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Let X :“ pR2, } ¨ }8q, Y :“ spanpp0, 1q
T

q and x :“ p1, 0q
T. For y “

py1, 0q P Y we have }y´x}8 “ }p0, y1q
T

´p1, 0q
T

}8 “ maxp|y1|, 1q ě

1. If y1 P r´1, 1s, then }x ´ y}8 “ 1 “ minyPY }y ´ x}8, so there

are infinitely many best approximations to x in Y . If we instead

consider pR2, } ¨ }2q, then the unique best approximation is y˚
“ 0,

as }x ´ y˚
}2 “ }x}2 “ 1 ă }x ´ y}2 for all y P Y zt0u.

In general, if Y Ă X is not closed, for x P Y zY , there is no best

approximation of x in Y . Indeed, as x P Y , there exists a sequence

pynqnPN Ă Y with yn Ñ x, that is, }yn ´ x}
nÑ8

ÝÝÝÑ 0. If there were

a y˚
P Y such that }y˚

´ x} “ minyPY }y ´ x}, then }y˚
´ x} “ 0

and thus x “ y˚
P Y , which is a contradiction to x P Y zY .

The main questions are the ones of existence, uniqueness, con-

struction (how can we find or construct such a approximation)

and measure (e.g. choice of norm).

If Yx is empty, the statement holds, so assume Yx ‰ H.

Boundedness. By definition, Yx is a subset of the ball Sdx
:“

ty P Y : }x ´ y} ď dxu, where dx :“ minyPY }x ´ y}.

Convexity. Suppose Yx is not a singleton. For y1, y2 P Yx and

λ P p0, 1q define ỹ :“ λy1 ` p1 ´ λqy2. We have ỹ P Y as Y

is a subspace and thus convex. Then }x ´ y1} “ }x ´ y2} “

minyPY }x´y} and }x´ỹ} “ }λx`p1´λqx´λy1´p1´λqy2} ď

λ}x ´ y1} ` p1 ´ λq}x ´ y2} “ p�λ ` 1��́λqminyPY }x ´ y} “

minyPY }x´y}, so }x´ ỹ} “ minyPY }x´y} and hence ỹ P Yx,

so Yx is convex.

Let x P X. Since Y is a vector space, 0 P Y and thus

minyPY }x ´ y} ď }x ´ 0} “ }x}. Hence any best approxi-

mation must be in the set K :“ ty P Y : }x ´ y} ď }x}u Ă Y ,

which is bounded and closed and thus compact. The function

f : K Ñ R, y ÞÑ }x ´ y} is continuous on the compact set K

so its attains a minimum in yx P K, which is the best appro-

ximation.

It suffices to check the case where the convex set Yx has infini-

tely many elements and deduce a contradiction. If y1, y2 P Y

with y1 ‰ y2, then by convexity of Yx we have λy1`p1´λqy2 P

Yx Ă Sdx
, but Sdx

can not contain this line tλy1 ` p1 ´ λqy2 :

λ P p0, 1qu, as X is strictly convex.

A norm } ¨ } is strictly convex if for all x, y P X with x ‰ y

and }x} “ }y} “ r ą 0 and all λ P p0, 1q we have }λx ` p1 ´

λqy} ă r. We say that pX, } ¨ }q is a strictly convex space.

Geometrically, this corresponds the straight line segment bet-

ween to two distinct points on the boundary of any } ¨ }-ball

being contained in the ball.

The p-norm on Rn is strictly convex for p P p1,8q and not

strictly convex for p P t1,8u. The L2-norm on Cpra, bsq is

strictly convex, while } ¨ }8 is not.

For a bounded function f on r0, 1s, the Bernstein polyno-

mial of degree n is

pBnfqpxq :“
n

ÿ

k“0

f

ˆ

k

n

˙ ˆ

n

k

˙

xkp1 ´ xqn´k,

where p
`

n
k

˘

xkp1´xqn´kqnk“0 are the Bernstein basis polyno-

mials of degree n.

It suffices to show that Bnpfmq ⇒ fk for k P t0, 1, 2u by

the Bohman-Korovkin theorem. We have Bnpf0q “ f0,

Bnpf1q “ f1 and Bnpf2q “ n´1
n f2 ` 1

nf1.

Corollary: Let f P C1
pra, bsq and ε ą 0. Then there exists a

polynomial p such that }f ´ p}8 ă ε and }f 1 ´ p1}8 ă ε.

For a sequence of linear positive operators pTn : Cpr0, 1sq Ñ

Cpr0, 1sqqnPN, the following are equivalent.

1. Tnf ⇒ f for all f P Cpr0, 1sq.

2. Tnf ⇒ f for all f P pfkq2k“0, where fkpxq :“ xk.

3. Tnf0 ⇒ f0 and
`

t ÞÑ pTnφtqptq
˘

⇒ 0, where φtpxq :“

px ´ tq2.

