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"ZOOM AND ENHANCE" CLICHE IN TV & MOVIES

— In TV & movies: wrong representation of image enhancing

— But what if we could actually manually increase the

resolution?

— This challenge is called Superresolution.
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Superresolution
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PLAN

II. MATHEMATICAL MODEL OF SUPERRESOLUTION
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supported on T == (73);_; € T = [0,1), where (c);_, € C\{0}
are the amplitudes of the spikes.

Th T tl

v l I
Fic. 1: A spike train with » = 11 spikes and real weights (cz)}_;-
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Superresolution
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THE OBSERVED SIGNAL

Resolution limited = observed signal is
Tobs: T — C, t— (zxg)( chgt—Tk

where g € C(T) is such that g(j) = 0 if |j]| > fc € N, where
g: Z — C is the FOURIER transform of g.

Assume §(j) = 1 for |j]| < fe.
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+

fe -1 0 1 fe fet1

Fic. 2: The FOURIER transform of g.
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THE OBSERVED SIGNAL

THE FOURIER TRANSFORM OF
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Fic. 3: The observed signal is the convolution of the spike train with

a bandlimited function.

The FOURIER transform of zgpg is
-
Tow: Z—C,  jr 2(5)3(j) = (Z cke*m> ().
k=1
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INTERIM CONCLUSION

As g(4) =0 if |j| > fe, we have d := 2f. + 1 equidistant low
frequency measurements Zops(j) for |7] < fe.

~» Convolution with g erases high frequencies of x.

Let & == (Zops(J ))J—_f and ¥(2) = (1,2, 2%,... ,zdil)T,

Interim conclusion:

r
yields the ~
r=Y cpbr, € M(T) s 3 = chw —mTk) e ¢
1 measurement

_ Z |Ck|e—27ri<pkw(e—27rirk)

k=1
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Signal Decomposition
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III. SPARSE SIGNAL DECOMPOSITION
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Signal Decomposition
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SIGNAL DECOMPOSITION

— Goal: decompose signal Z € K¢ (K =R or C) into finite

nonnegative linear combination with respect to A C K%:
T = Z Cqa, cq > 0.

~» 7 infinitely many expansions of Z. How to choose?

— Solve
min |[c|lp such that Z = Z Cqt, Cq >0,
u
acA
where ||c|lo = #{a € A: ¢4 # 0}.
— But || - [|o is not convex and "not robust".
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Signal Decomposition
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FROM CARDINALITY MINIMISATION TO /;

MINIMISATION

ZARN
N

(a) The unit ball of the || - ||o function. (b) The unit ball of the £; norm.

Fic. 4: The convex hull of (a) is (b).

~ instead solve
min [[c[}; such that Z = Z Ca, Cq > 0.
(&
acA
Goal of next section: show that ||Z|| 4 is that minimum value
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Atomic Norm
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IV. ATOMIC SETS AND THE ATOMIC NORM
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Atomic Norm
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WHEN IS THE GAUGE A NORM?

Let X be a normed space.

DEFINITION (GAUGE)
The gauge of a subset A C X is

pa: X — [0, 00], z—inf{r >0:2 € rA},
where inf () = co.

THEOREM (NORM PROPERTIES)
If A C X is a nonempty, convex, bounded, rotation invariant,

fulldimensional set, then pa is a norm on X.

rotation invariant: rA = AV|r| = 1.

fulldimensional: A contains open neighbourhood of 0.
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Atomic Norm
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PROOF OF THE THEOREM ABOUT NORM PROPERTIES

(i) pa(z) < oo Vx € X.

A fulldimensional = Jp > 0 such that B,(0) C A. Let
r € X and r = 72) - |||, then = € rB,(0) C A, as
15l =5 <o

(ii) pa(x) =0 = z=0.

Take x € X with pa(x) =0. 3(rp)neny € Ry, 7, — 0 such
that € r, A ¥Yn € N. Assume Je > 0 with ||z]| > «.
1
lim —|z|| > lim - 00,
n—o0 1y, n—oo Ty,

¢ to the boundedness of A.
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Atomic Norm
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PROOF OF THE THEOREM ABOUT NORM PROPERTIES

(iii) pa(z+vy) <pa(x)+paly) Yo,y € X.

