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A function f: U — C is complex differentiable in zg € C if it
is differentiable in the real sense and one (and hence both) of

the following two conditions hold:

e The derivative d., f: R? — R? is C-linear as a map on C.

o The CAUCHY-RIEMANN differential equations % = Z—Z and
u —g—“ hold in zg.
ox Y

In this case we have f'(zo) = 2%(z) + i%(zo).

ox

Holomorphic functions with nonvanishing derivative are confor-
mal, that is, angle-preserving.
For an invertible R-linear map F: R? —» R? TFAE

1. F preserves angles.

2. F preserves orthogonal angles: if z and w are orthogonal, then
F(z) and F(w) are also orthogonal.

3. F is C-linear (that is, F(iz) = iF(z) for all z € C) or F is
C-antilinear (that is, F(iz) = —iF(2)).

A real differentiable map on a domain is holomorphic if its derivati-

ve in the real sense is everywhere angle and orientation preserving.

A Mobius transformation is a function f(z) = %£% where

cz+d’
a,b,c,d e C are such that ad — bc # 0.
We can (but do not need to) require that ad — bc = 1. Then

the MOBIUS transformation determines the coefficients up to

a global sign change, i.e. a factor of +1.

Our way out of this is to consider the MOBIUS transformations
as functions from C to C instead of from C to C by defining:
(if c #0) f(—2) := o0 and f(o0) = £ and f(o0) = 0 if ¢ = 0.

The MOBIUS transformations form a group of bijective func-

tions from C to C under composition.

The cross-ratio of four points 2z1,29,23,24 € C is

Z1—Z2 Z3—Z24

= —24_ If one of the points is oo, this
2723 24—Z21

cr(z1, 22, 23, 24) =
is supposed to be evaluated by cancelling infinities.

The cross-ratio of four points 21, 29, 23,24 € C is real if and
only if the four points lie on a MOBIUS circle.

For f € Mob and 21, 22, 23,24 € C we have cr(z1, 22, 23, 24) =
cr(f(z1), f(22), f(23), f(24)). Conversely, MOBIUS are the
only transformation that preserve the cross ratio: if
cr(z1, 29, 23, 24) = cr(wy, wa, w3, wy), there there exists a f €
Mob with f(z;) = w; for j € {1,...,4}.

Let U = C be any subset, f: U — C be continuous. If
v: [to,t1] — U is only piecewise continuously differentia-
ble, i.e. if there is a subdivision to = 70 < 74 < ... <
Tn = t1 such that v € C([to,t1]) is continuously differentia-
ble on [1j,7j1] for j € {0,...,n — 1}, then § f(2)dz :=
Z?;Ol §  f(2)dz. If v: [to,t1] — U be a continuously

’yl[TjsTj+1]

differentiable curve, then the (contour) integral of f along v
is § f(2)dz = §,) F((8)'(¢) dt.

Let U < C be an open subset and zg € U. A function f: U —
C is (complex) differentiable on U if the limit

lim M = f'(z0) e C.

zZ—20 zZ— 20
exists. In that case, f'(zq) is the derivative of f at zo. If f
is differentiable for all zy € U, then it is holomorphic or
(complex) analytic. A holomorphic function on C is an entire

function.

A function f defined on an open subset U < C that satisfies
the LAPLACE equation Af = 0 is a harmonic function.

On a simply connected domain U < C, every harmonic func-

tion is the real part of a holomorphic function.

Let f: U — C be holomorphic and h: f(U) — R harmonic.
Then h o f is harmonic.

The RIEMANN sphere (or: extended complex plane)
C == Cu{w}

is the complex plane C with the extra point oo added.

The point o corresponds to the north pole of S? under stereo-
graphic projection. The stereographic projection is a bijective
map from S? to C. Since S? has a topology induced by the
ambient R3, the stereographic projection induces a topology
on C.

If 21,29,23 € C are three points and wy, wo, w3 € C are three
points, then there is a unique MOBIUS transformation f satis-
fying f(z;) = w; for i € {1,2,3}.

Existence. Let g and h be the MOBIUS transformations sending z1, z

w1, wa, ws to 0,1 and o respectively. Then f := hto g satisfies f(z;) = w;
for i € {1, 2, 3}.

Uniqueness. 1. Suppose f € Méb and f(z;) = z; for i € {1,2,3}. Then
f = id. Indeed let g € M&b be the map with g(z1) = 0, g(z2) = 1 and
g(z3) = 0. Then h := go fog ' e Mdob satisfies h(0) = 0, h(1) = 1,
h(o0) = o0. By previous Lemma, h = id and thus f =g lohog=id.

2. Suppose fi1 and f2 are MOBIUS transformations with f;(z;) = w;, @ €

{1,2,3}, j € {1,2}. Then /;‘ o f1 € Méb fixed z1, 22, 23, so by the previous
step, /_Tl o f1, hence fo = f1.