An operator T : Cpr0, 1sq Ñ Cpr0, 1sq is positive if fpxq ě 0 for

all x P r0, 1s implies pTfqpxq ě 0 for all x P r0, 1s.

Every linear positive operator is bounded.

For every f P Cpr0, 1sq we have ˘f ď }f}8 ¨ 1. As T is linear and

positive, we have ˘T pfq ď }f}8T p1q and thus |T pfq| ď }f}8T p1q.

Hence }T } ď }T p1q}8, so T is bounded.
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• f is uniformly continuous ðñ limδŒ0 wf pδq “ 0, that is,

for all ε ą 0 there exists a δ ą 0 such that wf pδq ă ε.

• For 0 ă δ ă δ1 we have wf pδq ď wf pδ1q.

• The set A of continuous functions that have the same mo-

dulus of continuity are uniformly equicontinuous.

The modulus of continuity for a bounded function f on

ra, bs is

wf : r0,8q Ñ r0,8q, δ ÞÑ supt|fpxq ´ fpyq| : |x ´ y| ď δu.

|fpxq ´ fpyq| ď wf p|x ´ y|q, wf p0q “ 0.

If f P C1
pra, bsq, then for all x, y P ra, bs we have |fpxq´fpyq|

|x´y|
ď

}f 1}8, so wf pδq ď }f 1}8δ. (For Lipschitz functions replace

by Lipschitz constant.)

A function f : ra, bs Ñ R is Lipschitz continuous of order

α and we write f P LipαK if there exists a positive constant

K ą 0 such that

|fpxq ´ fpyq| ď K|x ´ y|α @x, y P ra, bs

We have f P LipαK if and only if wf pδq ď Kδα, that is wf pδq P

Opδ´αq for δ Œ 0.

For n P N, wf pn¨q ď nwf and wf pλ¨q ď p1`λqwf for all λ ą 0.

Take x, y P r0, 1s with |x ´ y| ă nδ and then consider the following

equidistant partition of the interval between them: nk :“ x ` k
n

py ´ xq

for k P t0, . . . , nu. Then |nk`1 ´ nk| “
|y´x|

n
|k ` 1 ´ k| ă δ and thus

|fpxq ´ fpyq| “

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

fpxk`1q ´ fpxkq

ˇ

ˇ

ˇ

ˇ

ˇ

△‰

ď

n´1
ÿ

k“0

|fpxk`1q ´ fpxkq|

ď

n´1
ÿ

k“0

wf pδq “ nwf pδq.

For λ P R` zN there exists a n P N with λ P pn, n`1q. As wf is increasing,

wf pλδq ď wf ppn ` 1qδq ď pn ` 1qwf pδq ă pλ ` 1qwf pδq for all δ ą 0.

The disadvantages of the Bernstein polynomials are that

the convergence Bnpfq ⇒ f is too slow (not optimal by Jack-

son and not improvable) to be useful in applications and we

have Bnpfq ‰ f for f P P (so B2
n ‰ Bn), e.g. if fpxq “ x2

and ε “ 10´4, then we need n ą 2500 for }f ´ Bnpfq} ă ε.

Bn is not self-adjoint.

The advantages are that Bnpfq is linear and positive, we

have an error bound and that Bnpfq ⇒ f for all f P Cpra, bsq

and that if f P Cm
pra, bsq, then pBnpfqqpkq ⇒ f pkq for all

k P t0, . . . ,mu. The basis functions are a partition of unity.

For a bounded function f on r0, 1s, }f ´ Bnpfq}8 ď 3
2
wf

´

1?
n

¯

.

|fpxq ´ pBnfqpxq|
△‰

ď
řn

k“0

ˇ

ˇfpxq ´ f
`

k
n

˘
ˇ

ˇ

`n
k

˘

xk
p1 ´ xq

n´k.

wf

`ˇ

ˇx ´ k
n

ˇ

ˇ

˘

“ wf

´

1?
n

?
n

ˇ

ˇx ´ k
n

ˇ

ˇ

¯

ď
`

1 `
?
n

ˇ

ˇx ´ k
n

ˇ

ˇ

˘

wf

´

1?
n

¯

.

|fpxq ´ pBnfqpxq| “ wf

´

1?
n

¯ ´

1 `
?
n

řn
k“0

ˇ

ˇx ´ k
n

ˇ

ˇ

`n
k

˘

xk
p1 ´ xq

k
¯

.
´

řn
k“0

ˇ

ˇx ´ k
n

ˇ

ˇ

`n
k

˘

xk
p1 ´ xq

k
¯2

ď

´

řn
k“0

ˇ

ˇx ´ k
n

ˇ

ˇ

2 `n
k

˘

xk
p1 ´ xq

k
¯

¨
´

řn
k“0

`n
k

˘

xk
p1 ´ xq

k
¯

“

´

řn
k“0

´

x2
` k2

n2 ´ 2x k
n

¯

`n
k

˘

xk
p1 ´ xq

k
¯

“

x2
` pBnf2qpxq ´ 2xpBnf1qpxq “

x´x2

n ď 1
4n .

|fpxq ´ pBnfqpxq| ď wf

´

1?
n

¯ ´

1 `
?
n 1

2
?

n

¯

ď 3
2wf

´

1?
n

¯

.

