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Intro: NN-aided variational regularisation

Inverse problem: recover image x ∈ X from measurements

y = Ax+ ε ∈ Y, where A : X → Y linear.

Fig. 1: In computer tomography, the noisy sinogram y is obtained by
applying the forward operator A to the true image x and adding noise ε.

Regularisation approach: for λ > 0 solve

argmin
x∈X

∥Ax− y∥2︸ ︷︷ ︸
data term

+ λ

︸︷︷︸
a-priori

info

− Key idea: Replace regularizer f (for example
TV(x) = ∥∇x∥1) by neural network (NN) ΨΘ.

− Goal: Find best parameters Θ for NN architecture Ψ.
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Why is this a good idea?

− Combination of mathematical methods (model-based) with
deep learning (data driven).

Why is this a good idea?

− Only training NN to learn y 7→ x works badly if A complicated
or few data available (e.g. MRI, CT).

− NN is independent of A ("plug-and-play"-structure).

− Is unsupervised.

− scales to high-dimensional parameter space.

− hand-crafted regularizers do not reflect true prior.
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NN as a critic

Fig. 1: NN learns to discriminate between distribution of true data and
of unregularized reconstructions. (Source: https://youtu.be/ZfYm6Om4hec, modified)
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Regularizers as critics

Let Pr and PY be the distributions of true images / measurements.

− PY can be mapped from Y to X via A†
δ := (AAT + δI)−1AT , a

(regularized) pseudo-inverse of A.

Space Y X

Point y = Ax+ ε 7−→ A†
δy ≈ x+A†

δε

Distribution PY Pn := (A†
δ)#PY

+ A†
δ is known for many A, e.g. Fourier, Radon.2

− Applying A†
δ to y amplifies noise.

2Jin et al.: “Deep Convolutional Neural Network for Inverse Problems in Imaging”,
IEEE Transactions on Image Processing, 2017
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Regularizers as critics

Goal: ΨΘ takes high values on samples from Pn and low values on
samples of Pr. ; We want to find

argmin
Θ

EPX∼Pr [ΨΘ(PX)]− EPX∼Pn [ΨΘ(PX)].

For µ > 0, define the loss functional

EPX∼Pr [ΨΘ(PX)]−EPX∼Pn [ΨΘ(PX)]+µEPX∼τ

[(
(∥∇xΨΘ(PX)∥ − 1)+

)2]︸ ︷︷ ︸
penalizes Lip(ΨΘ)>1

3

,

whose minimizer ΨΘ∗ approximates the maximizer f of

W1(Pr,Pn) = sup
f∈1-Lip
f : X→R

EPX∼Pn [f(PX)]− EPX∼Pr [f(PX)].

3Gulrajani et al.: Improved Training of Wasserstein GANs, NeurIPS, 2017
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Learning a regularizer: Algorithm

Data: Gradient penalty µ, batch size m, pseudo-inverse A†
δ.

while Θ has not converged do
for i ∈ {1, . . . ,m} do

Sample ground truth image x
(r)
i ∼ Pr, measurement

yi ∼ PY , random number θ ∼ U [0, 1];

x
(n)
i ← A†

δyi ; // Noisy reconstruction

xi ← θx
(r)
i + (1− θ)x

(n)
i ; // Random convex combination

Li ← ΨΘ(x
(r)
i )−ΨΘ(x

(n)
i ) + µ

[
(∥∇xiΨΘ(xi)∥2 − 1)+

]2 ;
// Loss functional

Θ← Adam (∇Θ
∑m

i=1 Li) ; // Improved SGD

Once NN trained, solve argmin x∈X ∥Ax− y∥22 + λΨΘ∗(x) with GD,
choosing λ = 2Eε∼pn ∥A∗ε∥2, where A∗ is the adjoint of A and pn

is the noise distribution.
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Regularizer’s impact on Pn

Assume X is a Hilbert space, ΨΘ∗ is 1-Lipschitz, Pn-a.e.
differentiable and attains maximum in W1(Pr,Pn).

− Let x be noisy reconstruction sampled from Pn.

− Image obtained by performing η-sized GD step over ΨΘ∗ is
gη(x) := x− η · ∇xΨΘ∗(x). Define Pη := (gη)#Pn.

Goal: W1(Pr,Pη) < W1(Pr,Pn) for
small η > 0, that is, w′(0) < 0, where
w(η) := W1(Pr,Pη).
; Then gradient step is meaningful.

η

w(η)

w(0) = W1(Pr,Pn)

W1(Pr,Pη)
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Regularizer’s impact on Pn

One can prove, provided the derivative exists, that

w′(0) = −EPX∼Pn

[
∥∇xΨΘ∗(PX)∥2

]
= −1.

