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INTRO: NN-AIDED VARIATIONAL REGULARISATION

Inverse problem: recover image x € X from measurements

y=Ax+e €y, where A: X — Y linear.

A \,-I—ez

[ ] . I-.
Fic. 1: In computer tomography, the noisy sinogram y is obtained by
applying the forward operator A to the true image x and adding noise ¢.
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INTRO: NN-AIDED VARIATIONAL REGULARISATION

Inverse problem: recover image x € X from measurements
y=Ax+e €Y, where A: X — Y linear.
Regularisation approach: for A > 0 solve

argmin [ Az — |2 + A f(2)
2€EX S——— —~—
data term a-priori

info
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INTRO: NN-AIDED VARIATIONAL REGULARISATION

Inverse problem: recover image x € X from measurements
y=Ax+e €Y, where A: X — Y linear.
Regularisation approach: for A > 0 solve

argmin Az — y||* + A Ve(z)
2€X S——— ~——
data term a-priori

info

— Key idea: Replace regularizer f (for example
TV(z) = ||Vz|1) by neural network (NN) Ug.

— Goal: Find best parameters © for NN architecture W.
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WHY IS THIS A GOOD IDEA?

— Combination of mathematical methods (model-based) with

deep learning (data driven).
Why is this a good idea?
— Only training NN to learn y — x works badly if A complicated
or few data available (e.g. MRI, CT).
— NN is independent of A ("plug-and-play"-structure).
— Is unsupervised.
— scales to high-dimensional parameter space.

— hand-crafted regularizers do not reflect true prior.
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NN AS A CRITIC

high
values

Fia. 1: NN learns to discriminate between distribution of true data and
of unregularlzed reconstructions. (Source: https://youtu.be/ZfYm60Om4hec, modified)
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REGULARIZERS AS CRITICS

Let P, and Py be the distributions of true images / measurements.

— Py can be mapped from Y to X via AJ; = (AAT +6I)71AT a

(regularized) pseudo-inverse of A.

Space Y X
Point y=Ax+¢ — Agy ~ T+ A}a
Distribution Py P, = (A})#]P’y

+ A} is known for many A, e.g. FOURIER, RADON.?

— Applying A}; to y amplifies noise.

2Jin et al.: “Deep Convolutional Neural Network for Inverse Problems in Imaging”,

IEEFE Transactions on Image Processing, 2017
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REGULARIZERS AS CRITICS

Goal: Vg takes high values on samples from P,, and low values on

samples of P,.. ~» We want to find
argiin Epy e, Yo (Px)] = Epy~p,[Vo(Px)].

For p > 0, define the loss functional

Epy~r, [Yo(Px)|—Epc~r,[Yo(Px)|+HEp ot {((I\Vx‘I/@(Px)II - 1)+)2],

3

penalizes Lip(¥e)>1

whose minimizer Vg« approximates the maximizer f of

Wi(Br ) = sup Epyr, [f(Px)] — Epgar, [f(Px)]
fel-Lip
f: X—=R

3Gulrajami et al.: Improved Training of Wasserstein GANs, NeurIPS, 2017
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LEARNING A REGULARIZER: ALGORITHM

Data: Gradient penalty u, batch size m, pseudo-inverse A:g.
while © has not converged do
foriec{l,...,m} do

Sample ground truth image xl(-r) ~ P, measurement

y; ~ Py, random number 6 ~ U|0, 1];

) A A(T;yz ) // Noisy reconstruction

€T; < «93657") + (1 — H)xl(n) ; // Random convex combination

L « Ve (a!") — Wo(a!™) + 1 [(IVa, Yo ()2 — 1), ] ;

% %

(n
€

// Loss functional

© + Adam (V@ Z;r;l Lz) ; // Improved SGD

Once NN trained, solve argmin ,cy ||[Az — y[|3 + AWe«(x) with GD,
choosing A = 2E.,, || A*e||2, where A* is the adjoint of A and p,

is the noise distribution.
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REGULARIZER’S IMPACT ON P,

Assume X is a HILBERT space, Wg~ is 1-LIPSCHITZ, Pp-a.e.

differentiable and attains maximum in Wi(P,,P,).

— Let x be noisy reconstruction sampled from P,,.

— Image obtained by performing 7-sized GD step over W+ is
gn(x) =2 —1n-VyVe«(x). Define P, = (g,)#Pn.

A w(n)

Goal:  Wi(P,,P,) < Wi(P,,P,) for
small 7 > 0, that is, w'(0) < 0, where
w(n) = Wi (P, Py).

~» Then gradient step is meaningful.

& w(0) = Wi (B, B,)

+
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REGULARIZER’S IMPACT ON P,

One can prove, provided the derivative exists, that
w'(0) = —Epy~p, [[VaPor (PX)[?] = L.

Mild assumptions = ||V, Ve« ||*> =1 P,-a.e.

