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Let X := (R%[ - ), Y = span((0,1)7) and z == (1,0)". For y =
(1,0) € ¥ we have [y—a]oe = (0, 31)"—(1,0) |0 = max(|yn], 1) >
1. If y1 € [-1,1], then ||z — Yoo = 1 = mingey |y — z|w, so there
are nfinitely many best approximations to x in Y. If we instead
consider (R?, | - ||l2), then the unique best approzimation is y* = 0,
as |z —y*|2 = |z]2 = 1 < |z -y for all y € Y\{0}.

In general, if Y < X is not closed, for x € Y\Y, there is no best
approzimation of x in Y. Indeed, as = € Y, there exists a sequence
(Yn)nen © Y with yn — z, that is, |yn — x| ——> 0. If there were
a y* € Y such that |y* — x| = mingey |y — x|, then |y* — x| =0
and thus = = y* € Y, which is a contradiction to z € Y\Y.

If Y, is empty, the statement holds, so assume Y, # J.
Boundedness. By definition, Y, is a subset of the ball 54, =
{yeY :|z—y| <d,}, where d; == mingey |z —y|.
Convexity. Suppose Y, is not a singleton. For y1,y5 € Y, and
A€ (0,1) define g := Ay; + (1 — N)yz. We have § € Y as Y
is a subspace and thus convex. Then |z — yi| = ||z — y2f =
minyey o —y] and o~ = [Az-+(1-A\)z— Ay —(1- Ayal <
M =gl + (1= Nz = o = (X + 1) miney |2 — y] =
mingey |z —y|, so |z — 7| = mingey ||z —y|| and hence g € Yy,

so Y, is convex.

It suffices to check the case where the convex set Y, has infini-
tely many elements and deduce a contradiction. If y1,y2 € Y
with y1 # yo, then by convexity of Y, we have Ay; +(1—\)ys €
Y, < S4,, but Sg, can not contain this line {Ay; + (1 — A)ya :
A€ (0,1)}, as X is strictly convex.

For a bounded function f on [0,1], the Bernstein polyno-

mial of degree n is

)= 37 (5) (1) -0

where ((})2*(1—2)"~%);_) are the BERNSTEIN basis polyno-

mials of degree n.

For a sequence of linear positive operators (T,,: C([0,1]) —

C([0,1]))nen, the following are equivalent.
1. T, f = f for all fe€C([0,1]).
2. T, f = f for all fe (fr)2_,, where fix(z) = aF.

3. Thfo = fo and (t — (Tncpt)(t)) = 0, where @i(x) =
(x — )2

The main questions are the ones of existence, uniqueness, con-
struction (how can we find or construct such a approximation)

and measure (e.g. choice of norm).

Let x € X. Since Y is a vector space, 0 € Y and thus
mingey |z — y| < |2 — 0] = [|z|. Hence any best approxi-
mation must be in the set K :=={yeY : |z —y| < |z|} <Y,
which is bounded and closed and thus compact. The function
f: K >R y— |l —y| is continuous on the compact set K
so its attains a minimum in y, € K, which is the best appro-

ximation.

A norm | - | is strictly convex if for all x,y € X with z # y
and ||z = |y| = > 0 and all XA € (0,1) we have |[Az + (1 —
Ny| < r. We say that (X, | -|) is a strictly convex space.

Geometrically, this corresponds the straight line segment bet-
ween to two distinct points on the boundary of any | - |-ball

being contained in the ball.

The p-norm on R" is strictly convex for p € (1,00) and not
strictly convex for p € {1,0}. The L?>mnorm on C([a,b]) is

strictly convex, while | - |« is not.

It suffices to show that B, (fn) = fr for k € {0,1,2} by
the BOHMAN-KOROVKIN theorem. We have B, (fo) = fo,

Bn(f1) = fr and By (f2) = %2 fa + 2 f1.

Corollary: Let f e C* ([a,b]) and € > 0. Then there exists a

polynomial p such that |[f — p|e <€ and |[f" — 9/ < e.

An operator T': C([0,1]) — C([0, 1]) is positive if f(x) = 0 for
all z € [0, 1] implies (Tf)(x) = 0 for all x € [0, 1].

