÞÑ pz´z0q
mfpzq has a removable

singularity at z0. The smallest such exponent m is the order

of the pole.

3. If none of the above holds, z0 is an essential singularity.

We will show: if there is a neighbourhood U0 of z0 such that fpU0ztz0uq

is not dense in C, then z0 is a removable singularity or a pole of f . By

assumption, there is a complex number w0 P C that is not a a limit

point of fpU0ztz0uq. Hence there is a ε ą 0 such that |fpzq ´ w0| ą ε

for all z P U0ztz0u. This implies that gpzq :“ 1
fpzq´w0

is holomorphic on

U0ztz0u and bounded. Hence g has a removable singularity at z0 by the

Riemann’scher Hebbarkeitssatz. Hence fpzq “ 1
gpzq

`w0 has a removable

singularity at z0 or a pole by the Theorem of the 3 types of isolated

singularities (depending on whether limzÑz0 gpzq ‰ 0 (removable) or

not (pole)).

If z0 is an essential singularity of a holomorphic function f on

U , then the set of values that f takes on any open neighbour-

hood of z0 is dense in C.
Great Picard: In any neighbourhood of an essential singularity, a ho-

lomorphic function takes all values in C or all values in C except for

one.

Whereas for poles, where the function values tend to infinity when ap-

proaching a singularity, near an essential singularity, the set of values of

the function is dense, that is, no matter how small a neighbourhood of

the singularity we choose, we can come arbitrarily close to any complex

number. In a sense, any small neighbourhood of the essential singularity

gets splatted over the whole complex plane.

Let U Ă C be an open subset. A function f is holomorphic

on U except for isolated singularities if f is holomorphic on

UzS for some subset S Ă U and all points in S are isolated

singularities of f . If all points in S are removable singulari-

ties or poles, then f is holomorphic on U except for poles or

meromorphic.

The meromorphic functions on Ĉ are precisely the rational

functions.

Let f be holomorphic on U and let z0 be an isolated singularity

of f or a just z0 P U . The order of f at z0 is ordpf, z0q :“

sup
!

m P Z : z ÞÑ fpzq
pz´z0qm

has rem. sing. at z0

)

P Z Y t˘8u
with the convention suppZq “ 8 and suppHq “ ´8.

Consistency of the Definition: if ordpf, z0q “ m ě 0, then f has at most a

removable singularity at z0. After removing the singularity (if necessary),

f has a zero of order m at z0. If ordpf, z0q “ m ă 0 and m ‰ ´8, then f

has a pole of order ´m ą 0. If ordpf, z0q “ ´8, then f has an essential

singularity at z0.
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A Laurent series with centre z0 is a series of the form
ř8

k“´8 akpz ´ z0q
k. More precisely, a Laurent series is

composed of two ordinary series: the nonsingular part
ř8

k“0 akpz´z0q
k and the principal part

ř8

k“1 a´kpz´z0q
´k “

ř´1
k“´8 akpz´z0q

k. If both series converge, then
ř8

k“´8 akpz´

z0q
k also denotes the sum of the limits.

One can differentiate and integrate Laurent series term by

term.

Let f be holomorphic on some domain U . Then 8 P Ĉ is an

isolated singularity of f if there is a number R ě 0 such that

tz P C : |z| ą Ru Ă U (equivalently: if C zU is bounded and

hence compact).
Motivation. To classify the isolated singularities at 8, note the followi-

ng. If z0 P C˚ is a removable singularity, a pole of order m or a essential

singularity of f , then 1
z0

is a singularity of the same type of the function

gpzq :“ f
`

1
z

˘

.

If 8 is an isolated singularity of a holomorphic f , then we say that f

has a removable singularity / pole of order m / essential singularity at

8 if z ÞÑ f
`

1
z

˘

has a removable singularity / pole of order m / essential

singularity at 0.

Let z0 P C and let f be holomorphic on the annulus A :“ tz P

C : r ă |z´ z0| ă Ru for 0 ď r ă R ď 8. If z P C is such that

r ă ρ1 ă |z ´ z0| ă ρ2 ă R, then

fpzq “
1

2πi

¨

˚

˝

ż

|z´z0|“ρ2

fpuq

u´ z
du´

ż

|z´z0|“ρ1

fpuq

u´ z
du

˛

‹

‚

If the Laurent series
ř8

k“´8 akpz ´ z0q
k converges on the

domain tz P C : r ă |z ´ z0| ă Ru and represents a holomor-

phic function f there, then an “
1

2πi

ş

|z´z0|“ρ

fpzq
pz´z0qn`1 dz for

all n P N and any ρ P pr,Rq.

