Adversarial Regularizers in Inverse Problems¹

Ground truth

Noisy Image

TV reconstruction

Denoising NN

Adversarial Reg.

Seminar: Deep Learning in Inverse Problems Institut für Mathematik, WiSe2021/2022 Viktor Stein, 07.01.2022

¹Lunz et al.: "Adversarial Regularizers in Inverse Problems", *NeurIPS*, 2018

I. NN-AIDED VARIATIONAL REGULARISATION

II. TRAINING A NEURAL NETWORK AS A CRITIC

III. Analysis: Loss optimality, weak stability

IV. RESULTS

V. Outlook & Conclusion

INTRO: NN-AIDED VARIATIONAL REGULARISATION

Inverse problem: recover image $x \in X$ from measurements

 $y = Ax + \varepsilon \in Y$, where $A: X \to Y$ linear.

FIG. 1: In computer tomography, the noisy sinogram y is obtained by applying the forward operator A to the true image x and adding noise ε .

Inverse problem: recover image $x \in X$ from measurements

 $y = Ax + \varepsilon \in Y$, where $A: X \to Y$ linear.

Regularisation approach: for $\lambda > 0$ solve

Inverse problem: recover image $x \in X$ from measurements

 $y = Ax + \varepsilon \in Y$, where $A: X \to Y$ linear.

Regularisation approach: for $\lambda > 0$ solve

$$\underset{x \in X}{\operatorname{argmin}} \quad \underbrace{\|Ax - y\|^2}_{\text{data term}} + \lambda \underbrace{\Psi_{\Theta}(x)}_{\substack{\text{a-priori}\\\text{info}}}$$

- **Key idea**: Replace regularizer f (for example $TV(x) = \|\nabla x\|_1$) by neural network (NN) Ψ_{Θ} .

– Goal: Find best parameters Θ for NN architecture $\Psi.$

- Combination of mathematical methods (model-based) with deep learning (data driven).
- Why is this a good idea?
 - Only training NN to learn $y \mapsto x$ works badly if A complicated or few data available (e.g. MRI, CT).
 - NN is independent of A ("plug-and-play"-structure).
 - Is unsupervised.
 - scales to high-dimensional parameter space.
 - hand-crafted regularizers do not reflect true prior.

I. NN-AIDED VARIATIONAL REGULARISATION

II. TRAINING A NEURAL NETWORK AS A CRITIC

III. Analysis: Loss optimality, weak stability

IV. RESULTS

V. Outlook & Conclusion

NN AS A CRITIC

FIG. 1: NN learns to *discriminate* between distribution of true data and of unregularized reconstructions. (Source: https://youtu.be/ZfYm6Om4hec, modified)

Viktor Stein

Adversarial Regularizers in Inverse Problems

07.01.2022 6 / 25

Let \mathbb{P}_r and \mathbb{P}_Y be the distributions of true images / measurements.

- \mathbb{P}_Y can be mapped from Y to X via $A^{\dagger}_{\delta} := (AA^T + \delta I)^{-1}A^T$, a (regularized) pseudo-inverse of A.

+ A_{δ}^{\dagger} is known for many A, e.g. FOURIER, RADON.² - Applying A_{δ}^{\dagger} to y amplifies noise.

Viktor Stein

Adversarial Regularizers in Inverse Problems

²Jin et al.: "Deep Convolutional Neural Network for Inverse Problems in Imaging", *IEEE Transactions on Image Processing*, 2017

REGULARIZERS AS CRITICS

Goal: Ψ_{Θ} takes high values on samples from \mathbb{P}_n and low values on samples of \mathbb{P}_r . \rightsquigarrow We want to find

$$\underset{\Theta}{\operatorname{argmin}} \ \mathbb{E}_{P_X \sim \mathbb{P}_r}[\Psi_{\Theta}(P_X)] - \mathbb{E}_{P_X \sim \mathbb{P}_n}[\Psi_{\Theta}(P_X)].$$