Every linear positive operator is bounded.
For every f € C([0,1]) we have +f < | f|lew - 1. As T is linear and
positive, we have +7T(f) < | [T (1) and thus [T'(f)| < ||f|T(1).

Hence ||| < |T(1)|w, so T is bounded.
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o f is uniformly continuous <= lims\owy(d) = 0, that is,
for all € > 0 there exists a ¢ > 0 such that w;(d) < e.

e For 0 < 0 < ;1 we have wy(d) < wy(d').

e The set A of continuous functions that have the same mo-

dulus of continuity are uniformly equicontinuous.

A function f: [a,b] — R is LIPSCHITZ continuous of order
a and we write f € Lip% if there exists a positive constant
K > 0 such that

|f(@) = fy)l < Klz—y|*  Va,yela,b]

We have f € Lip% if and only if wy(8) < K%, that is wy () €
O(67%) for § \, 0.

The disadvantages of the BERNSTEIN polynomials are that
the convergence By, (f) = f is too slow (not optimal by JACK-
SON and not improvable) to be useful in applications and we
have B, (f) # f for f € P (so B2 # B,), e.g. if f(x) = 2?2
and ¢ = 107, then we need n > 2500 for ||f — B,.(f)| < e.
B,, is not self-adjoint.

The advantages are that B, (f) is linear and positive, we
have an error bound and that B, (f) = f for all f € C([a,b])
and that if f € C™([a,b]), then (B,(f))* = f*) for all
k € {0,...,m}. The basis functions are a partition of unity.

The (self-adjoint!) LAGRANGE interpolating operator is

Ly,: C([a,b]) — Py, f— i fzr)le(z),
k=0

where .
T — T,
Ly (x)) = —L
jl:!) T — Ty
Gk
has degree n. is independent of (yx)}l_,. Since ¢x(z;) = 0, 1,

the L, (f) interpolates f at (zx)}_,. {x are partition of unity.

Advantages: they are linear projections and that the basis
polynomials only depend on (z)}_,, so interpolating multiple
functions at the same points is easy.

Disadvantage: not positive, removing or adding one point
x yields completely different basis functions. Furthermore,
L.(f) & f. For f = || on [-1,1], L,(f) — f only for
x € {£1,0} (better with rational approximation).

We have |Ly| = \/_:/’\LUV;\.()H,[ = Ap and ||f — Lp(f)]o < (1 4
An)En(f).

The modulus of continuity for a bounded function f on
[a,b] is

wy: [0,00) = [0,00), & sup{[f(x) = f(y)|: [z —y| < b}

[f (@) = ()] < wyx = y]), ws(0) = 0.

If f € C*([a,b]), then for all z,y € [a,b] we have % <

[ £y s0 wg(d) < |[f'|ood. (For LipscHITZ functions replace
by LIPSCHITZ constant.)

Forn e N, wr(n) < nwy and wy(A-) < (1+X)wy for all A > 0.

Take z,y € [0,1] with |z — y| < nd and then consider the following
equidistant partition of the interval between them: nyp = x 4 %(Z/ x)

for k€ {0,...,n}. Then |ng41 —ng| = w\k +1— k| <6 and thus

n—1 A n—‘l
If (@) = F)l = | 2] Flengr) — flaw)] < X |f(@hgr) — flap)|
k=0 k=0
n—1
< X wyr () = nwys ().
k=0
For A € Ry \ N there exists an € N with A € (n,n+1). As wy is increasing,
wi(A) Swp((n+1)8) < (n+ Dwyp(d) < (A + 1Lwg(d) for all 6 > 0.