Assume z0 “ 0. As we can integrate Laurent series term-by-term,

for ξ P p0, Rq we get
ş

|z|“ξ

fpzq

zn`1 dz “
ş

|z|“ξ

ř8
k“´8 ak

zk

zn`1 dz “

ř8
k“´8 ak

ş

|z|“ξ

zk´n´1 dz, so every summand except the n-th one va-

nishes and we get
ş

|z|“ξ

fpzq

zn`1 dz “ 2πian.

Function elements pf, Uq and pf̃ , Uq are analytic continuations of each

other, if there exists a finite sequence pf, Uq “ pf1, U1q, pf2, U2q, . . .,

pfn, Unq “ pf̃ , Ũnq of function elements such that pfj , Ujq and pfj , Uj`1q

are direct analytic continuations of each other for all j P t1, . . . , n´ 1u.

In this case we say that pf̃ , Ũq is an analytic continuation of pf, Uq along

the sequence of domains U1, . . . , Un.

This defines an equivalence relation on the set of function elements, where

pf, Uq „ pf̃ , Ũq if and only if pf, Uq and pf̃ , Ũq are analytic continuations

of each other.

An equivalence class of „ as described above is a global analytic func-

tion. A function element of an equivalence class is a branch of the global

analytic function.

A function element is a pair pf, Uq consisting of a domain

U Ă C and a holomorphic function f on U .

Function elements pf, Uq and pf̃ , Ũq are direct analytic con-

tinuations of each other if U X Ũ ‰ H and f ” f̃ on U X Ũ .

This definition of direct analytic continuation is inherently symme-

tric.

Let γ : rt0, t1s Ñ C be a continuous curve. A function ele-

ment pf̃ , Ũq is an analytic continuation of a function ele-

ment pf, Uq along γ if there is a family of function elements

ppft, UtqqtPrt0,t1s such that

1. pft0 , Ut0q “ pf, Uq and pft1 , Ut1q “ pf̃ , Ũq,

2. γptq P Ut for all t P rt0, t1s (In particular, γpt0q P U and

γpt1q P Ũ .) and there exists a ε ą 0 such that for each

t1 P rt0, t1s with |t ´ t1| ă ε we have γpt1q P Ut and ft1

agrees with ft on Ut X Ut1 .

Let f be an entire function and pg, Uq be a function element

such that fpgpzqq “ z for all z P U . If pg̃, Ũq is a analytic

continuation of pg, Uq, then fpg̃pzqq “ z for all z P Ũ .
The general case follows directly from the special case that pg̃, Ũq is a

direct analytic continuation of pg, Uq, because any non-direct analytic

continuation is a sequence of direct analytic continuations and if the

property of being a local inverse of f is preserved from one direct conti-

nuation to the other, then it is preserved for all steps. So assume pg̃, Ũq is

a direct analytic continuation of pg, Uq, that is U X Ũ ‰ H and g ” g̃ on

U X Ũ . Hence for z P U X Ũ we have fpg̃pzqq “ fpgpzqq “ z. So f ˝ g and

the identity function z ÞÑ z agree on U X Ũ Ă Ũ . By Identity Theorem

for Holomorphic Functions f ˝ g̃ and z ÞÑ z agree of the domain Ũ .

If the derivative pf 1, Uq of a function element pf, Uq can be

analytically continued along a curve γ : rt0, t1s Ñ C, then

pf, Uq can be analytically continued along γ.

Suppose there is a finite family pf, Uq “

pf p0q, U p0qq, pf p1q, U p1qq . . . pf pnq, U pnqq “ pf̃ , Ũq such that

1. pf pjq, U pjqq and pf pj`1q, U pj`1qq are direct analytic conti-

nuations of each other for every j P t0, . . . , n´ 1u,

2. there is a subdivision t0 “ τ0 ă τ1 ă . . . ă τn “ t1 such

that γpτjq P U
pjq for all j P t0, . . . , nu and γprτj , τj`1sq Ă

U pjq Y U pj`1q for all j P t0, . . . , n´ 1u.