Note: x € NA = pa(x) < A
Let x,y € X and € > 0. 3\, x> 0 such that

ASPA(:C)Jrg, uSpA(y)+E and c A.

x
2 A

ESEES

A convex, so

A Ly zTHy
- = = cA
/\+u)\+>\+u,u A+ p

Thus

0
pa(@+y) <A+ < pa(@) +paly) + e 5 pa(x) + paly).
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Atomic Norm
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PROOF OF THE THEOREM ABOUT NORM PROPERTIES

(iv) pa(Az) = |Apa(z) VA e K, z € X.

Let x € X. A fulldim. = 0€ A = 0€rAVr>0,so
pa(0-2) =pa(0) =inf{r > 0} =0 =[0|pa(x).
For A >0
. . r
pa(Az) =inf{r >0: \x € rA} = 1nf{7“ >0:x€ XA}
=inf{AM>0:2€rA} =Ainf{r >0: 2 € rA}
= Apa(x).
A rotation invariant = AA = |A|A4, so

A erA < |z erA
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Atomic Norm
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EXTREME POINTS OF CONVEX SETS

DEFINITION (EXTREME POINT OF A CONVEX SET)

A point € C in a convex subset C C X is an extreme point of
C and we write = € ex(C) if there does not exist an open line
segment contained in C' that contains x, that is, the relations
x=My+ (1 =Nz fory,z € C, y+# zand X\ € [0,1] imply that

A=0or A=1and thusz =y or z = z.

Fic. 5: The black dotes are some extreme points of the set.
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Atomic Norm
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ATOMIC SETS AND THE ATOMIC NORM

DEFINITION (ATOMIC SET)

A set A C K% is an Atomic Set if A is compact, rotation

invariant and a subset of ex(co(.A)) and co(A) is fulldimensional.
{a(w, ) = e 2™ ¥eh(e=2™W) 1w, p € [0,1)} is an Atomic Set. [J
DEFINITION (ATOMIC NORM)

The Atomic Norm induced by an Atomic Set A C K% is the
gauge on co(A):

I lla: K% = [0,00), xz — inf{r >0:x € rco(A)}.
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Atomic Norm
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REPRESENTATION OF THE ATOMIC NORM

Atomic norm solves the decomposition problem:

THEOREM (REPRESENTATION OF THE ATOMIC NORM)

For an Atomic Set A C K?% and 7 € K* we have

[|€]|.4 = inf {IICHl =) caa, o > 0} :

acA
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V. DUAL PROBLEM AND RECOVERY
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DUALITY

— Goal: find ||Z]|.4
— Dual problem (we have strong duality):

max(Z, p)n subject to Ipll’y <1,
peC?

where (x,y)n = R((z,y)) and

ol = sup (p,a)n = sup(p, a).
a€K4: acA
llalla<1

— Plugging in the form of the atoms a € A we obtain

Il = max |(¥(e*™),p)]

wel0,1)
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SEMIDEFINITE FORMULATION FOR ||p||% <1

THEOREM (NONNEGATIVE TRIGONOMETRIC POLYNOMIALS
AND HERMITIAN GRAM MATRICES)

For p € C%, the following are equivalent.
1. We have |(1(e*™™),p)p| < 1 for all w € [0,1).
2. There exists a HERMITIAN matriz Q € C? such that
Q@ p
(pH ) =0 and  T*(Q) = e,

where T*(Q)r = Tr[0Q] and Oy, is the TOEPLITZ matriz whose
first row 1is the k-th unit vector ey, where k € {0,...,d — 1}.

~» Dual problem can easily be solved by convex solvers
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Recovery
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LOCALISING THE FREQUENCIES

— Let p be the solution of the dual problem. Then

{m}e = {w €[0,1) : [(a(w,0),p)| = 1}.

~» the spike locations are the extrema of |(a(-,0),p)]

~» find roots of a polynomial on the unit circle.

— Using support estimate Test, the ¢; can be reconstructed by

solving the system

> e =gy, k| < fe

Tj ETest

using least squares.
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CONCLUSION

is observed as

Ground truth Observed data  wv(z) = (1,2,2%..)
r r
xr = ch(sq—k T = Z |Ck|672m<‘0’“1/)(672m7’“)
k=1 k=1
A
recover? : l
Atomic Norm ||Z|| 4 Atomic Set A

MHI induces ( !
B ‘

inf{r >0:2z €rco(A)} {6_2ﬂww(6_2ﬂw)}w,goe[o,l)
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Thank you for your attention!
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