The MOBIUS transformations that map the unit disk
D:={zeC:|z| <1}

onto itself are precisely the MOBIUS transformations of the

form
f(z) = eie =2
where zp € D and ¢ € R/27Z.
The MOBIUS transformations f(z) = 2% with f(H) = H

cz+d
are characterised by a,b,c,d € R and ad — bc > 0.

1—7Z2’
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Let f be a holomorphic function on U c C, let Q < C be a closed rectangular
region, let v be a C! parametrisation of its boundary and let ®: W — C be
a continuously differentiable map on some domain W containing @ with
®(Q) c U. Then Sqmn{ f(z)dz =0.

‘We construct a sequence of rectangles Q D Q1 D Q2 D ...
A\'(\_\ﬂv f(z)dz| < 4k ‘S(I f(2)dz| with v, = 0Q) and v = 0Q. But now

we need to estimate diam(®(Qr)) and len(® o ;). To this end, we observe

as before with

that since ® is a C' function, d® is continuous on the compact set Q, so
there exists a C > 0 s.t. |[d®.| < C for all z € Q. Hence diam(®(Qy)) <
Cdiam(Qy) = c27F diam(Q) and length(® o v,) < Clen(yg) = c27Fk,

Let € > 0 and let zg be the image of the point contained in ﬁ,‘,eﬂ Qr € U under
®. Choose § > 0 so small that |R.,(z)| < €|z—z0] holds for all z with |z—zg| <
§ but now choose k € N large enough that c27F diam(Q) < ¢ holds, we have

Spory f(2)dz| < 4k anay. f(z)dz < 4F2=E=77FC? len() diam(Q) - e.

(D) We show: for € > 0,

§ f(2)dz| < e. Since f is holomorphic on U, for any z € U we

) Rzq (2) )
have f(z) = f(z0) + f/(20) - (= = 20) + Rz (), W/ limz—z #jﬁ = 0 (%). Since
z = f(20)+ f'(20) - (2 — zg) is entire and thus has a global antiderivative, its integral along
the closed curve v is zero by the FTOC. Therefore §, f(z)dz = {, Rz, (z)dz.

@ Let € > 0. Divide Q into four equal subrectangles Q1,...,Q4q and let Q1 be that
subrectangle for which the integral along the boundary, ~1, is largest in absolute value.

<
5y £ as] < af ) £
tangles and let Qg be the rectangle for which the integral along the boundary o is the

Now subdivide the rectangle Qp into four equal subrec-

largest. Continuing this process we obtain a infinite sequence of rectangles Qj, and boun-

— 4k ‘S% Rag(2)dz|. N, Qp = {20}

dary curves vp s.t. )S’Y f(z) dz‘ < 4k ‘S'ch f(z)dz

@ |1, Rz ()0

0 s.t. [Rzg(2)| < &lz — zg| for all = with |z — 29| < &, where & i=

< len(vg) - supLeq, |Rzq (2] len(vg) = 27 Flen(y). By (»), 35 >

£
Ten(7) diam(Q) *
Choose k € N so large that diam(Qy) = 27 diam(Q) < &, then supzeq, IRzg (2) <

£suPzeQy |z — zg| < ediam(Qg) = ¢ - 2~k diam(Q).
i, £(2) dz| < 4Bz len(y) - £-27F - diam(Q) = len(7) - £ - diam(Q) = <.

Two closed curves a, 3: [0,1] — C are freely C*-homotopic
in U < C (U only needs to be a subset) if there is a C'-
function H: [0,1]*> — U such that H(0,:) = o, H(1,-) = B
and H(-,0) = H(-,1).

If o, B: [0,1] — C are freely C'-homotopic curves in U and f
is holomorphic on U, then {_ f(2)dz = {; f(2)dz.

We apply CAUCHY’s Theorem for C'-images of rectangles. The image of
the boundary of [0,1]? under H is the curve « traced in the opposite
direction, a segment connecting it to 3, the curve 8 and the segment

traced in the other direction.

Let f be holomorphic in the domain U < C, which contains
the closed disk
{zeC:|z—2| <r}

for zy € C. Then for every point in the interior of this disk,

i.e. every a € C with |a — 2| <7,

fla) = 1 f /(z) dz.

273, z—a
|z—z0|="7

If f is holomorphic on a domain containing the closed disk

with centre zg and radius r, then

1 27
it
f(z0) = — f(zo0 + re*) dt.
2w 0
With the parametrisation z = zo + re't for ¢t € [0,27] and using
CaucHY’s Formula for a = zp we obtain f(zg) = 2{]. | % dz =

127 _f(zotre't) AT . 1 (27 g it
2”/ Jo /“{*()77’{ . / pedz 27 So" f(z0 +re t.

Let @ < C be a closed rectangular region with sides parallel
to the real and imaginary axes and let v be a piecewise C*
parametrisation of the boundary of @) with orientation like

here:

If f is holomorphic on U > @, then Sw f(z)dz = 0.

If f is holomorphic on U and + is the boundary curve of a triangular
region that is contained in U, then S,Y f(z)dz = 0.
Apply CAUCHY’s theorem for C! images of rectangles to

®:[0,1]> > U, (s,t) > (1—1t)((L—s)A+sB)+t((1—s)A+sC).

