ATOMIC NORM MINIMISATION FOR SUPERRESOLUTION

Bachelor Thesis by Viktor Glombik

Advisors: Gabriele Steidl and Robert Beinert

Seminar Optimal Transport Institute for Mathematics, TU Berlin 18.06.2020

"ZOOM AND ENHANCE" CLICHÉ IN TV & MOVIES

- In TV & movies: wrong representation of image enhancing
- But what if we could actually manually increase the resolution?
- This challenge is called Superresolution.

Intro

Agenda

Intro

is observed as

Ground truth

$$x = \sum_{k=1}^{r} c_k \delta_{\tau_k}$$

recover?

Atomic Norm $\|\tilde{x}\|_{\mathcal{A}}$

induces

Observed data $\psi(z) = (1, z, z^2, ...)$

$$\tilde{x} = \sum_{k=1} |c_k| e^{-2\pi i \varphi_k} \psi(e^{-2\pi i \tau_k})$$

Atomic Set A

 $\left\{e^{-2\pi i\varphi}\psi(e^{-2\pi iw})\right\}_{w,\varphi\in[0,1)}$

 $\inf\{r > 0 : x \in r\operatorname{co}(\mathcal{A})\}\$

Viktor Glombik

PLAN

I. Introduction

II. MATHEMATICAL MODEL OF SUPERRESOLUTION

III. SPARSE SIGNAL DECOMPOSITION

IV. ATOMIC SETS AND THE ATOMIC NORM

V. Dual Problem and Recovery

VI REFERENCES

The ground truth - a spike train

Consider the spike train

$$x := \sum_{k=1}^{r} c_k \delta_{\tau_k} \in \mathcal{M}(\mathbb{T}),$$

supported on $T := (\tau_k)_{k=1}^r \subseteq \mathbb{T} = [0,1)$, where $(c_k)_{k=1}^r \in \mathbb{C} \setminus \{0\}$ are the amplitudes of the spikes.

Fig. 1: A spike train with r = 11 spikes and real weights $(c_k)_{k=1}^r$.

THE OBSERVED SIGNAL

Superresolution

Resolution limited \implies observed signal is

$$x_{\text{obs}} \colon \mathbb{T} \to \mathbb{C}, \qquad t \mapsto (x * g)(t) = \sum_{k=1}^{\tau} c_k g(t - \tau_k),$$

where $g \in \mathcal{C}(\mathbb{T})$ is such that $\hat{g}(j) = 0$ if $|j| > f_c \in \mathbb{N}$, where $\hat{g} \colon \mathbb{Z} \to \mathbb{C}$ is the FOURIER transform of g.

Assume $\hat{g}(j) \equiv 1$ for $|j| \leq f_c$.

Fig. 2: The FOURIER transform of g.

Superresolution

THE FOURIER TRANSFORM OF THE OBSERVED SIGNAL

Fig. 3: The observed signal is the convolution of the spike train with a bandlimited function.

The Fourier transform of x_{obs} is

$$\widehat{x_{\text{obs}}} \colon \mathbb{Z} \to \mathbb{C}, \qquad j \mapsto \widehat{x}(j)\widehat{g}(j) = \left(\sum_{k=1}^r c_k e^{-2\pi i j \tau_k}\right) \widehat{g}(j).$$

Superresolution

As $\hat{g}(j) = 0$ if $|j| > f_c$, we have $d := 2f_c + 1$ equidistant low frequency measurements $\widehat{x_{\rm obs}}(j)$ for $|j| \leq f_c$.

 \rightarrow Convolution with g erases high frequencies of x.

Let
$$\tilde{x} := (\widehat{x_{\text{obs}}}(j))_{i=-f_c}^{f_c}$$
 and $\psi(z) := (1, z, z^2, \dots, z^{d-1})^{\mathsf{T}}$.