For $\mu > 0$, define the loss functional

$$\mathbb{E}_{P_X \sim \mathbb{P}_r}[\Psi_{\Theta}(P_X)] - \mathbb{E}_{P_X \sim \mathbb{P}_n}[\Psi_{\Theta}(P_X)] + \mu \underbrace{\mathbb{E}_{P_X \sim \tau} \left[\left((\|\nabla_x \Psi_{\Theta}(P_X)\| - 1)_+ \right)^2 \right]}_{\text{penalizes Lip}(\Psi_{\Theta}) > 1^3},$$

whose minimizer Ψ_{Θ^*} approximates the maximizer f of

$$W_1(\mathbb{P}_r, \mathbb{P}_n) = \sup_{\substack{f \in 1\text{-Lip} \\ f: X \to \mathbb{R}}} \mathbb{E}_{P_X \sim \mathbb{P}_n}[f(P_X)] - \mathbb{E}_{P_X \sim \mathbb{P}_r}[f(P_X)].$$

³Gulrajani et al.: Improved Training of Wasserstein GANs, NeurIPS, 2017 Viktor Stein Adversarial Regularizers in Inverse Problems 07.01.2022

Weight clipping

0.01 0.00 0. Weights Gradient penalt

Weight

LEARNING A REGULARIZER: ALGORITHM

Data: Gradient penalty μ , batch size m, pseudo-inverse A_{δ}^{\dagger} . while Θ has not converged do for $i \in \{1, ..., m\}$ do Sample ground truth image $x_i^{(r)} \sim \mathbb{P}_r$, measurement $y_i \sim \mathbb{P}_Y$, random number $\theta \sim U[0, 1];$ $x_i^{(n)} \leftarrow A_{\delta}^{\dagger} y_i ;$ // Noisy reconstruction $\begin{array}{c} x_i \leftarrow A_{\delta} y_i; \\ x_i \leftarrow \theta x_i^{(r)} + (1 - \theta) x_i^{(n)}; \\ L_i \leftarrow \Psi_{\Theta}(x_i^{(r)}) - \Psi_{\Theta}(x_i^{(n)}) + \mu \left[(\|\nabla_{x_i} \Psi_{\Theta}(x_i)\|_2 - 1) \right]^2; \end{array}$ $L_i \leftarrow \Psi_{\Theta}(x_i^{(r)}) - \Psi_{\Theta}(x_i^{(n)}) + \mu \left[(\|\nabla_{x_i} \Psi_{\Theta}(x_i)\|_2 - 1) \right]^2;$ // Loss functional $\Theta \leftarrow \operatorname{Adam} (\nabla_{\Theta} \sum_{i=1}^{m} L_i);$ // Improved SGD

Once NN trained, solve argmin $_{x \in X} ||Ax - y||_2^2 + \lambda \Psi_{\Theta^*}(x)$ with GD, choosing $\lambda = 2 \mathbb{E}_{\varepsilon \sim p_n} ||A^* \varepsilon||_2$, where A^* is the adjoint of A and p_n is the noise distribution.

I. NN-AIDED VARIATIONAL REGULARISATION

II. TRAINING A NEURAL NETWORK AS A CRITIC

III. ANALYSIS: LOSS OPTIMALITY, WEAK STABILITY

IV. RESULTS

V. Outlook & Conclusion

Assume X is a HILBERT space, Ψ_{Θ^*} is 1-LIPSCHITZ, \mathbb{P}_n -a.e. differentiable and attains maximum in $W_1(\mathbb{P}_r, \mathbb{P}_n)$.

- Let x be noisy reconstruction sampled from \mathbb{P}_n .
- Image obtained by performing η -sized GD step over Ψ_{Θ^*} is $g_{\eta}(x) \coloneqq x \eta \cdot \nabla_x \Psi_{\Theta^*}(x)$. Define $\mathbb{P}_{\eta} \coloneqq (g_{\eta})_{\#} \mathbb{P}_n$.

Goal: $W_1(\mathbb{P}_r, \mathbb{P}_\eta) < W_1(\mathbb{P}_r, \mathbb{P}_n)$ for small $\eta > 0$, that is, w'(0) < 0, where $w(\eta) := W_1(\mathbb{P}_r, \mathbb{P}_\eta).$

 \rightsquigarrow Then gradient step is meaningful.

$$w(\eta)$$

$$w(0) = W_1(\mathbb{P}_r, \mathbb{P}_n)$$

$$W_1(\mathbb{P}_r, \mathbb{P}_\eta)$$

$$\eta$$

One can prove, provided the derivative exists, that

$$w'(0) = -\mathbb{E}_{P_X \sim \mathbb{P}_n} \left[\|\nabla_x \Psi_{\Theta^*}(P_X)\|^2 \right] = -1.$$