For a bounded function f on [0,1], |f — Bn(f)|ew < %wf (ﬁ)

If(@) — (B f)(@)| < S o [f(@) — £ (£)] (D)a* (1 —2)"F.

w f (‘17%) = w f <%\71;1'7%> < ('l+\/ﬁ,l:7%‘) uy(%).
[f(z) — (Bnf)(z)] = w s (\%) <l + FL;‘L” ‘.1‘ — % ('/)1‘ (1— ;1‘)").
(Sioole—&[(Mefa-0%)" < (Spoole— EP (a0 -o)*)
(Troo(Mata—a)*) = (Zis (a2 + 55 —20%) (Deh1-2)%) =

2? + (Bnf2)(z) — 22(Bn f1)(z) = =25 < L.
[f(z) = (Bnf)(x)| < wy (\%) (l + ,\Wz\lﬁ> < 3wy (\%)

Let p(z) == Y. _, cxx®. Formulating the interpolation condi-
tion as matrix multiplication yields

1 To ... 1’8 €o Yo
Ve=|1 a2 ... af =1 1=y
n

1 =, ... x Cn Un

The matrix V is the VANDERMONDE matriz with det(V) =
[Ti<j<icn @i — ;. Since the (zx)}_, are distinct, det(V') # 0,
so V is invertible and there exists a unique solution ¢ = V1.

Given an array of points x, there exists an f € C([a,b]) such
that |L,(f) — flo — 9, e.g. == on [a,b] = [—5,5] with
equidistant nodes. Adding more points makes it worse (oscil-
lation at the endpoints). Better: CHEBYCHEV nodes.

This is due to:

Given a sequence (T),: C([a,b]) = Py)nen of linear continuous
projections, there exists a f € C([a,b]) such that |T,,(f) —
flloo = oo (Kharshiladze, Lozinski (1941)).
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If f e C"([a,b]) is interpolated by p € P, at (wx)}_,, then
17 =Bl < iyl oW, where W = TTj_of- — o).

We show that for all z € [a, b] there exists a &, € [a, b] such that f(z)—p(z) =

ﬁ‘/'(” P (€)W (z). If & = xp, for some k € {0,..., n}, then the LHS is
zero as p inte 1])()] ates f but the RHS is also zero since W vanishes on (z )5 _q-
If © # xy, for all k € {0,..., n}, define the scalar A\, = % and the
function ¢ == f —p — A\ W. As f,p, W € C""!([a,b]), so is ¢. We have
p(xr) =0 for all ke {0,..., n} and ¢(xz) = 0, so ¢ has at least n + 2 zeros.
By ROLLE’s Theorem, ¢’ has at least n + 1 zeros, so, inductively, \p“"]\’ has
at least one zero &,. Hence 0 = ("D (¢ ) = f(r+D (g )y — 0 — A, (n + 1)!

. . 1 r(n+1)
and so A, = m/ (&)

[W ] is minimal for CHEBYCHEV nodes.

The n-th FEJER-HERMITE operator is

L,: C([a,b]) = Pay_1, [ Z f(z:)A

i=1

where
Ap(z) = (1= 2(z — i)l (1)) G ().

for distinet (zx)}_; < [a,b] such that (L, f)(zx) = f(zx) and
(Lnf) (xp) =0 for all ke {1,...,n}.

For n € N34, the polynomials T}, and U,,_; of degree exactly
n and n — 1 such that cos(nz) = T),(cos(z)) and sin(nz) =
Up—1(cos(x))sin(z) are the CHEBYCHEV polynomials of first
and second order.

2
(cos (%ﬂ'))::o c [-1,1].

The leading coefficient of T}, is 2" 1.

We have (T, Trn)w = 50nm (for n # 0) for w(z) = ﬁ
and (Up,Upn)w = §50n,m for w(z) = va? — 1.

Roots of T,, are ((zos,(2k+17r))/,C o © [-1,1], extrema are

The functions (gx)7_, < C([a,b]) satisty the HAAR conditi-
on if every n + 1 vectors (gr(z;))i_o for j € {0,...,n} are
linearly independent, that is, the matrix (gi(z;))7,_o 1 in-
vertible for all sets of distinct points (z;)7_, < [a,b]. Then
A = span(go, ..., gn) is a HAAR space and (gx)}_, is a CHE-
BYCHEV system or HAAR system.