The (self-adjoint!) Lagrange interpolating operator is

Ln : Cpra, bsq Ñ Pn, f ÞÑ

n
ÿ

k“0

fpxkqℓkpxq,

where

ℓkpxqq :“
n

ź

j“0
j‰k

x ´ xj

xk ´ xj

has degree n. is independent of pykqnk“0. Since ℓkpxjq “ δj,k,

the Lnpfq interpolates f at pxkqnk“0. ℓk are partition of unity.

Let ppxq :“
řn

k“0 ckx
k. Formulating the interpolation condi-

tion as matrix multiplication yields

V c “:

¨

˚

˝

1 x0 . . . xn
0

1 x1 . . . xn
1

1 xn . . . xn
n

˛

‹

‚

¨

˚

˚

˝

c0
...

cn

˛

‹

‹

‚

“

¨

˚

˚

˝

y0
...

yn

˛

‹

‹

‚

“: y.

The matrix V is the Vandermonde matrix with detpV q “
ś

1ďjăiďn xi ´ xj . Since the pxkqnk“0 are distinct, detpV q ‰ 0,

so V is invertible and there exists a unique solution c “ V ´1y.

Advantages: they are linear projections and that the basis

polynomials only depend on pxkqnk“0, so interpolating multiple

functions at the same points is easy.

Disadvantage: not positive, removing or adding one point

xk yields completely different basis functions. Furthermore,

Lnpfq ­⇒ f . For f “ | ¨ | on r´1, 1s, Lnpfq Ñ f only for

x P t˘1, 0u (better with rational approximation).

We have }Ln} “
›

›

řn
k“0 |ℓkp¨q|

›

›

8
“: Λn and }f ´ Lnpfq}8 ď p1 `

ΛnqEnpfq.

Given an array of points x, there exists an f P Cpra, bsq such

that }Lnpfq ´ f}8 Ñ 8, e.g. 1
x2`1 on ra, bs “ r´5, 5s with

equidistant nodes. Adding more points makes it worse (oscil-

lation at the endpoints). Better: Chebychev nodes.

This is due to:

Given a sequence pTn : Cpra, bsq Ñ PnqnPN of linear continuous

projections, there exists a f P Cpra, bsq such that }Tnpfq ´

f}8 Ñ 8 (Kharshiladze, Lozinski (1941)).
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If f P Cn`1
pra, bsq is interpolated by p P Pn at pxkqnk“0, then

}f ´ p}8 ď 1
pn`1q!}f

pn`1q}8}W }8, where W :“
śn

k“0p¨ ´xkq.

We show that for all x P ra, bs there exists a ξx P ra, bs such that fpxq´ppxq “
1

pn`1q! f
pn`1q

pξxqW pxq. If x “ xk for some k P t0, . . . , nu, then the LHS is

zero as p interpolates f but the RHS is also zero since W vanishes on pxkq
n
k“0.

If x ‰ xk for all k P t0, . . . , nu, define the scalar λx :“
fpxq´ppxq

W pxq
and the

function φ :“ f ´ p ´ λxW . As f, p,W P Cn`1
pra, bsq, so is φ. We have

φpxkq “ 0 for all k P t0, . . . , nu and φpxq “ 0, so φ has at least n ` 2 zeros.

By Rolle’s Theorem, φ1 has at least n ` 1 zeros, so, inductively, φpn`1q has

at least one zero ξx. Hence 0 “ φpn`1q
pξxq “ fpn`1q

pξxq ´ 0 ´ ¨λxpn ` 1q!

and so λx “ 1
pn`1q! f

pn`1q
pξxq.

}W }8 is minimal for Chebychev nodes.

Given distinct pxkqnk“0 Ă ra, bs and pykqnk“0 Ă R, define u0 ” 1

and

ppxq :“
n

ÿ

k“0

ry0, . . . , yksukpxq, where ukpxq :“
k´1
ź

j“0

px ´ xjq,

ryks :“ yk, ryk, yjs :“
yj ´ yk
xj ´ xk

for k ‰ j,

and

ryj0 , . . . , yjms :“
ryj1 , . . . , yjms ´ ryj0 , . . . , yjm´1s

xjm ´ xj0

for j0 ‰ jm.

The n-th Fejér-Hermite operator is

Ln : Cpra, bsq Ñ P2n´1, f ÞÑ

n
ÿ

i“1

fpxiqAi,

where

Akpxq :“
`

1 ´ 2px ´ xkqℓ1
kpxkq

˘

ℓ2kpxq.

for distinct pxkqnk“1 Ă ra, bs such that pLnfqpxkq “ fpxkq and

pLnfq1pxkq “ 0 for all k P t1, . . . , nu.