Mild assumptions $\implies \|\nabla_x \Psi_{\Theta^*}\|^2 \equiv 1 \mathbb{P}_n$ -a.e. \rightsquigarrow Our loss has optimal W_1 -decay rates: for any other regularizer $f: X \to \mathbb{R}$ with $\|\nabla_x f(x)\| \leq 1$ we define $\tilde{g}_\eta(x) \coloneqq x - \eta \cdot \underbrace{\tilde{w}(0) = \tilde{w}(0)}_{W_1(\mathbb{P}_r, \mathbb{P}_\eta)}$ $\nabla f(x)$ and $\tilde{\mathbb{P}}_\eta \coloneqq (\tilde{g}_\eta)_\#(\mathbb{P}_n)$. Then $\tilde{w}'(0) > -1 = w'(0)$.

WEAK DATA MANIFOLD ASSUMPTION

Assume \mathbb{P}_r is supported on the weakly compact set $M \subset X$.

Regularizer should encode prior knowledge about $\mathbb{P}_r \rightsquigarrow$ penalize points far away from M. One choice:

$$d_M \colon X \to [0, \infty), \qquad x \mapsto \min_{y \in M} \|x - y\|.$$

The data manifold projection is

$$P_M \colon X \supset D \to M, \qquad x \mapsto \underset{y \in M}{\operatorname{argmin}} \|x - y\|.$$

Adversarial Regularizers in Inverse Problems

THEOREM (DISTANCE FUNCTION MAXIMIZES LOSS FUNCTIONAL)

If additionally $(P_M)_{\#}(\mathbb{P}_n) = \mathbb{P}_r$ (low noise), then

$$d_M \in \underset{f \in 1\text{-Lip}}{\operatorname{argmax}} \mathbb{E}_{P_X \sim \mathbb{P}_n}[f(P_X)] - \mathbb{E}_{P_X \sim \mathbb{P}_r}[f(P_X)].$$

- Minimizer is not unique, as we can alter f outside of the convex hull of $\operatorname{supp}(\mathbb{P}_r) \cup \operatorname{supp}(\mathbb{P}_n)$ (provided it remains 1-LIPSCHITZ).

1. d_M is **1-LIPSCHITZ:** Let $x_1, x_2 \in X$ and $\tilde{y} \coloneqq P_M(x_2)$. Then

$$d_{M}(x_{1}) - d_{M}(x_{2}) = \min_{y \in M} ||x_{1} - y|| - \min_{y \in M} ||x_{2} - y||$$

$$= \min_{y \in M} ||x_{1} - y|| - ||x_{2} - \tilde{y}||$$

$$\leq ||x_{1} - \tilde{y}|| - ||x_{2} - \tilde{y}||$$

$$\stackrel{\Delta \neq^{-1}}{\leq} ||x_{1} - \tilde{y} - (x_{2} - \tilde{y})||$$

$$= ||x_{1} - x_{2}||$$

by the inverse triangle inequality.

Now exchange x_1 and x_2 .

 x_2

 x_1

2. d_M attains maximum: Let $f: X \to \mathbb{R}$ be 1-LIPSCHITZ. As we assumed $(P_M)_{\#}(\mathbb{P}_n) = \mathbb{P}_r$ (*), we have

$$\mathbb{E}_{P_X \sim \mathbb{P}_n}[f(P_X)] - \mathbb{E}_{P_X \sim \mathbb{P}_r}[f(P_X)] \stackrel{(\star)}{=} \mathbb{E}_{P_X \sim \mathbb{P}_n}[f(P_X) - f(P_M(P_X))]$$

$$\stackrel{\text{Lip}}{\leq} \mathbb{E}_{P_X \sim \mathbb{P}_n}[\|P_X - P_M(P_X)\|]$$

$$\stackrel{(\ddagger)}{=} \mathbb{E}_{P_X \sim \mathbb{P}_n}[d_M(P_X)]$$

$$= \mathbb{E}_{P_X \sim \mathbb{P}_n}[d_M(P_X) - d_M(P_M(P_X))]$$

$$\stackrel{(\star)}{=} \mathbb{E}_{P_X \sim \mathbb{P}_n}[d_M(P_X)] - \mathbb{E}_{P_X \sim \mathbb{P}_r}[d_M(P_X)],$$

because the distance between x and $P_M(x)$ is $d_M(x)$ (‡).

Let f be weakly lower-semicontinuous and 1-LIPSCHITZ with $||f(x)|| \xrightarrow{||x|| \to \infty} \infty$ and A be continuous.