Let A < C([a,b]) be a (n + 1)-dimensional HAAR space. Let
f €C([a,b]) and p* € A such that f — p* alternates in sign at
n+2points a <& < ... <11 <b. Then

En(f) = min|lf —ple > _ min  [f(&) -p*&)l ()

1€{0,...,n+1}

Given distinct (z)}_, < [a,b] and (yx)}_, € R, define ug = 1

and
n —
Zyo,...,yk ug(x), where u(z Hx—zj
Y5 — Yk
[yk] = Y, [k, y;] = =2 for k # j,
Tj— Tk
and
[yjo’ cee 7yjm] = [yjl’ — 7yjmj| — [yjm — 7yjm_1] for jo # jm-

Ljm — Ljo

The system has a unique solution if the matrix A of this linear

system is invertible. Let p € P,, such that

pD () =0  Vie{0,...,n}, j€{0,...,J;},

which corresponds to the homogeneous system Ac = 0, where
c are the coefficients of p. Then p has n + 1 roots (z;)}, with
multiplicities J; + 1. Hence P has at least Z?ZO(JZ- +1) =m+1
roots, so p = 0 and thus ¢ = 0. Hence A is injective, so it is

invertible.

We can without loss of generality assume that [a,b] = [—1,1].

We show that for this special choice of (x)7_,, we have
Zn] 1 —xx;

f(z)
— Y — xi)Q

because then L, (f) is clearly linear and positive.

Ln(f)(x) =

Let f € C([a,b]), A < C([a,b]) be a linear subspace and p* €
A. Then p* is a best approzimation of f in A if and only if
there is no p € A such that

(f(@) = p*(@))p(x) >0 Vae Ey, (1)

where

Ey = A{z € fa,b]: |f(z) = p* (@) = |f =¥}

Let A < C([a,b]) be a HAAR space of dimension n + 1 and
f € C([a,b]). Then p* € A is a best approzimation to f in A
if and only if there exist n + 2 points {£o, . ..,&q+1} such that
[ a<£0<§1 <~-~<£n+1<b

o |f(&) —p*(&)| = IIf — p*|e for all i € {0,...,n + 1},

o f(&it1) —p*(&it1) = —(f(fz) —p*(&)) for all i € {0,...,n}.
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.} = C([a, b]) be a subspace of C([a, b])
, ©n } satisfies the HAAR

Let A := span{yg, 1, . -
such that for every n, the set {¢p, ...
condition. Then no point outside A has a best approrimation

from A.

Such a system {¢o, 1, ...} is called a MARKOV system.

Corollary: 1st, 2nd WEIERSTRASS theorem.

The analogue of MARKOV’s inequality for the unit disk in
C due to BERNSTEIN states that if S(z) = Y0_,axz" is a
polynomial for z € C, then

max |S'(2)| < nmax |S(z)]

|z|=1 |z|=1

and we have equality for p(z) = Az™, where X € C.
Using the bijective substitution z = €??, we obtain a trigono-
metric polynomial p(6) = Y}/ _, ape'®* e T, with

S'(0)] < S
g [S(O)] < max |S(6)].

Let A < C([a,b];R) be set of approximating functions and
w: [a,b] —
on.

(0,00) a fixed positive integrable weight functi-

The best weighted least squares approximation from .4
to f € C([a,b];R) is argmin,c 4 |f — pllw, where the weigh-
ted scalar product and the induced norm are (for f,g €
C([a, B R)) (f,9)0 = [ w (2)da, |l = v/(F P
Hence least squares appr0x1mat10n 1s best approximation with
a weighted norm, so if e.g. A is a finite dimensional linear sub-
space, then the best weighted least approximation exists.

Let A c (H,(+,-)) be linear subspace of an inner product space
and f € H. Then p* € A is best approximation from A to f if
and only if the error e* := f — p* is orthogonal to A, that is,
(e*,p) =0 for all pe A.

We have PYTHAGORAS’ Theorem:
for p*,q* € Aand f € H, |f—q*|? =
|f=p*[>+]g* —p*|? Forg* =0 A
Ip*(1* + | f = p*[*.

o
O

The monic orthogonal polynomials with respect to w are uni-
quely determined by Qo = 1, Q1(x) =

we get [ f|* =

x —ap and for j > 1

by
Qjt+1(z) = (z — a;)Qj(z) — b;Qj-1(z).
where
s e (95 2Q5())w poe Q5 Qi1)w _ Qs
J " J -

(Q:Qi)w (Qj-1,Qi-1)w  [Qj-1]2

All roots of Q,, are simple, real and contained in (a,b).