The system has a unique solution if the matrix A of this linear

system is invertible. Let p P Pm such that

ppjqpxiq “ 0 @i P t0, . . . , nu, j P t0, . . . , Jiu,

which corresponds to the homogeneous system Ac “ 0, where

c are the coefficients of p. Then p has n` 1 roots pxiq
n
i“0 with

multiplicities Ji`1. Hence P has at least
řn

j“0pJi`1q “ m`1

roots, so p ” 0 and thus c “ 0. Hence A is injective, so it is

invertible.

For n P Ně1, the polynomials Tn and Un´1 of degree exactly

n and n ´ 1 such that cospnxq “ Tnpcospxqq and sinpnxq “

Un´1pcospxqq sinpxq are the Chebychev polynomials of first

and second order.

Roots of Tn are
`

cos
`

2k`1
2n π

˘˘n

k“0
Ă r´1, 1s, extrema are

`

cos
`

k
nπ

˘˘n

k“0
Ă r´1, 1s.

The leading coefficient of Tn is 2n´1.

We have pTn, Tmqw “ π
2 δn,m (for n ‰ 0) for wpxq :“ 1?

1´x2

and pUn, Umqw “ π
2 δn,m for wpxq :“

?
x2 ´ 1.

We can without loss of generality assume that ra, bs “ r´1, 1s.

We show that for this special choice of pxkqnk“1, we have

Lnpfqpxq “
1

n2
Tnpxq2

n
ÿ

i“1

fpxiq
1 ´ xxi

px ´ xiq
2

because then Lnpfq is clearly linear and positive.

The functions pgkqnk“0 Ă Cpra, bsq satisfy the Haar conditi-

on if every n ` 1 vectors pgkpxjqqnk“0 for j P t0, . . . , nu are

linearly independent, that is, the matrix pgkpxjqqnj,k“0 is in-

vertible for all sets of distinct points pxjqnj“0 Ă ra, bs. Then

A :“ spanpg0, . . . , gnq is a Haar space and pgkqnk“0 is a Che-

bychev system or Haar system.

Let f P Cpra, bsq, A Ă Cpra, bsq be a linear subspace and p˚ P

A. Then p˚ is a best approximation of f in A if and only if

there is no p P A such that

`

fpxq ´ p˚pxq
˘

ppxq ą 0 @x P EM , (1)

where

EM :“ tx P ra, bs : |fpxq ´ p˚pxq| “ }f ´ p˚}8u.

Let A Ă Cpra, bsq be a pn ` 1q-dimensional Haar space. Let

f P Cpra, bsq and p˚ P A such that f ´ p˚ alternates in sign at

n ` 2 points a ď ξ0 ă . . . ă ξn`1 ď b. Then

Enpfq :“ min
pPA

}f ´ p}8 ě min
iPt0,...,n`1u

|fpξiq ´ p˚pξiq|. (2)

Let A Ă Cpra, bsq be a Haar space of dimension n ` 1 and

f P Cpra, bsq. Then p˚ P A is a best approximation to f in A
if and only if there exist n ` 2 points tξ0, . . . , ξn`1u such that

• a ď ξ0 ă ξ1 ă . . . ă ξn`1 ď b

• |fpξiq ´ p˚pξiq| “ }f ´ p˚}8 for all i P t0, . . . , n ` 1u,

• fpξi`1q ´ p˚pξi`1q “ ´
`

fpξiq ´ p˚pξiq
˘

for all i P t0, . . . , nu.
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LetA :“ spantφ0, φ1, . . .u Ă Cpra, bsq be a subspace of Cpra, bsq

such that for every n, the set tφ0, . . . , φnu satisfies the Haar

condition. Then no point outside A has a best approximation

from A.

Such a system tφ0, φ1, . . .u is called a Markov system.

Corollary: 1st, 2nd Weierstraß theorem.

Let A Ă Cpra, bsq be a n-dimensional subspace. Then a func-

tion f P Cpra, bsq has a unique best approximation from A if

and only if A is a Haar space.

The analogue of Markov’s inequality for the unit disk in

C due to Bernstein states that if Spzq “
řn

k“0 akz
k is a

polynomial for z P C, then

max
|z|“1

|S1pzq| ď nmax
|z|“1

|Spzq|

and we have equality for ppzq “ λzn, where λ P C.
Using the bijective substitution z “ eiθ, we obtain a trigono-

metric polynomial ppθq :“
řn

k“0 ake
iθk P Tn with

max
θPr0,2πs

|S1pθq| ď n max
θPr0,2πs

|Spθq|.