If f is holomorphic on U and < is the boundary circle of a closed disk
that is contained in U, then S,Y f(z)dz = 0.
Let zg € U be the centre and r > 0 the radius of the closed disk. Apply

CAUCHY’s theorem for C! images of rectangles to
®: [0,27] x [0,r] > U, (s,t)— 2o+ te*®

A single point does not contribute to the integral and the two paths

cancel each other out.

Two curves a, 3: [0,1] — C are C'-homotopic in U < C if 3
C'-function H: [0,1] — U, called homotopy, such that

o H(0,t) = «alt), H(1,t) = B(¢t) for all t € [0,1],
e H(s,0) = a(0) = 3(0), H(s,1) = a(1) = B(1) Vs € [0,1],
If a,3:[0,1] — C are C'-homotopic curves in U and f is

holomorphic on U, then §_ f(z)dz = {, f(2) dz.

Choosing ® = H, CAUCHY’s theorem for C! images of rectangles implies

§,f(z)dz =, f(z)dz = 0.

If two nested (that is, one is contained in the other and they
don’t intersect) circles with centres zg and z; and radii r¢ and
ry are contained in U together with the region between them,

then for all holomorphic functions f on U we have

L_ZO_TD f(z)dz = L_Zl_rl () dz.

A special case occurs if zg = 21, and then the concentric circles

in U bound an annulus in U.
This is a special case of CAUCHY’s Theorem for freely C'-homotopic cur-

ves.

Choose & > 0 so small that Bg(a) < Bp(zg9). By Cauchy’s Theorem for Annuli,

§ongl=r 2E) q: = . o= 222z, () because the integrand is nevertheless ho-
lomorphic on the annulus (not containing a) bounded by the circles |z — zg| = = and
|z—a| = € as it is the quotient of two holomorphic functions. We have S\z—a\:s ﬁ(,za? dz =

fla)+f(z)—f(a)
S|z—a\=5 z—a dz

f(a) f(2) — f(a)
— — 1 =
= J- Cale — dz+f i — dz. A = f(a)x\z—a\zs g dz =
|z—a|=e z —a |z—a|=e z—a
=1A =:B

f(a) S%’r ji}é’){dt = Sgﬂ' i = 2mi. using the parametrisation v(t) = a + celt.

+ ({
It remairfs to sifow that B = 0. Note that B does not depend on & as long as € > 0 is

small enough: one can immediately see this from CaucHy’s theorem for annuli with con-
centric circles because if we change ¢ then we get the same result. Hence it is enough
f(z)—f(a) _ f(z)—f(a) —

— dz = 0. We have X|z—a|=€ — dz =

to show that limg\ g X|z—a|=€

it 5 .
2™ flatee’™)=f(a) i;,g’{dt = 27 f(a+ cet)y — f(a) dt. Since f is continuous at a,
4 —_—

=:the(t)
1“"5\0 he(t) = 0 wuniformly in t € [0, 27], because continuous functions on compact sets

are uniformly continuous. Hence lim g §3™ he(t) dt = 0.
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Let f be a holomorphic function on U. For zy € U there exists
a unique power series f(2) = 37 cr(z — 20)* with positive con-
vergence radius representing f in some neighbourhood of zg. The

coefficients ¢ are determined by CAUCHY’s coefficient formula
1 S f(z)

2mi (z—zg)F+1
|5—20l=r

to be small enough such that {z: |z — 20| < r} < U.

ck = dz, where the only condition on r is

The radius of convergence is not smaller than the radius of the

largest open disk around z¢ contained in U.

Since power series are differentiable and their derivatives are again power
series, we get (GOURSAT): every holomorphic function is arbitrarily often
complex differentiable, in particular it is C* in the real sense.

Under the same conditions as in CAUCHY’s Integral Formula

for f(a), we have

! f
FP(a) = i lez[)|=r e _(:))kﬂ' dz.

By the Power Series Expansion Theorem, f(z) = Y/_,ck(z — 20)F in

some open disk around zg and we have two equations for the coefficients:

fF (z0) 1 J f(2)
N (

Cp = - ; —————dz.
k! 27 2z — zp)k+1

Let U be a domain and let zg € U be a zero of order k € Nu
{oo}. Then either (k = o0 and f = 0) or there is a holomorphic
function g: U — C such that g(zp) # 0 and

f(2) = (2= 20)"g(2).

In particular, zeros of finite order are isolated (x € S is isolated
in S < C if there exists a neighbourhood of = in C that doesn’t

contain any other points of S.).

Let f be a holomorphic function on U, let f(z9) = 0 and
n = ord(f,20) < c0. Then there is an open neighbourhood
Up of zy and an biholomorphic function h on Uy such that
h(zp) = 0 and fly, = h™.

In particular, the function f takes any non-zero value w €
f(Up) exactly n times in Up.

If f is holomorphic and nonconstant on a domain U, then |f]

does not attain a supremum on U.