Then pf̃ , Ũq is an analytic continuation of pf, Uq along γ.
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Two curves c0, c1 : r0, 1s Ñ X in a topological space X are ho-

motopic (in X) if there exists a homotopy between them,

that is, a continuous map H : r0, 1s ˆ r0, 1s Ñ X for which

Hp¨, 0q “ c0 and Hp¨, 1q “ c1 as well as Hp0, ¨q “ c0p0q “ c1p0q

and hp1, ¨q “ c0p1q “ c1p1q (same starting- and endpoint).

A closed curve c : r0, 1s Ñ X is null homotopic if it is ho-

motopic to the constant curve at c1ptq “ cp0q “ cp1q.

Let f be a holomorphic function on U , γ : rt0, t1s Ñ U be a con-

tinuous curve in U , D0 Ă U be an open disk around γpt0q and

F0 be an antiderivative of f on D0 (which exists because f is re-

presented by a power series on D0). Let pF1, D1q be an analytic

continuation of pF0, D0q along γ (which exists by a Lemma becau-

se pF 10, D0q “ pf |D0 , D0q can be trivially continued along γ). Define

the integral of f along γ by
ş

γ
fpzq dz :“ F1pγpt1qq´F0pγpt0qq. The

RHS does not depend on any choice involved in the construction.

If γ is piecewise continuously differentiable, then the above integral

agrees with our original Definition.

Let X be a topological space and x0 P X a (base)point. A

curve c : r0, 1s Ñ X is a loop at x0 if cp0q “ x0 “ cp1q. Then

homotopy is an equivalence relation on the set of loops at x0.

The set of equivalence classes, π1pX,x0q, together with the

well-defined operation rc1c2s “ rc1src2s, where c1 and c2 are

loops at x0, is the fundamental group of X with base point

x0. The neutral element is the class of constant curves rx0s,

i.e. the set of null-homotopic loops at x0. The inverse of rcs is

rcinvs.

π1pX, yq depends on y if X is not path-connected.

The composition of c1, c2 : r0, 1s Ñ X with c1p1q “ c2p0q is

c1c2 : r0, 1s Ñ X, t ÞÑ

$

&

%

c1p2tq, for t P r0, 1
2 s,

c2p2t´ 1q, for t P r 12 , 1s.

The inverse of a curve c : r0, 1s Ñ X is the curve cinv : r0, 1s Ñ

X, t ÞÑ cp1´ tq.

Let c1, c2, c3 : r0, 1s Ñ X be curves with c1p1q “ c2p0q and

c2p1q “ c3p0q. Then pc1c2qc3 is homotopic to c1pc2c3q.

Let U Ă C be a domain and let pf0, U0q be a function element,

z0 P UXU0 and suppose pf0, U0q can be continued analytically

along every curve in U starting at z0. If c and c̃ are homotopic

curves starting at z0 and pf1, U1q and pf̃1, Ũ1q are analytic

continuations of pf0, U0q along c and c̃ respectively, then f1

and f̃1 agree in some open neighbourhood of z1 :“ cp1q “ c̃p1q.

Corollary: If f is holomorphic on U Ă C and c1 and c2 are

homotopic curve in U , then
ş

c1
fpzqdz “

ş

c2
fpzqdz. In parti-

cular,
ş

c
fpzqdz “ 0 if c is null homotopic.

Let X be a nonempty path-connected topological space, e.g. a

domain. Then the following are equivalent:

1. Every closed curve c : r0, 1s Ñ X is null homotopic in X.

2. For every x0 P X, π1pX,x0q “ t1u.

3. There is a point x0 P X such that π1pX,x0q “ t1u.

4. Any curves c1, c2 : r0, 1s Ñ X with c1p0q “ c2p0q and

c1p1q “ c2p1q are homotopic.

If one of the above statements hold, X is simply connected.

If B is some set, then one can define the free Abelian group

generated by B as the group pZpBq,`q, where ZpBq is the set

of functions B Ñ Z (mapping a shopping item to its multipli-

city), which are zero for all but finitely many elements and `

means pointwise addition.

The confusing part: interpret an element b0 P B also as the

characteristic function ϕb0 : B Ñ Z, with ϕb0pbq “ 1 if b “ b0

and 0 else. Then we can write any element in the free Abelian

group generated by B as a finite ”formal”linear combination
řk
j“1 njbj for pnjq

k
j“1 Ă Z.

A 1-chain c in an open set U Ă C is a formal linear combina-

tion c “ n1d c1‘ . . .‘nkd ck of curves cj : r0, 1s Ñ U , where

nJ P Z for j P t1, . . . , ku. The Abelian group of 1-chains in

U is C1pUq.