Remark. The function $f \coloneqq d_M$ fulfills the above assumptions.

THEOREM (EXISTENCE OF MINIMISER)

There exist a $x^* \in \operatorname{argmin}_{x \in X} ||Ax - y||^2 + \lambda f(x)$ for $\lambda > 0$.

THEOREM (WEAK STABILITY OF THE DATA TERM)

Let $(y_n)_{n\in\mathbb{N}} \subset Y$ converge to y and $(x_n)_{n\in\mathbb{N}} \subset X$ be a sequence of minimizers of $||A \cdot -y_n||^2 + \lambda f$. Then $(x_n)_{n\in\mathbb{N}}$ has a weakly convergent subsequence, whose limit x^* minimizes $||A \cdot -y||^2 + \lambda f$.

Proof. Consult [3, Appendix, p. 10-12].

Viktor Stein

I. NN-AIDED VARIATIONAL REGULARISATION

II. TRAINING A NEURAL NETWORK AS A CRITIC

III. Analysis: Loss optimality, weak stability

IV. RESULTS

V. Outlook & Conclusion

Viktor Stein

Adversarial Regularizers in Inverse Problems

RESULTS: DENOISING

(a) Ground Truth (b) Noisy Image (c) TV (d) Denoising N.N. (e) Adversarial Reg

	Noisy	TV	Denoising NN	Adversarial
	Image	(supervised $)$	(unsupervised)	Regularizer
PSNR (dB)	20.3	26.3	28.8	28.2
SSIM	.534	.836	.908	.892

FIG. 2: Performance on a denoising task (A = id) on the BSDS dataset.

RESULTS: RECONSTRUCTION

(a) Ground Truth (b) FBP		(c) TV		(d) Post-Processing (e) Adversarial Reg	
		Model	- based	Supervised	Unsupervised
		(b)	(c)	$(d)^{4}$	(e)
high	PSNR (dB)	14.9	27.7	31.2	30.5
noise	\mathbf{SSIM}	.227	.890	.936	.927
low	PSNR (dB)	23.3	30.0	33.6	32.5
noise	\mathbf{SSIM}	.604	.924	.955	.946

FIG. 3: Performance on a complicated reconstruction task.

Viktor Stein

Adversarial Regularizers in Inverse Problems

⁴Jin et al.: "Deep Convolutional Neural Network for Inverse Problems in Imaging", *IEEE Transactions on Image Processing*, 2017

- I. NN-AIDED VARIATIONAL REGULARISATION
- II. TRAINING A NEURAL NETWORK AS A CRITIC
- III. Analysis: Loss optimality, weak stability
- IV. RESULTS
- V. Outlook & Conclusion

 Local regularizers. Samples many patches of pixels from image, then value of regularizer is average of values on patches. Architecture: choose convolution layers followed by global average pooling.

 \rightsquigarrow less training data needed.

 Recursive training. When solving variational problem, regularizer "sees" partially reconstructed images (not ground truth, but not with learned noise either). Local regularizers. Samples many patches of pixels from image, then value of regularizer is average of values on patches. Architecture: choose convolution layers followed by global average pooling.

 \rightsquigarrow less training data needed.

 Recursive training. When solving variational problem, regularizer "sees" partially reconstructed images (not ground truth, but not with learned noise either). Add those images to training data → NN learns from own outputs. But: delicate choice, which images to add.

- Key idea: replace regularizer by NN.
- Training algorithm for NN inspired heavily by WGAN.
- Solve regularised problem with GD \sim optimal W_1 decay-rates.
- Under weak assumption, optimal NN has favourable properties (similar to $d_{\text{supp}(\mathbb{P}_r)}$).
- This approach outperforms TV-regularisation and is unsupervised.

Thank you for your attention!

References

- Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. 2017. arXiv: 1704.00028 [cs.LG].
- [2] Kyong Hwan Jin et al. "Deep Convolutional Neural Network for Inverse Problems in Imaging". In: *IEEE Transactions on Image Processing* 26.9 (2017), pp. 4509–4522.
- [3] Sebastian Lunz et al. "Adversarial Regularizers in Inverse Problems". In: *NeurIPS* abs/1805.11572 (2018). arXiv: 1805.11572.
 - Talk at SIAM CSE19: https://www.pathlms.com/siam/courses/ 10878/sections/14350/video_presentations/127337.
 - Poster at NIPS2018: https://nips.cc/Conferences/2018/ ScheduleMultitrack?event=11813.