Let z9 € U and wo = f(z9). As f(U) is open by the Open Mapping
Theorem, it contains an open disk of radius € > 0 around wg which is

not contained in the closed disk {w € C : |w| < |wp|}. Hence the e-disk

contains the point w1 = f(z1) with [f(z1)| = |w1| > |wol.

Let f be holomorphic on a domain U which is star-shaped
with respect to zg € U. Define

F:U - C, ZHJ f(u) du,
20

where we write Sz for the integral along the straight line seg-
ment from a to b parametrised by v(t) = a + t(b — a) for
t € [0,1]. Then F is an antiderivative of f, that is, F' is holo-
morphic and F' = f.

A bounded entire function (that is |f(z)] < M for all z € C) is

constant.

The function f is represented by a power series and we can choose 0 as
its centre: for all z € C we have

0

()= Y ot

k=0
By CaucnyY’s estimate for the coefficients we have

M
rk’

I“lc‘ <

for all » > 0, so ¢ = 0 unless k = 0.

The order or multiplicity of a zero zg € U of f is ord(f, zp) ==
min{k € N : f(®)(29) # 0} or ord(f, 20) = o0 if f*)(29) = 0 for
all ke N.

Let U be a domain and f1 and fo be holomorphic on U. If the
set M = {z € U : fi(z) = f2(2)} has an accumulation point
in U, then fl = f2.

The set M is the set of zeros of the holomorphic function f; — fa. If it has
an accumulation point in U, that is if there is a sequence (z;)jen € M
with limit in U, then that is a zero of infinite order as the set of finite
order zeros is isolated. Hence fi — fo = 0 by the Theorem of Isolated

Singularitities.

If f is holomorphic and not constant on a domain U, then

f(U) is also a domain.

The image f(U) is connected because it is the image of the connected
set U under the continuous function f.

Suppose wg = f(z9) € f(U). We have to show that f(U) contains an
open neighbourhood of wq. Since f is not constant, the function g(z) :=
f(2) = f(20) has a zero of finite order at zp. Hence there is an open
neighbourhood W of zp such that g takes any nonzero value in W at
least once. So f takes any value in the open neighbourhood f(z9) + W

at least once.
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If zp is an isolated singularity of a holomorphic function f: U — C, then
the following statements are equivalent.

1. The singularity zp is removable.

2. f is bounded in a neighbourhood of zo: there isae >0 and a M > 0
such that |f(z)| < M for all z € U with |z — z| < €.

3. We have lim (z — z9)f(z) = 0.
z—2z0

”@ E. @”: If zp is removable, then by Definition there exists a
holomorphic continuation f which is bounded in a neighbourhood of zg
because it is continuous. As f = ﬂL the statement follows.
”@ — @”: is clear by the normal rules of doing limits.

@ E. @”: more tricky.

We only have to prove that only at most one of the possibilities can hold,
since by construction of @ every isolated singularity must fall in one of
the three categories.

The statement @ holds by the RiIEMANN’scher Hebbarkeitssatz.

@: Suppose lim._, ., | f(2) !

= 00. Then i is bounded in a neighbourhood
! ‘

of zp, as lim, ., TEl = 0. Hence zp is a removable singularity of L

~

After removing the singularity, one obtains a holomorphic function g :=

=

and g(zo9) = 0. If m is the order of the zero, g(z) = (z — z0)"™h(z), where
h is a holomorphic function with h(zp) # 0. Hence (z — z0)™ f(z) =
Y M 1 _ 1 . Gnotlarit af ~ 7,
(z — 20) GC=E)RG) © R(D) has a removable singularity at zg. (We
also see that the order of the pole is the order of the zero of 1 after the

3

singularity has been removed.)

We will show: if there is a neighbourhood Ug of zo such that f(Up\{z0})
is not dense in C, then zg is a removable singularity or a pole of f. By
assumption, there is a complex number wo € C that is not a a limit

point of f(Uo\{z0}). Hence there is a & > 0 such that [f(z) — wo| > €

for all z € Up\{z0}. This implies that g(z) := m is holomorphic on
Uo\{z0} and bounded. Hence g has a removable singularity at zo by the
RIEMANN’scher Hebbarkeitssatz. Hence f(z) = q(%) +wo has a removable

singularity at zp or a pole by the Theorem of the 3 types of isolated
singularities (depending on whether lim._,., g(z) # 0 (removable) or

not (pole)).

Let U < C be an open subset. A function f is holomorphic
on U except for isolated singularities if f is holomorphic on
U\S for some subset S < U and all points in S are isolated
singularities of f. If all points in S are removable singulari-
ties or poles, then f is holomorphic on U except for poles or

meromorphic.

The meromorphic functions on C are precisely the rational
functions.

Let f: D — D be holomorphic with f(0) = 0. Then
L [f(0)] <1,
2. |f(2)] <.

If we have | f/(0)] = 1 or there is a point zg € D where | f(z0)| =
|z0|, then f is a rotation, that is f(z) = az for some a € C
with |a| = 1.