If p P Pn, then maxxPr´1,1s |p1pxq| ď n2 maxxPr´1,1s |ppxq| and

we have equality for p “ αTn for any α P R. This boun-

ded is optimal. (As Pn is finite-dimensional, and p ÞÑ p1 is a

linear operation, there exists a constant Mn P R such that

maxxPr´1,1s |p1pxq| ď Mn maxxPr´1,1s |ppxq|.) One can even

show that (proven by Markov’s brother)

max
xPr´1,1s

|ppkqpxq| ď
n2pn2 ´ 12q . . . pn2 ´ pk ´ 1q2q

1 ¨ 3 ¨ . . . ¨ p2k ´ 1q
max

xPr´1,1s
|ppxq| @k P t1, . . . nu,

where equality holds for any multiple of Tn.

Let A Ă Cpra, bs;Rq be set of approximating functions and

w : ra, bs Ñ p0,8q a fixed positive integrable weight functi-

on.

The best weighted least squares approximation from A
to f P Cpra, bs;Rq is argminpPA }f ´ p}w, where the weigh-

ted scalar product and the induced norm are (for f, g P

Cpra, bs;Rq) pf, gqw :“
şb

a
wpxqfpxqgpxqdx, }f}w :“

a

pf, fqw.

Hence least squares approximation is best approximation with

a weighted norm, so if e.g. A is a finite dimensional linear sub-

space, then the best weighted least approximation exists.

By a lemma we have

max
xPr´1,1s

|p1pxq| ď n max
xPr´1,1s

|
a

1 ´ x2p1pxq| “ n max
θPr0,2πs

| sinpθqp1pcospθqq|.

(3)

Let Spθq :“ ppcospθqq. Then S1pθq “ ´p1pcospθqq sinpθq. By the

Bernstein-Markov inequality for S P Tn we have

max
xPr´1,1s

|p1pxq|
(3)
ď n max

θPr0,2πs
| sinpθqp1pcospθqq| “ n max

θPr0,2πs
|S1pθq|

Bernstein
ď n2 max

θPr0,2πs
|Spθq|

“ n2 max
θPr0,2πs

|ppcospθqq| “ n2 max
xPr´1,1s

|ppxq|.

LetA Ă pH, p¨, ¨qq be linear subspace of an inner product space

and f P H. Then p˚ P A is best approximation from A to f if

and only if the error e˚ :“ f ´ p˚ is orthogonal to A, that is,

pe˚, pq “ 0 for all p P A.

We have Pythagoras’ Theorem:

for p˚, q˚ P A and f P H, }f´q˚}2 “

}f´p˚}2`}q˚´p˚}2. For q˚ “ 0 P A
we get }f}2 “ }p˚}2 ` }f ´ p˚}2.

f, g P Cpra, bs;Rq, f ‰ g, }f}w “ }g}w “ 1 (wlog midpoint

strict convexity):

ˆ

1

2
}f ` g}w

˙2

“
1

4

ż b

a

wpxq|fpxq ` gpxq|
2 dx

ă
1

2

ż b

a

wpxq|fpxq|
2 dx `

1

2

ż b

a

wpxq|gpxq|
2 dx

“
1

2
}f}

2
w `

1

2
}g}

2
w “ 1,

using that px ` yq2 ă 2px2 ` y2q for x ‰ y.
Hence if A Ă Cpra, bs;Rq is a linear subspace, either the least squares

approximation does not exist or it is unique.

The monic orthogonal polynomials with respect to w are uni-

quely determined by Q0 ” 1, Q1pxq :“ x ´ a0 and for j ě 1

by

Qj`1pxq :“ px ´ ajqQjpxq ´ bjQj´1pxq.

where

aj :“
pQj , xQjp¨qqw

pQj , Qjqw
, bj :“

pxQj , Qj´1qw

pQj´1, Qj´1qw
“

}Qj}2w

}Qj´1}2w
.

All roots of Qn are simple, real and contained in pa, bq.

Let A Ă H be a linear subspace of an inner product space

spanned by basis functions pφiq
n
i“0 and f P H. If the orthogo-

nality condition

pφi, φjq “ 0 @i ‰ j, i, j P t0, . . . , nu

is satisfied, then the best approximation from A to f is

p˚ “

n
ÿ

i“0

pφi, fq

}φi}
2
φi.
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The Fourier series of f P L1
2π is

a0
2

`

8
ÿ

k“1

akrf s cospkxq ` bkrf s sinpkxq “
ÿ

kPZ
ckrf seikx, where

akrf s :“
1

π

ż π

´π

fptq cospktqdt, bkrf s :“
1

π

ż π

´π

fptq sinpktqdt

and ckrf s :“ 1
2π

şπ

´π
fptqe´ikt dt are the Fourier coefficients

with 2c0rf s “ a0rf s, 2ckrf s “ akrf s ´ ibkrf s, 2c´krf s “

akrf s ` ibkrf s for k P Ną0.