Mild assumptions =⇒ ∥∇xΨΘ∗∥2 ≡ 1 Pn-a.e.
; Our loss has optimal W1-decay rates:
for any other regularizer f : X → R with
∥∇xf(x)∥ ≤ 1 we define g̃η(x) := x − η ·
∇f(x) and P̃η := (g̃η)#(Pn). Then

w̃′(0) ≥ −1 = w′(0).
η

w(0) = w̃(0)

W1(Pr,Pη)

w̃(η) = W1(Pr, P̃η)
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Weak data manifold assumption

Assume Pr is supported on the weakly compact set M ⊂ X.

Regularizer should encode prior knowledge about Pr ; penalize
points far away from M . One choice:

dM : X → [0,∞), x 7→ min
y∈M
∥x− y∥.

The data manifold projection is

PM : X ⊃ D →M, x 7→ argmin
y∈M

∥x− y∥.

M

PM (x)

x

∥x− PM (x)∥ = dM (x)
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Distance function maximizes loss functional

Theorem (Distance function maximizes loss functional)

If additionally (PM )#(Pn) = Pr (low noise), then

dM ∈ argmax
f∈1-Lip

EPX∼Pn [f(PX)]− EPX∼Pr [f(PX)].

− Minimizer is not unique, as we can alter f outside of the
convex hull of supp(Pr) ∪ supp(Pn) (provided it remains
1-Lipschitz).
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Proof of the Theorem

1. dM is 1-Lipschitz: Let x1, x2 ∈ X and ỹ := PM (x2). Then

dM (x1)− dM (x2) = min
y∈M
∥x1 − y∥ − min

y∈M
∥x2 − y∥

= min
y∈M
∥x1 − y∥ − ∥x2 − ỹ∥

≤ ∥x1 − ỹ∥ − ∥x2 − ỹ∥
△̸=−1

≤ ∥x1 − ỹ − (x2 − ỹ)∥

= ∥x1 − x2∥
M

PM(x1)

x1

dM(x1)

ỹ

x2

dM
(x2

)

∥x
1 −

ỹ∥

∥x
1 −

x
2 ∥

by the inverse triangle inequality.

Now exchange x1 and x2.
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Proof of the Theorem

2. dM attains maximum: Let f : X → R be 1-Lipschitz. As we
assumed (PM )#(Pn) = Pr (⋆), we have

EPX∼Pn [f(PX)]− EPX∼Pr [f(PX)]
(⋆)
= EPX∼Pn [f(PX)− f(PM (PX))]

Lip
≤ EPX∼Pn [∥PX − PM (PX)∥]
(‡)
= EPX∼Pn [dM (PX)]

= EPX∼Pn [dM (PX)− dM (PM (PX))]

(⋆)
= EPX∼Pn [dM (PX)]− EPX∼Pr [dM (PX)],

because the distance between x and PM (x) is dM (x) (‡).
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Existence and Stability

Let f be weakly lower-semicontinuous and 1-Lipschitz with

∥f(x)∥ ∥x∥→∞−−−−−→∞ and A be continuous.

Remark. The function f := dM fulfills the above assumptions.

Theorem (Existence of minimiser)

There exist a x∗ ∈ argmin x∈X ∥Ax− y∥2 + λf(x) for λ > 0.

Theorem (Weak stability of the data term)

Let (yn)n∈N ⊂ Y converge to y and (xn)n∈N ⊂ X be a sequence of
minimizers of ∥A · −yn∥2 + λf . Then (xn)n∈N has a weakly
convergent subsequence, whose limit x∗ minimizes ∥A · −y∥2 + λf .

Proof. Consult [3, Appendix, p. 10-12].
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Results: Denoising

Noisy TV Denoising NN Adversarial
Image (supervised) (unsupervised) Regularizer

PSNR (dB) 20.3 26.3 28.8 28.2
SSIM .534 .836 .908 .892

Fig. 2: Performance on a denoising task (A = id) on the BSDS dataset.
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Results: Reconstruction

Model - based Supervised Unsupervised
(b) (c) (d)4 (e)

high PSNR (dB) 14.9 27.7 31.2 30.5
noise SSIM .227 .890 .936 .927
low PSNR (dB) 23.3 30.0 33.6 32.5

noise SSIM .604 .924 .955 .946

Fig. 3: Performance on a complicated reconstruction task.

4Jin et al.: “Deep Convolutional Neural Network for Inverse Problems in Imaging”,
IEEE Transactions on Image Processing, 2017
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Outlook: Extensions

− Local regularizers. Samples many patches of pixels from
image, then value of regularizer is average of values on
patches. Architecture: choose convolution layers followed by
global average pooling.
; less training data needed.

− Recursive training. When solving variational problem,
regularizer "sees" partially reconstructed images (not ground
truth, but not with learned noise either).

Add those images to
training data ; NN learns from own outputs. But: delicate
choice, which images to add.
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Conclusion

− Key idea: replace regularizer by NN.

− Training algorithm for NN inspired heavily by WGAN.

− Solve regularised problem with GD ; optimal W1 decay-rates.

− Under weak assumption, optimal NN has favourable properties
(similar to dsupp(Pr)).

− This approach outperforms TV-regularisation and is
unsupervised.
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Thank you for your attention!
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