Let f be holomorphic on U. A point zg € C\U is a isolated
singularity of f if there is an open neighbourhood Uy of zg
such that Up n U = Up\{z0}, that is, there is an € > 0 such
that

{zeC:0<|z—2%| <e}cU.

An isolated singularity is ”point-shaped holein the domain of
definition.
An isolated singularity zo of f: U — C is removable if there

is a holomorphic function f on U U {2} (still open!) such that

f="flu.

Let zo be an isolated singularity of a holomorphic function f.

There are three possibilities:

1. fis bounded in a neighbourhood of zy and zg is a removable

singularity.

2. lim,, ., |f(2)| = o0. Then 2 is a pole of f and there exist a
number m € N such that z — (z—2)™ f(z) has a removable
singularity at zg. The smallest such exponent m is the order
of the pole.

3. If none of the above holds, z( is an essential singularity.

If 2z is an essential singularity of a holomorphic function f on
U, then the set of values that f takes on any open neighbour-

hood of 7y is dense in C.

Great PICARD: In any neighbourhood of an essential singularity, a ho-
lomorphic function takes all values in C or all values in C except for
one.

Whereas for poles, where the function values tend to infinity when ap-
proaching a singularity, near an essential singularity, the set of values of
the function is dense, that is, no matter how small a neighbourhood of
the singularity we choose, we can come arbitrarily close to any complex
number. In a sense, any small neighbourhood of the essential singularity
gets splatted over the whole complex plane.

Let f be holomorphic on U and let zg be an isolated singularity
of f or a just zg € U. The order of f at zy is ord(f,zo) =

supsmeZ:zw— (Zf(TZD))m has rem. sing. at zo} € Z v {+wo}
with the convention sup(Z) = o and sup(J) = —o0.

Consistency of the Definition: if ord(f, zg) = m > 0, then f has at most a
removable singularity at zg. After removing the singularity (if necessary),
f has a zero of order m at zg. If ord(f, z0) = m < 0 and m # —o0, then f
has a pole of order —m > 0. If ord(f, z0) = —o0, then f has an essential

singularity at zg.
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A Laurent series with centre zg is a series of the form
2120:—30 ax(z — z9)¥. More precisely, a LAURENT series is
composed of two ordinary series: the nonsingular part
Yoo ar(z—z0)* and the principal part Y, | a_p(z—20) 7% =
ax(z—

Z,:ifoo ax(2—20)*. If both series converge, then ;7

20)¥ also denotes the sum of the limits.

One can differentiate and integrate LAURENT series term by
term.

Let zp € C and let f be holomorphic on the annulus A == {z €
C:r<|z—20 <R} for0<r < R<o0. If e C is such that
r<p1 <|z— 2| < p2 <R, then

oy = ! f o f 1w

u—=z

Function elements (f, U) and (f, U) are analytic continuations of each
other, if there exists a finite sequence (f,U) = (f1,U1), (f2,U2), ...,
(fr,Un) = (f,Uy) of function elements such that (f;,U;) and (f;,Uj4+1)
are direct analytic continuations of each other for all j € {1,...,n —1}.
In this case we say that (f7 U) is an analytic continuation of (f,U) along
the sequence of domains Uy, ...,Uny.

This defines an equivalence relation on the set of function elements, where
(f,U) ~ (f,0) if and only if (f,U) and (f,U) are analytic continuations
of each other.

An equivalence class of ~ as described above is a global analytic func-
tion. A function element of an equivalence class is a branch of the global
analytic function.

Let ~: [to,t1] — C be a continuous curve. A function ele-
ment ( f, U ) is an analytic continuation of a function ele-
ment (f,U) along ~ if there is a family of function elements
((ft Ut))tefto,¢,] such that

L. (fto’Uto) = (f?U) and (ft1vUt1) = (fa U))

2. y(t) € Uy for all t € [tg,t1] (In particular, (o) € U and
y(t;) € U.) and there exists a ¢ > 0 such that for each
t' € [to,t1] with |t — /| < € we have «(¢') € U; and fy
agrees with f; on Uy n Uy.

If the derivative (f’,U) of a function element (f,U) can be
analytically continued along a curve 7: [tg,t1] — C, then
(f,U) can be analytically continued along ~.

Let f be holomorphic on some domain U. Then o € C is an
isolated singularity of f if there is a number R = 0 such that
{z e C: |zl > R} < U (equivalently: if C\U is bounded and
hence compact).

Motivation. To classify the isolated singularities at 00, note the followi-
ng. If z9 € C* is a removable singularity, a pole of order m or a essential
singularity of f, then % is a singularity of the same type of the function
9(z) = f(3).

If o0 is an isolated singularity of a holomorphic f, then we say that f
has a removable singularity / pole of order m / essential singularity at
0 if z +— f (%) has a removable singularity / pole of order m / essential
singularity at 0.

If the LAURENT series >, ax(z — 20)* converges on the

domain {z € C:r < |z — 29| < R} and represents a holomor-

. . _ 1 f(z)
phic function f there, then a, = 5= —aoynrr dz for
|z—zo|=p

all n € N and any p € (r, R).