The orthogonal monic polynomials Pα,β
n corresponding to the

weight function wpxq “ p1´xqαp1`xqβ for α, β ą ´1 are the

Jacobi polynomials.

In particular, P
´ 1

2 ,´
1
2

n are the normalised Chebychev poly-

nomials of the first kind, P
1
2 ,

1
2

n are the normalisedChebychev

polynomials of the second kind.

If we choose w ” 1, we get the Legendre polynomials. The

polynomials corresponding to wpxq :“ expp´x2q for x P p0,8q

are the Hermite polynomials defined by H0 ” 1, H1pxq “ 2x

and Hn`1pxq “ 2xHnpxq ´ 2nHn´1pxq for n ě 1.

The n-th partial Fourier sum of f P L1pTq is the trigono-

metric polynomial of degree n

Snrf spxq :“
ÿ

|k|ďn

ckrf seikx “
a0
2

`

n
ÿ

k“1

akrf s cospkxq`bkrf s sinpkxq.

The operator Sn : L
2pTq Ñ Tn is linear and bounded with

}Sn} “ 1 and a projection as well as injective.

The n-th Fourier partial sum is the best least squares ap-

proximation from Tn to f : }f ´ Snrf s}2 “ minpPTn
}f ´ p}2

@f P L2pTq Ą CpTq.

Let p :“
ř

|k|ďn dke
ik¨ P Tn. Then

}f ´ p}22 “ }f}22 ´ x p, f y ´ x f, p y `
ÿ

|k|ďn

|dk|2

“ }f}22 ´
ÿ

|k|ďn

|ckrf s|2 `
ÿ

|k|ďn

|ckrf s ´ dk|2

looooooooooomooooooooooon

ě0

ě }f}22 ´
ÿ

|k|ďn

|ckrf s|2

with equality if and only if ckrf s “ dk for all |k| ď n.

For n P N0, the n-th Dirichlet kernel is

Dnpxq :“
ÿ

|k|ďn

eikx “

$

&

%

sinpp2n`1q x
2 q

sinp x
2 q

, if x P r´π, πszt0u,

2n ` 1, if x “ 0.

Dn is even,
şπ

´π
Dnpxqdx “ 2π and |Dnpxq| ď 2n ` 1 with

equality only for x “ 0. ckrDns “ 1|k|ďn and

4

π2
logpnq ď

1

2π

ż π

´π

|Dnpxq|dx ď 3 ` logpnq.

Snrf s “ f ˚ Dn and Dn “ 1 ` 2
řn

k“1 cospk¨q.

If f P C2
pTq, then Snrf s ⇒ f absolutely.

If f P CpTq and
ř

kPZ ckrf s ă 8, then Snrf s ⇒ f .

(Bernstein:) For f P Cr
pTq and n ą 1 we have

}f ´ Snrf s}8 ď c}f prq}8

lnpnq

nr
,

where c is a constant independent of f and n.

The Fejér kernel is

Kn :“
1

n

n´1
ÿ

k“0

Dk.

Then Kn is even and nonnegative, 1
2π

şπ

´π
Knptqdt “ 1 and

for t ‰ 0, Knptq “
sin2pn

2 ¨q

n sin2p ¨
2 q
. Further, cℓrKns “

n´|ℓ|

n 1|ℓ|ďn.

Let σnrf s :“ 1
n

řn´1
k“0 Skrf s “ Kn ˚ f . Then σn : CpTq Ñ Tn is

linear, bounded, but not a projection with }f ´ σnrf s}2
nÑ8

ÝÝÝÑ

0, proven with Bohman-Korovkin, proves Weierstraß.

The Chebychev series of f : r´1, 1s Ñ R is

8
ÿ

k“0

pf, Tkqw

pTk, Tkqw
Tk,

where w : r´1, 1s Ñ R, x ÞÑ p1 ´ x2q´ 1
2 .

If f P C2
pr´1, 1sq, then the Chebychev series of f converges

uniformly to f .

For f P C1
pr´1, 1sq we have Enpfq ď π

2pn`1q
}f 1}8.

For f P C2π we have ET
n pfq ď 3

2wf

´

π
n`1

¯

.

If f P Lip1k is 2π-periodic, then ET
n pfq ď kπ

2pn`1q
.

If wf pδq ď kδ, then ET
n pfq ď kπ

2pn`1q
P O

`

1
n

˘

as n Ñ 8.

For f P C1
2π we have

ET
n “ min

pPTn

}f ´ p}8 ď
π

2pn ` 1q
}f 1}8.

This is optimal.

If f P Ck
2π, then

ET
n pfq ď

ˆ

π

2pn ` 1q

˙k

}f pkq}8.