Interim conclusion:

$$x = \sum_{k=1}^{r} c_k \delta_{\tau_k} \in \mathcal{M}(\mathbb{T}) \xrightarrow{\text{yields the measurement}} \tilde{x} = \sum_{k=1}^{r} c_k \psi(e^{-2\pi i \tau_k}) \in \mathbb{C}^d$$
$$= \sum_{k=1}^{r} |c_k| e^{-2\pi i \varphi_k} \psi(e^{-2\pi i \tau_k})$$

PLAN

I. Introduction

II. MATHEMATICAL MODEL OF SUPERRESOLUTION

III. SPARSE SIGNAL DECOMPOSITION

IV. ATOMIC SETS AND THE ATOMIC NORM

V. Dual Problem and Recovery

VI. References

SIGNAL DECOMPOSITION

- Goal: decompose signal $\tilde{x} \in \mathbb{K}^d$ ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) into finite nonnegative linear combination with respect to $\mathcal{A} \subseteq \mathbb{K}^d$:

$$\tilde{x} = \sum_{a \in A} c_a a, \qquad c_a \ge 0.$$

- \rightarrow \exists infinitely many expansions of \tilde{x} . How to choose?
- Solve

$$\min_{u} \|c\|_{0} \quad \text{such that} \quad \tilde{x} = \sum_{a \in \mathcal{A}} c_{a} a, \quad c_{a} \ge 0,$$

where
$$||c||_0 := \#\{a \in \mathcal{A} : c_a \neq 0\}.$$

- But $\|\cdot\|_0$ is not convex and "not robust".

From Cardinality minimisation to ℓ_1

MINIMISATION

Fig. 4: The convex hull of (a) is (b).

 \sim instead solve

$$\min_{c} \|c\|_{1} \quad \text{such that} \quad \tilde{x} = \sum_{a \in \mathcal{A}} c_{a} a, \quad c_{a} \ge 0.$$

Goal of next section: show that $\|\tilde{x}\|_{\mathcal{A}}$ is that minimum value

PLAN

I. Introduction

II. MATHEMATICAL MODEL OF SUPERRESOLUTION

III. SPARSE SIGNAL DECOMPOSITION

IV. ATOMIC SETS AND THE ATOMIC NORM

V. Dual Problem and Recovery

VI REFERENCES

Atomic Norm

When is the gauge a norm?

Let X be a normed space.

DEFINITION (GAUGE)

The **gauge** of a subset $A \subseteq X$ is

$$p_A \colon X \to [0, \infty], \qquad x \mapsto \inf\{r > 0 : x \in rA\},$$

where $\inf(\emptyset) := \infty$.

THEOREM (NORM PROPERTIES)

If $A \subseteq X$ is a nonempty, convex, bounded, rotation invariant, fulldimensional set, then p_A is a norm on X.

rotation invariant: $rA = A \ \forall |r| = 1$.

fulldimensional: A contains open neighbourhood of 0.

Proof of the Theorem about Norm Properties

Atomic Norm

(i) $p_A(x) < \infty \ \forall x \in X$.

A fulldimensional $\implies \exists \rho > 0$ such that $B_{\rho}(0) \subseteq A$. Let $x \in X$ and $r := \frac{2}{\rho} \cdot ||x||$, then $x \in rB_{\rho}(0) \subseteq rA$, as $\left\|\frac{x}{x}\right\| = \frac{\rho}{2} < \rho.$

(ii) $p_A(x) = 0 \implies x = 0$.

Take $x \in X$ with $p_A(x) = 0$. $\exists (r_n)_{n \in \mathbb{N}} \in \mathbb{R}_+, r_n \to 0$ such that $x \in r_n A \ \forall n \in \mathbb{N}$. Assume $\exists \varepsilon > 0$ with $||x|| > \varepsilon$.

$$\lim_{n \to \infty} \frac{1}{r_n} ||x|| \ge \lim_{n \to \infty} \frac{\varepsilon}{r_n} = \infty,$$

f to the boundedness of A.