For a holomorphic function f on U , the integral of f along c

is
ş

c
fpzqdz :“

řk
j“1 nj

ş

cj
fpzqdz.

The winding number or winding index of a closed curve

γ : r0, 1s Ñ C around a point z0 P C zγpr0, 1sq is νγpz0q :“

Indγpz0q :“ 1
2πi

ş

γ
1

z´z0
dz P Z.

The winding number Indγ is constant on connected com-

ponents of C zγpr0, 1sq.

For z0 P C zγpr0, 1sq, the winding number depends continuously on z0

and takes integer values. Hence it is constant on connected components

of its image. To see continuity, note that
ˇ

ˇ

ˇ

1
z´z0

´ 1
z´z1

ˇ

ˇ

ˇ
“

|z0´z1|
|z´z0||z´z1|

and that 1
|γ´z0||γ´z1|

is bounded on r0, 1s.

A 0-chain in U is a formal linear combination
Àk

j“1 nj d zj

of points pzjq
k
j“1 Ă U with integer coefficients pnjq

k
j“1 Ă Z.

The Abelian group of 0-chains in U is C0pUq.

The boundary map B : C1pUq Ñ C0pUq is the group ho-

momorphism, where the 1-chain
Àk

j“1 nj d cj is mapped to

Bc :“
Àk

j“1 nj ‘
`

cjp1q a cjp0q
˘

.

A 1-chain c is closed if Bc “ 0. A cycle is a closed 1-chain.

The support |c| of a 1-chain in U is
Ťk

j“1
nj‰0

cjpr0, 1sq Ă U .
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A cycle c in an open set U Ă C is zero homogolous in U if

Indcpzq “ 0 for all z P C zU .

The winding number of a cycle c in C around a point z0 P

C z|c| is Indcpz0q “
1

2πi

ş

c
1

z´z0
dz P Z.

Let f be a holomorphic function on U Ă C, let a P U and let

c be a cycle in Uztau that is zero-homologous in U . Then

1

2πi

ż

c

fpzq

z ´ a
dz “ Indcpaq ¨ fpaq.

Let U be a domain in C and c be a cycle in U . The following

statements are equivalent.

1. c is zero homologous in U

2.
ş

c
fpzqdz “ 0 for all holomorphic functions f on U .

1. Suppose the holomorphic function f has an isolated singu-

larity at z0 (or is holomorphic at z0, too). The residue of

f at z0 is

Resz0pfq :“
1

2πi

ż

|z´z0|“ε

fpzqdz,

where ε ą 0 is so small that tz P C : 0 ă |z´ z0| ď εu Ă U .

2. Equivalently, if the Laurent series around z0 representing

f is
ř

kPZ akpz ´ z0q
k, then Resz0pfq “ a´1.

Let K Ă C be a compact set. A cycle c bounds K if |c| Ă BK

and if

Indcpzq “

$

&

%

1, if z P K̊,

0, if z R K.

Let f holo on U except for a set S Ă U of isolated singularities

and c a 0-homologous cycle in U with |c| X S ‰ H.

1

2πi

ż

c

fpzqdz “
ÿ

aPS

IndcpaqResapfq,

where the sum is finite because Indcpaq ‰ 0 only for finitely

many a P S.

Corollary: If c bounds a compact subset K Ă U , then

1

2πi

ż

c

fpzqdz “
ÿ

aPSXK̊

Resapfq.

Let f be meromorphic on U Ă C and c be a cycle that bounds

a compact set K Ă U such that BK doesn’t contain any zero

or poles of f . Then

1

2πi

ż

c

f 1pzq

fpzq
dz “ Z ´ P,

where Z is the number of zeros of f in K̊ and P the number of

poles, each counted with multiplicity according to their order.
Proof: Apply Residue Theorem to f 1

f
, as Resp f

1

f
, zq “ ordpf, zq.

If f has a poles of order 1 at z0, then limzÑz0pz ´ z0qfpzq “

Resf pz0q.

If f “ g
h , where h has a simple zero at z0 and gpz0q ‰ 0, then

f has a first order pole at z0 and Resf pz0q “
gpz0q
h1pz0q

.

If f has a pole of order n at z0, then

Resf pz0q “ a´1 “ lim
zÑz0

1

pn´ 1q!

ˆ

d

dz

˙n´1 „

pz ´ z0q
nfpzq



.