Let A < C([a,b]) be a n-dimensional subspace. Then a func-
tion f € C([a,b]) has a unique best approximation from A if
and only if A is a HAAR space.

If p € Py, then maxue 11 [9/(2)] < n® maxoe 1.1 [p(e)| and
we have equality for p = oT, for any o € R. This boun-
ded is optimal. (As P, is finite-dimensional, and p — p’ is a
linear operation, there exists a constant M, € R such that
maxge[—1,1] [P (7)] < M, max,er_117[p(z)].) One can even

show that (proven by MARKOV’s brother)

n?(n?—12)...(n? — (k- 1)?)

(k) <
Jopax Ip'™ ()] T3 @=1) jhax Ip()|
where equality holds for any multiple of T,.
By a lemma we have
mEIF—aljfl] I’ (z)] < n max | 1—22p/(z)| = nee%?;r] | sin(0)p’ (cos(6))].
3)
Let S(0) := p(cos(d)). Then S’(f) = —p’(cos(h))sin(f). By the

BERNSTEIN-MARKOV inequality for S € T}, we have

/ _ ’
oo Ip p (:v)l < ) ol |sin(0)p’ (cos(9))| = nee%f?;ﬁ]ls )

Bernstein 2

< S(6
n e [S(6)]

—n? =n2
n? max [p(cos(9))] = n? max [p(a)|

fr9 € C[a,b;R), f # g, |flw = glw = 1 (wlog midpoint
strict convexity):

(§f+gw)2 %[?M@U@ﬂ+g@ﬁdx

3 | w@@P e+ 3 | w@lgte) as

A

L 2 L2 2
= 51l + 5lglw =1,
using that (z + y)? < 2(2? + y?) for z # y.

Hence if A © C([a,b];R) is a linear subspace, either the least squares

approximation does not exist or it is unique.

Let A © H be a linear subspace of an inner product space
spanned by basis functions (¢;)i—, and f € H. If the orthogo-

nality condition

(pispj) =0 Vi # 4, i,5€{0,...,n}

is satisfied, then the best approximation from A to f is
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The Fourier series of f € L} is

a0 4 i ] cos(kx) + bi[f]sin(kx) = Z cr[fe™®, where

2 k=1 keZ

ag[f] = % f(t) cos(kt) dt, bi[f] = % f(t)sin(kt) dt

and ¢ [f] == o= §7_ f(t)e"** dt are the FOURIER coefficients

with 200[ ] = [ B QCk[f] = ag[f] — ibr[f], 2c_k[f] =
ag[f] + ibg[f] for k € N=g.

The n-th partial Fourier sum of f € L(T) is the trigono-

metric polynomial of degree n
n

% alfiet - 543 o

|k[<n k=1

Sulf](x) ==

The operator S,: L?(T) —
[Skll =1 and a projection as well as injective.

» 1s linear and bounded with

For n € Ny, the n-th Dirichlet kernel is

sin((2n+1)%)
sin(%) ’

2n +1,

Dn(m) = Z eik’w = lffE € [*W,ﬂ']\{O},

|k|<n

if z =0.

Dy, is even, {" Dy(x)dz = 27 and |Dy ()|
equality only for z = 0. ¢x[Dy] = 1}3<, and

< 2n + 1 with

1
o

ﬂ_i log(n) < Jﬂ |D,,(z)| dz < 3 + log(n).

Sulf] = f* Dypand Dy, = 1+ 23" cos(k-).

The Fejér kernel is

e

Then K, is even and nonnegative, %S K,(t)dt = 1 and
bln2

for t #0, K,(t) = Wg(,}) Further, ¢/[K,] = %ﬂw\én'

Let o, [f]:= 23017, L S4[f] = Ky * f. Then o,,: C(T) — T, is

linear, bounded, but not a projection with |f — o [f]]2 ——>

0, proven with BOHMAN-KOROVKIN, proves WEIERSTRASS.