Assume zp = 0. As we can integrate LAURENT series term-by-term,
for ¢ € (0,R) we get § :‘”(’f), dz = | Y . apsgrde =

|z|=¢ lz|=¢
2,/: o Ak \ zk=n=1dz, so every summand except the n-th one va-
lz]=¢
nishes and we get \ FG) qz = 2ria
shes & > get | ~71 dz = 27mian.

A function element is a pair (f,U) consisting of a domain
U < C and a holomorphic function f on U.

Function elements (f,U) and (f, U) are direct analytic con-
tinuations of each other if UnU # @ and f=f onUnU.

This definition of direct analytic continuation is inherently symme-

tric.

Let f be an entire function and (g,U) be a function element
such that f(g(z)) = z for all z € U. If (§,U) is a analytic
continuation of (g, U), then f(§(z)) = z for all ze U.

The general case follows directly from the special case that (g, lj') is a
direct analytic continuation of (g,U), because any non-direct analytic
continuation is a sequence of direct analytic continuations and if the
property of being a local inverse of f is preserved from one direct conti-
nuation to the other, then it is preserved for all steps. So assume (g, U) is
a direct analytic continuation of (g,U), that is U n U # & and g =g on
U nU. Hence for z € U n U we have f(§(z)) = f(g9(z)) = z. So fog and
the identity function z +— z agree on U N U < U. By Identity Theorem

for Holomorphic Functions f o § and z — z agree of the domain U.

Suppose  there is a finite family (f,U) =
(fO U@y, (O My, (f) UMy = (f,U) such that

1. (f9,U0) and (fU+D,UUFY) are direct analytic conti-

nuations of each other for every j € {0,...,n — 1},

2. there is a subdivision to = 19 <71 < ... < T, = t1 such
that v(7;) € UY) for all j € {0,...,n} and y([7},7j11]) <

UG UG+ for all j e {0,...,n —1}.

Then ( f,U ) is an analytic continuation of (f,U) along ~.
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Two curves cp, ¢1: [0,1] — X in a topological space X are ho-
motopic (in X) if there exists a homotopy between them,
that is, a continuous map H: [0,1] x [0,1] — X for which
H(-,0) =cpand H(-,1) = ¢; as well as H(0,-) = ¢¢(0) = ¢1(0)
and h(1,-) = ¢p(1) = ¢1(1) (same starting- and endpoint).

A closed curve ¢: [0,1] — X is null homotopic if it is ho-

motopic to the constant curve at ¢1(t) = ¢(0) = ¢(1).

Let X be a topological space and zy € X a (base)point. A
curve ¢: [0,1] — X is a loop at xg if ¢(0) = xg = ¢(1). Then
homotopy is an equivalence relation on the set of loops at xg.
The set of equivalence classes, m1(X, z¢), together with the
well-defined operation [c1ca] = [e1][c2], where ¢; and ¢y are
loops at xg, is the fundamental group of X with base point
2o. The neutral element is the class of constant curves [z],
i.e. the set of null-homotopic loops at zg. The inverse of [c] is
[c™v].

7m1(X,y) depends on y if X is not path-connected.

Let U < C be a domain and let (fo, Up) be a function element,
z0 € UnUp and suppose ( fo, Up) can be continued analytically
along every curve in U starting at zg. If ¢ and ¢ are homotopic
curves starting at zo and (f;,U;) and (f1, [71) are analytic
continuations of (fo,Up) along ¢ and ¢ respectively, then f;

and f1 agree in some open neighbourhood of z1 == c(1) = &(1).

Corollary: If f is holomorphic on U < C and ¢; and ¢y are
homotopic curve in U, then Scl f(z)dz = SCZ f(z) dz. In parti-

cular, §_ f(z)dz = 0if ¢ is null homotopic.

If B is some set, then one can define the free ABELIAN group
generated by B as the group (Z(P), +), where Z(®) is the set
of functions B — Z (mapping a shopping item to its multipli-
city), which are zero for all but finitely many elements and +
means pointwise addition.

The confusing part: interpret an element by € B also as the
characteristic function ¢p,: B — Z, with ¢4, (b) = 1if b = by
and 0 else. Then we can write any element in the free ABELIAN
group generated by B as a finite ”formal”linear combination
25:1 n;b; for (n;)%_, < Z.

The winding number or winding index of a closed curve
v:[0,1] — C around a point zo € C\y([0,1]) is vy(z0) =
Ind,(29) = 5= { —L-dz e Z.

21 Jy z—zo

The winding number Ind, is constant on connected com-
ponents of C\v([0,1]).

For zo € C\~v([0,1]), the winding number depends continuously on zg

and takes integer values. Hence it is constant on connected components
1 1 o lzo—21]

of its image. To see continuity, note that

—20 z—21 |z—z0||z—21

and that W is bounded on [0, 1].