PROOF OF THE THEOREM ABOUT NORM PROPERTIES

Atomic Norm

(iii)
$$p_A(x+y) \le p_A(x) + p_A(y) \ \forall x, y \in X$$
.

Note: $x \in \lambda A \implies p_A(x) < \lambda$.

Let $x, y \in X$ and $\varepsilon > 0$. $\exists \lambda, \mu > 0$ such that

$$\lambda \leq p_A(x) + \frac{\varepsilon}{2}, \quad \mu \leq p_A(y) + \frac{\varepsilon}{2} \quad \text{and} \quad \frac{x}{\lambda}, \frac{y}{\mu} \in A.$$

A convex, so

$$\frac{\lambda}{\lambda + \mu} \frac{x}{\lambda} + \frac{\mu}{\lambda + \mu} \frac{y}{\mu} = \frac{x + y}{\lambda + \mu} \in A.$$

Thus

$$p_A(x+y) \le \lambda + \mu \le p_A(x) + p_A(y) + \varepsilon \xrightarrow{\varepsilon \searrow 0} p_A(x) + p_A(y).$$

Proof of the Theorem about Norm Properties

Atomic Norm

(iv)
$$p_A(\lambda x) = |\lambda| p_A(x) \ \forall \lambda \in \mathbb{K}, \ x \in X.$$

Let
$$x \in X$$
. A fulldim. $\implies 0 \in A \implies 0 \in rA \ \forall r > 0$, so

$$p_A(0 \cdot x) = p_A(0) = \inf\{r > 0\} = 0 = |0|p_A(x).$$

For $\lambda > 0$

$$p_A(\lambda x) = \inf\{r > 0 : \lambda x \in rA\} = \inf\left\{r > 0 : x \in \frac{r}{\lambda}A\right\}$$
$$= \inf\{\lambda r > 0 : x \in rA\} = \lambda \inf\{r > 0 : x \in rA\}$$
$$= \lambda p_A(x).$$

A rotation invariant $\implies \lambda A = |\lambda|A$, so

$$\lambda x \in rA \iff |\lambda| x \in rA.$$

EXTREME POINTS OF CONVEX SETS

DEFINITION (EXTREME POINT OF A CONVEX SET)

A point $x \in C$ in a *convex* subset $C \subseteq X$ is an extreme point of C and we write $x \in \operatorname{ex}(C)$ if there does not exist an open line segment contained in C that contains x, that is, the relations $x = \lambda y + (1 - \lambda)z$ for $y, z \in C$, $y \neq z$ and $\lambda \in [0, 1]$ imply that $\lambda = 0$ or $\lambda = 1$ and thus x = y or x = z.

Fig. 5: The black dotes are some extreme points of the set.

DEFINITION (ATOMIC SET)

A set $\mathcal{A} \subseteq \mathbb{K}^d$ is an Atomic Set if \mathcal{A} is compact, rotation invariant and a subset of ex(co(A)) and co(A) is fulldimensional.

$$\{a(w,\varphi) := e^{-2\pi i \varphi} \psi(e^{-2\pi i w}) : w, \varphi \in [0,1)\}$$
 is an Atomic Set. \square

DEFINITION (ATOMIC NORM)

The Atomic Norm induced by an Atomic Set $\mathcal{A} \subseteq \mathbb{K}^d$ is the gauge on co(A):

$$\|\cdot\|_{\mathcal{A}} \colon \mathbb{K}^d \to [0,\infty), \qquad x \mapsto \inf\{r > 0 : x \in r\operatorname{co}(\mathcal{A})\}.$$

REPRESENTATION OF THE ATOMIC NORM

Atomic norm solves the decomposition problem:

THEOREM (REPRESENTATION OF THE ATOMIC NORM)