~>» Our loss has optimal Wi-decay rates:

for any other regularizer f: X — R with T, () = (0 ~
V2 f(z)]| < 1 we define gi(z) =2 —n - L) = Wi (B, Py)

Vf(x) and B, == (§y)4(Ps). Then
Wi (P, Py)

@'(0) > —1 = w'(0).

d\
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WEAK DATA MANIFOLD ASSUMPTION

Assume P, is supported on the weakly compact set M C X.

Regularizer should encode prior knowledge about P, ~» penalize

points far away from M. One choice:
dy: X = [0 , — mi —y||-
wiX = [0,00), @ minla—y
The data manifold projection is

Py:X>D— M, x> argmin |z —y].
yeM
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DISTANCE FUNCTION MAXIMIZES LOSS FUNCTIONAL

If additionally (Pp)4(Prn) =P, (low noise), then

dy € argmax Ep, p, [f(Px)] — Epy~p, [f(Px)].
fE1-Lip

— Minimizer is not unique, as we can alter f outside of the
convex hull of supp(PP,) U supp(P,,) (provided it remains
1-LIPSCHITZ).
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PROOF OF THE THEOREM

1. dy is 1-L1PSCHITZ: Let z1,29 € X and § := Pys(x2). Then

dar(1) — dar(w2) = min [l — yl| — min ez — ]|
yeM

= min [l —yl| - IIwz — 1l
<z =gl = llz2 = 9l

AL ~ ~
< ey =9 — (z2 = 9)

= [lz1 — 22|

by the inverse triangle inequality.

Now exchange x1 and xo.
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PROOF OF THE THEOREM

2. djps attains maximum: Let f: X — R be 1-LIPSCHITZ. As we
assumed (Ppr)4(Pn) =P, (%), we have

) Epy~p, [f(Px) — f(Py(Px))]

Lip
< Epy~r,[[[Px — Pu(Px)l]

DR s, [dn(Px)]

= Epyn~p, [dr (Px) — dar(Par(Px))]

w Epyn~p, [dy (Px)] — Epg~p, [drv (Px)],

Epy~r, [f(Px)] — Epg~p, [f(Px)]

because the distance between x and Pys(z) is das(x) (1).
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EXISTENCE AND STABILITY

Let f be Weakly lower-semicontinuous and 1-LIPSCHITZ with

If(x)|| —— lx” oo and A be continuous.

Remark. The function f := djy fulfills the above assumptions.

There ezist a x* € argmin .y ||[Azx — y||> + Af(x) for A > 0.

Let (yn)nen C Y converge to y and (xn)neny C X be a sequence of
minimizers of ||A - —yn||> + Af. Then (zn)nen has a weakly
convergent subsequence, whose limit x* minimizes ||A - —y||? + \f.

Proof. Consult 3, Appendix, p. 10-12].

Viktor Stein
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RESULTS: DENOISING

(a) Ground Truth  (b) Noisy Image ©) TV (d) Denoising N.N. (e) Adversarial Reg
Noisy TV Denoising NN Adversarial
Image (supervised) (unsupervised) Regularizer
PSNR (dB) 20.3 26.3 28.8 28.2
SSIM 534 .836 .908 .892

Fic. 2: Performance on a denoising task (A = id) on the BSDS dataset.

Viktor ein Adversarial Regularizers in Inverse Problems 07.01.2022



RESULTS: RECONSTRUCTION

OO

(a) Ground Truth (b) FBP © TV (d) Post-Processing (e) Adversarial Reg

Model - based Supervised Unsupervised
(b) (c) (d)* (e)
high | PSNR (dB) 14.9 27.7 31.2 30.5
noise SSIM 227 .890 .936 927
low | PSNR (dB) | 23.3 30.0 33.6 32.5
noise SSIM .604 .924 955 .946

Fic. 3: Performance on a complicated reconstruction task.

4Jin et al.: “Deep Convolutional Neural Network for Inverse Problems in Imaging”,

IEEFE Transactions on Image Processing, 2017
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OUTLOOK: EXTENSIONS

— Local regularizers. Samples many patches of pixels from
image, then value of regularizer is average of values on
patches. Architecture: choose convolution layers followed by
global average pooling.

~ less training data needed.
— Recursive training. When solving variational problem,
regularizer "sees" partially reconstructed images (not ground

truth, but not with learned noise either).
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OUTLOOK: EXTENSIONS

— Local regularizers. Samples many patches of pixels from
image, then value of regularizer is average of values on
patches. Architecture: choose convolution layers followed by
global average pooling.

~ less training data needed.

— Recursive training. When solving variational problem,
regularizer "sees" partially reconstructed images (not ground
truth, but not with learned noise either). Add those images to
training data ~» NN learns from own outputs. But: delicate

choice, which images to add.
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CONCLUSION

— Key idea: replace regularizer by NN.
— Training algorithm for NN inspired heavily by WGAN.
— Solve regularised problem with GD ~» optimal W; decay-rates.

— Under weak assumption, optimal NN has favourable properties
(similar to dgppee,))-
— This approach outperforms TV-regularisation and is

unsupervised.
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Thank you for your attention!
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