Let f be a holomorphic function on U, v: [to,t1] — U be a con-
tinuous curve in U, Dy < U be an open disk around v(to) and
Fy be an antiderivative of f on Do (which exists because f is re-
presented by a power series on Dy). Let (F1,D;1) be an analytic
continuation of (Fy, Do) along v (which exists by a Lemma becau-
se (F§, Do) = (f|py, Do) can be trivially continued along ). Define
the integral of f along v by S'v f(z)dz == Fi(y(t1)) — Fo(y(t0)). The

RHS does not depend on any choice involved in the construction.

If ~ is piecewise continuously differentiable, then the above integral

agrees with our original Definition.

The composition of ¢1,ca: [0,1] —> X with ¢1(1) = ¢2(0) is

c1(2t), for ¢t € [0, 1],

crez: [0,1] = X, t—
(2t —1), fortel[z,1].

The inverse of a curve c: [0,1] — X is the curve ¢™: [0,1] —

X, t—c(l—1t).

Let ¢1,c2,¢3: [0,1] — X be curves with ¢;(1) = ¢2(0) and
¢2(1) = ¢3(0). Then (cicz)cs is homotopic to ¢q(eacs).

Let X be a nonempty path-connected topological space, e.g. a

domain. Then the following are equivalent:

1. Every closed curve ¢: [0,1] — X is null homotopic in X.
2. For every xg € X, (X, zo) = {1}.

3. There is a point o € X such that m (X, 29) = {1}.

4. Any curves cp,ce: [0,1] — X with ¢1(0) = ¢3(0) and
c1(1) = ¢2(1) are homotopic.

If one of the above statements hold, X is simply connected.

A 1-chain c in an open set U < C is a formal linear combina-
tion c =n1 O @...@npOc of curves ¢;: [0,1] — U, where
ny € Z for j € {1,...,k}. The ABELIAN group of 1-chains in
Uis C1(U).

For a holomorphic function f on U, the integral of f along c

is §, f(2)dz = 35 n, §, f(2)dz,

A 0-chain in U is a formal linear combination @?:1 n; © 2
of points (z;)%_; ¢ U with integer coefficients (n;)¥_, < Z.
The ABELIAN group of 0-chains in U is Cy(U).

The boundary map 0: C1(U) — Cy(U) is the group ho-
momorphism, where the 1-chain @?:1 n; © ¢; is mapped to

oc == @?:1 n; @ (¢;(1) ©¢(0)).

A 1-chain c is closed if dc = 0. A cycle is a closed 1-chain.
The support |¢| of a 1-chain in U is | J%=1 ¢;([0,1]) < U.
n; #0



DEFINITION

Winding number of a cycle

COMPLEX ANALYSIS I

THEOREM W/O PROOF

CAUCHY’s Integral Theorem (Winding

number / homology version)

CoOMPLEX ANALYSIS I

DEFINITION

Bounding cycle

CoMPLEX ANALYSIS I

THEOREM & COROLLARY W/O PROOFS

Residue Theorem

CoOMPLEX ANALYSIS I

EXAMPLES

Residue calculus

COMPLEX ANALYSIS I

DEFINITION

Zero homogolous cycle

COMPLEX ANALYSIS I

THEOREM W/O PROOF

CAUCHY’s Integral Formula (Winding

number version)

CoMPLEX ANALYSIS I

DEFINITION & THEOREM

Residue

CoMPLEX ANALYSIS I

Proor

Residue Theorem

COMPLEX ANALYSIS I

THEOREM W/O PROOF

Zero and pole counting integral

COMPLEX ANALYSIS I



A cycle ¢ in an open set U c C is zero homogolous in U if
Ind.(z) = 0 for all ze C\U.

Let f be a holomorphic function on U < C, let a € U and let
¢ be a cycle in U\{a} that is zero-homologous in U. Then
1 (/R

571 ) 2—a dz = Ind.(a) - f(a).

1. Suppose the holomorphic function f has an isolated singu-
larity at zo (or is holomorphic at zg, too). The residue of

f at zp is

1
2m

Res,, (f) : f(z)dz,

|z—z0|=¢
where € > 0 is so small that {ze C: 0 < |z—2| <e} cU.

2. Equivalently, if the LAURENT series around zq representing
fis Xes an(z — 20)*, then Res,, (f) = a_1.

Let f be meromorphic on U < C and ¢ be a cycle that bounds
a compact set K < U such that K doesn’t contain any zero

or poles of f. Then

LG,
omi ), fo) FTAP

where Z is the number of zeros of f in K and P the number of
poles, each counted with multiplicity according to their order.

Proof: Apply Residue Theorem to TT as N(\s(%. z) = ord(f, 2).

The winding number of a cycle ¢ in C around a point zg €
C\le| is Ind.(20) = 5= § - dz € Z.

27t Je z—=2p

Let U be a domain in C and ¢ be a cycle in U. The following

statements are equivalent.
1. cis zero homologous in U

2. SC f(2)dz = 0 for all holomorphic functions f on U.

Let K < C be a compact set. A cycle ¢ bounds K if |c| € 0K
and if
1, ifze IO(,

Ind.(z) =
0, ifz¢K.