For f e C'([~1,1]) we have E,(f) < syl A

For f € Car we have EL(f) < 3wy (L)

If f € Lip,, is 27m-periodic, then ET(f)

km
2(n+1)"
If wy(0) )

< ké, then ET(f) < )(”H e()(% as n — oo.

] cos(kx)+bg[f]sin(kz).

The orthogonal monic polynomials P*? corresponding to the
= (1—2)*(1+2)” for a, B > —1 are the
Jacobi polynomials.

1

weight function w(x)

In particular, Py, 572 are the normalised CHEBYCHEV poly-
nomials of the first kind, Pn% 3 are the normalised CHEBYCHEV
polynomials of the second kind.

If we choose w = 1, we get the Legendre polynomials. The
—x?) for z € (0,0)
are the HERMITE polynomials defined by Hy = 1, Hq(x) = 2z
and Hy,1(x) = 2aH,(x) — 2nH,_1(z) for n > 1.

polynomials corresponding to w(x) := exp(

The n-th FOURIER partial sum is the best least squares ap-
proximation from T, to f: ||f — Sp[f]l2 = minger, |f — p2
Vfe L?(T) o C(T).

Let p := Z‘,.,‘(;” dpe'* e T,. Then
1F =3 = 1713 = (o Fo—<hopd+ D) ldnl?
|E|<n
=713 = D) lexlf1P2+ D) lerlfl—dul® = [£15 = ) lexlf]|
|k|<n |k|<n |k|<n
——— ———

>0

with equality if and only if cx[f] = dj, for all k| < n.

If f € C*(T), then S,[f] = f absolutely.
If feC(T) and >, ck[f] < 0, then S,[f] = f.
(BERNSTEIN:) For f € C"(T) and n > 1 we have

In(n)

’I"

1f = Sulflleo < elfloc—7

b

where c is a constant independent of f and n.

The Chebychev series of f: [—
i (fu Tk)w
= (T, Th)w

where w: [-1,1] > R, z — (1 —22) 2.

If f e C*([—

uniformly to f.

1,1] > Ris

Tka

1,1]), then the CHEBYCHEV series of f converges

For f € C3, we have

B = min If = ple < 5051 o
This is optimal.
If feCk_ then
T 4 ’ (k)
B < (5 ) 1@

The optimal bound is § tye [/ oo-



THEOREM W/O PROOF, REMARK, COROLLARY

JACKSON’s Theorem III: Cy,

APPROXIMATION THEORY

3 THEOREMS W/O PROOF, REMARK

BERNSTEIN Theorems I, II, I11

APPROXIMATION THEORY

DEFINITION

Rational functions

APPROXIMATION THEORY

THEOREM W/ PROOF, COROLLARIES

STONE-WEIERSTRASS theorem

APPROXIMATION THEORY

2 THEOREMS W/O PROOF

Binomial / Multinomial theorem

APPROXIMATION THEORY

THEOREM W/O PROOF

JACKSON’s Theorem V for f: [-1,1] - R

APPROXIMATION THEORY

DEFINITION, REMARK, THEOREM

ZYGMUND modulus of continuity

APPROXIMATION THEORY

THEOREM W/ PROOF, REMARK

Existence of a rational best approximation

APPROXIMATION THEORY

REMARK, THEOREM W/O PROOF

Multivariate polynomials

APPROXIMATION THEORY

THEOREM W/ PROOF

There are no HAAR spaces of continuous
functions on R? for d > 2, except one

dimensional ones.

APPROXIMATION THEORY



For f: [-1,1] — R we have

iffEC([—].,l]),
En(f) <1 5748 if feLipM,
() (TL20 a2 3) 1 W o, i e CH([=1,1)),

The ZyGMUND modulus of continuity of a bounded function
fis

w}(9) = Sup sup |f(x+h)=2f(z) + f(z = h)|.

We have w¥(6) < 2wy (9).
Let f € Car. Then EI(f) € O(%) if and only if § —

w¥
’rlL fé((s) is
bounded.