The optimal bound is π
2

1
pn`1qk

}f pkq}8.
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For f : r´1, 1s Ñ R we have

Enpfq ď

$

’

’

’

&

’

’

’

%

3
2wf

´

π
n`1

¯

, if f P Cpr´1, 1sq,

πM
2pn`1q

, if f P LipMk ,
`

π
2

˘k
´

śn`1
j“n´k`2

1
j

¯

}f pkq}8, if f P Ck
pr´1, 1sq,

For f P C2π we have ET
n pfq ď 3

2wf

´

π
n`1

¯

.

One can get rid of the factor 3
2 .

This implies the second Weierstraß approximation theo-

rem.

Corollary: Dini-Lipschitz. If f P C2π and wf pδq lnp 1
δ q

δŒ0
ÝÝÝÑ

0, then Snrf s ⇒ f .

The Zygmund modulus of continuity of a bounded function

f is

w˚
f pδq :“ sup

x
sup

|h|ăδ

|fpx ` hq ´ 2fpxq ` fpx ´ hq|.

We have w˚
f pδq ď 2wf pδq.

Let f P C2π. Then ET
n pfq P Op 1

n q if and only if δ ÞÑ
w˚

f pδq

δ is

bounded.

If f P C2π and ET
n pfq P Opn´αq for some α P p0, 1q, then

f P Lipα.

For α “ 1 we have that Wf pδq ď kδ implies that Enpfq P

O
`

1
n

˘

by Jackson’s Theorem II, but the converse does not

hold.

If f P C2π and ET
n pfq P Op 1

n q, then wpδq ď kδ| lnpδq| for small

δ ą 0.

Let f P C2π, E
T
n pfq P Opn´α´pq, where p P N and α P p0, 1q.

Then f 1, . . . , f ppq exist and we have f ppq P Lipα.

tR P Rn
mpra, bsq : }R ´ f}8 ď }f}8u is closed, bounded, but

not compact, e.g. 1
kx`1 Ñ 1t0u.

For f P Cpra, bsq there exists a a best approximation from

Rn
mpra, bsq.

δ :“ inft}f ´ R}8 : R P Rn
mpra, bsqu. DpRk “

Pk
Qk

q Ă Rn
mpra, bsq s.t.

}f ´ Rk}8 Ñ δ, assume }Qk}8 “ 1. Take subsequence such that }Rk ´

f}8 ď δ ` 1. Then }Rk}8 ď }Rk ´ f}8 ` }f}8 ď δ ` 1 ` }f}8 “: ε.

Hence |Pkpxq| “ |Rkpxq||Qkpxq| ď }Qk}8}Rk}8 ď ε, so @k P N we have

pPk, Qkq P tpP,Qq P Pn ˆPm : }P }8 ď ε, }Q}8 ď 1u, which is compact.

Up to a subsequence, Pk Ñ P , Qk Ñ Q. Then }Q}8 “ 1. As Q P Pm, D

at most m zeros of Q. As |P pxq| ď ε|Qpxq|, zeros of Q are also zeros of

P , so we can get rid of zeros, so Pk
Qk

Ñ P
Q

P Rn
mpra, bsq.

A rational function is a quotient of two polynomials:

x ÞÑ
P pxq

Qpxq
“

a0 ` a1x ` . . . ` anx
n

b0 ` b1x ` . . . ` bmxm
. (4)

The set of bounded rational functions on an interval ra, bs is

Rn
mpra, bsq :“ t(4) : P P Pn, Q P Pm, Qpxq ą 0 @x P ra, bsu .

The condition Qpxq ą 0 ensures continuity.

Let Nd
0 :“ tα “ pα1, . . . , αdq : αi P N0u and |α| :“

řd
i“1 αi

as well as xα “
śd

k“1 x
αk

k for α P Nd
0. The function x ÞÑ

xα is called monomial. A polynomial p can be represented as

ppxq “
ř

αPI cαx
α, where I Ă Nd

0 is finite. The degree of P is

maxpt|α| : α P I, cα ‰ 0uq. (Then the degree of ppxq ” 0 is

´8.)

The linear space of all polynomials of degree at most n in Rd is

denoted by PnpRd
q. If p P PnpRd

q, then ppxq “
ř

|α|ďn cαx
α.

The monomials x ÞÑ xα with |α| ď n form a basis for PnpRd
q.

If X is a compact metric space and A Ă CpXq is an subalgebra

such that 1 P A and A separates points of X, that is for

x ‰ y P X, then there exists a f P A with fpxq ‰ fpyq, then

A “ CpXq.

Corollary : multidimensional Weierstrass theorem: if X Ă

Rd is compact, then the polynomials in d variables on X are

dense in CpXq.

Assume we have a Haar space with dim n ě 2 and Haar

system tu1, . . . , unu. Thus if x1, . . . , xn Ă Rd are distinct, then

A :“ ruipxjqsi,j is invertible. Select closed path in Rd containing x1

and x2 but no other points x3, . . . , xn. Move x1 and x2 continuously

towards each other along this path, s.t. x1 and x2 exchange places.

This corresponds to exchanging the first and second column in A.