For an Atomic Set $A \subseteq \mathbb{K}^d$ and $\tilde{x} \in \mathbb{K}^d$ we have

$$\|\tilde{x}\|_{\mathcal{A}} = \inf \left\{ \|c\|_1 : \tilde{x} = \sum_{a \in \mathcal{A}} c_a a, \ c_a \ge 0 \right\}.$$

PLAN

- I. Introduction
- II. MATHEMATICAL MODEL OF SUPERRESOLUTION
- III. SPARSE SIGNAL DECOMPOSITION
- IV. ATOMIC SETS AND THE ATOMIC NORM
- V. Dual Problem and Recovery
- VI. References

DUALITY

- Goal: find $\|\tilde{x}\|_{\mathcal{A}}$
- Dual problem (we have strong duality):

$$\max_{p \in \mathbb{C}^d} \langle \tilde{x}, p \rangle_{\Re} \quad \text{subject to} \quad \|p\|_{\mathcal{A}}^* \le 1,$$

where $\langle x, y \rangle_{\Re} := \Re(\langle x, y \rangle)$ and

$$||p||_{\mathcal{A}}^* := \sup_{\substack{a \in \mathbb{K}^d: \\ ||a||_{\mathcal{A}} < 1}} \langle p, a \rangle_{\Re} = \sup_{a \in \mathcal{A}} \langle p, a \rangle_{\Re}.$$

- Plugging in the form of the atoms $a \in \mathcal{A}$ we obtain

$$||p||_{\mathcal{A}}^* = \max_{w \in [0,1]} \left| \langle \psi(e^{2\pi i w}), p \rangle \right|$$

SEMIDEFINITE FORMULATION FOR $||p||_{4}^{*} \leq 1$

THEOREM (NONNEGATIVE TRIGONOMETRIC POLYNOMIALS AND HERMITIAN GRAM MATRICES)

For $p \in \mathbb{C}^d$, the following are equivalent.

- 1. We have $|\langle \psi(e^{2\pi i w}), p \rangle_{\Re}| \leq 1$ for all $w \in [0, 1)$.
- 2. There exists a HERMITIAN matrix $Q \in \mathbb{C}^{d \times d}$ such that

$$\begin{pmatrix} Q & p \\ p^{\mathsf{H}} & 1 \end{pmatrix} \succeq 0 \quad and \quad T^*(Q) = e_0,$$

where $T^*(Q)_k = \text{Tr}[\Theta_k Q]$ and Θ_k is the Toeplitz matrix whose first row is the k-th unit vector e_k , where $k \in \{0, \ldots, d-1\}$.

→ Dual problem can easily be solved by convex solvers

LOCALISING THE FREQUENCIES

- Let \tilde{p} be the solution of the dual problem. Then

$$\{\tau_k\}_k = \{w \in [0,1) : |\langle a(w,0), \tilde{p} \rangle| = 1\}.$$

- \rightarrow the spike locations are the extrema of $|\langle a(\cdot,0), \tilde{p} \rangle|$
- \rightarrow find roots of a polynomial on the unit circle.

- Using support estimate T_{est} , the c_i can be reconstructed by solving the system

$$\sum_{\tau_i \in T_{\text{ost}}} c_j e^{-2\pi i k \tau_j} = \tilde{x}_k, \qquad |k| \le f_c$$

using least squares.

CONCLUSION

Viktor Glombik

REFERENCES

Venkat Chandrasekaran, Benjamin Recht, Pablo Parrilo, and Alan Willsky.

The Convex Geometry of Linear Inverse Problems.

Foundations of Computational Mathematics, 12(6):849, Oct 2012.

Yuejie Chi and Maxime Ferreira Da Costa.

Harnessing Sparsity Over the Continuum: Atomic Norm Minimization for Superresolution.

IEEE Signal Processing Magazine, 37(2):39–57, 2020.

Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht.

Compressed Sensing off the Grid.

CoRR, abs/1207.6053:7465-7490, 2012.