{Re R, ([a,b]) : |[R— fllo < [|floo} is closed, bounded, but
not compact, e.g. ﬁ — L.

For f € C([a,b]) there exists a a best approximation from
Ry ([a,b]).

§ = inf{|f — Rl : R € R"([a,b])}. I(Ry = (’77[) c R™ ([a,b]) s.t.
f — Riloo — 8, assume ||Qglloc = 1. Take subsequence such that | Ry —
floo <6+ 1. Then |Rilo < [|Rk = flloo + [flloo < 6+ 1+ |floo =t &.
Hence | Py (z)| = |Rk(2)]|Qk(2)| < |Qklw| Rk < €, so Vk € N we have
(P, Qr) € {(P,Q) € Pn X Pm : |Pleo <e,||Q|ec < 1}, which is compact.
Up to a subsequence, P, — P, Qr — Q. Then Q| = 1. As Q € Py, 3

at most m zeros of Q. As |P(x)| < €|Q(z)], zeros of Q are also zeros of

. . = P
D g o O o . Soree o k n
P, so we can get rid of zeros, so o " o€ R ([a,b]).

Let N¢ := {a = (a1,...,0q) : a; € No} and |of = Zle o
as well as 2 = [[{_, a8 for o € N3. The function z —
z® is called monomial. A polynomial p can be represented as
p(x) = X, o car®, where I < N§ is finite. The degree of P is
max({|a| : @ € I,co # 0}). (Then the degree of p(z) = 0 is
—00.)

The linear space of all polynomials of degree at most n in R? is
denoted by P, (R%). If p € P,,(R%), then p(z) = 2laj<n CaZ®

The monomials = — z* with |a| < n form a basis for P, (R?).

Assume we have a HAAR space with dim n > 2 and HAAR
system {u1,..., up}. Thus if z1,..., 2, C R? are distinct, then
A = [u;(z;)]s ; is invertible. Select closed path in R containing
and x2 but no other points zs, ..., x,. Move z1 and x2 continuously
towards each other along this path, s.t. 1 and x2 exchange places.
This corresponds to exchanging the first and second column in A.
Hence det changes sign, so it has to be zero somewhere on the path,
which contradicts that {ui,..., un} is a HAAR system.

Hence {z® : |a| < n} can’t be a HAAR system of P,(R%) if n,d >
2, so interpolation for sets of dim(P,(R?)) = (”;rd) distinct
points is not possible!

For f € Car we have EZ(f) < 3wy (niﬂ)

One can get rid of the factor %

This implies the second WEIERSTRASS approximation theo-
rem.

Corollary: DINI-LIPSCHITZ. If f € Cor and wy(6) In(%) LAUN

0, then S,[f] = f.

If f e Cyr and EL(f) € O(n™®) for some a € (0,1), then
f € Lip®.

For @ = 1 we have that W;(§) < k¢ implies that E,(f) €
0] (%) by JACKSON’s Theorem II, but the converse does not
hold.

If f € Car and EL(f) € O(2), then w() < k6| In(6)| for small
6> 0.

Let f € Car, EL(f) € O(n™®7P), where p € N and « € (0,1).
Then f',..., f® exist and we have f® e Lip®.

A rational function is a quotient of two polynomials:

P(z) av+aix+...+apz"
T — = . (4)
Q(x) bo+biz+...4+bpam

The set of bounded rational functions on an interval [a, ] is
Ry ([a,b]) :=={(4) : P€ Py, Q€ P, Q(z) >0 Vz € [a,b]}.

The condition Q(x) > 0 ensures continuity.

If X is a compact metric space and A < C(X) is an subalgebra
such that 1 € A and A separates points of X, that is for
x # y € X, then there exists a f € A with f(z) # f(y), then
A=C(X).

Corollary: multidimensional WEIERSTRASS theorem: if X <
R? is compact, then the polynomials in d variables on X are
dense in C(X).

For z,y € R? and @ € N¢ we have (z + y)* =
Zogﬁga (g)xﬁya*ﬂ, where < « holds if 8; < «; for all
ie{l,....d}. f 8 < «a, we let (g) = WLB)‘ and 0 else,

d
where a! =[], _; az!.