Let f holo on U except for a set S < U of isolated singularities

and ¢ a 0-homologous cycle in U with |c| n S # .

1
211

J f(z)dz = ) Indc(a) Resq(f),
¢ aeS
where the sum is finite because Ind.(a) # 0 only for finitely
many a € S.
Corollary: If ¢ bounds a compact subset K < U, then
1
211

Jf(z)dz= Z Resq(f).

} aeSnK

If f has a poles of order 1 at zp, then lim,_,, (z — 20) f(2) =
Resy(zo).

If f =4, where h has a simple zero at zp and g(zp) # 0, then

f has a first order pole at zo and Resf(zg) = g,(é‘)o)).

If f has a pole of order n at zy, then

g (j) =0

Res¢(z0) = a—; = lim
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Let v be a closed curve bounding a compact region K < U
and f and g be holomorphic functions on U such that |g(z)| <
|f(2)| for all z € |y|. Then f and f + g have the same number
of zeros (counted with multiplicities) in K.

Since the functions have no poles, the numbers of zeros are winding
numbers of ¢; := fovy and c2 := foy+ go~ around 0 (by zero and poles
counting integral thm). But since |¢1 — c2| = |[go | < |f o] = |e1], the

winding numbers are equal by the Dog-on-a-leash Lemma.

Let (fn)nen be a sequence of holomorphic functions on U that converges
uniformly on compact sets to the function f. Then f is also holomorphic on
U and the sequence (f/,)nen converges uniformly on compact sets to f’.

We show that &‘A f(z)dz = 0 for every closed triangular region
A < U. By Caucny’s Theorem and uniform convergence _\'(.A‘/'(:)rl:: =
‘\‘INA limy, o frn(z)dz = lim,, [ fn(z)dz = 0. CAaucHY’s integral formu-
JOA
=0

. . . . . g - (u)—f(
la for the derivative yields |f; (z) — f(2)| = |55 § % du| <

lu—zgl=r "

. mz (w)=f(u)|:lu—zg|=" . )
24 max{|fn(u) {)tzf,\ lu—zgl=r} _ v S Max  yec Fo(u) — fu),
/ min{|u—z|2:|lu—zq|=r} r—|z—zg||2? =t E

) [u—zg|=7
where zp € U and r > 0 are chosen such that |z zo| < r and {u € C :
u—zo| =r}cU,

A sequence (f,: U — C)en is locally bounded if every 2 €
U has an open neighbourhood Uy so that there is a number
m € R for which |f,(2)] < M for all z € Uy and n € N.

Two domains U and U in C are biholomorphically or confor-
mally equivalent if there is a bijective holomorphic function
f:U—U.

(In this case f~! is also holomorphic.)

By LiouviLLE, C and D aren’t conformally equivalent, while
D and H are (as there is a MOBIUS transformation between
them).

Let ¢1,¢2: [0,1] — C be two closed curves and zg € C\(Je1| U
|c2]) Furthermore assume that for all ¢ € [0, 1]:

le1 () — ca(t)] < ler(t) — 2ol (1)

Then Ind,., (z0) = Ind,,(z0).

A sequence (fn: U — C)pen of functions converges uni-
formly on compact sets to a function f: U — C if one of

the following conditions is satisfied.

e For any compact subset K < U, we have f,, — f uniformly
on K.

e (fn)nen converges locally uniformly to f, that is, for
any zg € U, there exists an open neighbourhood on which

fn — f converges uniformly.

Suppose a € C and (f,,)nen is a sequence of holomorphic func-
tions on U that converges uniformly on compact sets to the
function f. Suppose further that each function f,, takes the
value a at most m times (counting multiplicities). Then f ta-
kes the value a at most m times (counting multiplicities) or f
is constant.

Corollary: The limit function of a sequence of injective holo-
morphic functions than converges uniformly on compact sets
is also injective or constant.

Use ROUCHE’s Theorem.

Every locally bounded sequence of holomorphic functions has

a subsequence that converges uniformly on compact sets.

First we prove: A locally bounded sequence of holomorphic functions
(fn: U — C)pen is locally equi-LIPSCHITZ-continuous.

If (fr: U — C)pen is a locally bounded sequence of holomorphic functi-
ons, which converges pointwise on a dense subset A < U, then (fn)nen

converges uniformly on compact sets.

Every nonempty simply connected domain U C C is confor-

mally equivalent to the open unit disk D.

Two RIEMANN maps U — D differ by post-composition with a MOBIUS
transformation mapping D onto D.

Preparatory Lemma: if U < C is a simply connected domain and 0 ¢ U,
then there exists an injective holomorphic function p on U such that
(p(2))2 =z forall zeU.

Proof idea: F := {f: U — C : f is holomorphic, injective, f(U) <
D, f(0) = 0}. Claim. There exists a function f € F for which |f/(0)]

is maximal among functions in F. This is a biholomorphic map onto D.