Hence det changes sign, so it has to be zero somewhere on the path,

which contradicts that tu1, . . . , unu is a Haar system.

Hence txα : |α| ď nu can’t be a Haar system of PnpRd
q if n, d ě

2, so interpolation for sets of dimpPnpRd
qq “

`

n`d
d

˘

distinct

points is not possible!

For x, y P Rd and α P Nd
0 we have px ` yqα “

ř

0ďβďα

`

α
β

˘

xβyα´β , where β ď α holds if βi ď αi for all

i P t1, . . . , du. If β ď α, we let
`

α
β

˘

:“ α!
β!pα´βq! and 0 else,

where α! :“
śd

k“1 αk!.

For x, y P Rd and k P N we have pxx, y yqk “
ř

|α|“k
k!
α!x

αyα.
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related to polynomial interpolation in

higher dimensions.
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Schoenberg (1938)
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Examples

Data
`

pxk, fkq
˘n

k“1
Ă Rd

ˆR can be interpolated by the functions

n
ÿ

j“1

cj
a

1 ` } ¨ ´xj}22

n
ÿ

j“1

cj
1 ` } ¨ ´xj}22

n
ÿ

j“1

cje
´}¨´xj}22

n
ÿ

j“1

cje
¨xj

Approximation Theory

Explanation

Which proofs of the Weierstraß

approximation theorem did we see?

Approximation Theory



Assume X is a linear space, f : X Ñ R is a function and

x1, . . . , xn P X are distinct. We want to find a function g : X Ñ R
such that gpxkq “ fpxkq for all k P t1, . . . , nu of the form

g “
řm

j“1 ajφp¨ ´ νjq, where we suppose that ν1, . . . , νm P X are

known, φ : X Ñ R is fixed, and the a1, . . . , am P R are unknown.

Then gpxkq “ fpxkq for all k P t1, . . . , nu is a system of n linear

combinations with m unknowns.

For X “ Rd, m “ n and νj “ xj , this can be rewritten as

Apφq
pajq

n
j“1 “ pfpxjqq

n
j“1, so its uniquely solvable if f is strict-

ly positive definite.

A function φ : X Ñ C is positive definite if for all n P N and

every n distinct points x1, . . . , xn and α P Cn we have

n
ÿ

j,k“1

αjαkφpxj ´ xkq ě 0 (5)

and strictly positive definite if the above inequality is strict

for all α P Cn
zt0u.

Examples: cos, x ÞÑ exppi x y, x yq, non-negative linear combi-

nation and products of positive definite functions,Gaussians.

A function φ : r0,8q Ñ R is complete monotone if φ P

Cpr0,8qq X C8
pp0,8qq and p´1qkφpkq is nonnegative for all

k P N0.

The class of completely monotone functions is closed under

addition, multiplication and scalar multiplication (like the po-

sitive definite functions).

The functions e´αx and α for α ě 0, ln
´

x`2
x`1

¯

as well as

px ` βq´α for β ą 0 and α ě 0 are completely monotone.

A function Φ: Rd
Ñ R is radial if

Φpxq “ Φpyq for all x, y P Rd with }x}2 “ }y}2.

Hence Φ is radial if there exists a function φ : r0,8q Ñ R such

that Φ “ φ ˝ } ¨ }2.

For d “ 1, all even functions are radial. Gaussians such as

e´α}x}
2
2 are radial.

E.g.: set Φp¨ ´ xjq :“ 1?
1`}¨´xj}22

!
“ φp} ¨ ´xj}2q, so φpxq “

p1 ` x2q´1 and φp
?
xq “ p1 ` xq´1 is completely monotone

and nonconstant.

Last point: since A :“ rexixj sni,j“1 is positive definite: asGaus-

sians are positive definite,

0 ă re´}xi´xj}
2
2sni,j“1 “ re´}xi}

2
2e2xixje´}xj}

2
2sni,j“1 “ DAD,

where D :“ diag
´

e´}x1}
2
2 , . . . , e´}xn}

2
2

¯

, which is invertible (If

A ą 0 and detpBq ‰ 0, then B˚AB ą 0.).

A function φ : r0,8q Ñ R is completely monotone if and only

if

Φ: Rd
Ñ R, x ÞÑ φp}x}22q

is positive definite for all d P Ną0.

But only positive definiteness is not enough for interpolation:

Let φ : r0,8q Ñ R. Then

Φ: Rd
Ñ R, x ÞÑ φp}x}2q

is strictly positive definite for all d P Ną0 if and only if φ ˝
?

¨

is completely monotone and non-constant.

Bernstein’s proof with Bernstein polynomials,

Fejér-Hermite

Non-existence theorem (for second Weierstraß theorem)

Fejér theorem (for second Weierstraß theorem)

Jackson’s Theorem III for C2π / Jackson’s theorem V for

Cpr´1, 1sq.

Stone-Weierstraß