For z,y € R? and k € N we have ({z,y))* = Z\a\=k ‘%maya.



DEFINITION, EXAMPLES

(Strictly) positive definite function

APPROXIMATION THEORY

DEFINITION, EXAMPLES

Radial function

APPROXIMATION THEORY

THEOREM W/O PROOF

SCHOENBERG (1938)

APPROXIMATION THEORY

EXPLANATION

Which proofs of the WEIERSTRASS

approximation theorem did we see?

APPROXIMATION THEORY

EXPLANATION

Strictly positive definite functions are
related to polynomial interpolation in

higher dimensions.
APPROXIMATION THEORY

DEFINITION, REMARK, EXAMPLES

Completely monotone function

APPROXIMATION THEORY

EXAMPLES

Data ((ack7 fk)):::l < R% x R can be interpolated by the functions

n n
2
j=1 L+ |-~y H% =1 L+ —=; Hz
n 2
Z Cje*H'*z]-HQ
=1

APPROXIMATION THEORY



Assume X is a linear space, f: X — R is a function and

T1,...,xn € X are distinct. We want to find a function g: X — R
such that g(zx) = f(zx) for all k € {1,...,n} of the form
g = >, ajp(- — vj), where we suppose that v1,...,vm € X are

known, ¢: X — R is fixed, and the ai,...,a,n € R are unknown.
Then g(zx) = f(zx) for all k € {1,...,n} is a system of n linear
combinations with m unknowns.

For X = RY, m = n and v; = x;, this can be rewritten as
A(W)(aj);-lzl = (f(x;))j=1, so its uniquely solvable if f is strict-
ly positive definite.

A function ¢: [0,0) — R is complete monotone if ¢ €
C([0,0)) N C*((0,00)) and (—1)*p(¥) is nonnegative for all
ke No.

The class of completely monotone functions is closed under
addition, multiplication and scalar multiplication (like the po-
sitive definite functions).

z+2

The functions e=** and « for a = 0, In <$—+1) as well as

(x+ B) % for B> 0 and a = 0 are completely monotone.

|
——— = - —xil2), so p(xr) =
L L ol —ayll), 0 pla)

(1+2%) 7! and p(v/x) = (1 + 2)~! is completely monotone
and nonconstant.

E.g.: set (- — ;) =

Last point: since A := [e"®7]7,_, is positive definite: as GAUS-

SIANS are positive definite,

—[zi—z; )3 — [e—lzil3 22z 251310 —
0<[emmmalz]r, | = [eT1"hesi®iemI%l2]0, | = DAD,

)=

where D := diag (e*”“”g, ... e~ l=213)  which is invertible (It
A >0 and det(B) # 0, then B*AB > 0.).

A function ¢: X — C is positive definite if for all n € N and

every n distinct points x1,...,x, and a € C" we have
n
> ajp(z; —ax) =0 (5)
Gk=1

and strictly positive definite if the above inequality is strict
for all & € C™\{0}.

Examples: cos,  — exp(i{y, x ), non-negative linear combi-
nation and products of positive definite functions, GAUSSIANS.

A function ®: R? — R is radial if
(z) = ®(y) for all 2,y € R with |z]s = ||y|2.

Hence @ is radial if there exists a function ¢: [0,0) — R such
that ® = ol |z.

For d = 1, all even functions are radial. GAUSSIANS such as

2 .
e~lzlz are radial.

A function ¢: [0,00) — R is completely monotone if and only
if

o: R R, - oz]?)

is positive definite for all d € N+g.
But only positive definiteness is not enough for interpolation:
Let ¢: [0,00) — R. Then

o: R" >R,  z- ¢oz]2)

is strictly positive definite for all d € N~ if and only if p o4/

is completely monotone and non-constant.

Bernstein’s proof with BERNSTEIN polynomials,
FEJER-HERMITE

Non-existence theorem (for second WEIERSTRASS theorem)
FEJER theorem (for second WEIERSTRASS theorem)
JACkKSON’s Theorem III for Ca,; / JACKSON’s theorem V for
C([_L 1])

STONE-WEIERSTRASS