Lemma w/o proof

Dog on a leash

Complex Analysis I

Theorem w/ proof
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Let γ be a closed curve bounding a compact region K Ă U

and f and g be holomorphic functions on U such that |gpzq| ă

|fpzq| for all z P |γ|. Then f and f ` g have the same number

of zeros (counted with multiplicities) in K̊.

Since the functions have no poles, the numbers of zeros are winding

numbers of c1 :“ f ˝γ and c2 :“ f ˝γ` g ˝γ around 0 (by zero and poles

counting integral thm). But since |c1 ´ c2| “ |g ˝ γ| ă |f ˝ γ| “ |c1|, the

winding numbers are equal by the Dog-on-a-leash Lemma.

Let c1, c2 : r0, 1s Ñ C be two closed curves and z0 P C zp|c1| Y
|c2|q Furthermore assume that for all t P r0, 1s:

|c1ptq ´ c2ptq| ă |c1ptq ´ z0|. (1)

Then Indc1pz0q “ Indc2pz0q.

Let pfnqnPN be a sequence of holomorphic functions on U that converges

uniformly on compact sets to the function f . Then f is also holomorphic on

U and the sequence pf 1nqnPN converges uniformly on compact sets to f 1.

We show that
ş

B∆
fpzq dz “ 0 for every closed triangular region

∆ Ă U . By Cauchy’s Theorem and uniform convergence
ş

B∆
fpzq dz “

ş

B∆
limnÑ8 fnpzq dz “ limnÑ8

ż

B∆

fnpzq dz
looooooomooooooon

“0

“ 0. Cauchy’s integral formu-

la for the derivative yields |f 1npzq ´ fpzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1
2πi

ş

|u´z0|“r

fnpuq´fpuq

pu´zq2
du

ˇ

ˇ

ˇ

ˇ

ˇ

ď

�2πr
�2π

maxt|fnpuq´fpuq|:|u´z0|“ru

mint|u´z|2:|u´z0|“ru
“ r

|r´|z´z0||
2 max uPC:

|u´z0|“r
|fnpuq ´ fpuq|,

where z0 P U and r ą 0 are chosen such that |z ´ z0| ă r and tu P C :

|u´ z0| “ ru Ă U ,

A sequence pfn : U Ñ CqnPN of functions converges uni-

formly on compact sets to a function f : U Ñ C if one of

the following conditions is satisfied.

• For any compact subset K Ă U , we have fn Ñ f uniformly

on K.

• pfnqnPN converges locally uniformly to f , that is, for

any z0 P U , there exists an open neighbourhood on which

fn Ñ f converges uniformly.

A sequence pfn : U Ñ CqnPN is locally bounded if every z0 P

U has an open neighbourhood U0 so that there is a number

m P R for which |fnpzq| ďM for all z P U0 and n P N.

Suppose a P C and pfnqnPN is a sequence of holomorphic func-

tions on U that converges uniformly on compact sets to the

function f . Suppose further that each function fn takes the

value a at most m times (counting multiplicities). Then f ta-

kes the value a at most m times (counting multiplicities) or f

is constant.

Corollary: The limit function of a sequence of injective holo-

morphic functions than converges uniformly on compact sets

is also injective or constant.

Use Rouche’s Theorem.

Two domains U and Ũ in C are biholomorphically or confor-

mally equivalent if there is a bijective holomorphic function

f : U Ñ Ũ .

(In this case f´1 is also holomorphic.)

By Liouville, C and D aren’t conformally equivalent, while

D and H are (as there is a Möbius transformation between

them).

Every locally bounded sequence of holomorphic functions has

a subsequence that converges uniformly on compact sets.

First we prove: A locally bounded sequence of holomorphic functions

pfn : U Ñ CqnPN is locally equi-Lipschitz-continuous.

If pfn : U Ñ CqnPN is a locally bounded sequence of holomorphic functi-

ons, which converges pointwise on a dense subset A Ă U , then pfnqnPN
converges uniformly on compact sets.

Every nonempty simply connected domain U ( C is confor-

mally equivalent to the open unit disk D.

Two Riemann maps U Ñ D differ by post-composition with a Möbius

transformation mapping D onto D.

Preparatory Lemma: if U Ă C is a simply connected domain and 0 R U ,

then there exists an injective holomorphic function ρ on U such that

pρpzqq2 “ z for all z P U .

Proof idea: F :“ tf : U Ñ C : f is holomorphic, injective, fpUq Ă

D, fp0q “ 0u. Claim. There exists a function f P F for which |f 1p0q|

is maximal among functions in F . This is a biholomorphic map onto D.


